US9737883B2 - Hydrogenation catalyst and method for producing same - Google Patents

Hydrogenation catalyst and method for producing same Download PDF

Info

Publication number
US9737883B2
US9737883B2 US14/349,105 US201214349105A US9737883B2 US 9737883 B2 US9737883 B2 US 9737883B2 US 201214349105 A US201214349105 A US 201214349105A US 9737883 B2 US9737883 B2 US 9737883B2
Authority
US
United States
Prior art keywords
hydrotreating catalyst
phosphorus
range
alumina
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/349,105
Other languages
English (en)
Other versions
US20140243192A1 (en
Inventor
Kenji Yamane
Kouichi Ohama
Shogo Tagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Assigned to JGC CATALYSTS AND CHEMICALS LTD. reassignment JGC CATALYSTS AND CHEMICALS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHAMA, KOUICHI, TAGAWA, SHOGO, YAMANE, KENJI
Publication of US20140243192A1 publication Critical patent/US20140243192A1/en
Application granted granted Critical
Publication of US9737883B2 publication Critical patent/US9737883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • B01J35/1019
    • B01J35/1042
    • B01J35/1047
    • B01J35/1061
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • B01J35/1085
    • B01J35/109
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities

Definitions

  • the present invention relates to a hydrotreating catalyst and a method for producing the hydrotreating catalyst and particularly to a hydrotreating catalyst used for hydrotreating heavy hydrocarbon oil such as a residual oil containing metal pollutant (e.g. vanadium and nickel) and a method for producing the same.
  • a hydrotreating catalyst used for hydrotreating heavy hydrocarbon oil such as a residual oil containing metal pollutant (e.g. vanadium and nickel) and a method for producing the same.
  • Patent Literature 1 discloses a bimodal catalyst having mesopores in a range from 7 to 20 nm and macropores in a range of 300 to 800 nm that exhibits high demetallization performance and desulfurization performance.
  • the primary reaction pores in the form of the mesopores are not necessarily effective for deasphaltene reaction.
  • the macropores are formed by adding an easily-decomposable substance to a kneaded material while preparing a support and calcining the kneaded material to remove the substance.
  • such a method requires a large amount of easily-decomposable substance and productivity is deteriorated due to the need for the calcining, resulting in a high production cost.
  • An object of the invention is to provide a hydrotreating catalyst that exhibits excellent demetallization performance and deasphaltene performance, and a method for producing the catalyst with high productivity.
  • a catalyst including a hydrogenation active metal supported on a predetermined alumina-phosphorus support with a maximum value of pore distribution in a pore diameter range from 10 to 30 nm and a wide pore distribution over a pore diameter range from 5 to 100 nm exhibits excellent demetallization performance and deasphaltene performance. Further, the above problem of improvement in productivity during the catalyst production can be achieved, thereby reaching the invention.
  • the invention provides a hydrotreating catalyst and a method for producing the hydrotreating catalyst as follows.
  • a hydrotreating catalyst that includes: an alumina-phosphorus support; and a hydrogenation active metal supported on the alumina-phosphorus carrier, where:
  • a specific surface area of the hydrotreating catalyst is 100 m 2 /g or more
  • PV T total pore volume of the hydrotreating catalyst measured according to a mercury intrusion method being in a range from 0.80 to 1.50 ml/g;
  • the hydrotreating catalyst has a maximum value of pore distribution in a pore diameter range from 10 to 30 nm;
  • a ratio ( ⁇ PV/PVme) of a pore volume ( ⁇ PV) of pores with a pore diameter within a range of ⁇ 2 nm of a pore diameter at the maximum value to a pore volume (PVme) of pores with a pore diameter in a range from 5 to 100 nm is 0.40 or less;
  • a pressure capacity of the hydrotreating catalyst is 10 N/mm or more
  • the hydrogenation active metal is at least one metal selected from metals of VIA and VIII groups of the periodic table.
  • a method for producing a hydrotreating catalyst including: producing an alumina-phosphorus support; and supporting a hydrogenation active metal on the alumina-phosphorus support, where the producing of the support includes: a first step of obtaining an alumina hydrate by preparing an acidic aluminum aqueous solution of which pH is adjusted in a range from 2.0 to 5.0 and, while agitating the acidic aluminum aqueous solution, adding a basic aluminum aqueous solution so that the pH falls in a range from 7.5 to 10.0; a second step of obtaining an alumina-phosphorus hydrate by adding phosphorus to the alumina hydrate from which a residual product salt of the alumina hydrate is removed; and a third step of obtaining an alumina-phosphorus support by aging, kneading, molding, drying and calcining the alumina-phosphorus hydrate in turn.
  • the hydrotreating catalyst according to the invention exhibits excellent demetallization performance and deasphaltene performance.
  • the hydrotreating catalyst according to the invention is useful especially as a hydrotreating catalyst for heavy hydrocarbon oil.
  • the hydrotreating catalyst of the invention is simple and thus is highly productive, the hydrotreating catalyst is advantageous in terms of production cost.
  • FIG. 1A is an integral graph showing a pore distribution of a catalyst A according to the invention.
  • FIG. 1B is a differential graph showing the pore distribution of the catalyst A according to the invention.
  • FIG. 2A is an integral graph showing a pore distribution of a catalyst B according to the invention.
  • FIG. 2B is a differential graph showing the pore distribution of the catalyst B according to the invention.
  • a hydrotreating catalyst according to the invention (sometimes referred to as “the present catalyst” hereinafter) is a catalyst where a hydrogenation active metal is supported on an alumina-phosphorus support.
  • the alumina-phosphorus support herein may be composed solely of alumina and phosphorus oxide or, alternatively, may additionally contain inorganic oxide such as silica, boria, titania, zirconia and manganese oxide.
  • the support preferably contains 65 mass % or more, more preferably 75 to 99 mass % of alumina based on the total amount of the support.
  • the specific surface area of the present catalyst is 100 m 2 /g or more. When the specific surface area is less than 100 m 2 /g, though the demetallization performance is affected only a little, desulfurization reaction speed tends to be considerably lowered.
  • the specific surface area is preferably within a range from 150 to 250 m 2 /g. Even when the specific surface area exceeds 250 m 2 /g, while the advantages of the invention are not greatly enhanced, demetallization performance (demetallization selectivity) and/or stability of catalyst activity may be reduced. It should be noted that the specific surface area of the invention is a value measured according to BET method.
  • a total pore volume (PV T ) of the present catalyst is within a range from 0.80 to 1.50 ml/g.
  • the total pore volume (PV T ) is preferably in a range from 0.85 to 1.40 ml/g, more preferably in a range from 0.90 to 1.30 ml/g. It should be noted that the total pore volume (PV T ) in the invention means a pore volume of pores of which pore diameter is in a range from 3.2 to 10000 nm.
  • the pore diameter, pore volume and pore distribution in the invention are measured according to mercury intrusion method.
  • the pore diameter is a value calculated based on a mercury surface tension of 480 dyne/cm and a contact angle of 150 degrees.
  • the pore distribution of the present catalyst is maximized in a pore diameter range from 10 to 30 nm.
  • the maximum value is in a pore diameter range of less than 10 nm, demetallization performance is considerably reduced.
  • the maximum value is in a pore diameter range exceeding 30 nm, the desulfurization performance tends to be unfavorably reduced.
  • the favorable pore diameter range in which the maximum value is present is from 12 to 25 nm, more preferably from 15 to 20 nm.
  • a ratio ( ⁇ PV/PVme) of a pore volume ( ⁇ PV) of pores with a pore diameter within a range of ⁇ 2 nm of a pore diameter at the maximum value to a pore volume (PVme) of pores with a pore diameter in a range from 5 to 100 nm is 0.40 or less.
  • ⁇ PV/PVme exceeds 0.40, a reactivity to asphaltene molecules is reduced, thereby unfavorably reducing the demetallization performance and deasphaltene performance.
  • the pressure capacity of the present catalyst is 10 N/mm or more.
  • the pressure capacity is less than 10 N/mm, the catalyst is likely to be damaged when being loaded, thereby causing uneven flow or pressure loss at the time of a reaction.
  • the pressure capacity must be 10 N/mm or more.
  • the pressure capacity is also referred to as a crush strength and the pressure capacity in the invention is measured with a Kiya hardness tester.
  • the present catalyst contains 0.4 to 10.0 mass % of phosphorus in a P 2 O 5 concentration conversion amount based on a total amount of the catalyst. Less than 0.4 mass % of phosphorus is not preferable because the catalyst strength (abrasion resistance) is reduced. More than 10.0 mass % of phosphorus is not preferable because of decrease in the specific surface area of the catalyst.
  • the content of phosphorus in the catalyst is preferably in a range from 0.5 to 10.0 mass %, more preferably from 1.0 to 8.0 mass %, further preferably from 2.0 to 7.0 mass %.
  • the content of phosphorus in the alumina-phosphorus support constituting the present catalyst is preferably in a range from 0.5 to 7.0 mass %, more preferably from 1.0 to 6.0 mass %, further preferably from 1.5 to 5.5 mass % in a P 2 O 5 concentration conversion amount based on the total amount of the support.
  • the catalyst strength may be reduced. Further, an object of the invention (i.e. wide pore distribution in a pore diameter range of 5 to 100 nm) may become difficult to be achieved. On the other hand, when the content of phosphorus in the support exceeds 7.0 mass %, the volume occupied by pores with pore diameters in a range from 100 to 1000 nm becomes excessively large, thereby reducing the catalyst strength. In addition, a bulk density of the catalyst may be reduced to lower the catalyst performance.
  • the hydrogenation active metal supported on the present catalyst is at least one metal selected from VIA and VIII groups of the periodic table.
  • the amount of the hydrogenation active metal supported on the catalyst is preferably in a range from 1 to 25 mass %, more preferably from 3 to 20 mass %, further preferably from 3 to 15 mass % in terms of oxide thereof based on the total amount of the catalyst.
  • the advantage(s) of the invention can be further eminently exhibited.
  • the demetallization performance (demetallization selectivity) and stability of catalyst activity can be favorably maintained and the production cost can be favorably reduced.
  • the metal supported on the support is preferably a combination of the above-described group VIA metal and group VIII metal of the periodic table in terms of reactivity.
  • group VIA metal include molybdenum and tungsten.
  • group VIII metal include nickel and cobalt.
  • the preferable amount of the group VIA metal of the periodic table supported on the catalyst is in a range from 1 to 20 mass %, more preferably 3 to 15 mass % in terms of oxide thereof.
  • the preferable amount of the group VIII metal of the periodic table supported on the catalyst is in a range from 0.1 to 10 mass %, more preferably 0.3 to 5 mass % in terms of oxide thereof.
  • Acidic aluminum salt is added to base water to prepare an aqueous solution of 0.1 to 2.0 mass % of acidic aluminum in terms of Al 2 O 3 with pH of 2.0 to 5.0. Then, while agitating the acidic aluminum aqueous solution, the temperature of the acidic aluminum solution is raised to 50 to 80 degrees Celsius, preferably to 60 to 70 degrees Celsius. Any water-soluble salt may be used as the acidic aluminum salt used in the invention. Examples of the usable salt are aluminum sulfate, aluminum chloride, aluminum acetate and aluminum nitrate.
  • the aqueous solution preferably contains 0.5 to 20 mass %, more preferably 2 to 10 mass % of the acidic aluminum salt in terms of Al 2 O 3 .
  • a basic aluminum aqueous solution is added for 30 to 200 minutes, preferably for 60 to 180 minutes to adjust pH of the solution to a range from 7.5 to 10.0 to obtain an alumina hydrate.
  • the basic aluminum salt usable in the invention are sodium aluminate and potassium aluminate.
  • the basic aluminum aqueous solution preferably contains 2 to 30 mass %, more preferably 10 to 25 mass % of the basic aluminum salt in terms of Al 2 O 3 .
  • the obtained alumina hydrate is washed with pure water at 50 to 70 degrees Celsius, preferably 55 to 65 degrees Celsius to remove impurities such as sodium and sulfate radical to obtain a washed cake. Further, pure water is added to the washed cake to adjust the Al 2 O 3 concentration in a range from 5 to 18 mass %, preferably from 7 to 15 mass %. Then, phosphorus is added to the alumina hydrate to obtain an alumina-phosphorus hydrate.
  • the content of phosphorus in the support is preferably in a range from 0.5 to 7.0 mass %, more preferably from 1.0 to 6.0 mass %, further preferably from 1.5 to 5.5 mass % in terms of P 2 O 5 concentration.
  • Phosphoric acid, phosphorus acid and phosphate compounds such as ammonia phosphate, potassium phosphate and sodium phosphate are usable as the source of phosphorus.
  • the alumina-phosphorus hydrate is aged at 30 degrees Celsius or higher, preferably at 80 to 100 degrees Celsius for 1 to 10 hours, preferably for 2 to 5 hours in an aging tank with a reflux apparatus, the alumina-phosphorus hydrate is turned into a moldable kneaded material with a common means (e.g. heating and kneading). Subsequently, the kneaded material is molded into a desired shape by extrusion or the like and is dried and calcined at 400 to 800 degrees Celsius for 0.5 to 10 hours to obtain an alumina-phosphorus support.
  • a common means e.g. heating and kneading
  • the hydrotreating catalyst of the invention can be produced using the above alumina-phosphorus support with the at least one metal selected from metals of VIA and VIII groups of the periodic table being supported on the support.
  • the material of the metal are nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate, molybdenum trioxide, ammonium molybdate and ammonium paratungstate.
  • the metals are supported on the support with a known process such as impregnation and dipping.
  • the support with the metal being supported thereon is usually calcined for 0.5 to 5 hours at 400 to 600 degrees Celsius to form the hydrotreating catalyst of the exemplary embodiment of the invention.
  • a catalyst having a second maximum value of pore distribution in a pore diameter range from 100 to 1000 nm can be obtained.
  • the second maximum value in the pore distribution can enhance the deasphaltene performance and demetallization performance.
  • the catalyst having the second maximum value when a ratio (PVma/PVme) of a pore volume (PVma) of pores having a pore diameter in a range from 100 to 1000 nm to a pore volume (PVme) of pores having a pore diameter in a range from 5 to 100 nm is in a range from 0.1 to 0.5, the above advantages can be more efficiently exhibited. However, when PVma/PVme exceeds 0.5, the strength of the catalyst may be reduced.
  • a catalyst not having a second maximum value of pore distribution in a pore diameter range from 100 to 1000 nm can be obtained.
  • Such a catalyst is excellent in desulfurization selectivity.
  • a catalyst system having both of deasphaltene and demetallization performances and desulfurization selectivity can be provided by combining the catalyst having the second maximum value of pore distribution and the catalyst not having the second maximum value of pore distribution.
  • the hydrotreating catalyst composition of the invention is suitably usable for hydrotreatment, especially demetallization, of a heavy hydrocarbon oil such as a residual oil containing a metal pollutant (e.g. vanadium and nickel) and can be used in a known hydrotreatment apparatus under known operating conditions.
  • a heavy hydrocarbon oil such as a residual oil containing a metal pollutant (e.g. vanadium and nickel)
  • a metal pollutant e.g. vanadium and nickel
  • the present composition can be produced with ease and thus with high productivity, the present composition is advantageous in terms of production cost.
  • the pH after the sodium aluminate aqueous solution was added was 9.5.
  • the obtained alumina hydrate was washed with pure water at 60 degrees Celsius to remove impurities such as sodium and sulfate radical, thereby obtaining a washed cake.
  • pure water was added to the washed cake to adjust the Al 2 O 3 concentration to 8 mass %.
  • 256 g of phosphoric acid (with a concentration of 62 mass % in terms of P 2 O 5 ) was added to the alumina hydrate and was aged for three hours at 95 degrees Celsius in an aging tank having a reflux apparatus to obtain an alumina-phosphorus hydrate.
  • Slurry obtained after the aging was dehydrated and was kneaded to be condensed to a predetermined water content while kneading the slurry with a double-arm kneader provided with a steam jacket.
  • the obtained kneaded material was extruded in a form of 1.7 mm quatrefoil with an extruder.
  • the obtained alumina molding was dried at 110 degrees Celsius for twelve hours and further was calcined at 680 degrees Celsius for three hours to obtain an alumina-phosphorus support a.
  • the support a contained 5 mass % of phosphorus in terms of P 2 O 5 concentration, and 95 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • the metal components of the catalyst A were 5 mass % of MoO 3 (based on the total amount of the catalyst) and 1 mass % of NiO (based on the total amount of the catalyst).
  • the properties of the catalyst A are shown in Table 1. Further, FIGS. 1A and 1B respectively show integral and differential graphs of pore distribution of the hydrotreating catalyst A.
  • An alumina-phosphorus support b was obtained in the same manner as in Example 1 except that 99.4 g of phosphoric acid was added.
  • the support b contained 2 mass % of phosphorus in terms of P 2 O 5 concentration, and 98 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • a catalyst B was obtained in the same manner as in Example 1 using the support b.
  • the properties of the catalyst B are shown in Table 1. Further, FIGS. 2A and 2B respectively show integral and differential graphs of pore distribution of the hydrotreating catalyst B.
  • An alumina-phosphorus support c was obtained in the same manner as in Example 1 except that 150.7 g of phosphoric acid was added.
  • the support c contained 3 mass % of phosphorus in terms of P 2 O 5 concentration, and 97 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • a catalyst C was obtained in the same manner as in Example 1 using the support c. The properties of the catalyst C are shown in Table 1.
  • An alumina support d was obtained in the same manner as in Example 1 except that phosphoric acid was not added.
  • a catalyst D was obtained in the same manner as in Example 1 using the support d. The properties of the catalyst D are shown in Table 1.
  • An alumina-phosphorus support e was obtained in the same manner as in Example 1 except that 9.8 g of phosphoric acid was added.
  • the support e contained 0.2 mass % of phosphorus in terms of P 2 O 5 concentration, and 99.8 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • a catalyst E was obtained in the same manner as in Example 1 using the support e. The properties of the catalyst E are shown in Table 1.
  • An alumina-phosphorus support f was obtained in the same manner as in Example 1 except that 481.8 g of phosphoric acid was added.
  • the support f contained 9 mass % of phosphorus in terms of P 2 O 5 concentration, and 91 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • a catalyst F was obtained in the same manner as in Example 1 using the support f. The properties of the catalyst F are shown in Table 1.
  • An alumina-phosphorus support g was obtained in the same manner as in Example 1 except that the sodium aluminate aqueous solution was added for 10 minutes.
  • the support g contained 5 mass % of phosphorus in terms of P 2 O 5 concentration, and 95 mass % of aluminum in terms of Al 2 O 3 concentration (both based on a total amount of the support).
  • a catalyst G was obtained in the same manner as in Example 1 using the support g. The properties of the catalyst G are shown in Table 1.
  • the hydrogenation demetallization activity, desulfurization activity and deasphaltene activity were represented as demetallization rate, desulfurization rate and deasphaltene rate, and the values thereof were shown in Table 1.
  • Desulfurization rate ([sulfur concentration in the material oil] ⁇ [sulfur concentration in the hydrotreatment product oil]/[sulfur concentration in the material oil]) ⁇ 100
  • the catalysts A to C according to the invention exhibit the demetallization rate and deasphaltene rate especially higher than those of the catalysts D to G of Comparatives 1 to 4 and higher desulfurization activity than that of the catalysts D to G. It can also be recognized that the catalysts A and C (Examples 1 and 3) having a second maximum value of pore distribution in a pore diameter range from 100 to 1000 nm exhibit extremely high demetallization rate and deasphaltene rate.
  • the catalyst F of Comparative 3 that does not satisfy the other requirements of the invention does not exhibit the above-described advantages of the invention.
  • the sodium aluminate aqueous solution was added for 10 minutes unlike Example 1 to set an end pH at 9.5, thereby controlling the ratio ⁇ PV/PVme.
  • the ratio ⁇ PV/PVme goes outside the range defined in the invention, even when the phosphorus amount is the same as that in Example 1, the catalyst activity is deteriorated.
  • the second maximum value shown in a predetermined range in Comparative 4 does not contribute to the catalyst activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
US14/349,105 2011-10-24 2012-10-22 Hydrogenation catalyst and method for producing same Active US9737883B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-233148 2011-10-24
JP2011233148A JP5922372B2 (ja) 2011-10-24 2011-10-24 水素化処理触媒及びその製造方法
PCT/JP2012/077216 WO2013061913A1 (ja) 2011-10-24 2012-10-22 水素化処理触媒及びその製造方法

Publications (2)

Publication Number Publication Date
US20140243192A1 US20140243192A1 (en) 2014-08-28
US9737883B2 true US9737883B2 (en) 2017-08-22

Family

ID=48167745

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/349,105 Active US9737883B2 (en) 2011-10-24 2012-10-22 Hydrogenation catalyst and method for producing same

Country Status (6)

Country Link
US (1) US9737883B2 (zh)
EP (1) EP2772308B1 (zh)
JP (1) JP5922372B2 (zh)
KR (1) KR101990165B1 (zh)
TW (1) TWI551347B (zh)
WO (1) WO2013061913A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297011A1 (en) * 2014-10-02 2017-10-19 Cataler Corporation Exhaust gas purification catalyst
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108188B2 (en) 2012-03-07 2015-08-18 Chevoron Phillip Chemical Company, LP Selective hydrogenation catalyst and methods of making and using same
KR20160052588A (ko) * 2013-09-06 2016-05-12 셰브론 필립스 케미컬 컴퍼니 엘피 쌍봉 지지체를 포함하는 선택적 수소화 촉매 및 이의 제조 및 사용 방법
CN104549330B (zh) * 2013-10-23 2017-02-22 中国石油化工股份有限公司 一种加氢精制活性支撑剂及其制备方法
EP3305406A4 (en) 2015-05-27 2018-05-23 JGC Catalysts And Chemicals Ltd. Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
KR20210106568A (ko) * 2018-12-28 2021-08-30 차이나 페트로리움 앤드 케미컬 코포레이션 슈도-베마이트, 및 이의 제조방법 및 용도
CN111604074B (zh) * 2020-06-29 2022-12-13 煤炭科学技术研究院有限公司 一种煤焦油双峰孔结构加氢预处理催化剂及其制备方法
JP2023037955A (ja) * 2021-09-06 2023-03-16 日揮触媒化成株式会社 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257922A (en) * 1979-03-13 1981-03-24 Electric Power Research Institute, Inc. Process for coal liquefaction and catalyst
JPS58252A (ja) 1981-06-17 1983-01-05 アモコ コ−ポレ−シヨン 改良された触媒及び担体、それらの製造方法、並びにそれらの使用方法
US4395328A (en) 1981-06-17 1983-07-26 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
US4552650A (en) * 1982-06-17 1985-11-12 Societe Francaise Des Produits Pour Catalyse Pro-Catalyse Process for hydrotreating metal containing oil fractions using a supported catalyst of increased resistance to poisons
US5089463A (en) * 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
WO2000033957A1 (fr) 1998-12-08 2000-06-15 Japan Energy Corporation Catalyseur d'hydrodesulfuration et son procede de preparation
US6207611B1 (en) 1997-07-22 2001-03-27 China Petro-Chemical Corporation Catalyst for hydrodemetalization of heavy oil
WO2002043862A2 (en) 2000-11-28 2002-06-06 Shell Internationale Research Maatschappij B.V. Alumina having novel pore structure, method of making and catalysts made therefrom
US20050107479A1 (en) * 2003-10-16 2005-05-19 Conocophillips Company Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same
JP2005169232A (ja) 2003-12-10 2005-06-30 Petroleum Energy Center 炭化水素油の水素化脱硫触媒及びその製造方法
EP1552880A1 (en) 2002-10-10 2005-07-13 China Petroleum & Chemical Corporation A silicon-containing alumina support, preparation thereof and a catalyst comprising the alumina support
US20050211603A1 (en) * 2004-03-23 2005-09-29 Denis Guillaume Doped spherically-shaped supported catalyst and process for hydrotreating and hydroconverting metal-containing oil fractions
JP2006035052A (ja) 2004-07-23 2006-02-09 Nippon Oil Corp 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
JP2006181562A (ja) 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理触媒組成物およびその製造方法
US20060249429A1 (en) 2004-01-09 2006-11-09 Nippon Oil Corporation Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
JP2006342288A (ja) 2005-06-10 2006-12-21 Petroleum Energy Center 炭化水素油の水素化処理方法
JP2006341221A (ja) 2005-06-10 2006-12-21 Petroleum Energy Center 炭化水素油の水素化処理触媒およびその製造方法、ならびに炭化水素油の水素化処理方法
JP2008290043A (ja) 2007-05-28 2008-12-04 Cosmo Oil Co Ltd 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP2009101362A (ja) 2004-03-26 2009-05-14 Cosmo Oil Co Ltd 炭化水素油の水素化処理触媒の製造方法
CN101679025A (zh) 2007-04-24 2010-03-24 布莱克光电有限公司 氢-催化剂反应器
JP2010248476A (ja) 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法
JP2011067748A (ja) 2009-09-25 2011-04-07 Nippon Kecchen Kk 水素化処理触媒の製造方法、並びに当該触媒を用いる炭化水素油の水素化処理方法
JP2011072928A (ja) 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp 炭化水素油の水素化脱硫触媒およびその製造方法

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257922A (en) * 1979-03-13 1981-03-24 Electric Power Research Institute, Inc. Process for coal liquefaction and catalyst
JPS58252A (ja) 1981-06-17 1983-01-05 アモコ コ−ポレ−シヨン 改良された触媒及び担体、それらの製造方法、並びにそれらの使用方法
US4395328A (en) 1981-06-17 1983-07-26 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
US4399057A (en) 1981-06-17 1983-08-16 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
US4552650A (en) * 1982-06-17 1985-11-12 Societe Francaise Des Produits Pour Catalyse Pro-Catalyse Process for hydrotreating metal containing oil fractions using a supported catalyst of increased resistance to poisons
US5089463A (en) * 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
US6207611B1 (en) 1997-07-22 2001-03-27 China Petro-Chemical Corporation Catalyst for hydrodemetalization of heavy oil
WO2000033957A1 (fr) 1998-12-08 2000-06-15 Japan Energy Corporation Catalyseur d'hydrodesulfuration et son procede de preparation
US6780817B1 (en) 1998-12-08 2004-08-24 Japan Energy Corporation Catalyst for hydrofining and method for preparation thereof
WO2002043862A2 (en) 2000-11-28 2002-06-06 Shell Internationale Research Maatschappij B.V. Alumina having novel pore structure, method of making and catalysts made therefrom
EP1552880A1 (en) 2002-10-10 2005-07-13 China Petroleum & Chemical Corporation A silicon-containing alumina support, preparation thereof and a catalyst comprising the alumina support
US20050107479A1 (en) * 2003-10-16 2005-05-19 Conocophillips Company Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same
JP2005169232A (ja) 2003-12-10 2005-06-30 Petroleum Energy Center 炭化水素油の水素化脱硫触媒及びその製造方法
US20060249429A1 (en) 2004-01-09 2006-11-09 Nippon Oil Corporation Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
US20050211603A1 (en) * 2004-03-23 2005-09-29 Denis Guillaume Doped spherically-shaped supported catalyst and process for hydrotreating and hydroconverting metal-containing oil fractions
JP2009101362A (ja) 2004-03-26 2009-05-14 Cosmo Oil Co Ltd 炭化水素油の水素化処理触媒の製造方法
JP2006035052A (ja) 2004-07-23 2006-02-09 Nippon Oil Corp 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
JP2006181562A (ja) 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理触媒組成物およびその製造方法
JP2006342288A (ja) 2005-06-10 2006-12-21 Petroleum Energy Center 炭化水素油の水素化処理方法
JP2006341221A (ja) 2005-06-10 2006-12-21 Petroleum Energy Center 炭化水素油の水素化処理触媒およびその製造方法、ならびに炭化水素油の水素化処理方法
CN101679025A (zh) 2007-04-24 2010-03-24 布莱克光电有限公司 氢-催化剂反应器
JP2008290043A (ja) 2007-05-28 2008-12-04 Cosmo Oil Co Ltd 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP2010248476A (ja) 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法
JP2011067748A (ja) 2009-09-25 2011-04-07 Nippon Kecchen Kk 水素化処理触媒の製造方法、並びに当該触媒を用いる炭化水素油の水素化処理方法
JP2011072928A (ja) 2009-09-30 2011-04-14 Jx Nippon Oil & Energy Corp 炭化水素油の水素化脱硫触媒およびその製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Petroleum Refining Process" edited by Japan Petroleum Institute, Kodansha Ltd., Published on May 20, 1998, p. 41-46.
International Search Report issued in International Patent Application No. PCT/JP2012/077216 mailed Jan. 29, 2013.
Jun. 25, 2015 extended European Search Report issued in Application No. 12843751.4.
Mar. 10, 2016 Office Action issued in Taiwanese Patent Application No. 101139040.
Nov. 17, 2015 Office Action issued in Japanese Application No. 2011-233148.
Oct. 9, 2015 Information Offer Form issued in Japanese Application No. 2011-233148.
S.G. Kukes et al., Preprints-American Chemical Society, Division of Petroleum Chemistry. Symposium on advances in resid upgrading , American Chemical Society Denver Meeting, Apr. 5-10, 1987, vol. 32, No. 2, p. 432-436 (1987).
S.G. Kukes et al., Preprints—American Chemical Society, Division of Petroleum Chemistry. Symposium on advances in resid upgrading , American Chemical Society Denver Meeting, Apr. 5-10, 1987, vol. 32, No. 2, p. 432-436 (1987).

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10668459B2 (en) * 2014-10-02 2020-06-02 Cataler Corporation Exhaust gas purification catalyst
US20170297011A1 (en) * 2014-10-02 2017-10-19 Cataler Corporation Exhaust gas purification catalyst
US11203722B2 (en) 2017-02-12 2021-12-21 Magëmä Technology LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US11345863B2 (en) 2017-02-12 2022-05-31 Magema Technology, Llc Heavy marine fuel oil composition
US10584287B2 (en) 2017-02-12 2020-03-10 Magēmā Technology LLC Heavy marine fuel oil composition
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10563132B2 (en) 2017-02-12 2020-02-18 Magēmā Technology, LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US10836966B2 (en) 2017-02-12 2020-11-17 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US11136513B2 (en) 2017-02-12 2021-10-05 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US10563133B2 (en) 2017-02-12 2020-02-18 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US11441084B2 (en) 2017-02-12 2022-09-13 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US11447706B2 (en) 2017-02-12 2022-09-20 Magēmā Technology LLC Heavy marine fuel compositions
US11492559B2 (en) 2017-02-12 2022-11-08 Magema Technology, Llc Process and device for reducing environmental contaminates in heavy marine fuel oil
US11530360B2 (en) 2017-02-12 2022-12-20 Magēmā Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US11560520B2 (en) 2017-02-12 2023-01-24 Magēmā Technology LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition and the removal of detrimental solids
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US11795406B2 (en) 2017-02-12 2023-10-24 Magemä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11884883B2 (en) 2017-02-12 2024-01-30 MagêmãTechnology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US11912945B2 (en) 2017-02-12 2024-02-27 Magēmā Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit

Also Published As

Publication number Publication date
EP2772308A1 (en) 2014-09-03
TW201325714A (zh) 2013-07-01
JP5922372B2 (ja) 2016-05-24
EP2772308A4 (en) 2015-07-29
JP2013091010A (ja) 2013-05-16
WO2013061913A1 (ja) 2013-05-02
EP2772308B1 (en) 2019-02-20
TWI551347B (zh) 2016-10-01
KR20140090603A (ko) 2014-07-17
US20140243192A1 (en) 2014-08-28
KR101990165B1 (ko) 2019-06-17

Similar Documents

Publication Publication Date Title
US9737883B2 (en) Hydrogenation catalyst and method for producing same
JP6773384B2 (ja) 重質炭化水素油の水素化処理方法
US20050101480A1 (en) Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock
JP6413168B2 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
JP6432086B2 (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP2018134635A (ja) チタニアを含有する改良された残油水素化処理触媒
KR102463310B1 (ko) 탄화수소유의 수소화 처리 촉매, 그의 제조 방법 및 수소화 처리 방법
CN110841674B (zh) 挤出的残油脱金属催化剂
JP6476525B2 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
JP5517541B2 (ja) 炭化水素油の水素化脱硫触媒およびその製造方法
JP5841481B2 (ja) 重質残油の水素化精製方法
JP4805211B2 (ja) 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
EP3448964A1 (en) An ebullated bed process for high conversion of heavy hydrocarbons with a low sediment yield
JP2019177356A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
WO2023033172A1 (ja) 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法
JP3333232B2 (ja) 水素化脱硫触媒およびその製造方法
KR20140038529A (ko) 수소화처리 촉매 및 이러한 촉매의 제조 방법 및 사용 방법
JP2003103173A (ja) 重質炭化水素油の水素化処理触媒
JP2023142910A (ja) 水素化処理用シリコン捕集剤、その製造方法、炭化水素油の水素化処理方法
JP2017113715A (ja) 水素化処理触媒及びその製造方法
JP3333229B2 (ja) 水素化脱硫触媒およびその製造方法
JP2019177357A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP2010207717A (ja) 炭化水素油の水素化処理触媒及びそれを用いた水素化処理方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: JGC CATALYSTS AND CHEMICALS LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMANE, KENJI;OHAMA, KOUICHI;TAGAWA, SHOGO;REEL/FRAME:032579/0768

Effective date: 20140317

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4