TWI551347B - Hydrogenation catalyst and its manufacturing method - Google Patents

Hydrogenation catalyst and its manufacturing method Download PDF

Info

Publication number
TWI551347B
TWI551347B TW101139040A TW101139040A TWI551347B TW I551347 B TWI551347 B TW I551347B TW 101139040 A TW101139040 A TW 101139040A TW 101139040 A TW101139040 A TW 101139040A TW I551347 B TWI551347 B TW I551347B
Authority
TW
Taiwan
Prior art keywords
catalyst
phosphorus
carrier
hydrogenation
alumina
Prior art date
Application number
TW101139040A
Other languages
English (en)
Other versions
TW201325714A (zh
Inventor
Kenji Yamane
Kouichi Ohama
Shogo Tagawa
Original Assignee
Jgc Catalysts & Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Catalysts & Chemicals Ltd filed Critical Jgc Catalysts & Chemicals Ltd
Publication of TW201325714A publication Critical patent/TW201325714A/zh
Application granted granted Critical
Publication of TWI551347B publication Critical patent/TWI551347B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • B01J35/60
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • B01J35/67
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities

Description

氫化處理觸媒及其製造方法
本發明係關於一種氫化處理觸媒及其製造方法,更為詳細而言,係關於一種用於含有釩或鎳等金屬污染物質之渣油等重質烴油之氫化處理的氫化處理觸媒及其製造方法。
於重質烴油之預處理製程中,除要求較高之脫金屬性能、脫硫性能外,亦要求脫瀝青(asphaltene)性能。瀝青大量包含於重質油中,其分子量較大,金屬量亦較多,因此於進行高度脫金屬之情形時必需進行氫化處理。又,於重質烴油之氫化處理製程中,若無法充分將原料油中之瀝青氫化處理,則成為於生成油中包含大量乾油泥(dry sludge)之基材。含有大量乾油泥之基材係儲藏穩定性較低會導致各種問題,因此對原料油中之瀝青進行高度氫化處理較為重要。
為將分子量較大之瀝青氫化處理,目前為止開發有細孔變大之觸媒及細孔分佈之波峰為2個之雙峰型(bimodal type)觸媒等。近年來,為應對原料油之進一步重質化,或減輕氫化處理製程後之R-FCC(Resid-Fluid Catalytic Cracking,渣油催化裂化)處理負擔,要求進一步提高性能。
例如,文獻1(日本專利特開2006-181562號公報)中揭示有一種觸媒,其7~20 nm之範圍內具有間隙孔與於300~800 nm之範圍內具有巨觀細孔作為雙峰型觸媒,藉此具 有較高之脫金屬性能及脫硫性能。
然而,通常脫瀝青性能係若觸媒細孔不超過20 nm則不大幅提高,因此,如文獻1所記載之觸媒般即便具有巨觀細孔,主要反應細孔即間隙孔亦未必對脫瀝青反應有效。又,文獻1中記載有藉由於載體製備途中之捏合物中添加易分解物質並燒成去除而製備巨觀細孔,但該製備法中,大量使用易分解物質,並且必需進行燒成,因此生產性較低,結果有生產成本變高之問題。
本發明之目的在於提供一種顯示優異之脫金屬性能及脫瀝青性能之氫化處理觸媒、及生產性較高之該觸媒之製造方法。
本發明者等人進行努力研究,結果發現,一種觸媒,其於細孔直徑10~30 nm之範圍內具有細孔分佈之最大值,於細孔直徑5~100 nm之範圍內具有廣泛細孔分佈,且於特定之氧化鋁-磷載體載持有氫化活性金屬,該觸媒發揮優異之脫金屬性能及脫瀝青性能。又,亦可實現上述課題即提高觸媒製造中之生產性,以致完成本發明。
即,本發明係提供如下氫化處理觸媒及其製造方法者。
[1]一種氫化處理觸媒,係於氧化鋁-磷載體載持有氫化活性金屬者,其(1)比表面積為100 m2/g以上,(2)利用汞滲法測定之總細孔容積(PVT)於0.80~1.50 ml/g之範圍內, (3)於細孔直徑10~30 nm之範圍內具有細孔分佈之最大值,(4)上述最大值時之細孔直徑之±2 nm之範圍的細孔容積(△PV)於細孔直徑5~100 nm之範圍之細孔容積(PVme)中所占的比率(△PV/PVme)為0.40以下,(5)耐壓強度為10 N/mm以上,(6)包含以觸媒總量為標準換算成P2O5濃度之量為0.4~10.0質量%之磷,(7)氫化活性金屬為選自週期表第6A族金屬及第8族金屬中之金屬之至少1種。
[2]如上述之本發明之氫化處理觸媒,其中上述氧化鋁-磷載體中之磷含量以載體總量為標準換算成P2O5濃度之量為0.5~7.0質量%。
[3]如上述之本發明之氫化處理觸媒,其包含以觸媒總量為標準換算成氧化物濃度之量為1~25質量%之上述氫化活性金屬。
[4]如上述之本發明之氫化處理觸媒,其於細孔直徑100~1000 nm之範圍內具有細孔分佈之第2最大值。
[5]如上述之本發明之重質烴油之氫化處理觸媒,其中細孔直徑100~1000 nm之範圍之細孔容積(PVma)、與細孔直徑5~100 nm之範圍之細孔容積(PVme)的比率(PVma/PVme)於0.1~0.5之範圍內。
[6]如上述之本發明之氫化處理觸媒,其用於重質烴油之處理。
[7]一種氫化處理觸媒之製造方法,係於製造氧化鋁-磷載體後於上述載體載持氫化活性金屬,上述載體之製造步驟具備:第1步驟,一面攪拌將pH值調整為2.0~5.0之酸性鋁水溶液,一面以pH值成為7.5~10.0之方式添加鹼性鋁之水溶液,獲得氧化鋁水合物;第2步驟,於經去除上述氧化鋁水合物之副生成鹽之氧化鋁水合物中添加磷,獲得氧化鋁-磷水合物;及第3步驟,將上述氧化鋁-磷水合物依序進行熟化、捏合、成形、乾燥及燒成,獲得氧化鋁-磷載體。
[8]如上述之本發明之氫化處理觸媒之製造方法,其中上述第2步驟中,對氧化鋁水合物添加磷使其以上述載體總量為標準換算成P2O5濃度之量為3.0~7.0質量%。
[9]如上述之本發明之氫化處理觸媒之製造方法,其中上述第2步驟中,對氧化鋁水合物添加磷使其以載體總量為標準換算成P2O5濃度之量為0.5~2.5質量%。
根據本發明之氫化處理觸媒,顯示優異之脫金屬性能及脫瀝青性能。因此,作為重質烴油之氫化處理觸媒特別有效。
又,本發明之氫化處理觸媒之製造方法簡便,且生產性較高,於製造成本方面亦有利。
本發明之氫化處理觸媒(以下,亦稱為「本觸媒」)係於氧化鋁-磷載體載持有氫化活性金屬之觸媒。
此處,氧化鋁-磷載體可僅為氧化鋁與磷之氧化物,亦 可另外包含二氧化矽、氧化硼、二氧化鈦、氧化鋯、氧化錳等無機氧化物。根據保持載體強度同時抑制生產成本之觀點,該載體較佳為以載體總量標準計含有氧化鋁65質量%以上,更佳為含有75~99質量%。
以下,對本發明之較佳實施形態進行詳細說明。
(1)比表面積為100 m2/g以上之方面
本觸媒之比表面積為100 m2/g以上。於該比表面積未達100 m2/g之情形時,存在對脫金屬性能之影響較小但脫硫反應速度大幅下降之傾向。該比表面積較理想為處於150~250 m2/g之範圍內。即便比表面積超過250 m2/g,亦未明顯可見本發明之效果之提高,反倒有脫金屬性(脫金屬選擇性)下降、或觸媒活性之穩定性下降之虞。再者,本發明中之比表面積係利用BET法測定之值。
(2)利用汞滲法測定之總細孔容積(PVT)為0.80~1.50 ml/g之範圍之方面
本觸媒之總細孔容積(PVT)處於0.80~1.50 ml/g之範圍內。於該總細孔容積(PVT)未達0.80 ml/g之情形時,存在脫金屬之壽命變短之傾向,於大於1.50 ml/g之情形時,觸媒強度下降。該總細孔容積(PVT)較佳為處於0.85~1.40 ml/g之範圍內,更佳為處於0.90~1.30 ml/g之範圍內。再者,本發明中之該總細孔容積(PVT)表示細孔直徑為3.2~10000 nm範圍之細孔容積。
本發明中之細孔直徑、細孔容積及細孔分佈係藉由汞滲法而測定者,細孔直徑係使用水銀之表面張力480 dyne/cm、接觸角150°計算所得之值。
(3)於細孔直徑10~30 nm之範圍內具有細孔分佈之最大值之方面
本觸媒之細孔分佈係於細孔直徑10~30 nm之範圍內具有最大值。若該最大值於細孔直徑未達10 nm之範圍內,則脫金屬性能大幅下降,另一方面,若該最大值於細孔直徑超過30 nm之範圍內,則存在脫硫性能下降之傾向,欠佳。該最大值存在之較佳細孔直徑之範圍為12~25 nm,進而較佳為15~20 nm。
(4)該最大值時之細孔直徑之±2 nm之範圍之細孔容積(△PV)於細孔直徑5~100 nm之範圍之細孔容積(PVme)中所占的比率(△PV/PVme)為0.40以下之方面
於本觸媒之細孔分佈中,該最大值時之細孔直徑之±2nm之範圍之細孔容積(△PV)於細孔直徑5~100 nm之範圍之細孔容積(PVme)中所占的比率(△PV/PVme)為0.40以下。若△PV/PVme超過0.40,則與瀝青分子之反應性下降,脫金屬性能及脫瀝青性能下降,因此欠佳。
(5)耐壓強度為10 N/mm以上之方面
本觸媒之耐壓強度為10 N/mm以上。若該耐壓強度未達10 N/mm,則有於填充觸媒時容易破裂、於反應時導致偏流或壓力損失之虞。因此,耐壓強度必需為10 N/mm以上。再者,耐壓強度亦被稱為抗壓強度,本發明中之耐壓強度係利用木屋式硬度計測定之值。
(6)包含以觸媒總量為標準換算成P2O5濃度之量為 0.4~10.0質量%之磷之方面
於本觸媒中,包含以觸媒總量標準計作為P2O5濃度換算量為0.4~10.0質量%之磷。若磷含量未達0.4質量%,則觸媒強度(耐磨耗性)下降,因此欠佳。若磷含量超過10.0質量%,則觸媒之比表面積下降,因此欠佳。關於磷,較佳為於觸媒中包含0.5~10.0質量%,更佳為包含1.0~8.0質量%,進而較佳為包含2.0~7.0質量%。
其中,關於磷,較佳為於構成本觸媒之氧化鋁-磷載體中,以載體總量標準計作為P2O5濃度換算量包含0.5~7.0質量%,更佳為包含1.0~6.0質量%,進而較佳為包含1.5~5.5質量%。
若該載體中之磷含量未達0.5質量%,則有觸媒強度下降之虞。又,有本發明之目的即於細孔直徑5~100 nm之範圍內具有廣泛細孔分佈的情況變困難之虞。又,若載體中之磷含量超過7.0質量%,則有細孔直徑100~1000 nm之範圍之細孔容積過大觸媒強度下降之虞。進而,亦有觸媒體密度(bulk density)下降觸媒性能亦下降之虞。
(7)氫化活性金屬為選自週期表第6A族金屬及第8族金屬中之金屬之至少1種之方面
本觸媒中,所載持之氫化活性金屬為選自週期表第6A族金屬及第8族金屬中之金屬之至少1種。該氫化活性金屬之載持量較佳為以觸媒總量標準計作為氧化物為1~25質量%之範圍,更佳為3~20質量%之範圍,進而較佳為3~15質量%之範圍。若該金屬載持量為1質量%以上,則可 進一步發揮本發明之效果。又,若該金屬載持量為25質量%以下,則於可維持脫金屬性(脫金屬選擇性)或觸媒活性之穩定性、進而可抑制生產成本方面,較佳。
又,作為載持於載體之金屬,根據反應性之觀點,較佳為將上述之週期表第6A族金屬與第8族金屬組合使用。作為第6A族金屬,較佳為鉬或鎢,作為第8族金屬,較佳為鎳或鈷。
又,關於週期表第6A族之金屬,作為氧化物之較佳載持量為1~20質量%之範圍,更佳為3~15質量%之範圍。關於週期表第8族之金屬,作為氧化物之較佳載持量為0.1~10質量%之範圍,更佳為0.3~5質量%之範圍。
繼而,以下關於用以製造本觸媒之較佳實施形態進行說明。
[氧化鋁-磷載體之製造方法] (第1步驟)
於溶劑水中添加酸性鋁鹽,一面攪拌以Al2O3成為0.1~2.0質量%、pH值為2.0~5.0之方式製備而成的酸性鋁水溶液,一面將其液溫加溫至50~80℃、較佳為60~70℃。作為本發明中使用之酸性鋁鹽,只要為水溶性之鹽即可,例如可列舉硫酸鋁、氯化鋁、乙酸鋁、硝酸鋁等,較理想為使用包含換算成Al2O3為0.5~20質量%、較佳為2~10質量%之水溶液。
繼而,一面攪拌該酸性鋁水溶液,一面以pH值成為7.5~10.0之方式以30~200分鐘、較佳為60~180分鐘添加 鹼性鋁之水溶液,獲得氧化鋁水合物。作為本發明中使用之鹼性鋁鹽,可列舉鋁酸鈉、鋁酸鉀等,較理想為使用包含換算成Al2O3為2~30質量%、較佳為10~25質量%之水溶液。
(第2步驟)
繼而,將獲得之氧化鋁水合物利用50~70℃、較佳為55~65℃之純水清洗,去除鈉、硫酸根等雜質,獲得清洗塊。進而,清洗塊添加純水,以Al2O3濃度成為5~18質量%、較佳為7~15質量%之方式製備後,於氧化鋁水合物中添加磷,獲得氧化鋁-磷水合物。關於磷,較佳為以載體中包含P2O5濃度0.5~7.0質量%之方式添加,更佳為包含1.0~6.0質量%,進而較佳為包含1.5~5.5質量%。作為磷源,可使用磷酸、亞磷酸、磷酸銨、磷酸鉀、磷酸鈉等磷酸化合物。
(第3步驟)
將獲得之氧化鋁-磷水合物於附帶回流器之熟化槽內,以30℃以上、較佳為80~100℃,且以1~10小時、較佳為2~5小時熟化,並藉由慣用方法,例如進行加熱捏合製成可成形之捏合物後,利用擠出成形等成形為所期望之形狀並乾燥,於400~800℃下燒成0.5~10小時,獲得氧化鋁-磷載體。
[金屬至載體之載持方法]
使用上述氧化鋁-磷載體,利用慣用方法載持選自週期表第6A族金屬及第8族金屬中之金屬之至少1種,藉此可 製造本發明之氫化處理觸媒。作為此種金屬之原料,例如使用硝酸鎳、碳酸鎳、硝酸鈷、碳酸鈷、三氧化鉬、鉬酸銨、及仲鎢酸銨(ammonium paratungstate)等金屬化合物,藉由含浸法、浸漬法等周知之方法等載持於載體。載持金屬後之載體通常於400~600℃下燒成0.5~5小時而成為本發明之氫化處理觸媒。
於氧化鋁-磷載體之製造方法中之第2步驟中,對載體添加磷使其以載體總量為標準換算成P2O5濃度為3.0~7.0質量%,藉可此獲得於細孔直徑100~1000 nm之範圍內細孔分佈具有第2最大值之觸媒。若細孔分佈具有第2最大值,則可提高脫瀝青及脫金屬性能。
又,於該具有第2最大值之觸媒中,若細孔直徑100~1000 nm之範圍之細孔容積(PVma)與細孔直徑5~100 nm之範圍之細孔容積(PVme)的比率(PVma/PVme)於0.1~0.5之範圍內,則可進一步發揮上述之效果。但,若PVma/PVme超過0.5,則有觸媒強度下降之虞。
另一方面,於氧化鋁-磷載體之製造方法中之第2步驟中,對載體添加磷以載體總量為標準換算成P2O5濃度為0.5%~2.5質量%,藉此可獲得於細孔直徑100~1000 nm之範圍內細孔分佈不具有第2最大值之觸媒。該觸媒之脫硫選擇性優異。
因此,藉由將細孔分佈具有第2最大值之觸媒與不具有第2最大值之觸媒組合,而可提供兼具脫瀝青及脫金屬性能、與脫硫選擇性之觸媒系統。
再者,就本觸媒中之上述參數(1)~(5)而言,基本上可利用磷之添加量進行控制,詳細情況於實施例中進行說明。
本發明之氫化處理觸媒組成物可較佳地用於含有釩或鎳等金屬污染物質之渣油等重質烴油之氫化處理,特別是脫金屬處理,且採用既存之氫化處理裝置及其操作條件。
又,本組成物之製造簡便,因此生產性亦較高,於製造成本方面亦有利。
[實施例]
以下,例示實施例對本發明進行具體說明,但本發明並不受其限定。
[實施例1]
於設有具有2個化學藥品添加口之循環管線的槽中,加入純水35.2 kg,一面攪拌一面添加硫酸鋁水溶液(作為Al2O3濃度為7質量%)13.0 kg,加溫至70℃使之循環。此時之氧化鋁水溶液之pH值為2.3。繼而,將鋁酸鈉水溶液9.5 kg(作為Al2O3濃度為22質量%)一面攪拌及循環,一面保持70℃,一面以180分鐘進行添加,獲得氧化鋁水合物。添加後之pH值為9.5。繼而,利用60℃之純水清洗獲得之氧化鋁水合物,去除鈉、硫酸根等雜質,獲得清洗塊。對清洗塊添加純水,以Al2O3濃度成為8質量%之方式製備後,於氧化鋁水合物中添加磷酸256 g(作為P2O5濃度為62質量%),於附帶回流器之熟化槽中以95℃熟化3小時,獲得氧化鋁-磷水合物。將熟化結束後之漿料脫水,利用具 備蒸汽夾套(steam jacket)之雙臂型捏合機一面進行攪拌一面進行濃縮捏合直至特定之含水量。利用擠出成形機將獲得之捏合物擠出成形為1.7 mm之四葉型之柱狀。獲得之氧化鋁成形品於110℃乾燥12小時後,進而於680℃燒成3小時,獲得氧化鋁-磷載體a。載體a含有以P2O5濃度換算計為5質量%之磷、以Al2O3濃度換算計為95質量%之鋁(均為載體總量標準)。
使氧化鉬26.6 g與碳酸鎳9.7 g懸浮於離子交換水400 ml中,對該懸浮液以液容量不減少之方式實施適當之回流處理並於95℃下過熱5小時後,加入蘋果酸13.3 g使其溶解,製作含浸液。使該含浸液噴霧含浸於500 g之載體a後,以250℃進行乾燥,進而利用電爐以550℃燒成1小時,獲得氫化處理觸媒A(以下亦僅稱為「觸媒A」,於以下之實施例中亦相同)。觸媒A之金屬成分為:MoO3為5質量%(觸媒總量標準),NiO為1質量%(觸媒總量標準)。將觸媒A之性狀示於表1。又,於圖1A及圖1B中,分別表示氫化處理觸媒A之積分型、微分型之細孔分佈圖。
[實施例2]
於實施例1中,添加99.4 g之添加之磷酸,除此以外,以與實施例1相同之方式獲得氧化鋁-磷載體b。載體b含有以P2O5濃度換算計為2質量%之磷、以Al2O3濃度換算計為98質量%之鋁(均為載體總量標準)。使用載體b,以與實施例1相同之方式獲得觸媒B。將觸媒B之性狀示於表1。又,於圖2A及圖2B中,分別表示氫化處理觸A之 積分型、微分型之細孔分佈圖。
[實施例3]
於實施例1中,添加150.7 g之添加之磷酸,除此以外,以與實施例1相同之方式獲得氧化鋁-磷載體c。載體c含有以P2O5濃度換算計為3質量%之磷、以Al2O3濃度換算計為97質量%之鋁(均為載體總量標準)。使用載體c,以與實施例1相同之方式獲得觸媒C。將觸媒C之性狀示於表1。
[比較例1]
於實施例1中,不添加磷酸,除此以外,以與實施例1相同之方式獲得氧化鋁載體d。使用載體d,以與實施例1相同之方式獲得觸媒D。將觸媒D之性狀示於表1。
[比較例2]
於實施例1中,添加9.8 g之添加之磷酸,除此以外,以與實施例1相同之方式獲得氧化鋁-磷載體e。載體e含有以P2O5濃度換算計為0.2質量%之磷、以Al2O3濃度換算計為99.8質量%之鋁(均為載體總量標準)。使用載體e,以與實施例1相同之方式獲得觸媒E。將觸媒E之性狀示於表1。
[比較例3]
於實施例1中,添加481.8 g之添加之磷酸,除此以外,以與實施例1相同之方式獲得氧化鋁-磷載體f。載體f含有以P2O5濃度換算計為9質量%之磷、以Al2O3濃度換算計為91質量%之鋁(均為載體總量標準)。使用載體f,以與實施例1相同之方式獲得觸媒F。將觸媒F之性狀示於表1。
[比較例4]
於實施例1中,將鋁酸鈉水溶液之添加時間設為10分鐘,除此以外,以與實施例1相同之方式獲得氧化鋁-磷載體g。載體g含有以P2O5濃度換算計為5質量%之磷、以Al2O3濃度換算計為95質量%之鋁(均為載體總量標準)。使用載體g,以與實施例1相同之方式獲得觸媒G。將觸媒G之性狀示於表1。
[觸媒活性評價試驗]
關於實施例1~3之觸媒A~C及比較例1~3之觸媒D~F,使用固定床式(fixed bed)之微反應器,於以下所示條件下,研究氫化脫金屬活性、脫硫活性、及脫瀝青活性。
反應條件:
觸媒填充量:400 ml
反應壓力:13.5 MPa
液體空間速度(LHSV):1.0 hr-1
氫/油比(H2/HC):800 Nm3/kl
反應溫度:370℃
又,原料油使用下述性狀之常壓渣油。
原料油性狀:
密度(15℃):0.9761 g/cm3
瀝青含量:3.4質量%
硫含量:4.143質量%
金屬(Ni+V)量:80.5質量%
將氫化脫金屬活性、脫硫活性、及脫瀝青活性表示為 脫金屬率、脫硫率及脫瀝青率,將其值示於表1。
再者,脫金屬率係藉由下式求出。
脫金屬率=(原料油中之金屬濃度-氫化處理生成油中之金屬濃度/原料油中之金屬濃度)×100
又,脫硫率係藉由下式求出。
脫硫率=(原料油中之硫濃度-氫化處理生成油中之硫濃度/原料油中之硫濃度)×100
脫瀝青率係藉由下式求出。
脫瀝青率=(原料油中之瀝青濃度-氫化處理生成油中之瀝青濃度/原料油中之瀝青濃度)×100
[評價結果]
根據表1之結果可知,本發明中之觸媒A~C具有特定之構成,因此與比較例1~4之觸媒D~G相比,脫金屬率、脫瀝青率之值特別高,脫硫活性亦較高。又,亦可知,於細孔直徑100~1000 nm之範圍內具有細孔分佈之第2最大值之觸媒A、C(實施例1、3)中,脫金屬率與脫瀝青率顯示非常高之值。但,僅於特定範圍內具有該第2最大值而未滿足本發明之其他構成之比較例3的觸媒F中,無法發揮上述之本發明之效果。又,比較例4與實施例1不同,將鋁酸鈉水溶液之添加時間設為10分鐘,使結束pH值為9.5者。(可藉由該操作控制△PV/PVme)其結果為,△PV/PVme偏離本發明中規定之範圍,因此,即便磷量與實施例1相同,觸媒活性成為變差者。又,於該比較例4中,即便於特定範圍內具有第2最大值,亦無助於觸媒活性,該情況與比較例3相同。
圖1A係本發明之觸媒A之積分型之細孔分佈圖。
圖1B係本發明之觸媒A之微分型之細孔分佈圖。
圖2A係本發明之觸媒B之積分型之細孔分佈圖。
圖2B係本發明之觸媒B之微分型之細孔分佈圖。

Claims (9)

  1. 一種氫化處理觸媒,係於氧化鋁-磷載體載持有氫化活性金屬者,其(1)比表面積為100 m2/g以上,(2)利用汞滲法測定之總細孔容積(PVT)於0.80~1.50 ml/g之範圍內,(3)於細孔直徑10~30 nm之範圍內具有細孔分佈之最大值,(4)上述最大值時之細孔直徑之±2 nm之範圍的細孔容積(△PV)於細孔直徑5~100 nm之範圍之細孔容積(PVme)中所占的比率(△PV/PVme)為0.40以下,(5)耐壓強度為10 N/mm以上,(6)包含以觸媒總量為標準換算成P2O5濃度之量為0.4~10.0質量%之磷,(7)氫化活性金屬為選自週期表第6A族金屬及第8族金屬中之金屬之至少1種。
  2. 如申請專利範圍第1項之氫化處理觸媒,其中上述氧化鋁-磷載體中之磷含量以載體總量為標準換算成P2O5濃度之量為0.5~7.0質量%。
  3. 如申請專利範圍第1項之氫化處理觸媒,其中包含以觸媒總量為標準換算成氧化物濃度之量為1~25質量%之上述氫化活性金屬。
  4. 如申請專利範圍第1項之氫化處理觸媒,其中於細孔直徑100~1000 nm之範圍內具有細孔分佈之第 2最大值。
  5. 如申請專利範圍第4項之氫化處理觸媒,其中細孔直徑100~1000 nm之範圍之細孔容積(PVma)、與細孔直徑5~100 nm之範圍之細孔容積(PVme)的比率(PVma/PVme)於0.1~0.5之範圍內。
  6. 如申請專利範圍第1項至第5項中任一項之氫化處理觸媒,其用於重質烴油之處理。
  7. 一種氫化處理觸媒之製造方法,係於製造氧化鋁-磷載體後於上述載體載持氫化活性金屬,上述載體之製造步驟具備:第1步驟,一面攪拌pH值調整為2.0~5.0之酸性鋁水溶液,一面以pH值成為7.5~10.0之方式添加鹼性鋁之水溶液,獲得氧化鋁水合物;第2步驟,於經去除上述氧化鋁水合物之副生成鹽之氧化鋁水合物中添加磷,獲得氧化鋁-磷水合物;第3步驟,將上述氧化鋁-磷水合物依序進行熟化、捏合、成形、乾燥及燒成,獲得氧化鋁-磷載體。
  8. 如申請專利範圍第7項之氫化處理觸媒之製造方法,其中上述第2步驟中,對氧化鋁水合物添加磷使其以上述載體總量為標準換算成P2O5濃度之量為3.0~7.0質量%。
  9. 如申請專利範圍第7項之氫化處理觸媒之製造方法,其中 上述第2步驟中,對氧化鋁水合物添加磷使其以載體總量為標準換算成P2O5濃度之量為0.5~2.5質量%。
TW101139040A 2011-10-24 2012-10-23 Hydrogenation catalyst and its manufacturing method TWI551347B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233148A JP5922372B2 (ja) 2011-10-24 2011-10-24 水素化処理触媒及びその製造方法

Publications (2)

Publication Number Publication Date
TW201325714A TW201325714A (zh) 2013-07-01
TWI551347B true TWI551347B (zh) 2016-10-01

Family

ID=48167745

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101139040A TWI551347B (zh) 2011-10-24 2012-10-23 Hydrogenation catalyst and its manufacturing method

Country Status (6)

Country Link
US (1) US9737883B2 (zh)
EP (1) EP2772308B1 (zh)
JP (1) JP5922372B2 (zh)
KR (1) KR101990165B1 (zh)
TW (1) TWI551347B (zh)
WO (1) WO2013061913A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108188B2 (en) 2012-03-07 2015-08-18 Chevoron Phillip Chemical Company, LP Selective hydrogenation catalyst and methods of making and using same
MX2016002868A (es) * 2013-09-06 2016-08-17 Chevron Phillips Chemical Co Lp Catalizador de hidrogenacion selectiva y metodos para hacer y usar el mismo.
CN104549330B (zh) * 2013-10-23 2017-02-22 中国石油化工股份有限公司 一种加氢精制活性支撑剂及其制备方法
EP3202495A4 (en) * 2014-10-02 2017-10-04 Catalar Corporation Exhaust-gas purification catalyst
JP6843045B2 (ja) * 2015-05-27 2021-03-17 日揮触媒化成株式会社 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
JP2022516103A (ja) * 2018-12-28 2022-02-24 中国石油化工股▲ふん▼有限公司 擬ベーマイト、その製造方法および用途
CN111604074B (zh) * 2020-06-29 2022-12-13 煤炭科学技术研究院有限公司 一种煤焦油双峰孔结构加氢预处理催化剂及其制备方法
JP2023037955A (ja) * 2021-09-06 2023-03-16 日揮触媒化成株式会社 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679025A (zh) * 2007-04-24 2010-03-24 布莱克光电有限公司 氢-催化剂反应器
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257922A (en) * 1979-03-13 1981-03-24 Electric Power Research Institute, Inc. Process for coal liquefaction and catalyst
US4399057A (en) 1981-06-17 1983-08-16 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
US4395328A (en) * 1981-06-17 1983-07-26 Standard Oil Company (Indiana) Catalyst and support, their methods of preparation, and processes employing same
FR2528721B1 (fr) * 1982-06-17 1986-02-28 Pro Catalyse Ste Fse Prod Cata Catalyseur supporte presentant une resistance accrue aux poisons et son utilisation en particulier pour l'hydrotraitement de fractions petrolieres contenant des metaux
US5089463A (en) * 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
CN1054393C (zh) * 1997-07-22 2000-07-12 中国石油化工总公司 一种渣油加氢脱金属催化剂
KR20010040660A (ko) * 1998-12-08 2001-05-15 노미야마 아키히콰 수소화 정제용 촉매 및 그 제조방법
US6589908B1 (en) * 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
CA2501973C (en) * 2002-10-10 2010-10-26 China Petroleum & Chemical Corporation A silicon-containing alumina support, preparation thereof and a catalyst comprising the alumina support
US7186757B2 (en) * 2003-10-16 2007-03-06 Conocophillips Company Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same
JP4493997B2 (ja) * 2003-12-10 2010-06-30 財団法人石油産業活性化センター 炭化水素油の水素化脱硫触媒及びその製造方法
JP2006035052A (ja) * 2004-07-23 2006-02-09 Nippon Oil Corp 石油系炭化水素の水素化脱硫触媒および水素化脱硫方法
EP1702682A4 (en) 2004-01-09 2009-06-10 Nippon Oil Corp HYDROGENATION AND DESULFURIZATION CATALYST FOR PETROLEUM HYDROCARBON AND HYDROGENATION AND DESULFURATION METHOD USING THE CATALYST
FR2867988B1 (fr) * 2004-03-23 2007-06-22 Inst Francais Du Petrole Catalyseur supporte dope de forme spherique et procede d'hydrotraitement et d'hydroconversion de fractions petrolieres contenant des metaux
JP4864106B2 (ja) * 2004-03-26 2012-02-01 コスモ石油株式会社 炭化水素油の水素化処理触媒の製造方法
JP4822705B2 (ja) * 2004-12-24 2011-11-24 日揮触媒化成株式会社 重質炭化水素油の水素化処理触媒組成物およびその製造方法
JP2006342288A (ja) * 2005-06-10 2006-12-21 Petroleum Energy Center 炭化水素油の水素化処理方法
JP4519719B2 (ja) * 2005-06-10 2010-08-04 財団法人石油産業活性化センター 炭化水素油の水素化処理触媒の製造方法、ならびに炭化水素油の水素化処理方法
JP4805211B2 (ja) * 2007-05-28 2011-11-02 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、その製造方法、及び水素化処理方法
JP5635752B2 (ja) * 2009-09-25 2014-12-03 日本ケッチェン株式会社 水素化処理触媒の製造方法、並びに当該触媒を用いる炭化水素油の水素化処理方法
JP5517541B2 (ja) * 2009-09-30 2014-06-11 Jx日鉱日石エネルギー株式会社 炭化水素油の水素化脱硫触媒およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679025A (zh) * 2007-04-24 2010-03-24 布莱克光电有限公司 氢-催化剂反应器
JP2010248476A (ja) * 2009-03-23 2010-11-04 Petroleum Energy Center 重質炭化水素油の水素化処理方法

Also Published As

Publication number Publication date
JP5922372B2 (ja) 2016-05-24
JP2013091010A (ja) 2013-05-16
EP2772308B1 (en) 2019-02-20
US9737883B2 (en) 2017-08-22
US20140243192A1 (en) 2014-08-28
EP2772308A1 (en) 2014-09-03
KR20140090603A (ko) 2014-07-17
WO2013061913A1 (ja) 2013-05-02
EP2772308A4 (en) 2015-07-29
TW201325714A (zh) 2013-07-01
KR101990165B1 (ko) 2019-06-17

Similar Documents

Publication Publication Date Title
TWI551347B (zh) Hydrogenation catalyst and its manufacturing method
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
JP4638610B2 (ja) 水素化処理用触媒並びに水素化処理方法
JP6773384B2 (ja) 重質炭化水素油の水素化処理方法
WO2011040224A1 (ja) 炭化水素油の水素化脱硫触媒、その製造方法および水素化精製方法
JP4303820B2 (ja) 水素化処理用触媒並びに水素化処理方法
JP2018134635A (ja) チタニアを含有する改良された残油水素化処理触媒
TWI611836B (zh) 觸媒支撐物及其製備方法
JP6843045B2 (ja) 炭化水素油の水素化処理触媒、その製造方法及び水素化処理方法
CN106660019A (zh) 通过共研获得的具有活性相的介孔与大孔催化剂 、其制备方法及其用于渣油的加氢处理的用途
JPWO2015046323A1 (ja) 重質炭化水素油の水素化処理触媒、及び重質炭化水素油の水素化処理方法
JP5517541B2 (ja) 炭化水素油の水素化脱硫触媒およびその製造方法
JP2016517347A (ja) 新規な残油水素処理触媒
JP5841481B2 (ja) 重質残油の水素化精製方法
JP5340101B2 (ja) 炭化水素油の水素化精製方法
JP2019177356A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
JP2018167196A (ja) 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法
JP4503327B2 (ja) 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
JP2021531962A (ja) ヘテロポリアニオンを含有している溶液から生じた共混合型触媒、その製造のための方法、および重質炭化水素供給原料の水素化転化における同触媒の使用
WO2023033172A1 (ja) 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法
JP2005169232A (ja) 炭化水素油の水素化脱硫触媒及びその製造方法
JP5193103B2 (ja) 水素化精製用触媒の製造方法
JP2017113715A (ja) 水素化処理触媒及びその製造方法
JP2019177357A (ja) 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法