JP2011072928A - 炭化水素油の水素化脱硫触媒およびその製造方法 - Google Patents

炭化水素油の水素化脱硫触媒およびその製造方法 Download PDF

Info

Publication number
JP2011072928A
JP2011072928A JP2009227465A JP2009227465A JP2011072928A JP 2011072928 A JP2011072928 A JP 2011072928A JP 2009227465 A JP2009227465 A JP 2009227465A JP 2009227465 A JP2009227465 A JP 2009227465A JP 2011072928 A JP2011072928 A JP 2011072928A
Authority
JP
Japan
Prior art keywords
mass
catalyst
titania
carrier
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009227465A
Other languages
English (en)
Other versions
JP5517541B2 (ja
Inventor
Hiroyuki Seki
浩幸 関
Yoshiaki Fukui
義明 福井
Masanori Yoshida
正典 吉田
Shogo Tagawa
勝吾 田河
Tomoyasu Kagawa
智靖 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009227465A priority Critical patent/JP5517541B2/ja
Application filed by JX Nippon Oil and Energy Corp, JGC Catalysts and Chemicals Ltd filed Critical JX Nippon Oil and Energy Corp
Priority to DK10820343.1T priority patent/DK2484745T3/da
Priority to PCT/JP2010/065785 priority patent/WO2011040224A1/ja
Priority to CN201080044048.2A priority patent/CN102575175B/zh
Priority to US13/498,165 priority patent/US9067191B2/en
Priority to SG10201406228YA priority patent/SG10201406228YA/en
Priority to EP10820343.1A priority patent/EP2484745B1/en
Priority to SG2012018552A priority patent/SG179173A1/en
Publication of JP2011072928A publication Critical patent/JP2011072928A/ja
Application granted granted Critical
Publication of JP5517541B2 publication Critical patent/JP5517541B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】炭化水素油、特に直脱軽油の水素化処理反応に使用した場合に高い脱硫活性を示すように改善されたシリカ−チタニア−アルミナ担体を使用した水素化脱硫触媒およびその製造方法の提供。
【解決手段】X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族、及び第VIII族から選ばれた金属成分を担持している炭化水素油の水素化脱硫触媒であって、比表面積が150m/g以上、全細孔容積が0.30ml/g以上、平均細孔直径が6〜15nmの範囲、平均細孔径±30%の細孔直径の細孔容積の占める割合が全細孔容積の70%以上である水素化脱硫触媒。
【選択図】図1

Description

本発明は、炭化水素油の水素化脱硫触媒およびその製造方法に関し、さらに詳しくは、炭化水素油、特に軽油留分の水素化処理反応に使用され、高い脱硫活性を示すシリカ−チタニア−アルミナ担体に活性成分を担持した水素化脱硫触媒およびその製造方法に関する。
従来、炭化水素油の水素化処理を目的として使用されてきた触媒には、アルミナ、アルミナ−シリカ、チタニア、アルミナ−チタニアなどの多孔性無機酸化物からなる担体に、周期表第VIA族及び第VIII族から選ばれた金属成分を担持した触媒が広く使用されている。
現在、環境保護の観点から燃料油の硫黄分の品質規制が強化されている。特に、軽油中の硫黄分は10質量ppm以下という厳しい規制となっている。このため、この規制に対応できるよう軽油超深度脱硫触媒の開発が進んでいる。
チタニア担体は、アルミナ担体と比べ高脱硫性能を示すことが知られているが、一般的に比表面積が小さく、また高温での熱安定性が低いといった問題があった。チタニア含有触媒としては、チタニアゲルを用いてチタニア担体を調製する製法(特許文献1参照)、水溶性チタニア化合物をアルミナ担体に担持させアルミナ−チタニア担体を調製する製法(特許文献2参照)などが知られている。特許文献1に記載の触媒は、高価なチタニアが多く含有されており、従来のアルミナ担体を用いた触媒と比較して、価格が高くなると共に、嵩密度が高くなっていた。また、特許文献2に記載の触媒は、担体の吸水率分しかチタニアを担持できないため、チタニアを担体に高担持させるには担持工程を繰り返す必要があり、工業的に製造するには高価となっていた。また、アルミナ調製時にチタニアを混合させアルミナ中にチタニアを高分散させる製法(特許文献3参照)などもある。本製法は、チタニアをアルミナ中に高分散させることができるが、チタニアの含有量が増えるにつれチタニアの結晶化が進み易くなり比表面積が低下し、細孔分布のシャープネスが悪くなるという欠点があるうえ、これまで10質量ppm規制に対応できる十分な性能を有する触媒ではなかった。
特開2005−336053号公報 特開2005−262173号公報 特開平10−118495号公報
本発明の目的は、アルミナを主成分とし、シリカおよびチタニアを含有する高比表面積の担体を使用した安価で高性能な炭化水素油、特に軽油留分の水素化脱硫触媒およびその製造方法の提供にある。
本発明者らは鋭意研究した結果、特定の構造を有するシリカ−チタニア−アルミナ担体を用い、かつ所定の性状を有する水素化脱硫触媒とすることにより、脱硫性能が大きく向上し、前記課題を達成し得ることを見出した。
即ち、本発明は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニアの(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる炭化水素油の水素化脱硫触媒であって、(a)比表面積(SA)が150m/g以上、(b)全細孔容積(PVo)が0.30ml/g以上、(c)平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、および(d)平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上であることを特徴とする炭化水素油の水素化脱硫触媒に関する。
また、本発明は、珪酸イオンの存在下で、塩基性アルミニウム塩水溶液と、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程とを有することを特徴とする前記の炭化水素油の水素化脱硫触媒の製造方法に関する。
本発明の水素化脱硫触媒は、炭化水素油、特に軽油留分の水素化処理において高い脱硫活性を示し、極めて有効である。また、本発明の水素化脱硫触媒の製造方法においては、担体中にチタンを高分散することができるため、アルミナやシリカと比較して高価なチタンを比較的少ない量で高性能を示すことが可能となり、安価で高性能な触媒を得ることができる。
実施例1における担体aのX線回折分析結果を示す図である。
以下、本発明の好適な実施の形態について、詳細に説明する。
本発明の水素化脱硫触媒は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種の金属成分が担持されたものであり、かつ、比表面積(SA)が150m/g以上、全細孔容積(PVo)が0.30ml/g以上、平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上のものである。
本発明の水素化脱硫触媒におけるシリカ−チタニア−アルミナ担体は、シリカを担体基準でSiOとして1〜10質量%含有することが好ましく、2〜7質量%含有することがより好ましく、2〜5質量%含有することが更に好ましい。シリカ含有量が1質量%未満では、比表面積が低くなる上、担体を焼成する際にチタニア粒子が凝集しやすくなり、X線回折分析により測定されるアナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が大きくなる。また、シリカの含有量が10質量%を超える場合には、得られる担体の細孔分布のシャープネスが悪くなり所望の脱硫活性が得られないことがある。
また、本発明でのシリカ−チタニア−アルミナ担体は、チタニアを担体基準でTiOとして3〜40質量%含有することが好ましく、より好ましくは15〜35質量%、さらに好ましくは15〜25質量%含有するのが望ましい。チタニアの含有量が3質量%より少ない場合には、チタニア成分の添加効果が少なく、得られる触媒は所望の脱硫活性が得られないことがある。また、チタニアの含有量が40質量%より多い場合には、触媒の機械的強度が低くなる虞がある上、担体を焼成したときにチタニア粒子の結晶化が進み易くなるため比表面積が低くなり、チタニア量を増やした分の経済性に見合うだけの脱硫性能が発揮されず、本発明目的である安価で高性能な触媒とならず好ましくない。
さらに、本発明でのシリカ−チタニア−アルミナ担体は、アルミナを担体基準でAlとして50〜96質量%含有することが好ましく、より好ましくは58〜83質量%、さらに好ましくは70〜83質量%含有するのが望ましい。ここで、アルミナの含有量が50質量%未満の場合には、触媒劣化が大きくなる傾向にあるので好ましくない。また、アルミナの含有量が96質量%より多い場合には、触媒性能が低下する傾向にあるため好ましくない。
本発明の水素化脱硫触媒は、前記のシリカ−チタニア−アルミナ担体に周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種以上の金属成分が担持されたものである。
周期表第VIA族の金属成分としては、モリブデン(Mo)、タングステン(W)等を例示することができ、周期表第VIII族の金属成分としては、コバルト(Co)、ニッケル(Ni)等を例示することができる。これらの金属成分は1種を単独で又は2種以上を組合せて用いても良い。触媒性能の点から、金属成分としては、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルト、ニッケル−タングステン、コバルト−タングステン、ニッケル−タングステン−コバルト等の組合せが好ましく、特に、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルトの組合せがより好ましい。
金属成分の担持量は、触媒基準で、酸化物として、1〜35質量%の範囲が好ましく、15〜30質量%の範囲がさらに好ましい。特に、周期表第VIA族の金属成分は、酸化物として、好ましくは10〜30質量%の範囲、より好ましくは13〜24質量%の範囲、周期表第VIII族の金属成分は、酸化物として、好ましくは1〜10質量%の範囲、より好ましくは2〜6質量%の範囲にあることが望ましい。
本発明の水素化脱硫触媒が周期表第VIA族の金属成分を含有する場合は、酸を用いて該金属成分を溶解させることが好ましい。ここで酸としては、リン酸および/または有機酸を使用することが好ましい。
リン酸を用いる場合、周期表第VIA族の金属成分100質量%に対してリンは酸化物換算で3〜25質量%のリン酸を担持させることが好ましく、より好ましくは10〜15質量%の範囲で担持されることが好ましい。担持量が25質量%を超えると触媒性能が低下する傾向にあるので好ましくなく、3質量%未満だと担持金属溶液の安定性が悪くなり好ましくない。
また、有機酸を用いる場合、有機酸は好ましくは周期表第VIA族の金属成分に対し35〜75質量%、より好ましくは55〜65質量%の範囲で担持されることが好ましい。有機酸が周期表第VIA族の金属成分に対し75質量%を超えると該金属成分を含有した溶液(以下、「担持金属含有溶液」ともいう。)の粘度が上がり、製造での含浸工程が困難になるため好ましくなく、35質量%未満だと担持金属含有溶液の安定性が悪くなる上、触媒性能が低下する傾向にあり好ましくない。
なお、上記担体に、上記金属成分、あるいはさらにリンおよび/または有機酸を担持・含有させる方法は特に限定されず、上記金属成分を含む化合物、あるいはさらにリンを含む化合物および/または有機酸を用いた含浸法(平衡吸着法、ポアフィリング法、初期湿潤法)、イオン交換法等の公知の方法を用いることができる。ここで、含浸法とは、担体に活性金属を含む溶液を含浸させた後、乾燥、焼成する方法のことである。
含浸法では、周期表第VIA族の金属成分と周期表第VIII族の金属成分とを同時に担持することが好ましい。別々に金属を担持すると、脱硫活性または脱窒素活性が不充分になることがある。担持を含浸法により行う場合には、担体上での周期表第VIA族の金属成分の分散性が高くなって、得られる触媒の脱硫活性および脱窒素活性がより高くなることから、酸の共存下、好ましくはリン酸または有機酸の共存下で行う。その際、周期表第VIA族の金属成分100質量%に対して3〜25質量%のリン酸又は35〜75質量%の有機酸を添加することが好ましい。ここで、有機酸としてはカルボン酸化合物が好ましく、具体的にはクエン酸、リンゴ酸、酒石酸、グルコン酸などが挙げられる。
本発明の水素化脱硫触媒は、BET法で測定した比表面積(SA)が150m/g以上であることが必要であり、好ましくは170m/g以上である。比表面積(SA)が150m/g未満では、脱硫反応の活性点が少なくなり、脱硫性能が低下する虞があるため好ましくない。一方、上限については特に制限はないが、比表面積(SA)が250m/gを超えると触媒強度が低下する傾向にあるので、250m/g以下であることが好ましく、230m/g以下がより好ましい。
また、本発明の水素化脱硫触媒は、水銀圧入法(水銀の接触角:135度、表面張力:480dyn/cm)により測定した全細孔容積(PVo)が0.30ml/g以上であることが必要であり、好ましくは0.35ml/g以上である。一方、上限については特に制限はないが、全細孔容積(PVo)が0.60ml/gを超えると触媒強度が低下する傾向にあるので、0.60ml/g以下であることが好ましく、0.50ml/g以下がより好ましい。
更に、本発明の水素化脱硫触媒は、平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲であることが必要であり、好ましくは6.5〜11nmの範囲である。平均細孔直径(PD)が6nm未満では、細孔が小さいため、原料油との反応性が悪くなることがあり、また、15nmを超えるものは製造的に困難であると共に、比表面積が小さくなり、触媒性能が悪くなる傾向がある。なお、全細孔容積(PVo)は、細孔直径が測定上の定量限界である4.1nm(41Å)以上の細孔を表し、平均細孔直径(PD)は、全細孔容積(PVo)の50%に相当する細孔直径を表す。
また、本発明の水素化脱硫触媒は、平均細孔直径(PD)±30%の細孔直径を有する細孔容積(PVp)の全細孔容積(PVo)に対して占める割合(PVp/PVo)が70%以上であることが必要であり、80%以上であることが好ましく、その細孔分布はシャープである。PVp/PVoが70%未満では、触媒の細孔分布がブロードになり、所望の脱硫性能が得られないことがある。
また、本発明の水素化脱硫触媒の担体は、X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積(以下、「チタニア回折ピーク面積」ともいう。)が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積(以下、「アルミナ回折ピーク面積」ともいう。)に対して、1/4以下であることが必要であり、1/5以下であるのが好ましく、1/6以下であるのがより好ましい。ここで、アルミナ回折ピーク面積に対するチタニア回折ピーク面積(チタニア回折ピーク面積/アルミナ回折ピーク面積)が1/4より大きい場合は、チタニアの結晶化が進み反応に有効な細孔が減少する。そのためチタニア量を増やしても、その経済性に見合う分の脱硫性能が発揮されず、本発明の目的である安価で高性能な触媒とならない。
ここで、アナターゼ型チタニア(101)面の結晶構造を示す回折ピークは2θ=25.5°で測定したものであり、ルチル型チタニア(110)面の結晶構造を示す回折ピークは、2θ=27.5°で測定したものである。また、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピークは2θ=45.9°で測定したものである。
それぞれの回折ピーク面積の算出方法は、X線回折装置でX線回折分析によって得られたグラフを最小二乗法によりフィッティングしベースライン補正を行い、最大ピーク値からベースラインまでの高さを求め(ピーク強度W)得られたピーク強度の半分の値(1/2W)のときのピーク幅(半値幅)を求め、この半値幅とピーク強度との積を回折ピーク面積とした。求めた各回折ピーク面積から、「チタニア回折ピーク面積/アルミナ回折ピーク面積」を算出した。
本発明の水素化脱硫触媒は、炭化水素油、特に軽油留分の水素化処理に好適に使用される。該触媒を使用した水素化脱硫処理は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
軽油留分としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解して得られる接触分解軽油、減圧重質軽油あるいは脱硫重油を水素化分解して得られる水素化分解軽油等が挙げられる。
反応圧力(水素分圧)は3.0〜15.0MPaであることが好ましく、より好ましくは4.0〜10.0MPaである。反応圧力が3.0MPa未満では脱硫および脱窒素が著しく低下する傾向にあり、また、15.0MPaを超えると水素消費が大きくなり運転コストが増加するので好ましくない。
反応温度は300〜420℃であることが好ましく、より好ましくは320〜380℃である。反応温度が300℃未満では脱硫および脱窒素活性が著しく低下する傾向にあり実用的でない。また、反応温度が420℃を超えると触媒劣化が顕著になると共に、反応装置の耐熱温度(通常約425℃)に近づくため好ましくない。
液空間速度は特に制限されないが、0.5〜4.0h−1であることが好ましく、より好ましくは0.5〜2.0h−1である。液空間速度が0.5h−1未満では処理量が低いので生産性が低くなり実用的ではない。また、液空間速度が4.0h−1を超えると反応温度が高くなり、触媒劣化が速くなるので好ましくない。
水素/油比は120〜420NL/Lであることが好ましく、より好ましくは170〜340NL/Lである。水素/油比が120NL/L未満では脱硫率が低下するので好ましくない。また、420NL/Lを超えても脱硫活性に大きな変化がなく、運転コストが増加するだけなので好ましくない。
次に、本発明の水素化脱硫触媒の製造方法について説明する。
本発明の水素化脱硫触媒の製造方法は、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(以下、単に「混合水溶液」ともいう。)と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種の金属成分を担持する第3工程とを有する。以下、それぞれの工程について説明する。
(第1工程)
まず、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(これは酸性の水溶液である。)と、塩基性アルミニウム塩水溶液(これはアルカリ性の水溶液である。)とを、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように混合して、シリカ、チタニア及びアルミナを含む水和物を得る。
この工程では、(1)珪酸イオンを含む塩基性アルミニウム塩水溶液に、混合水溶液を添加する場合と、(2)珪酸イオンを含む混合水溶液に、塩基性アルミニウム塩水溶液を添加する場合とがある。
ここで、(1)の場合、塩基性アルミニウム塩水溶液に含有される珪酸イオンは、塩基性または中性のものが使用できる。塩基性の珪酸イオン源としては、珪酸ナトリウムなどの水中で珪酸イオンを生じる珪酸化合物が使用可能である。また、(2)の場合、チタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合液に含有される珪酸イオンは、酸性または中性のものが使用できる。酸性の珪酸イオン源としては、珪酸などの水中で珪酸イオンを生じる珪酸化合物が使用可能である。
塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、チタニウム鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硝酸チタンなどが例示され、特に硫酸チタンは安価であるので好適に使用される。
例えば、所定量の塩基性の珪酸イオンを含有する塩基性アルミニウム塩水溶液を攪拌機付きタンクに張り込み、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度±5℃、好ましくは±2℃、より好ましくは±1℃に加温した所定量のチタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合水溶液をpHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように、通常5〜20分、好ましくは7〜15分で連続添加し沈殿を生成させ、水和物のスラリーを得る。ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加は、時間が長くなると擬ベーマイトの他にバイヤライトやギブサイトなどの好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下がさらに望ましい。バイヤライトやギブサイトは、焼成した時に比表面積が低下するので、好ましくない。
(第2工程)
第1工程で得られた水和物のスラリーを、所望により熟成した後、洗浄して副生塩を除き、シリカ、チタニア及びアルミナを含む水和物のスラリーを得る。得られた水和物のスラリーを、所望によりさらに加熱熟成した後、慣用の手段により、例えば、加熱捏和して成型可能な捏和物とした後、押出成型などにより所望の形状に成型し、通常70〜150℃、好ましくは90〜130℃で乾燥した後、更に400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成して、シリカ、チタニア及びアルミナを含むシリカ−チタニア−アルミナ担体を得る。
(第3工程)
得られたシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれた少なくとも1種の金属成分を上述したとおり、慣用の手段(含浸法、浸漬法など)で担持した後、通常400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成し、本発明の水素化脱硫触媒を製造する。
金属成分の原料としては、例えば、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト、三酸化モリブデン、モリブデン酸アンモン、パラタングステン酸アンモンなどが好ましく使用される。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらのものに限定されるものではない。
[実施例1:水素化脱硫触媒aの調製]
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.16kgを入れ、イオン交換水41kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液7.38kgを13kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合し、60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカ、チタニア、及びアルミナを含有する水和物スラリーaを調製した。
得られた水和物スラリーaを攪拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で10質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.5に調整した。これを還流機付熟成タンクに移し、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押出成型機にて直径が1.8mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で550℃の温度で3時間焼成し、担体aを得た。担体aは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)含有されていた。
また、担体aをリガク社製のX線回折装置RINT2100にて、X線回折分析を行った(以下の実施例についても同様である)。その結果を図1に示す。ここで、得られたグラフを最小二乗法によりフィッティングし、ベースライン補正を行い2θ=25.5°に示されるアナターゼ型チタニア(101)面に帰属されるピークの半値幅を求め、この半値幅とベースラインからのピーク強度との積をアナターゼ型チタニア回折ピーク面積とした。同様に2θ=27.5°に示されるルチル型チタニア(110)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をルチル型チタニア回折ピーク面積とした。ここで、アナターゼ型チタニア回折ピーク面積とルチル型チタニア回折ピーク面積との合計の面積を、チタニア回折ピーク面積とした。なお、担体aにおいては、ルチル型チタニアのピークは検出されなかった。更に、2θ=45.9°に示されるγ−アルミナ(400)面に帰属されるピークの半減値を求め、この半減値とベースラインからのピーク強度との積をアルミナ回折ピーク面積とした。担体aは、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が、アルミニウムに帰属される結晶構造を示す回折ピーク面積に対して、1/8であった(チタニア回折ピーク面積/アルミナ回折ピーク面積=1/8。以下同様)。
更に、三酸化モリブデン306gと炭酸コバルト68gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒a(以下、単に「触媒a」ともいう。以下の実施例についても同様である。)を得た。触媒aの金属成分は、MoOが22質量%(触媒基準)で、CoOが3質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒aの性状を表1に示す。
[実施例2:水素化脱硫触媒bの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.49kgを入れ、イオン交換水37kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液10.62kgを19kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン0.91kgを5kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーbを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーbから担体bを調製した。担体bは、SiO濃度が3質量%(担体基準)、TiO濃度が10質量%(担体基準)、アルミニウムがAl濃度換算で87質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピークが検出されず、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4未満であった。
実施例1と同様にして、担体bから触媒bを製造した。触媒bは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒bの性状を示す。
[実施例3:水素化脱硫触媒cの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.82kgを入れ、イオン交換水44kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液4.14kgを7kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン2.73kgを15kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーcを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーcから担体cを調製した。担体cは、SiO濃度が3質量%(担体基準)、TiO濃度が30質量%(担体基準)、アルミニウムがAl濃度換算で67質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/5であった。
実施例1と同様にして、担体cから触媒cを製造した。触媒cは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒cの性状を示す。
[比較例1:水素化脱硫触媒dの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.82kgを入れ、イオン交換水34kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液13.86kgを25kgのイオン交換水で希釈した酸性アルミニウム塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーdを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーdから担体dを調製した。担体dは、SiO濃度が3質量%(担体基準)、TiO濃度が0質量%(担体基準)、アルミニウムがAl濃度換算で97質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、アナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピークが検出されず、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4未満であった。
更に、実施例1と同様にして、担体dから触媒dを製造した。触媒dは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒dの性状を示す。
[比較例2:水素化脱硫触媒eの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.09kgを入れ、イオン交換水47kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液1.80kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液に、(2)TiO濃度換算で33質量%の硫酸チタン4.09kgを23kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーeを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーeから担体eを調製した。担体eは、SiO濃度が3質量%(担体基準)、TiO濃度が45質量%(担体基準)、アルミニウムがAl濃度換算で52質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/3であった。
更に、実施例1と同様にして、担体eから触媒eを製造した。触媒eは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表1に触媒eの性状を示す。
[実施例4:水素化脱硫触媒fの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.79kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液4.20kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液6.81kgを12kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーfを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーfから担体fを調製した。担体fは、SiO濃度が7質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で73質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体fから触媒fを製造した。触媒fは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒fの性状を示す。
[実施例5:水素化脱硫触媒gの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.52kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液6.00kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液6.38kgを11kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーgを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーgから担体gを調製した。担体gは、SiO濃度が10質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で70質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体gから触媒gを製造した。触媒gは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒gの性状を示す。
[比較例3:水素化脱硫触媒hの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.43kgを入れ、イオン交換水41kgで希釈後、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液7.81kgを14kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーhを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーhから担体hを調製した。担体hは、SiO濃度が0質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で80質量%(担体基準)であった。また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/4であった。
更に、実施例1と同様にして、担体hから触媒hを製造した。触媒hは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒hの性状を示す。
[比較例4:水素化脱硫触媒iの調製]
(1)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液7.07kgを入れ、イオン交換水40kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液9.00kgを攪拌しながら添加し、60℃に加温して作製した塩基性アルミニウム塩水溶液と、(2)Al濃度換算で7質量%の硫酸アルミニウム水溶液5.67kgを10kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合して作製した混合水溶液とを、一定速度でpHが7.2となるまで添加して、水和物スラリーiを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーiから担体iを調製した。担体iは、SiO濃度が15質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で65質量%(担体基準)であった。
また、実施例1と同様にX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/8であった。
更に、実施例1と同様にして、担体iから触媒iを製造した。触媒iは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表2に触媒iの性状を示す。
[実施例6:水素化脱硫触媒jの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン278gと炭酸コバルト114gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gと硝酸76gとを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒jを得た。触媒jの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒jの性状を表3に示す。
[実施例7:水素化脱硫触媒kの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン278gと炭酸コバルト114gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gとリンゴ酸174gとを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒kを得た。触媒kの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒kの性状を表3に示す。
[実施例8:水素化脱硫触媒lの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン267gと炭酸コバルト109gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リンゴ酸167gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒lを得た。触媒lの金属成分は、MoOが20質量%(触媒基準)で、CoOが5質量%(触媒基準)で、Pが0質量%(触媒基準)であった。触媒lの性状を表3に示す。
[実施例9:水素化脱硫触媒mの調製]
担体は実施例1の担体aを用いた。
三酸化モリブデン306gと炭酸ニッケル76gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流措置を施して加熱した後、リン酸68gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒mを得た。触媒mの金属成分は、MoOが22質量%(触媒基準)で、NiOが3質量%(触媒基準)で、Pが3質量%(触媒基準)であった。触媒mの性状を表3に示す。
[実施例10:水素化脱硫触媒nの調製]
(1)Al濃度換算で7質量%の硫酸アルミニウム水溶液7.17kgを13kgのイオン交換水で希釈した酸性アルミニウム塩水溶液、及び、TiO濃度換算で33質量%の硫酸チタン1.82kgを10kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液を混合し、さらにSiO濃度換算で4.8質量%珪酸液1.88kgを混合して作製した混合水溶液に、(2)Al濃度換算で22質量%のアルミン酸ナトリウム水溶液8.22kgを入れ、イオン交換水41kgで希釈後、60℃に加温して作製した塩基性アルミニウム塩水溶液を、一定速度でpHが7.2となるまで添加して、水和物スラリーnを調製した点が、実施例1と異なる。
実施例1と同様にして、水和物スラリーnから担体nを調製した。担体nは、SiO濃度が3質量%(担体基準)、TiO濃度が20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)であった。また、実施例1と同様に担体nのX線回折分析を行った結果(図示せず)、チタニア回折ピーク面積/アルミナ回折ピーク面積は1/7であった。
実施例1と同様にして、担体nから触媒nを製造した。触媒nは、MoOを22質量%(触媒基準)、CoOを3質量%(触媒基準)、Pを3質量%(触媒基準)含有していた。表3に触媒nの性状を示す。
[試験例1]
触媒a〜nを使用して、次の性状を有する原料油をザイテル社製の水素化脱硫装置により水素化処理した。ここで、生成油の硫黄分が7質量ppmとなる温度(以下、「反応温度」という)を求め、各触媒の脱硫性能を比較した。なお、水素化処理反応は以下の条件で行った。この結果を表1〜3に示す。
《原料油の性状》
原料油 :直留軽油(沸点範囲208〜390℃)
密度@15℃ :0.8493g/cm
硫黄分 :1.32質量%
窒素分 :105質量ppm
《反応条件》
液空間速度 :1.0hr−1
水素圧力 :4.9MPa
水素/油比 :250NL/L
Figure 2011072928
Figure 2011072928
Figure 2011072928
表1は、担体中のチタニア量の影響を確認した結果である。担体中のチタニア量が増えると脱硫性能が向上するが、40%を超えると細孔分布のシャープネスが悪くなるため性能が低下した。表2は、担体中のシリカ量の影響を確認した結果である。担体中のシリカ量も10%を超えると細孔分布のシャープネスが悪くなるため性能が低下した。表3は担持する金属成分の影響を確認した結果である。ニッケル−モリブデン、コバルト−モリブデンいずれも高い脱硫性能を有している。また、金属成分と同時にリン酸および/または有機酸を含有しても高い脱硫性能を有している結果となった。さらに、担体調製の際に酸溶液を塩基性溶液に添加する製法と塩基性溶液に酸溶液に添加する製法といずれも高い脱硫性能を示した。
以上の結果により、本発明の触媒は、生成油の硫黄分が7質量ppmとなる温度が低く、脱硫活性に優れていることが分かった。また、本発明の担体は、安価なアルミナが主成分であり従来のアルミナ及びアルミナシリカ系触媒と比較して大幅に生産コストが向上せず、安価で高性能な触媒であると言える。
本発明の水素化脱硫触媒は、特に軽油留分の水素化処理において高い脱硫活性を有し、産業上きわめて有用である。

Claims (5)

  1. X線回折分析により測定されるアナターゼ型チタニア(101)面の結晶構造を示す回折ピーク面積及びルチル型チタニア(110)面の結晶構造を示す回折ピーク面積の合計の面積が、γ−アルミナ(400)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/4以下であるシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる炭化水素油の水素化脱硫触媒であって、(a)比表面積(SA)が150m/g以上、(b)全細孔容積(PVo)が0.30ml/g以上、(c)平均細孔直径(PD)が6〜15nm(60〜150Å)の範囲、および(d)平均細孔径(PD)±30%の細孔直径の細孔容積(PVp)の占める割合が全細孔容積(PVo)の70%以上であることを特徴とする炭化水素油の水素化脱硫触媒。
  2. 前記シリカ−チタニア−アルミナ担体が、担体基準で、シリカがSiOとして1〜10質量%の範囲、チタニアがTiOとして3〜40質量%の範囲、アルミナがAlとして50〜96質量%の範囲であることを特徴とする請求項1記載の炭化水素油の水素化脱硫触媒。
  3. 前記周期表第VIA族及び第VIII族から選ばれる金属成分が、モリブデン、タングステン、コバルトおよびニッケルから選ばれることを特徴とする請求項1又は請求項2に記載の炭化水素油の水素化脱硫触媒。
  4. 前記周期表第VIA族及び第VIII族から選ばれる金属成分の担持量が、触媒基準で、酸化物として1〜35質量%の範囲であることを特徴とする請求項1〜請求項3のいずれかに記載の炭化水素油の水素化脱硫触媒。
  5. 珪酸イオンの存在下で、塩基性アルミニウム塩水溶液と、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程とを有することを特徴とする請求項1〜請求項4のいずれかに記載の炭化水素油の水素化脱硫触媒の製造方法。
JP2009227465A 2009-09-30 2009-09-30 炭化水素油の水素化脱硫触媒およびその製造方法 Active JP5517541B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009227465A JP5517541B2 (ja) 2009-09-30 2009-09-30 炭化水素油の水素化脱硫触媒およびその製造方法
PCT/JP2010/065785 WO2011040224A1 (ja) 2009-09-30 2010-09-14 炭化水素油の水素化脱硫触媒、その製造方法および水素化精製方法
CN201080044048.2A CN102575175B (zh) 2009-09-30 2010-09-14 烃油用加氢脱硫催化剂、其生产方法和加氢精制的方法
US13/498,165 US9067191B2 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
DK10820343.1T DK2484745T3 (da) 2009-09-30 2010-09-14 Hydroafsvovlingskatalysator for en carbonhydridolie, fremgangsmåde til fremstilling heraf og fremgangsmåde til hydroraffinering
SG10201406228YA SG10201406228YA (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
EP10820343.1A EP2484745B1 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
SG2012018552A SG179173A1 (en) 2009-09-30 2010-09-14 Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227465A JP5517541B2 (ja) 2009-09-30 2009-09-30 炭化水素油の水素化脱硫触媒およびその製造方法

Publications (2)

Publication Number Publication Date
JP2011072928A true JP2011072928A (ja) 2011-04-14
JP5517541B2 JP5517541B2 (ja) 2014-06-11

Family

ID=44017503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227465A Active JP5517541B2 (ja) 2009-09-30 2009-09-30 炭化水素油の水素化脱硫触媒およびその製造方法

Country Status (1)

Country Link
JP (1) JP5517541B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091010A (ja) * 2011-10-24 2013-05-16 Jgc Catalysts & Chemicals Ltd 水素化処理触媒及びその製造方法
JP2015157248A (ja) * 2014-02-24 2015-09-03 Jx日鉱日石エネルギー株式会社 減圧軽油の水素化精製用触媒およびその製造方法
KR20150138342A (ko) 2013-04-03 2015-12-09 닛키 쇼쿠바이카세이 가부시키가이샤 수소화 처리 촉매용 담체, 그 제조 방법, 수소화 처리 촉매, 및 그 제조 방법
KR20160140653A (ko) 2014-03-27 2016-12-07 제이엑스 에네루기 가부시키가이샤 탄화수소유의 수소화 탈황 촉매
JP2018520870A (ja) * 2015-05-15 2018-08-02 ハンツマン ピィアンドエー ジャーマニー ゲーエムベーハー 粉末酸化チタン、その製造方法及び使用方法
WO2018180377A1 (ja) 2017-03-30 2018-10-04 Jxtgエネルギー株式会社 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法
KR20220009402A (ko) 2019-05-15 2022-01-24 니폰 겟첸 가부시키가이샤 탄화수소유의 수소화 처리 촉매 및 그 촉매를 이용하는 탄화수소유의 수소화 처리 방법
CN114433112A (zh) * 2020-11-06 2022-05-06 宁波中科远东催化工程技术有限公司 一种焦炉煤气加氢脱硫催化剂及其制备方法
CN114602483A (zh) * 2022-03-10 2022-06-10 福州大学 一种催化裂化汽油加氢脱硫催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257399A (ja) * 1995-03-27 1996-10-08 Chubu Electric Power Co Inc チタニア系触媒の製造方法
WO2003011762A1 (fr) * 2001-07-27 2003-02-13 Chiyoda Corporation Oxyde d'un metal du groupe 4 poreux et procede de preparation de ce dernier
JP2005254141A (ja) * 2004-03-11 2005-09-22 Nippon Oil Corp 石油系炭化水素油の水素化脱硫触媒および水素化脱硫方法
JP3781417B2 (ja) * 2002-06-28 2006-05-31 千代田化工建設株式会社 多孔質酸化チタン担持体およびこれを用いた触媒、並びに、多孔質酸化チタン担持体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257399A (ja) * 1995-03-27 1996-10-08 Chubu Electric Power Co Inc チタニア系触媒の製造方法
WO2003011762A1 (fr) * 2001-07-27 2003-02-13 Chiyoda Corporation Oxyde d'un metal du groupe 4 poreux et procede de preparation de ce dernier
JP3781417B2 (ja) * 2002-06-28 2006-05-31 千代田化工建設株式会社 多孔質酸化チタン担持体およびこれを用いた触媒、並びに、多孔質酸化チタン担持体の製造方法
JP2005254141A (ja) * 2004-03-11 2005-09-22 Nippon Oil Corp 石油系炭化水素油の水素化脱硫触媒および水素化脱硫方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091010A (ja) * 2011-10-24 2013-05-16 Jgc Catalysts & Chemicals Ltd 水素化処理触媒及びその製造方法
US9737883B2 (en) 2011-10-24 2017-08-22 Jgc Catalysis And Chemicals Ltd. Hydrogenation catalyst and method for producing same
KR20150138342A (ko) 2013-04-03 2015-12-09 닛키 쇼쿠바이카세이 가부시키가이샤 수소화 처리 촉매용 담체, 그 제조 방법, 수소화 처리 촉매, 및 그 제조 방법
JP2015157248A (ja) * 2014-02-24 2015-09-03 Jx日鉱日石エネルギー株式会社 減圧軽油の水素化精製用触媒およびその製造方法
KR20160140653A (ko) 2014-03-27 2016-12-07 제이엑스 에네루기 가부시키가이샤 탄화수소유의 수소화 탈황 촉매
JP2018520870A (ja) * 2015-05-15 2018-08-02 ハンツマン ピィアンドエー ジャーマニー ゲーエムベーハー 粉末酸化チタン、その製造方法及び使用方法
WO2018180377A1 (ja) 2017-03-30 2018-10-04 Jxtgエネルギー株式会社 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法
KR20190135025A (ko) 2017-03-30 2019-12-05 제이엑스티지 에네루기 가부시키가이샤 탄화수소유의 수소화 탈황 촉매 및 수소화 탈황 촉매의 제조 방법
EP3603803A4 (en) * 2017-03-30 2020-12-16 JXTG Nippon Oil & Energy Corporation HYDRODESULFURATION CATALYZER FOR HYDROCARBONATED OIL AND METHOD FOR MANUFACTURING A HYDRODESULFURATION CATALYST
US11167266B2 (en) 2017-03-30 2021-11-09 Eneos Corporation Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst
KR102537641B1 (ko) * 2017-03-30 2023-05-31 에네오스 가부시키가이샤 탄화수소유의 수소화 탈황 촉매 및 수소화 탈황 촉매의 제조 방법
KR20220009402A (ko) 2019-05-15 2022-01-24 니폰 겟첸 가부시키가이샤 탄화수소유의 수소화 처리 촉매 및 그 촉매를 이용하는 탄화수소유의 수소화 처리 방법
CN114433112A (zh) * 2020-11-06 2022-05-06 宁波中科远东催化工程技术有限公司 一种焦炉煤气加氢脱硫催化剂及其制备方法
CN114602483A (zh) * 2022-03-10 2022-06-10 福州大学 一种催化裂化汽油加氢脱硫催化剂及其制备方法
CN114602483B (zh) * 2022-03-10 2023-08-18 福州大学 一种催化裂化汽油加氢脱硫催化剂及其制备方法

Also Published As

Publication number Publication date
JP5517541B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5517541B2 (ja) 炭化水素油の水素化脱硫触媒およびその製造方法
WO2011040224A1 (ja) 炭化水素油の水素化脱硫触媒、その製造方法および水素化精製方法
WO2011162228A1 (ja) 炭化水素油の水素化脱硫触媒及びその製造方法並びに炭化水素油の水素化精製方法
JP6489990B2 (ja) 炭化水素油の水素化脱硫触媒およびその製造方法
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
JP5922372B2 (ja) 水素化処理触媒及びその製造方法
JP6681259B2 (ja) 炭化水素油の水素化処理触媒、その製造方法、および水素化処理方法
JP5610874B2 (ja) 炭化水素油の水素化脱硫触媒及びその製造方法
WO2010109823A1 (ja) 水素化精製用触媒およびその製造方法、炭化水素油の水素化精製方法
JP6216658B2 (ja) 減圧軽油の水素化精製用触媒およびその製造方法
JP6284403B2 (ja) 炭化水素油の水素化脱硫触媒
JP5841481B2 (ja) 重質残油の水素化精製方法
WO2018180377A1 (ja) 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法
JP5340101B2 (ja) 炭化水素油の水素化精製方法
JP2016007552A (ja) 炭化水素油の水素化脱硫触媒、その製造方法、および水素化脱硫方法
JP5610875B2 (ja) 炭化水素油の水素化精製方法
JP5841480B2 (ja) 重質残油の水素化精製方法
WO2023033172A1 (ja) 重質炭化水素油の水素化処理用触媒およびその製造方法、ならびに重質炭化水素油の水素化処理方法
JP5193103B2 (ja) 水素化精製用触媒の製造方法
JP2015196134A (ja) 炭化水素油の水素化脱硫触媒
JP2017113715A (ja) 水素化処理触媒及びその製造方法
JP2014173026A (ja) 軽油の水素化精製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250