US9098117B2 - Classifying the intent of user input - Google Patents

Classifying the intent of user input Download PDF

Info

Publication number
US9098117B2
US9098117B2 US13651232 US201213651232A US9098117B2 US 9098117 B2 US9098117 B2 US 9098117B2 US 13651232 US13651232 US 13651232 US 201213651232 A US201213651232 A US 201213651232A US 9098117 B2 US9098117 B2 US 9098117B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
input
user
touch
device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13651232
Other versions
US20130229347A1 (en )
Inventor
Moshe R. Lutz
Paul Henry Dietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • G06F1/166Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories related to integrated arrangements for adjusting the position of the main body with respect to the supporting surface, e.g. legs for adjusting the tilt angle
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/10Devices for preventing movement between relatively-movable hinge parts
    • E05D11/1028Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open
    • E05D11/105Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open the maintaining means acting perpendicularly to the pivot axis
    • E05D11/1064Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open the maintaining means acting perpendicularly to the pivot axis with a coil spring perpendicular to the pivot axis
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/06Buffers or stops limiting opening of swinging wings, e.g. floor or wall stops
    • E05F5/08Buffers or stops limiting opening of swinging wings, e.g. floor or wall stops with springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS, OR BEDS OF ENGINES OR OTHER MACHINES OR APPARATUS NOT SPECIFIC TO AN ENGINE, MACHINE, OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS OR SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • F16M11/38Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other by folding, e.g. pivoting or scissors tong mechanisms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • G06F1/1618Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position the display being foldable up to the back of the other housing with a single degree of freedom, e.g. by 360° rotation over the axis defined by the rear edge of the base enclosure
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1654Details related to the display arrangement, including those related to the mounting of the display in the housing the display being detachable, e.g. for remote use
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1662Details related to the integrated keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1662Details related to the integrated keyboard
    • G06F1/1669Detachable keyboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts which could be adopted independently from the movement typologies specified in G06F1/1615 and subgroups
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts which could be adopted independently from the movement typologies specified in G06F1/1615 and subgroups
    • G06F1/1683Miscellaneous details related to the relative movement between the different enclosures or enclosure parts which could be adopted independently from the movement typologies specified in G06F1/1615 and subgroups for the transmission of signal or power between the different housings, e.g. details of wired or wireless communication, passage of cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3089Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/02 - G06F3/16, e.g. facsimile, microfilm
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • G06F3/0219Special purpose keyboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/023Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control and interface arrangements for touch screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the screen or tablet into independently controllable areas, e.g. virtual keyboards, menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/541Interprogram communication via adapters, e.g. between incompatible applications
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for manufacture of electric switches
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/12Movable parts; Contacts mounted thereon
    • H01H13/14Operating parts, e.g. push-button
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/703Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by spacers between contact carrying layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/704Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by the layers, e.g. by their material or stucture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • H01H13/785Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the material of the contacts, e.g. conductive polymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • H01H13/79Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the form of the contacts, e.g. interspersed fingers or helical networks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • H01H13/807Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the spatial arrangement of the contact sites, e.g. superimposed sites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/82Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by contact space venting means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0254Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets comprising one or a plurality of mechanically detachable modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72522With means for supporting locally a plurality of applications to increase the functionality
    • H04M1/72527With means for supporting locally a plurality of applications to increase the functionality provided by interfacing with an external accessory
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0226Hinges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • H05K5/0234Feet; Stands; Pedestals, e.g. wheels for moving casing on floor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/032Conductive polymer; Rubber
    • H01H2201/036Variable resistance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/02Interspersed fingers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/036Form of contacts to solve particular problems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/058Contact area function of position on layered keyboard
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2205/00Movable contacts
    • H01H2205/006Movable contacts mounted on spacer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2211/00Spacers
    • H01H2211/004Adhesive
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2211/00Spacers
    • H01H2211/006Individual areas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2213/00Venting
    • H01H2213/016Venting in adhesive layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2217/00Facilitation of operation; Human engineering
    • H01H2217/004Larger or different actuating area
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2217/00Facilitation of operation; Human engineering
    • H01H2217/006Different feeling for different switch sites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2217/00Facilitation of operation; Human engineering
    • H01H2217/01Off centre actuation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/032Operating force
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/20Interlocking, locking, or latching mechanisms
    • H01H9/26Interlocking, locking, or latching mechanisms for interlocking two or more switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0241Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call
    • H04M1/0245Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings using relative motion of the body parts to change the operational status of the telephone set, e.g. switching on/off, answering incoming call using open/close detection
    • Y02B60/1228
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/14Interconnection, or transfer of information or other signals between, memories, peripherals or central processing units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T16/00Miscellaneous hardware [e.g., bushing, carpet fastener, caster, door closer, panel hanger, attachable or adjunct handle, hinge, window sash balance, etc.]
    • Y10T16/52Hinge
    • Y10T16/54Hinge including means to hold or retard hinged members against pivotal movement [e.g., catch]
    • Y10T16/5401Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T16/00Miscellaneous hardware [e.g., bushing, carpet fastener, caster, door closer, panel hanger, attachable or adjunct handle, hinge, window sash balance, etc.]
    • Y10T16/52Hinge
    • Y10T16/551Hinge having stop or abutment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Abstract

Different types of user inputs can be input by a user via a keyboard of an input device. These different types of user inputs include, for example, key strikes, multi-touch interactions, single finger motions, and/or mouse clicks. Touch information regarding the pressure applied to the keys of a pressure sensitive keyboard over time (or the contact area of the user input for other types of keyboards over time) is used to classify the intent of the user input as one of the various types of user inputs.

Description

RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/471,336, filed May 14, 2012, entitled “Classifying The Intent Of User Input” and further claims priority under 35 U.S.C. §119(e) to the following U.S. Provisional Patent Applications, the entire disclosures of each of these applications being incorporated by reference in their entirety:

U.S. Provisional Patent Application No. 61/606,321, filed Mar. 2, 2012, and titled “Screen Edge;”

U.S. Provisional Patent Application No. 61/606,301, filed Mar. 2, 2012, and titled “Input Device Functionality;”

U.S. Provisional Patent Application No. 61/606,313, filed Mar. 2, 2012, and titled “Functional Hinge;”

U.S. Provisional Patent Application No. 61/606,333, filed Mar. 2, 2012, and titled “Usage and Authentication;”

U.S. Provisional Patent Application No. 61/613,745, filed Mar. 21, 2012, and titled “Usage and Authentication;”

U.S. Provisional Patent Application No. 61/606,336, filed Mar. 2, 2012, and titled “Kickstand and Camera;” and

U.S. Provisional Patent Application No. 61/607,451, filed Mar. 6, 2012, and titled “Spanaway Provisional.”

BACKGROUND

Computing devices oftentimes have multiple different types of input mechanisms. These input mechanisms can include, for example, keyboards, virtual keyboards, mice, track pads, and so forth. Although these different types of mechanisms provide multiple input options for the user, they are not without their problems. One such problem is that given the number and different types of input mechanisms, it can be difficult for a user to manage the different input mechanisms, particularly in a mobile setting.

SUMMARY

Classifying the intent of user input techniques are described.

In one or more implementations, touch information regarding a user input to an input device is obtained. Based on this touch information, an intent of the user input is classified as being either a key strike or one or more other types of input.

In one or more implementations, an input device is configured to provide an output that indicates touch information regarding a user input. This touch information is usable by one or more modules to determine a user intent in providing the user input.

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.

FIG. 1 is an illustration of an example input device implementing the techniques described herein.

FIG. 2 is an illustration of an example computing device employing the techniques described herein.

FIG. 3 is an illustration of the computing device of FIG. 2 displaying a virtual keyboard.

FIGS. 4A and 4B illustrate an example input device with example user inputs.

FIG. 5 is an illustration of a system in an example implementation that is operable to employ the techniques described herein.

FIG. 6 depicts an example of a graph of pressure at a particular location over time.

FIG. 7 depicts another example of a graph of pressure at a particular location over time.

FIG. 8 is a flowchart illustrating an example process for implementing the techniques described herein in accordance with one or more embodiments.

FIG. 9 is a flowchart illustrating another example process for implementing the techniques described herein in accordance with one or more embodiments.

FIG. 10 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-9 to implement embodiments of the techniques described herein.

DETAILED DESCRIPTION Overview

Classifying the intent of user input techniques are described. Different types of user inputs can be provided by a user via a keyboard of an input device. These different types of user inputs include, for example, key strikes, multi-touch interactions, and/or mouse clicks. Force information regarding the pressure applied to a pressure sensitive keyboard, as well as one or more locations where that pressure is applied, is used to classify the intent of the user input as one of the various types of user inputs. Contact information regarding the contact area of the user input for other types of keyboards (e.g., capacitive and/or resistive systems), as well as one or more locations where that contact area occurs, may similarly be used to classify the intent of the user input as one of the various types of user inputs.

In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures.

Example Environment and Procedures

FIG. 1 is an illustration of an example input device 100 implementing the techniques described herein. In the illustrated example, the input device 100 is configured as a keyboard having a QWERTY arrangement of keys although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, a remote control device, a configuration to mimic a musical instrument, and so forth. Thus, the input device 100 and keys incorporated by the input device 100 may assume a variety of different configurations to support a variety of different functionality.

The input device 100 is a multi-use device, supporting various types of user inputs. A user input can have various different intents, such as a multi-touch interaction, a key strike, a mouse click, and so forth. The input device 100 supports these different types of user inputs in a common input area, such as the keyboard. For example, the user may touch the keys “q”, “w”, and “e” on the keyboard, and the intent of those touches may be determined to be key strikes selecting the letters “q”, “w”, and “e”. The user may also swipe his or her finger across the keys “q”, “w”, and “e” on the keyboard, and the intent of that swipe may be determined to be a multi-touch interaction or single finger motion. This determination of the intent of the user input is discussed in more detail below.

The input device 100 may be communicatively coupled to a computing device 102. The input device 100 may be physically separate from the computing device 102 and communicate with the computing device 102 via any of a variety of conventional communication mechanisms. For example, the input device 100 may communicate with the computing device via a wireless connection, via a wired connection, via communication contacts of the devices 100 and 102 in contact with one another, and so forth.

The computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing device 102 may also relate to software that causes the computing device 102 to perform one or more operations. In various implementations, the computing device 102 may assume a variety of different configurations, such as for computer 104, mobile 106, and television 108 uses. Each of these configurations includes devices that may have generally different constructs and capabilities, and thus the computing device 102 may be configured according to one or more of the different device classes.

For instance, the computing device 102 may be implemented as the computer 104 class of a device that includes a personal computer, desktop computer, a multi-screen computer, laptop computer, netbook, and so on. The computing device 102 may also be implemented as the mobile 106 class of device that includes mobile devices, such as a mobile phone, portable music player, portable gaming device, a tablet computer, a multi-screen computer, and so on. The computing device 102 may also be implemented as the television 108 class of device that includes devices having or connected to generally larger screens in casual viewing environments. These devices include televisions, set-top boxes, gaming consoles, and so on.

The computing device 102 also includes an input/output module 110. The input/output module 110 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 110, such as inputs relating to functions that correspond to keys of the input device 100, inputs that are multi-touch interactions or single finger motions recognized through the input device 100 and that cause operations to be performed that correspond to the multi-touch interactions or single finger motions, and so forth. Thus, the input/output module 110 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, multi-touch interactions, single finger motions, and so on.

Alternatively, the input device 100 may be included as part of a computing device. FIG. 2 is an illustration of an example computing device 202 employing the techniques described herein. The computing device 202 may assume a variety of different configurations, analogous to computing device 102 of FIG. 1. For example, the computing device 202 may be configured for mobile use, such as a mobile phone, a tablet computer, and so on. The computing device 202 may also include an input/output module 204, analogous to input/output module 110 of FIG. 1, and may also relate to software that causes the computing device 202 to perform one or more operations.

The computing device 202 includes a display device 206 via which, in a display mode, various data and information can be displayed. The display device 206 may use a variety of display technologies. These display technologies may include, for example, liquid crystal (LCD) display technologies, light-emitting diode (LED) display technologies, organic light-emitting diode (OLED) display technologies, plasma display technologies, and so forth. Although examples of display technologies are discussed herein, other display technologies are also contemplated.

The display device 206 can be a touchscreen display, and various user inputs can be provided by the user touching the display device 206. The computing device 202 also supports a keyboard mode in which a virtual keyboard is displayed. FIG. 3 is an illustration of computing device 202 displaying a virtual keyboard 302. Virtual keyboard 302 is a multi-use device, supporting various types of user inputs analogous to the keyboard of input device 100 of FIG. 1. However, rather than being a physically separate device, the keyboard 302 is a virtual keyboard that is part of the computing device 202. Thus, the display device 206 also serves as the input device in computing device 202.

User inputs to the input device (e.g., the input device 100 of FIG. 1 and/or the display device 206 of FIG. 2) are sensed by an input sensing component of the input device. The input device can use a variety of different input sensing technologies. These input sensing technologies may include pressure sensitive systems that sense pressure or force. These input sensing technologies may also include capacitive systems and/or resistive systems that sense touch. These input sensing technologies may also include optical based images that sense reflection or disruption of light from objects touching (or close to) the surface of the display device, such as Sensor in Pixel (SIP) systems, Infrared systems, optical imaging systems, and so forth. Other types of input sensing technologies can also be used, such as surface acoustic wave systems, acoustic pulse recognition systems, dispersive signal systems, and so forth. Although examples of input sensing technologies are discussed herein, other input sensing technologies are also contemplated.

In response to a user touching the keyboard at a particular time, the input sensing component determines a location that was touched at that particular time. Various modules of the input sensing component may use different algorithms or techniques to identify the location that was touched, and these algorithms or techniques can vary based on the particular input sensing technology being used. For pressure sensitive input sensing components, these various modules also identify the amount of pressure applied at the location that was touched. For other types of input sensing components, these various modules also identify the area that was touched (the contact area).

The determination of a location that is touched can be determined at various frequencies, such as 1000 times per second although other sampling frequencies are contemplated. It should be noted that the frequency at which the determination of a location of a touch is made is sufficient to identify whether the user input conforms to the characteristics of different user intents. For example, a sampling frequency of 1000 times per second may be sufficient to determine whether the user inputs conform to the characteristics of a key strike intent, whereas lower sampling frequencies (such as 100 times per second) may not be sufficient to identify whether the user inputs conform to the characteristics of a key strike intent. Thus, in contrast to the input sensing components discussed herein, many input sensing components that determine a location that is touched at a low frequency would be unable to determine whether the user input conforms to the characteristics of some intents.

The input sensing component detects or senses the touch of an object, such as a finger of a user's hand, a stylus, a pen, and so forth. The discussions of the classifying the intent of user input techniques herein refer to the user input being provided by a user's finger (and thus the touch is also referred to as a finger impact), although this user input can alternatively be provided by a stylus or other object controlled by the user.

FIGS. 4A and 4B illustrate an example input device 400 with example user inputs. Input device 400 can be, for example, an input device 100 of FIG. 1 and/or a display device 206 of FIG. 3. The input device 400 is a multi-use device, supporting various types of user inputs. These multiple types of user inputs are supported concurrently. For example, the input device 400 can include a keyboard and the user can provide different types of inputs on that keyboard, with the techniques discussed herein being used to automatically determine the intent of that user input.

Thus, the touching of the input device 400 can have different user intents, such as a key strike, a mouse click, a single finger motion, or a multi-touch interaction, although other intents or types of user input are also contemplated. A key strike refers to user selection of a particular key on the keypad, with different locations of the keyboard being associated with different keys. A mouse click refers to the pressing of a button typically associated with a mouse or button of a track pad. A multi-touch interaction refers to a user touching multiple locations (e.g., with multiple ones of the user's fingers) concurrently to initiate one or functions of a computing device. The multi-touch interaction can also include a motion or path taken by one or more of the user's fingers. For example, a multi-touch interaction may be sliding of the user's fingers in one or more particular directions, the user's fingers tracing one or more particular characters or symbol, and so forth. A single finger motion refers to motion or path taken by the user's finger to move a cursor, pointer, or other object (e.g., an icon, file, etc. being dragged), or to initiate one or more functions of the computing device. A single finger motion intent and a multi-touch interaction intent can also be referred to as movement intents because they typically (although not always for multi-touch interactions) include movement by the user's finger.

FIG. 4A illustrates an example user input the intent of which is a key strike of the letter “d” or a mouse click. Whether the intent of the user input was a key strike or a mouse click can be determined in different manners, such as based on the characteristics of a key strike and the characteristics of a mouse click as discussed below.

FIG. 4B illustrates an example user input the intent of which is a single finger motion moving from left to right. The ending position of the user's finger is illustrated using a dashed outline of a hand. Whether the intent of the user input was a single finger motion can be determined in different manners, such as based on the distance the touch travels and/or a velocity of the touch, as discussed in more detail below.

As illustrated in FIGS. 4A and 4B, both user inputs begin by touching a location of the keyboard corresponding to the letter “d”. However, the intent of the user (e.g., a key strike or a multi-touch interaction) can be determined using the techniques discussed herein. The user need not press any button or select any menu option to indicate his or her intent (e.g., whether the user desires to input key strikes or multi-touch interactions). Rather, the user can simply provide his or her input and the techniques discussed herein automatically determine the intent of that input.

The touch, as well as one or more locations of the touch as sensed by one or more sensors as discussed above, is used to classify the intent of a user input, such as classifying the user input as a key strike or other type of input. The user input refers to the touching by the user of one or more portions of the input device. The touch may be sensed using a dense array of pressure sensors that are sampled at a sufficient frequency to characterize the touch, as discussed above. The touch may alternatively be sensed using a capacitive sensor, with the impact being sensed indirectly by noting the rapid change in coupling as the finger conforms to the surface and then rebounds. Regardless of the type of sensors use, the location of the touch can be readily determined based on (e.g., by interpolating) data from the sensors in the region where the touch occurred.

The touch can have associated force information (in situations in which the input sensing technologies used include pressure sensitive systems) or contact information (in situations in which other input sensing technologies are used). The force information refers to the pressure applied by the user when touching the keyboard. The contact information refers to the area that is touched (the portions of the touchpad or touchscreen that were touched by the user's finger or other object, the amount of light reflected by the user's finger or other object, etc.) by the user when touching the keyboard.

In the following discussions, the classifying the intent of user input techniques are discussed with reference to force information and a user input device that is a pressure sensitive device. However, the classifying the intent of user input techniques can alternatively be implemented using other types of sensors as discussed above. In such situations, rather than using force information to classify the intent of the user input, the contact information is used to classify the intent of the user input. When using the contact information, the contact area is treated analogously to the pressure discussed below.

FIG. 5 is an illustration of a system 500 in an example implementation that is operable to employ the techniques described herein. The system 500 includes a touch information collection module 502 and an input classification module 504. System 500 may be implemented, for example, in the input device 100 and/or the computing device 102 of FIG. 1, or the computing device 202 of FIGS. 2 and 3. Thus, for example, module 502 may be implemented in input device 100 and module 504 may be implemented in computing device 102, both modules 502 and 504 may be implemented in input device 100, and so forth.

Touch information collection module 502 obtains an indication of the amount of pressure applied by a user's finger over time (or alternatively contact information over time, as discussed above), as well as the locations of the touch over time, as sensed by the input sensing component as discussed above. Module 502 obtains (e.g., receives or generates) touch information 506 regarding user inputs to the keyboard of the input device. The touch information 506 identifies the characteristics of and locations of touches. These characteristics and locations of a touch can include, for example, the size of the touch (e.g., the amount of area touched), changes in the size of the touch over time, the shape of the touch (e.g., a geographic shape or outline of the area touched), changes in the shape of the touch over time, the location of the touch over time, the change in pressure of the touch over time, the movement of the touch (directions and locations that are touched), a velocity of the touch, an acceleration of the touch, a distance the touch travels, and so forth.

Based on the touch information 506, input classification module 504 classifies the intent of the user input, and outputs or otherwise makes available the input intent classification 508. Additional information, such as the touch information 506, can also be output or otherwise made available along with the input intent classification 508. The intent of the user input can be, for example, a key strike, a multi-touch interaction, a mouse click, and so forth as discussed below. The input intent classification 508 can subsequently be used by one or more other modules to take the appropriate action based on the user input. For example, if the intent is a key strike, then the key associated with the location pressed by the user as the user input is recorded as user selection of that key. By way of another example, if the intent is a multi-touch interaction, then the touch information is used to determine which multi-touch interaction was input by the user and the corresponding action taken.

Generally, the intent of the user input is classified based on the touch information 506. The force applied by the user's finger over time, and optionally the one or more locations where that force is applied, is analyzed in view of characteristics of the different intents supported by input classification module 504. A user input that conforms to the characteristics of a particular intent is classified as that particular intent, whereas a user input that does not conform to the characteristics of a particular intent is not classified as that particular intent.

In one or more embodiments, the intent of a user input can be classified as a key strike, a single finger motion, a multi-touch interaction, or other input. A user input is compared to the characteristics of one or more of a key strike, a single finger motion, a multi-touch interaction. If the user input conforms to the key strike characteristics then the intent of the user input is classified as a key strike, if the user input conforms to the single finger motion characteristics then the intent of the user input is classified as a single finger motion, and if the user input conforms to the multi-touch interaction characteristics then the intent of the user input is classified as a multi-touch interaction.

Furthermore, if the user input conforms to the characteristics of no particular intent (e.g., a key strike, a single finger motion, a multi-touch interaction, etc.), then the intent of the user input is classified as an “other” intent. The other intent refers to some other type of intent, typically an intent that is filtered out by system 500. Examples of such user inputs that can be classified as an “other” intent can be the user's hands resting on the keyboard, sensor noise, the device being bumped, and so forth. Thus, not only can input classification module 504 distinguish between different intents of user inputs to the keyboard, but module 504 can also filter out user inputs to that same keyboard that are not intended to be user inputs to the input device that are acted upon by the computing device.

A user input intent may be characterized by a force graph shape indicating the force applied by the user's finger over time for the intent. Different user input intents can have different associated force graph shapes, and input classification module 504 can maintain these different force graph shapes and compare user inputs to these different force graph shapes. A user input (as characterized by touch information 506) that conforms to the force graph shape for an intent is classified as being that particular intent. Whether a user input conforms to a particular force graph shape can be determined in a variety of different manners. For example, a force graph can be generated based on the touch information obtained for the user input, and the generated force graph can be compared to the one or more maintained force graph shapes. If the generated force graph shape matches a particular maintained force graph shape, then the user input conforms to the intent associated with that particular maintained force graph shape. Whether two graph shapes match can be determined using a variety of public and/or proprietary graph or shape matching techniques.

The behavior of a particular touching of the keyboard over a lifetime of the touch may be used to classify a user input as a key strike or other type of input (e.g., a multi-touch interaction or single finger motion). The lifetime of the touch refers to a time duration that begins when the user's finger touching the surface is sensed and ends when the user's finger is no longer sensed as touching the surface. The user's finger can remain approximately stationary for the lifetime of the touch (e.g., which may be typical for a key strike), or can move across the keypad during the lifetime of the touch (e.g., which may be typical for multi-touch interactions and single finger motions).

The intent of a user input may be classified as a movement in response to the touch travelling at least a threshold distance. This threshold distance can be a fixed distance (e.g., 1.5 inches) or a relative distance (e.g., 10% of the width of the keyboard). The travelling of a touch refers to the distance moved by the user's finger while being moved along some path during the lifetime of the touch. If multiple touches are sensed concurrently then the intent of the user input may be classified as a multi-touch interaction, whereas if only a single touch is sensed at a particular time then the intent of the user input at that particular time may be classified as a single finger motion.

The intent of a user input may also be classified as a movement in response to the touch having at least a threshold velocity and a short (e.g., less than a threshold value) lifetime. The threshold value of the lifetime of the touch may be 0.25 seconds, although other threshold values are contemplated. The velocity of a touch refers to the distance moved by the user's finger while being moved along some path during the lifetime of the touch divided by the time duration of the lifetime of the touch. For example, the velocity may be 4 inches/second, although other velocities are contemplated. If multiple touches are sensed concurrently then the intent of the user input may be classified as a multi-touch interaction, whereas if only a single touch is sensed at a particular time then the intent of the user input at that particular time may be classified as a single finger motion.

Generally, a key strike (also referred to as a tap) is characterized by a sharp rise in force followed by a sharp decrease in force as the finger rebounds from the surface, and optionally followed by a rise in force again as the momentum of the remainder of the finger continues towards the surface of the keyboard. The pressure of a touch is analyzed over time, and based on these characteristics of a key strike the user input is classified as either a key strike or some other type of input (e.g., a multi-touch interaction). User inputs that conform to these characteristics are classified as key strikes, and user inputs that do not conform to these characteristics are classified as other types of user inputs. If the user inputs include multiple touches concurrently, then the user input may be classified as multiple key strikes if each touch conforms to the characteristics of a key strike and the touches are for particular locations (e.g., locations corresponding to a modifier key on the keyboard, such as a “shift” key, a “ctrl” key, an “alt” key, and so forth). Alternatively, if the user inputs include multiple touches concurrently, then the user input is classified as some other type of input rather than a key strike.

It should be noted that these characteristics of a key strike allow the intent of a user input to be distinguished between a key strike and an “other” intent (e.g., the user resting his or her hands on the keyboard). The key strike is characterized by a particular force graph shape indicating the force applied by the user's finger over time. If a user intends to strike a key then the input conforms to this particular force graph shape, and if the user intends to rest his or her hands on the keyboard then the input does not conform to this particular force graph shape. Thus a key strike intent or an “other” intent can be readily determined based on whether the user input conforms to this particular force graph shape.

The characteristics of a key strike can also include temporal information. For example, the characteristics of a key strike may include the touch being at the same location (not moving) or having a location that moves less than a threshold amount (e.g., less than the width or height of a key on the keyboard, although other threshold amounts are contemplated).

FIG. 6 depicts an example 600 of a graph of pressure of a touch over time. The vertical axis is pressure or force (e.g., in grams), and the horizontal axis is time (e.g., in milliseconds). A line 602 represents the pressure applied as the touch over time. The pressure applied as the touch over time can be analyzed to determine whether the pressure applied conforms to the characteristics of a key strike.

In analyzing the pressure an initial impact time duration may be determined, which is a duration of time that begins when the pressure applied as the touch rises to (e.g., is equal to or greater than) a start threshold amount. This start threshold amount may be 200 grams, although other start threshold amounts are contemplated. This duration of time ends when the pressure applied as the touch reaches a local minimum before rising again (e.g., as the momentum of the remainder of the finger continues towards the surface of the keyboard) or the pressure applied as the touch drops to (e.g., is equal to or less than) a stop threshold amount. This stop threshold amount may be the same as the start threshold amount (e.g., 200 grams) or a lesser amount (e.g., 100 grams), although other values for the stop threshold amount are contemplated. Thus, the initial impact time duration can be different for different user inputs.

In example 600, an initial impact time duration 604 is illustrated. The initial impact time duration begins at point 606 where the pressure applied as the touch rises to the start threshold amount, and ends at point 608 where the pressure applied as the touch drops to a local minimum before rising again.

Also in analyzing the pressure a maximum force may be identified. This maximum force refers to a local maximum of the pressure applied as the touch during the initial impact time duration 604 and after the pressure applied as the touch rises to the start threshold amount. In example 600, the maximum force is at point 610.

Given the initial impact time duration and/or the maximum force, various rules or criteria are applied to determine whether the pressure applied conforms to the characteristics of a key strike. These rules or criteria may include an initial impact criteria, a maximum force criteria, and/or an initial impact ending force criteria.

The initial impact criteria refers to the duration of the initial impact time duration, indicating that the initial impact time duration is to be within a particular time range. This particular time range can be, for example, between 5 milliseconds (ms) and 25 ms, although other time ranges are contemplated. Thus, for example, the initial impact time duration is to be at least 5 ms and no more than 25 ms in order for the pressure applied as the touch to conform to the characteristics of a key strike.

The maximum force criteria refers to when, within the initial impact time duration, the maximum force occurs. The maximum force criteria indicates that the maximum force is to occur within a threshold amount of time, such as 12 ms although other amounts of time are also contemplated. The maximum force criteria also indicates that the maximum force is not to occur in a last portion of the initial impact time duration. This last portion may be the last third of the initial impact time duration, although other portions are contemplated. Thus, for example, the maximum force is to occur within the first 12 ms of the initial impact time duration and is not to occur within the last ⅓ of the initial impact time duration in order for the pressure applied as the touch to conform to the characteristics of a key strike.

The initial impact ending force criteria refers to the pressure of the touch at the end of the initial impact time duration. The initial impact ending force criteria indicates that the pressure of the touch at the end of the initial impact time duration is to be less than a particular percentage of the maximum force. This particular percentage may be 80%, although other percentages are contemplated. Alternatively, the initial impact ending force criteria can indicate that the pressure of the touch is to be less than another particular percentage of the maximum force in response to the maximum force being reached quickly (within a threshold amount of time). This other particular percentage may be 90% and the threshold amount of time may be 5 ms, although other percentages and threshold amounts of time are contemplated. Thus, for example, at the end of the initial impact time duration the pressure of the touch is to be less than 80% of the maximum force, or less than 90% of the maximum force if the maximum force was reached within 5 ms, in order for the pressure applied as the touch to conform to the characteristics of a key strike.

If the initial impact criteria, the maximum force criteria, and the initial impact ending force criteria all conform to the characteristics of a key strike, then the pressure applied as the touch conforms to the characteristics of a key strike and the user input is classified as a key strike. However, if one or more of the initial impact criteria, the maximum force criteria, and the initial impact ending force criteria does not conform to the characteristics of a key strike, then the pressure applied as the touch does not conform to the characteristics of a key strike and the user input is not classified as a key strike.

Characteristics of a key strike are discussed above. Characteristics of other types of inputs can also be maintained. The pressure of a touch may be analyzed over time and a determination made as to whether the user input conforms to the characteristics of another type of input. User inputs that conform to the characteristics of another type of input are classified as that other type of input, while user inputs that do not conform to the characteristics of that other type input are not classified as that other type of input.

For example, a mouse click may be characterized by a slow rise in force followed by a sharp decrease in force as the finger rebounds from the surface. The pressure of a touch is analyzed over time, and based on these characteristics of a mouse click the user input is classified as either a mouse click or some other type of input (e.g., a key strike). User inputs that conform to these characteristics are classified as mouse clicks, and user inputs that do not conform to these characteristics are classified as other types of user inputs.

The characteristics of a mouse click can also include temporal information. For example, the characteristics of a mouse click may include the touch being at the same location (not moving) or having a location that moves less than a threshold amount (e.g., 0.25 inches, although other threshold amounts are contemplated).

FIG. 7 depicts an example 700 of a graph of pressure of a touch over time. The vertical axis is pressure or force (e.g., in grams), and the horizontal axis is time (e.g., in milliseconds). A line 702 represents the pressure applied as the touch over time. The pressure applied as the touch over time can be analyzed to determine whether the pressure applied conforms to the characteristics of a mouse click.

In analyzing the pressure a touch time duration may be determined, which is a duration of time that begins when the pressure applied as the touch rises to (e.g., is equal to or greater than) a start threshold amount. This start threshold amount may be 200 grams, although other start threshold amounts are contemplated. This duration of time ends when the pressure applied as the touch drops to (e.g., is equal to or less than) a stop threshold amount. This stop threshold amount may be the same as the start threshold amount (e.g., 200 grams) or a lesser amount (e.g., 100 grams), although other values for the stop threshold amount are contemplated.

In example 700, a touch time duration 704 is illustrated. The touch time duration begins at point 706 where the pressure applied as the touch rises to the start threshold amount, and ends at point 708 where the pressure applied as the touch drops to the stop threshold amount.

Also in analyzing the pressure a maximum force may be identified. This maximum force refers to a local maximum of the pressure applied as the touch during the touch time duration 704 and after the pressure applied as the touch rises to the start threshold amount. In example 700, the maximum force is at point 710.

Given the touch time duration and/or the maximum force, various rules or criteria are applied to determine whether the pressure applied conforms to the characteristics of a mouse click. These rules or criteria may include rules or criteria referring to when the maximum force occurs. The rules or criteria may indicate that the maximum force is to occur at least a threshold amount of time (e.g., 25 ms, although other amounts of time are also contemplated) after the pressure applied as the touch rises to the start threshold amount. The rules or criteria may indicate that the maximum force is not to occur in a beginning portion of the touch time duration. This beginning portion may be the beginning half of the touch time duration, although other portions are contemplated. Thus, for example, the rules or criteria may indicate that the maximum force is to occur at least 25 ms after the touch time duration beginning, and is not to occur within the first half of the touch time duration in order for the pressure applied as the touch to correspond to the characteristics of a mouse click.

As indicated above, although discussed herein with reference to force information and a user input device that is a pressure sensitive input device, the classifying the intent of user input techniques can alternatively be implemented using other types of sensors and input sensing technologies. In such situations, rather than using the pressure applied by a user input to classify the intent of the user input, the contact area of the user input (the portions of the touchpad or touchscreen that were touched by the user's finger or other object, the amount of light reflected by the user's finger or other object, etc.) may be used to classify the intent of a user input. The contact area (e.g., measured in millimeters or other units) is treated analogously to the pressure discussed above. For example, referring to FIG. 5, a key strike is characterized by a sharp rise in contact area followed by a sharp decrease in contact area as the finger or other object touching the surface rebounds from the surface, and optionally followed by a rise in contact area again as the momentum of the remainder of the finger or other object touching the surface of the keyboard continues towards the surface.

FIG. 8 is a flowchart illustrating an example process 800 for implementing the techniques described herein in accordance with one or more embodiments. Process 800 is carried out by an input classification module, such as input classification module 504 of FIG. 5, and can be implemented in software, firmware, hardware, or combinations thereof. Process 800 is shown as a set of acts and is not limited to the order shown for performing the operations of the various acts. Process 800 is an example process for implementing the techniques described herein; additional discussions of implementing the techniques described herein are included herein with reference to different figures.

In process 800, touch information regarding a user input to an input device is obtained (act 802). This touch information can be obtained from a pressure sensitive input device, or other types of input devices (e.g., capacitive or resistive) as discussed above.

Based on the obtained touch information, an intent of the user input is classified as being a key strike or other type of input (act 804). The classification is performed based on characteristics of a key strike or other type of input, as discussed above. Various other types of inputs can be received as user inputs, such as multi-touch interactions, a single finger motions, and mouse clicks as discussed above.

An indication of the classification of the user input is output (act 806). This classification can be used by one or more other modules (e.g., of computing device 102 of FIG. 1) to take the appropriate action based on the user input. This classification can be output to, for example, one or more modules of the input device 104 and/or the computing device 102 of FIG. 1.

FIG. 9 is a flowchart illustrating another example process 900 for implementing the techniques described herein in accordance with one or more embodiments. Process 900 is carried out by an input classification module, such as input classification module 504 of FIG. 5, and can be implemented in software, firmware, hardware, or combinations thereof. Process 900 is shown as a set of acts and is not limited to the order shown for performing the operations of the various acts. Process 900 is an example process for implementing the techniques described herein; additional discussions of implementing the techniques described herein are included herein with reference to different figures.

In process 900, when a user input is received (e.g., the user touches the keyboard), a check is made as to whether the touch travels a threshold distance (act 902). This threshold distance can be a fixed or relative distance, such as 1.5 inches or 10% of the width of the keyboard, as discussed above.

If the touch travels a threshold distance (e.g., at least the threshold distance, equal to or greater than the threshold distance, etc.), then the touch is classified as a movement (act 904). A movement can be, for example, a single finger motion or a multi-touch interaction, as discussed above. Whether the movement is a single finger motion or a multi-touch interaction can be determined in different manners. For example, if during the time of the touch multiple touches (e.g., multiple fingers) are sensed concurrently then the movement is a multi-touch interaction, whereas if during the time of the touch just a single touch (e.g., a single finger) is sensed then the movement is a single finger motion. By way of another example, if the input device does not support (or is operating in a mode that does not support) multi-touch interactions, then the movement is a single finger motion. By way of another example, if the input device does not support (or is operating in a mode that does not support) single finger motions, then the movement is a multi-touch interaction.

However, if the touch does not travel the threshold distance, then a check is made as to whether the lifetime of the touch is less than a threshold amount (act 906). If the lifetime of the touch is less than a threshold amount (e.g., less than 0.25 seconds), then a check is made as to whether the touch has a threshold velocity (act 908). This threshold velocity can be, for example, 4 inches/second or other velocities as discussed above. If the touch has a threshold velocity (e.g., at least the threshold velocity, equal to or greater than the threshold velocity, etc.), then the touch is classified as a movement (act 904). A movement can be, for example, a single finger motion or a multi-touch interaction, as discussed above.

However, if the lifetime of the touch is not less than the threshold amount, or if the touch does not have the threshold velocity, then a check is made as to whether initial impact criteria are satisfied (act 910). The initial impact criteria are satisfied if the initial impact time duration is within a particular time range (e.g., at least 5 ms and no more than 25 ms), as discussed above.

If the initial impact criteria are not satisfied, then the touch is classified as neither a movement nor a key strike (act 912). In such situations, the touch may be interpreted as some default input (e.g., the user resting his or her fingers on the keyboard), or alternatively may be further analyzed to determine the intent of the user input (e.g., a mouse click, as discussed above).

However, if the initial impact criteria are satisfied, then a check is made as to whether maximum force criteria are satisfied (act 914). The maximum force criteria are satisfied if the maximum force occurs during a particular portion of the initial impact time duration (e.g., within the first 12 ms of the initial impact time duration, or during the first ⅔ of the initial impact time duration), as discussed above.

If the maximum force criteria are not satisfied, then the touch is classified as neither a movement nor a key strike (act 912).

However, if the maximum force criteria are satisfied, then a check is made as to whether initial impact ending force criteria are satisfied (act 916). The initial impact ending force criteria are satisfied if the pressure on the key at the end of the initial impact time duration is less than a particular percentage of the maximum force (e.g., less than 80% of the maximum force, or less than 90% of the maximum force if the maximum force occurred in the first 5 ms of the initial impact time duration), as discussed above.

If the initial impact ending force criteria are not satisfied, then the touch is classified as neither a movement nor a key strike (act 912). However, if the initial impact ending force criteria are satisfied, then the touch is classified as a key strike (act 918).

Example System and Device

FIG. 10 illustrates an example system generally at 1000 that includes an example computing device 1002 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. The computing device 1002 may, for example, be configured to assume a mobile configuration through use of a housing formed and size to be grasped and carried by one or more hands of a user, illustrated examples of which include a mobile phone, mobile game and music device, and tablet computer although other examples are also contemplated.

The example computing device 1002 as illustrated includes a processing system 1004, one or more computer-readable media 1006, and one or more I/O interfaces 1008 that are communicatively coupled, one to another. Although not shown, the computing device 1002 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.

The processing system 1004 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1004 is illustrated as including hardware elements 1010 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1010 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.

The computer-readable storage media 1006 is illustrated as including memory/storage 1012. The memory/storage 1012 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1012 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1012 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1006 may be configured in a variety of other ways as further described below.

Input/output interface(s) 1008 are representative of functionality to allow a user to enter commands and information to computing device 1002, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1002 may be configured in a variety of ways to support user interaction.

The computing device 1002 is further illustrated as being communicatively and physically coupled to an input device 1014 that is physically and communicatively removable from the computing device 1002. In this way, a variety of different input devices may be coupled to the computing device 1002 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 1014 includes one or more keys 1016, which may be configured as pressure sensitive keys, keys on a touchpad or touchscreen, mechanically switched keys, and so forth.

The input device 1014 is further illustrated as including one or more modules 1018 that may be configured to support a variety of functionality. The one or more modules 1018, for instance, may be configured to process analog and/or digital signals received from the keys 1016 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 1014 for operation with the computing device 1002, classify the intent of user input, and so on. Modules 1018 may include, for example, the input classification module 504 of FIG. 5.

Although illustrated as separate from the computing device 1002, the input device 1014 can alternatively be included as part of the computing device 1002 as discussed above. In such situations, the keys 1016 and the modules 1018 are included as part of the computing device 1002. Additionally, in such situations the keys 1016 may be keys of a virtual keyboard and/or keys of a non-virtual keyboard (e.g., a pressure sensitive input device).

Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.

An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1002. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”

“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.

“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1002, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.

As previously described, hardware elements 1010 and computer-readable media 1006 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.

Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1010. The computing device 1002 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1002 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1010 of the processing system 1004. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1002 and/or processing systems 1004) to implement techniques, modules, and examples described herein.

CONCLUSION

Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

Claims (20)

What is claimed is:
1. A method comprising:
obtaining force information regarding a particular single touch user input to a common input area of an input device, the force information indicating pressure applied by the particular single touch user input;
analyzing the force information to classify an intent of the particular single touch user input as one of two intents, the two intents comprising a key strike and a mouse click, the analyzing including defining an initial impact time duration beginning when pressure applied as the particular single touch user input rises to a start threshold amount, and ending when the pressure applied as the particular single touch user input drops to a local minimum or a stop threshold amount;
classifying the intent of the particular single touch user input as a key strike in response to the particular single touch user input comprising a sharp rise in force followed by a sharp decrease in force, the sharp rise and the sharp decrease in force occurring during the initial impact time duration; and
classifying the intent of the particular single touch user input as a mouse click in response to the force information conforming to characteristics of a mouse click.
2. A method as recited in claim 1, the input device comprising multiple pressure sensors that receive the particular single touch user input, and the obtaining comprising obtaining force information from the multiple pressure sensors.
3. A method as recited in claim 1, the input device comprising an input device that is physically separate from and communicatively removable from a computing device.
4. A method as recited in claim 1, the analyzing comprising analyzing the force information to automatically classify the intent of the user in the absence of another option or button selection by the user to indicate the intent of the user.
5. A method as recited in claim 1, the classifying the intent of the particular single touch user input as a key strike comprising classifying the intent of the particular single touch user input as a key strike only if the initial impact time duration is within a particular time range.
6. A method as recited in claim 1, the analyzing including defining an additional time duration beginning when pressure applied as the particular single touch user input rises to the start threshold amount, and ending when the pressure applied as the particular single touch user input drops to an additional stop threshold amount, and identifying a maximum force applied as the particular single touch user input during the additional time duration, and the classifying the intent of the particular single touch user input as a mouse click comprising classifying the intent of the particular single touch user input as a mouse click only if the maximum force applied as the particular single touch user input during the additional time duration is applied at least a threshold amount of time after the beginning of the additional time duration.
7. A method as recited in claim 1, the pressure applied as the particular single touch user input rising to a local maximum force during the initial impact time duration, and the sharp rise in force followed by the sharp decrease in force comprising the pressure applied as the particular single touch user input rising to the local maximum force within a threshold amount of time of the beginning of the initial impact time duration, and the pressure applied as the particular single touch user input at the ending of the initial impact time duration being less than a particular percentage of the local maximum force.
8. A method implemented in a pressure sensitive keyboard input device, the method comprising:
obtaining, at the pressure sensitive keyboard input device, force information regarding a particular single touch user input to the pressure sensitive keyboard input device, the force information identifying pressure applied by the particular single touch user input over time; and
automatically distinguishing, based on the force information, between two possible intents of the particular single touch user input, the two possible intents of the particular single touch user input being a key strike and a mouse click, the automatically distinguishing including:
defining an initial impact time duration beginning when pressure applied as the particular single touch user input rises to a start threshold amount, and ending when the pressure applied as the particular single touch user input drops to a local minimum or a stop threshold amount, the pressure applied as the particular single touch user input rising to a local maximum force during the initial impact time duration, and
classifying the intent of the particular single touch user input as a key strike in response to both the pressure applied as the particular single touch user input rising to the local maximum within a threshold amount of time of the beginning of the initial impact time duration, and the pressure applied as the particular single touch user input at the ending of the initial impact time duration being less than a particular percentage of the local maximum force.
9. A method as recited in claim 8, the pressure sensitive keyboard input device comprising an input device that is physically separate from and communicatively removable from a computing device.
10. A method as recited in claim 8, the automatically distinguishing comprising automatically distinguishing between the two possible intents of the particular single touch user input in the absence of another option or button selection by the user to indicate the intent of the user.
11. A method as recited in claim 8, the classifying the intent of the particular single touch user input as a key strike further comprising classifying the intent of the particular single touch user input as a key strike only if the initial impact time duration is within a particular time range.
12. A method as recited in claim 8, the automatically distinguishing further including:
defining an additional time duration beginning when pressure applied as the particular single touch user input rises to the start threshold amount, and ending when the pressure applied as the particular single touch user input drops to an additional stop threshold amount;
identifying a maximum force applied as the particular single touch user input during the additional time duration; and
classifying the intent of the particular single touch user input as a mouse click in response to the maximum force applied as the particular single touch user input during the additional time duration being applied at least a threshold amount of time after the beginning of the additional time duration.
13. An apparatus comprising:
an input device configured to obtain force information regarding a particular single touch user input to a common input area of the input device, the force information indicating pressure applied by the particular single touch user input; and
one or more modules implementing operations including:
analyzing the force information to classify an intent of the particular single touch user input as one of two intents, the two intents comprising a key strike and a mouse click, the analyzing including defining an initial impact time duration beginning when pressure applied as the particular single touch user input rises to a start threshold amount, and ending when the pressure applied as the particular single touch user input drops to a local minimum or a stop threshold amount,
classifying the intent of the particular single touch user input as a key strike in response to the particular single touch user input comprising a sharp rise in force followed by a sharp decrease in force, the sharp rise and the sharp decrease in force occurring during the initial impact time duration, and
classifying the intent of the particular single touch user input as a mouse click in response to the force information conforming to characteristics of a mouse click.
14. An apparatus as recited in claim 13, the pressure applied as the particular single touch user input rising to a local maximum force during the initial impact time duration, and the sharp rise in force followed by the sharp decrease in force comprising the pressure applied as the particular single touch user input rising to the local maximum force within a threshold amount of time of the beginning of the initial impact time duration, and the pressure applied as the particular single touch user input at the ending of the initial impact time duration being less than a particular percentage of the local maximum force.
15. An apparatus as recited in claim 14, the particular percentage of the local maximum force varying based on whether the local maximum force occurred within an additional threshold amount of time of the beginning of the initial impact time duration.
16. An apparatus as recited in claim 13, the input device comprising multiple pressure sensors that receive the particular single touch user input and that are configured to obtain the force information.
17. An apparatus as recited in claim 13, the input device comprising an input device that is physically separate from and communicatively removable from a computing device.
18. An apparatus as recited in claim 13, the analyzing comprising analyzing the force information to automatically classify the intent of the user in the absence of another option or button selection by the user to indicate the intent of the user.
19. An apparatus as recited in claim 13, the classifying the intent of the particular single touch user input as a key strike comprising classifying the intent of the particular single touch user input as a key strike only if the initial impact time duration is within a particular time range.
20. An apparatus as recited in claim 13, the analyzing including defining an additional time duration beginning when pressure applied as the particular single touch user input rises to the start threshold amount, and ending when the pressure applied as the particular single touch user input drops to an additional stop threshold amount, and identifying a maximum force applied as the particular single touch user input during the additional time duration, and the classifying the intent of the particular single touch user input as a mouse click comprising classifying the intent of the particular single touch user input as a mouse click only if the maximum force applied as the particular single touch user input during the additional time duration is applied at least a threshold amount of time after the beginning of the additional time duration.
US13651232 2012-03-02 2012-10-12 Classifying the intent of user input Active US9098117B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US201261606301 true 2012-03-02 2012-03-02
US201261606321 true 2012-03-02 2012-03-02
US201261606333 true 2012-03-02 2012-03-02
US201261606336 true 2012-03-02 2012-03-02
US201261606313 true 2012-03-02 2012-03-02
US201261607451 true 2012-03-06 2012-03-06
US201261613745 true 2012-03-21 2012-03-21
US13471336 US9946307B2 (en) 2012-03-02 2012-05-14 Classifying the intent of user input
US13651232 US9098117B2 (en) 2012-03-02 2012-10-12 Classifying the intent of user input

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13651232 US9098117B2 (en) 2012-03-02 2012-10-12 Classifying the intent of user input

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13471336 Continuation US9946307B2 (en) 2012-03-02 2012-05-14 Classifying the intent of user input

Publications (2)

Publication Number Publication Date
US20130229347A1 true US20130229347A1 (en) 2013-09-05
US9098117B2 true US9098117B2 (en) 2015-08-04

Family

ID=48808690

Family Applications (47)

Application Number Title Priority Date Filing Date
US13468882 Active 2032-11-10 US9460029B2 (en) 2012-03-02 2012-05-10 Pressure sensitive keys
US13468949 Active 2033-03-14 US9158383B2 (en) 2012-03-02 2012-05-10 Force concentrator
US13468918 Active US9134807B2 (en) 2012-03-02 2012-05-10 Pressure sensitive key normalization
US13471336 Active US9946307B2 (en) 2012-03-02 2012-05-14 Classifying the intent of user input
US13470633 Active US8498100B1 (en) 2012-03-02 2012-05-14 Flexible hinge and removable attachment
US13471237 Active 2032-10-24 US8854799B2 (en) 2012-03-02 2012-05-14 Flux fountain
US13471282 Active 2033-06-27 US9146620B2 (en) 2012-03-02 2012-05-14 Input device assembly
US13471001 Abandoned US20130232353A1 (en) 2012-03-02 2012-05-14 Mobile Device Power State
US13471393 Pending US20130228023A1 (en) 2012-03-02 2012-05-14 Key Strike Determination For Pressure Sensitive Keyboard
US13470951 Active 2032-09-23 US9411751B2 (en) 2012-03-02 2012-05-14 Key formation
US13471030 Active 2032-12-02 US9134808B2 (en) 2012-03-02 2012-05-14 Device kickstand
US13471376 Active 2032-10-08 US9304948B2 (en) 2012-03-02 2012-05-14 Sensing user input at display area edge
US13471139 Active US8791382B2 (en) 2012-03-02 2012-05-14 Input device securing techniques
US13471202 Active US8548608B2 (en) 2012-03-02 2012-05-14 Sensor fusion algorithm
US13471054 Active 2033-01-15 US9275809B2 (en) 2012-03-02 2012-05-14 Device camera angle
US13471186 Active 2032-06-27 US8896993B2 (en) 2012-03-02 2012-05-14 Input device layers and nesting
US13563435 Active US8699215B2 (en) 2012-03-02 2012-07-31 Flexible hinge spine
US13564520 Active US9158384B2 (en) 2012-03-02 2012-08-01 Flexible hinge protrusion attachment
US13565124 Active US8724302B2 (en) 2012-03-02 2012-08-02 Flexible hinge support layer
US13651304 Active US8610015B2 (en) 2012-03-02 2012-10-12 Input device securing techniques
US13651195 Active US8614666B2 (en) 2012-03-02 2012-10-12 Sensing user input at display area edge
US13651272 Active US8543227B1 (en) 2012-03-02 2012-10-12 Sensor fusion algorithm
US13651327 Active US8570725B2 (en) 2012-03-02 2012-10-12 Flexible hinge and removable attachment
US13651232 Active US9098117B2 (en) 2012-03-02 2012-10-12 Classifying the intent of user input
US13651976 Active US9047207B2 (en) 2012-03-02 2012-10-15 Mobile device power state
US13651726 Active US8564944B2 (en) 2012-03-02 2012-10-15 Flux fountain
US13651871 Active US8646999B2 (en) 2012-03-02 2012-10-15 Pressure sensitive key normalization
US13656055 Active US9116550B2 (en) 2012-03-02 2012-10-19 Device kickstand
US13939002 Active US8780541B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US13938930 Active US8780540B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US13939032 Active US8830668B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US14018286 Active US8903517B2 (en) 2012-03-02 2013-09-04 Computer device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US14059280 Active 2032-05-31 US9304949B2 (en) 2012-03-02 2013-10-21 Sensing user input at display area edge
US14063912 Abandoned US20140048399A1 (en) 2012-03-02 2013-10-25 Input Device Securing Techniques
US14147252 Active US9710093B2 (en) 2012-03-02 2014-01-03 Pressure sensitive key normalization
US14225250 Active US9904327B2 (en) 2012-03-02 2014-03-25 Flexible hinge and removable attachment
US14225276 Active US9176900B2 (en) 2012-03-02 2014-03-25 Flexible hinge and removable attachment
US14277240 Active US8947864B2 (en) 2012-03-02 2014-05-14 Flexible hinge and removable attachment
US14307262 Active 2032-09-19 US9618977B2 (en) 2012-03-02 2014-06-17 Input device securing techniques
US14457881 Active US9176901B2 (en) 2012-03-02 2014-08-12 Flux fountain
US14482983 Active 2033-06-08 US9619071B2 (en) 2012-03-02 2014-09-10 Computing device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US14517048 Active US9465412B2 (en) 2012-03-02 2014-10-17 Input device layers and nesting
US14794182 Active US9852855B2 (en) 2012-03-02 2015-07-08 Pressure sensitive key normalization
US14847838 Active US9766663B2 (en) 2012-03-02 2015-09-08 Hinge for component attachment
US15083008 Pending US20160209884A1 (en) 2012-03-02 2016-03-28 Flexible Hinge and Removable Attachment
US15249952 Pending US20170131819A1 (en) 2012-03-02 2016-08-29 Pressure Sensitive Keys
US15425779 Pending US20170147084A1 (en) 2012-03-02 2017-02-06 Input Device Securing Techniques

Family Applications Before (23)

Application Number Title Priority Date Filing Date
US13468882 Active 2032-11-10 US9460029B2 (en) 2012-03-02 2012-05-10 Pressure sensitive keys
US13468949 Active 2033-03-14 US9158383B2 (en) 2012-03-02 2012-05-10 Force concentrator
US13468918 Active US9134807B2 (en) 2012-03-02 2012-05-10 Pressure sensitive key normalization
US13471336 Active US9946307B2 (en) 2012-03-02 2012-05-14 Classifying the intent of user input
US13470633 Active US8498100B1 (en) 2012-03-02 2012-05-14 Flexible hinge and removable attachment
US13471237 Active 2032-10-24 US8854799B2 (en) 2012-03-02 2012-05-14 Flux fountain
US13471282 Active 2033-06-27 US9146620B2 (en) 2012-03-02 2012-05-14 Input device assembly
US13471001 Abandoned US20130232353A1 (en) 2012-03-02 2012-05-14 Mobile Device Power State
US13471393 Pending US20130228023A1 (en) 2012-03-02 2012-05-14 Key Strike Determination For Pressure Sensitive Keyboard
US13470951 Active 2032-09-23 US9411751B2 (en) 2012-03-02 2012-05-14 Key formation
US13471030 Active 2032-12-02 US9134808B2 (en) 2012-03-02 2012-05-14 Device kickstand
US13471376 Active 2032-10-08 US9304948B2 (en) 2012-03-02 2012-05-14 Sensing user input at display area edge
US13471139 Active US8791382B2 (en) 2012-03-02 2012-05-14 Input device securing techniques
US13471202 Active US8548608B2 (en) 2012-03-02 2012-05-14 Sensor fusion algorithm
US13471054 Active 2033-01-15 US9275809B2 (en) 2012-03-02 2012-05-14 Device camera angle
US13471186 Active 2032-06-27 US8896993B2 (en) 2012-03-02 2012-05-14 Input device layers and nesting
US13563435 Active US8699215B2 (en) 2012-03-02 2012-07-31 Flexible hinge spine
US13564520 Active US9158384B2 (en) 2012-03-02 2012-08-01 Flexible hinge protrusion attachment
US13565124 Active US8724302B2 (en) 2012-03-02 2012-08-02 Flexible hinge support layer
US13651304 Active US8610015B2 (en) 2012-03-02 2012-10-12 Input device securing techniques
US13651195 Active US8614666B2 (en) 2012-03-02 2012-10-12 Sensing user input at display area edge
US13651272 Active US8543227B1 (en) 2012-03-02 2012-10-12 Sensor fusion algorithm
US13651327 Active US8570725B2 (en) 2012-03-02 2012-10-12 Flexible hinge and removable attachment

Family Applications After (23)

Application Number Title Priority Date Filing Date
US13651976 Active US9047207B2 (en) 2012-03-02 2012-10-15 Mobile device power state
US13651726 Active US8564944B2 (en) 2012-03-02 2012-10-15 Flux fountain
US13651871 Active US8646999B2 (en) 2012-03-02 2012-10-15 Pressure sensitive key normalization
US13656055 Active US9116550B2 (en) 2012-03-02 2012-10-19 Device kickstand
US13939002 Active US8780541B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US13938930 Active US8780540B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US13939032 Active US8830668B2 (en) 2012-03-02 2013-07-10 Flexible hinge and removable attachment
US14018286 Active US8903517B2 (en) 2012-03-02 2013-09-04 Computer device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US14059280 Active 2032-05-31 US9304949B2 (en) 2012-03-02 2013-10-21 Sensing user input at display area edge
US14063912 Abandoned US20140048399A1 (en) 2012-03-02 2013-10-25 Input Device Securing Techniques
US14147252 Active US9710093B2 (en) 2012-03-02 2014-01-03 Pressure sensitive key normalization
US14225250 Active US9904327B2 (en) 2012-03-02 2014-03-25 Flexible hinge and removable attachment
US14225276 Active US9176900B2 (en) 2012-03-02 2014-03-25 Flexible hinge and removable attachment
US14277240 Active US8947864B2 (en) 2012-03-02 2014-05-14 Flexible hinge and removable attachment
US14307262 Active 2032-09-19 US9618977B2 (en) 2012-03-02 2014-06-17 Input device securing techniques
US14457881 Active US9176901B2 (en) 2012-03-02 2014-08-12 Flux fountain
US14482983 Active 2033-06-08 US9619071B2 (en) 2012-03-02 2014-09-10 Computing device and an apparatus having sensors configured for measuring spatial information indicative of a position of the computing devices
US14517048 Active US9465412B2 (en) 2012-03-02 2014-10-17 Input device layers and nesting
US14794182 Active US9852855B2 (en) 2012-03-02 2015-07-08 Pressure sensitive key normalization
US14847838 Active US9766663B2 (en) 2012-03-02 2015-09-08 Hinge for component attachment
US15083008 Pending US20160209884A1 (en) 2012-03-02 2016-03-28 Flexible Hinge and Removable Attachment
US15249952 Pending US20170131819A1 (en) 2012-03-02 2016-08-29 Pressure Sensitive Keys
US15425779 Pending US20170147084A1 (en) 2012-03-02 2017-02-06 Input Device Securing Techniques

Country Status (9)

Country Link
US (47) US9460029B2 (en)
EP (17) EP2820501A4 (en)
JP (14) JP2015520838A (en)
KR (11) KR20140138147A (en)
CN (24) CN103440058B (en)
CA (2) CA2862621A1 (en)
ES (1) ES2660878T3 (en)
RU (2) RU2014135574A (en)
WO (16) WO2014084873A3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150026644A1 (en) * 2013-07-19 2015-01-22 Lg Electronics Inc. Mobile terminal and method for controlling the same
US9146620B2 (en) 2012-03-02 2015-09-29 Microsoft Technology Licensing, Llc Input device assembly
US9268373B2 (en) 2012-03-02 2016-02-23 Microsoft Technology Licensing, Llc Flexible hinge spine
US9298236B2 (en) 2012-03-02 2016-03-29 Microsoft Technology Licensing, Llc Multi-stage power adapter configured to provide a first power level upon initial connection of the power adapter to the host device and a second power level thereafter upon notification from the host device to the power adapter
US9304549B2 (en) 2013-03-28 2016-04-05 Microsoft Technology Licensing, Llc Hinge mechanism for rotatable component attachment
US9348605B2 (en) 2012-05-14 2016-05-24 Microsoft Technology Licensing, Llc System and method for accessory device architecture that passes human interface device (HID) data via intermediate processor
US9360893B2 (en) 2012-03-02 2016-06-07 Microsoft Technology Licensing, Llc Input device writing surface
US9426905B2 (en) 2012-03-02 2016-08-23 Microsoft Technology Licensing, Llc Connection device for computing devices
US9793073B2 (en) 2012-03-02 2017-10-17 Microsoft Technology Licensing, Llc Backlighting a fabric enclosure of a flexible cover
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7761167B2 (en) 2004-06-10 2010-07-20 Medtronic Urinary Solutions, Inc. Systems and methods for clinician control of stimulation systems
US7498342B2 (en) 2004-06-17 2009-03-03 Plexxikon, Inc. Compounds modulating c-kit activity
ES2371397T3 (en) 2005-06-22 2011-12-30 Plexxikon, Inc. Pyrrolo [2,3-b] pyridine as protein kinase inhibitors.
US7688237B2 (en) * 2006-12-21 2010-03-30 Broadcom Corporation Apparatus and method for analog-to-digital converter calibration
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
EP2357220A1 (en) * 2010-02-10 2011-08-17 The Procter and Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
US9158371B2 (en) 2010-03-25 2015-10-13 Nokia Technologies Oy Contortion of an electronic apparatus
US9632575B2 (en) 2010-05-21 2017-04-25 Nokia Technologies Oy Method, an apparatus and a computer program for controlling an output from a display of an apparatus
US8635560B2 (en) * 2011-01-21 2014-01-21 Blackberry Limited System and method for reducing power consumption in an electronic device having a touch-sensitive display
US9201185B2 (en) 2011-02-04 2015-12-01 Microsoft Technology Licensing, Llc Directional backlighting for display panels
US9729685B2 (en) 2011-09-28 2017-08-08 Apple Inc. Cover for a tablet device
KR101772386B1 (en) * 2012-01-24 2017-08-29 인텔 코포레이션 Mobile computing device, apparatus and system
USD706261S1 (en) 2012-01-24 2014-06-03 Intel Corporation Mobile computing device
US9823707B2 (en) 2012-01-25 2017-11-21 Nokia Technologies Oy Contortion of an electronic apparatus
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9706089B2 (en) 2012-03-02 2017-07-11 Microsoft Technology Licensing, Llc Shifted lens camera for mobile computing devices
US8873227B2 (en) 2012-03-02 2014-10-28 Microsoft Corporation Flexible hinge support layer
US9083811B2 (en) * 2012-03-05 2015-07-14 Qualcomm Incorporated Method and apparatus to dynamically enable and control communication link optimizations on a communication device
EP2823651A1 (en) 2012-03-05 2015-01-14 Qualcomm Incorporated Method and systems to dynamically enable and control communication link optimizations on a communication device
US9823696B2 (en) 2012-04-27 2017-11-21 Nokia Technologies Oy Limiting movement
US20130307780A1 (en) * 2012-05-17 2013-11-21 Dennis Patrick Todora Keyboard device
US8847979B2 (en) * 2012-06-08 2014-09-30 Samuel G. Smith Peek mode and graphical user interface (GUI) experience
US8947353B2 (en) 2012-06-12 2015-02-03 Microsoft Corporation Photosensor array gesture detection
US9459160B2 (en) 2012-06-13 2016-10-04 Microsoft Technology Licensing, Llc Input device sensor configuration
US9684382B2 (en) 2012-06-13 2017-06-20 Microsoft Technology Licensing, Llc Input device configuration having capacitive and pressure sensors
US9073123B2 (en) 2012-06-13 2015-07-07 Microsoft Technology Licensing, Llc Housing vents
US9256089B2 (en) 2012-06-15 2016-02-09 Microsoft Technology Licensing, Llc Object-detecting backlight unit
KR20130142276A (en) * 2012-06-19 2013-12-30 삼성전자주식회사 Docking station for portable terminal
US9110525B2 (en) * 2012-06-28 2015-08-18 Blackberry Limited Touch-sensitive display and method
US9891729B2 (en) * 2012-07-10 2018-02-13 Sony Corporation Operation processing device and method for user interface
CN103576756A (en) * 2012-08-06 2014-02-12 辉达公司 Laptop computer
US20140043289A1 (en) * 2012-08-07 2014-02-13 N-Trig Ltd. Capacitive sensor for a digitizer system
US8964379B2 (en) 2012-08-20 2015-02-24 Microsoft Corporation Switchable magnetic lock
KR20140028397A (en) * 2012-08-28 2014-03-10 삼성전자주식회사 Display apparatus
US20140071147A1 (en) * 2012-09-10 2014-03-13 Intel Corporation Providing Support for Display Articulation-Related Applications
KR20140033839A (en) * 2012-09-11 2014-03-19 삼성전자주식회사 Method??for user's??interface using one hand in terminal having touchscreen and device thereof
US9494976B2 (en) * 2012-09-11 2016-11-15 Logitech Europe S.A. Protective cover for a tablet computer
US9178509B2 (en) * 2012-09-28 2015-11-03 Apple Inc. Ultra low travel keyboard
CN103729026B (en) * 2012-10-16 2017-09-01 华硕电脑股份有限公司 protection cap
US8654030B1 (en) 2012-10-16 2014-02-18 Microsoft Corporation Antenna placement
WO2014059618A1 (en) 2012-10-17 2014-04-24 Microsoft Corporation Graphic formation via material ablation
WO2014059625A1 (en) 2012-10-17 2014-04-24 Microsoft Corporation Metal alloy injection molding overflows
WO2014059624A1 (en) 2012-10-17 2014-04-24 Microsoft Corporation Metal alloy injection molding protrusions
US9158332B2 (en) 2012-10-22 2015-10-13 Nokia Technologies Oy Limiting movement
US9158334B2 (en) * 2012-10-22 2015-10-13 Nokia Technologies Oy Electronic device controlled by flexing
JP2014085946A (en) * 2012-10-25 2014-05-12 Toshiba Corp Information processing apparatus and operation control method
US9502193B2 (en) 2012-10-30 2016-11-22 Apple Inc. Low-travel key mechanisms using butterfly hinges
CN103793001A (en) * 2012-10-31 2014-05-14 英业达科技有限公司 Electronic devices
US8952892B2 (en) 2012-11-01 2015-02-10 Microsoft Corporation Input location correction tables for input panels
US8786767B2 (en) 2012-11-02 2014-07-22 Microsoft Corporation Rapid synchronized lighting and shuttering
US9348365B2 (en) 2012-11-22 2016-05-24 John Archie Gillis Modular computer units
JP6269500B2 (en) * 2012-11-22 2018-01-31 日本電気株式会社 The mobile terminal device, and a mobile terminal
KR101644357B1 (en) 2012-11-28 2016-08-01 인텔 코포레이션 Hinge configuration for an electronic device
US9152234B2 (en) * 2012-12-02 2015-10-06 Apple Inc. Detecting user intent to remove a pluggable peripheral device
US9229477B2 (en) * 2012-12-11 2016-01-05 Dell Products L.P. Multi-function information handling system with multi-orientation stand
KR20140075411A (en) * 2012-12-11 2014-06-19 삼성전자주식회사 Foldable computing apparatus and Method for erecting display unit
US9280179B2 (en) 2012-12-11 2016-03-08 Dell Products L.P. Multi-function information handling system tablet with multi-directional cooling
JP2015196091A (en) * 2014-04-02 2015-11-09 アップルジャック 199 エル.ピー. Sensor-based gaming system for avatar to represent player in virtual environment
US9253379B2 (en) * 2012-12-29 2016-02-02 Intel Corporation Modular electronic device system with a detachable display
USD735717S1 (en) 2012-12-29 2015-08-04 Intel Corporation Electronic display device
US9927902B2 (en) * 2013-01-06 2018-03-27 Intel Corporation Method, apparatus, and system for distributed pre-processing of touch data and display region control
KR20140091297A (en) * 2013-01-11 2014-07-21 삼성전자주식회사 Method for controlling touch sensitivity and an electronic device thereof
WO2014120171A1 (en) * 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Display mounting system
US9007761B2 (en) * 2013-01-31 2015-04-14 Hewlett-Packard Development Company, L.P. Post and opening with magnetic elements to facilitate alignment
US9927895B2 (en) 2013-02-06 2018-03-27 Apple Inc. Input/output device with a dynamically adjustable appearance and function
CN104007789B (en) * 2013-02-27 2017-10-20 纬创资通股份有限公司 The electronic device and the socket touch device
US9128566B2 (en) 2013-02-28 2015-09-08 Acs Co., Ltd. Acoustic pulse recognition with increased accuracy by localizing contact area of plate
US20140267050A1 (en) * 2013-03-15 2014-09-18 Logitech Europe S.A. Key layout for an input device
US9897682B2 (en) 2013-03-29 2018-02-20 Qualcomm Incorporated Magnetic synchronization for a positioning system
US9823702B2 (en) * 2013-03-29 2017-11-21 Intel Corporation Electronic device having a detachable tablet
US20140321043A1 (en) * 2013-04-24 2014-10-30 Quanta Computer, Inc. Supporting structure and electronic device using the same
CN103593100B (en) * 2013-05-21 2017-09-29 敦泰科技有限公司 A capacitive touch screen control method and associated apparatus
US9372511B2 (en) * 2013-05-30 2016-06-21 Compal Electronics, Inc. Electronic device
JP2014235703A (en) * 2013-06-05 2014-12-15 ソニー株式会社 Information processing apparatus
US9760117B2 (en) * 2013-06-29 2017-09-12 Intel Corporation Enabling stiff plastic chassis with thin metal skins
US9908310B2 (en) 2013-07-10 2018-03-06 Apple Inc. Electronic device with a reduced friction surface
EP3021199A4 (en) * 2013-07-12 2016-10-12 Shenzhen Hui Chuang Da Tech Co Ltd Membrane switch leather case keyboard
US9645721B2 (en) 2013-07-19 2017-05-09 Apple Inc. Device input modes with corresponding cover configurations
WO2015020663A1 (en) 2013-08-08 2015-02-12 Honessa Development Laboratories Llc Sculpted waveforms with no or reduced unforced response
US9720452B2 (en) 2013-08-22 2017-08-01 Hewlett-Packard Development Company, L.P. Kickstand for a portable computing device
CN104423612A (en) * 2013-09-05 2015-03-18 联想(北京)有限公司 Key-identifying method, device and electronic equipment
US9367089B2 (en) * 2013-09-09 2016-06-14 Acer Inc. Electronic apparatus combined with magnetic attraction force
CN104423847A (en) * 2013-09-11 2015-03-18 联想(北京)有限公司 Information processing method, electronic device and external device
US20150086210A1 (en) * 2013-09-20 2015-03-26 Duane Quiet Wireless flat optical connector
US9411436B2 (en) 2013-09-20 2016-08-09 Microsoft Technology Licensing, Llc Input device backlighting
US9619044B2 (en) * 2013-09-25 2017-04-11 Google Inc. Capacitive and resistive-pressure touch-sensitive touchpad
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
US9928950B2 (en) 2013-09-27 2018-03-27 Apple Inc. Polarized magnetic actuators for haptic response
US20150091806A1 (en) * 2013-09-27 2015-04-02 Ayeshwarya Mahajan Bi-stable display based off-screen keyboard
US9886093B2 (en) 2013-09-27 2018-02-06 Apple Inc. Band with haptic actuators
US9372507B2 (en) * 2013-09-28 2016-06-21 Intel Corporation Adjustable support and a mobile computing device having an adjustable support
CN105612476A (en) 2013-10-08 2016-05-25 Tk控股公司 Self-calibrating tactile haptic multi-touch, multifunction switch panel
US9690332B2 (en) * 2013-10-09 2017-06-27 Kabushiki Kaisha Toshiba Electronic device, combining device, and detaching method
US20160246333A1 (en) * 2013-11-14 2016-08-25 Hewlett-Packard Development Company, L.P. Stand for Supporting Device in a Plurality of Viewing Angles
US20150130762A1 (en) * 2013-11-14 2015-05-14 Darfon Electronics Corp. Peripheral device with touch control function
CN104656786A (en) * 2013-11-21 2015-05-27 英业达科技有限公司 Supporting structure for tablet personal computer
US20150141092A1 (en) * 2013-11-21 2015-05-21 Nvidia Corporation Electronic Device and Associated Protective Cover
USD749561S1 (en) * 2013-11-26 2016-02-16 Intel Corporation Electronic device
US9939874B2 (en) * 2013-11-26 2018-04-10 Lenovo (Singapore) Pte. Ltd. Selectively disabling sensors and associated functions
US9679199B2 (en) 2013-12-04 2017-06-13 Microsoft Technology Licensing, Llc Fusing device and image motion for user identification, tracking and device association
KR20150078159A (en) * 2013-12-30 2015-07-08 삼성전자주식회사 Electronic device and method for operating an application thereof
US9448631B2 (en) 2013-12-31 2016-09-20 Microsoft Technology Licensing, Llc Input device haptics and pressure sensing
US8817457B1 (en) * 2014-01-02 2014-08-26 ZAGG Intellectual Property Holding Co. Reversible folio for tablet computer with reversible connection for keyboard and reading configuration
CN104765413A (en) * 2014-01-08 2015-07-08 广达电脑股份有限公司 Electronic devices
US9658652B2 (en) * 2014-01-21 2017-05-23 Dell Products L.P. Convertible information handling system input device surface and support
US9501912B1 (en) 2014-01-27 2016-11-22 Apple Inc. Haptic feedback device with a rotating mass of variable eccentricity
US9317072B2 (en) 2014-01-28 2016-04-19 Microsoft Technology Licensing, Llc Hinge mechanism with preset positions
US20150228105A1 (en) * 2014-02-12 2015-08-13 Microsoft Corporation Texture and Graphics Formation Techniques
US9874945B2 (en) 2014-02-13 2018-01-23 Microsoft Technology Licensing, Llc Low-profile pointing stick
US9759854B2 (en) 2014-02-17 2017-09-12 Microsoft Technology Licensing, Llc Input device outer layer and backlighting
US9582035B2 (en) 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
JP6171998B2 (en) * 2014-03-14 2017-08-02 ソニー株式会社 The information processing apparatus, an input apparatus, an information processing method, and program
CN104932806A (en) * 2014-03-17 2015-09-23 联想(北京)有限公司 Information processing method and electronic device
CN104317356A (en) * 2014-03-19 2015-01-28 宏碁股份有限公司 Docking station
CN104951198A (en) * 2014-03-24 2015-09-30 联想(北京)有限公司 Electronic device and information processing method
WO2015147797A1 (en) * 2014-03-25 2015-10-01 Hewlett-Packard Development Company, L.P. Protective cover for a device
US9497300B2 (en) * 2014-03-28 2016-11-15 Microsoft Technology Licensing, Llc Input device attachment
US9423826B2 (en) * 2014-03-28 2016-08-23 Microsoft Technology Licensing, Llc Mechanical attach and retention feature
US9360896B2 (en) 2014-03-28 2016-06-07 Intel Corporation Low-profile hinge for an electronic device
US9471110B2 (en) * 2014-03-31 2016-10-18 Acer Incorporated Electronic device
EP3129848A4 (en) 2014-04-09 2017-04-19 Microsoft Technology Licensing Llc Hinged cover for computing device
CN105359055A (en) 2014-04-10 2016-02-24 微软技术许可有限责任公司 Slider cover for computing device
US9946312B2 (en) * 2014-04-23 2018-04-17 Microsoft Technology Licensing, Llc Articulated screen cover for accommodating objects
US9500208B2 (en) 2014-04-25 2016-11-22 Apple Inc. Magnetic preloading of joints
CN106462180A (en) * 2014-04-30 2017-02-22 惠普发展公司, 有限责任合伙企业 Screen orientation adjustment
US9958906B2 (en) 2014-04-30 2018-05-01 Hewlett-Packard Development Company, L.P. Leaf spring computer device stand
US9017092B1 (en) 2014-05-07 2015-04-28 Microsoft Technology Licensing, Llc Electronic connector
US9549479B2 (en) 2014-05-20 2017-01-17 Microsoft Technology Licensing, Llc Friction hinge for tablet computers
US9575515B2 (en) * 2014-06-02 2017-02-21 Microsoft Technology Licensing, Llc Fabric lamination to a component
DE102015209639A1 (en) 2014-06-03 2015-12-03 Apple Inc. linear actuator
US20150355909A1 (en) * 2014-06-09 2015-12-10 Comcast Cable Communications, Llc Adaptive Settings For A Device
CN104079284A (en) * 2014-06-25 2014-10-01 上海斐讯数据通信技术有限公司 Key module based on piezoresistive sensor and control method of key module
US9785198B2 (en) * 2014-06-26 2017-10-10 Intel Corporation Hinge configuration for an electronic device
US8917499B1 (en) * 2014-07-14 2014-12-23 ZAGG Intellecutal Property Holding Co. Foldable keyboard
US9785187B2 (en) * 2014-08-07 2017-10-10 Microsoft Technology Licensing, Llc Modular computing device
US20150134893A1 (en) 2014-08-19 2015-05-14 Leef Technology LTD Flash drive shaped to utilize space behind a mobile device
US20160062500A1 (en) * 2014-08-28 2016-03-03 Apple Inc. Force Sensor with Capacitive Gap Sensing
US9939848B2 (en) * 2014-08-29 2018-04-10 Dell Products L.P. Portable information handling system detachable support and attachment device
KR20170032452A (en) 2014-09-02 2017-03-22 애플 인크. Haptic notifications
JP1531213S (en) * 2014-09-04 2015-08-17
US20160070465A1 (en) * 2014-09-08 2016-03-10 Lenovo (Singapore) Pte, Ltd. Managing an on-screen keyboard
US20160077892A1 (en) * 2014-09-12 2016-03-17 Microsoft Corporation Automatic Sensor Selection Based On Requested Sensor Characteristics
US20160091924A1 (en) * 2014-09-26 2016-03-31 Russell S. Aoki Wireless gimbal connection for electronic devices
WO2016053907A1 (en) 2014-09-30 2016-04-07 Apple Inc. Dome switch and switch housing for keyboard assembly
US9447620B2 (en) 2014-09-30 2016-09-20 Microsoft Technology Licensing, Llc Hinge mechanism with multiple preset positions
WO2016065568A1 (en) * 2014-10-30 2016-05-06 Microsoft Technology Licensing, Llc Multi-configuration input device
US9632602B2 (en) * 2014-11-04 2017-04-25 Microsoft Technology Licensing, Llc Fabric laminated touch input device
WO2016075900A1 (en) * 2014-11-14 2016-05-19 ソニー株式会社 Input device, sensor, keyboard and electronic instrument
US9557775B2 (en) 2014-11-21 2017-01-31 Google Inc. Detecting an operating mode of a computing device using accelerometers
CN105719875B (en) * 2014-11-24 2018-03-27 光宝科技股份有限公司 Reduce resonance noise of keys
USD751543S1 (en) * 2014-12-16 2016-03-15 Dell Products L.P. Information handling system housing
CN105824352A (en) * 2014-12-19 2016-08-03 纬创资通股份有限公司 Folding device
EP3238069A1 (en) * 2014-12-23 2017-11-01 Bit Body Inc. Methods of capturing images and making garments
US9720453B2 (en) 2014-12-29 2017-08-01 Microsoft Technology Licensing, Llc Fabric adhesion to an apparatus
CN104618580B (en) * 2014-12-30 2017-10-17 广东欧珀移动通信有限公司 One kind of camera implementation method and terminal
DE102015000480B4 (en) 2015-01-15 2018-03-08 Audi Ag Control device for a motor vehicle with different operating areas as well as motor vehicle
US9600034B2 (en) * 2015-02-13 2017-03-21 Google Inc. Attaching computing device to mount by magnets
US20160254083A1 (en) * 2015-02-27 2016-09-01 Charles Stuart Bennett Pocket holster
CN105988525A (en) * 2015-03-23 2016-10-05 仁宝电脑工业股份有限公司 Electronic apparatus having a base
US9951904B2 (en) 2015-03-24 2018-04-24 Stryker Corporation Rotatable seat clamps for rail clamp
US9820543B2 (en) * 2015-04-28 2017-11-21 World Richman Manufacturing Corporation Grooved case construction for an electronic device
US9785487B1 (en) * 2015-05-12 2017-10-10 Google Inc. Managing device functions based on physical interaction with device modules
US9728915B2 (en) 2015-05-19 2017-08-08 Microsoft Technology Licensing, Llc Tapered-fang electronic connector
US9934915B2 (en) 2015-06-10 2018-04-03 Apple Inc. Reduced layer keyboard stack-up
US9752361B2 (en) 2015-06-18 2017-09-05 Microsoft Technology Licensing, Llc Multistage hinge
US9864415B2 (en) 2015-06-30 2018-01-09 Microsoft Technology Licensing, Llc Multistage friction hinge
US9965022B2 (en) * 2015-07-06 2018-05-08 Google Llc Accelerometer based Hall effect sensor filtering for computing devices
WO2017011711A1 (en) * 2015-07-14 2017-01-19 Interlink Electronics, Inc Human interface device
JP2017033116A (en) * 2015-07-30 2017-02-09 レノボ・シンガポール・プライベート・リミテッド Electronic device including plurality of usage modes, control method and computer program
USD771032S1 (en) * 2015-07-31 2016-11-08 Intel Corporation Electronic device with detachable curved display
WO2017030536A1 (en) * 2015-08-14 2017-02-23 Hewlett-Packard Development Company, L.P. Accessory device for a computing device
US9971379B2 (en) * 2015-08-26 2018-05-15 Apple Inc. Attachment features for an accessory device
WO2017040093A1 (en) * 2015-09-04 2017-03-09 Apple Inc. Flexible keyboard accessory for a portable electronic device
US9778705B2 (en) * 2015-09-04 2017-10-03 Apple Inc. Electronic device with moveable contacts at an exterior surface
US20170068276A1 (en) 2015-09-04 2017-03-09 Apple Inc. Electronic device with contacts flush with housing
US9948018B2 (en) 2015-09-08 2018-04-17 Apple Inc. Low-profile power and data contacts
US9893452B2 (en) 2015-09-08 2018-02-13 Apple Inc. Low-profile spring-loaded contacts
CN105162983A (en) * 2015-09-21 2015-12-16 上海斐讯数据通信技术有限公司 System and method for automatically adjusting backlight of mobile terminal
US9971084B2 (en) 2015-09-28 2018-05-15 Apple Inc. Illumination structure for uniform illumination of keys
JP2017068736A (en) * 2015-10-01 2017-04-06 レノボ・シンガポール・プライベート・リミテッド Portable information device
US9727083B2 (en) * 2015-10-19 2017-08-08 Hand Held Products, Inc. Quick release dock system and method
KR20170058081A (en) * 2015-11-18 2017-05-26 삼성전자주식회사 Eletronic device with magnet-connected
US20170138763A1 (en) * 2015-11-18 2017-05-18 Nanoport Technology Inc. Orientation sensor
KR20170061560A (en) * 2015-11-26 2017-06-05 삼성전자주식회사 Methode for obtaining user input and electronic device thereof
KR101637900B1 (en) * 2015-12-17 2016-07-08 (주)멜파스 Correcting method for intensity of pressure on touch input apparatus based on touch position and touch input apparatus for sensing intensity of pressure by touch input
CN105607755A (en) * 2015-12-18 2016-05-25 联想(北京)有限公司 Control method, apparatus and system
US9897249B2 (en) * 2015-12-30 2018-02-20 Asustek Computer Inc. Electronic device and electronic system
US9489054B1 (en) 2016-01-05 2016-11-08 Zagg Intellectual Property Holding Co., Inc. Keyboard folio with attachment strip
US9660380B1 (en) 2016-01-22 2017-05-23 Microsoft Technology Licensing, Llc Alignment tolerant electronic connector
CN105487781A (en) * 2016-01-29 2016-04-13 广东欧珀移动通信有限公司 Screen capture method and terminal device
USD789356S1 (en) * 2016-02-19 2017-06-13 Hewlett-Packard Development Company, L.P. Tablet with detachable keyboard
USD789355S1 (en) * 2016-02-19 2017-06-13 Hewlett-Packard Developmet Company, L.P. Tablet with detachable keyboard
JP2017157015A (en) * 2016-03-02 2017-09-07 レノボ・シンガポール・プライベート・リミテッド Input device and electronic equipment
JP6243457B2 (en) * 2016-03-07 2017-12-06 レノボ・シンガポール・プライベート・リミテッド Input device and electronic equipment
CN105807959A (en) * 2016-03-10 2016-07-27 浙江大学 Wireless mouse capable of carrying out multistage pressure sensitivity feedback and customizing function
DE102016003020A1 (en) * 2016-03-12 2017-09-14 Audi Ag Input means for detecting a manual operation of a user
CN105827230A (en) * 2016-03-15 2016-08-03 广东美的厨房电器制造有限公司 Household electrical appliance and button structure thereof
CN105844182A (en) * 2016-03-16 2016-08-10 合肥联宝信息技术有限公司 Screen locking method and device of notebook computer and the notebook computer
CN105892913A (en) * 2016-03-29 2016-08-24 联想(北京)有限公司 Equipment processing method and electronic equipment
US20170284457A1 (en) * 2016-04-05 2017-10-05 Microsoft Technology Licensing, Llc Hinge with Multiple Preset Positions
KR101714315B1 (en) * 2016-05-04 2017-03-08 현대자동차주식회사 Apparatus and method for recognizing touch input using interpolation
US9557776B1 (en) 2016-05-10 2017-01-31 Zagg Intellectual Property Holding Co., Inc. Friction resistance hinge with auto-lock
WO2017199221A1 (en) * 2016-05-19 2017-11-23 Onshape Inc. Touchscreen precise pointing gesture
US20170351298A1 (en) * 2016-06-01 2017-12-07 Asustek Computer Inc. Detachable electronic device
US20170351349A1 (en) * 2016-06-01 2017-12-07 Microsoft Technology Licensing, Llc Fluid pressure force sensor interface
US9723735B1 (en) * 2016-06-18 2017-08-01 Spigen Korea Co., Ltd. Kickstand for protective case
CN105931909A (en) * 2016-06-23 2016-09-07 珠海安润普科技有限公司 Flexible fabric switch
US9820398B1 (en) * 2016-10-06 2017-11-14 David R. Hall Modular domestic appliance with electrically conductive members
US9939468B1 (en) 2017-05-05 2018-04-10 Michael J. Dyszel Wearable non contacting AC voltage detection system

Citations (622)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA990023A1 (en)
US578325A (en) 1897-03-09 Adjustable desk-top
US3600528A (en) 1969-09-25 1971-08-17 Lematex Corp Multiple switch construction
US3777082A (en) 1972-09-08 1973-12-04 Donnelly Mirrors Inc Keyboard switch assembly with improved movable contact having cantilever supported central member with radially extending contact fingers
US3879586A (en) 1973-10-31 1975-04-22 Essex International Inc Tactile keyboard switch assembly with metallic or elastomeric type conductive contacts on diaphragm support
US4046975A (en) 1975-09-22 1977-09-06 Chomerics, Inc. Keyboard switch assembly having internal gas passages preformed in spacer member
US4065649A (en) 1975-06-30 1977-12-27 Lake Center Industries Pressure sensitive matrix switch having apertured spacer with flexible double sided adhesive intermediate and channels optionally interposed between apertures
US4086451A (en) 1976-12-06 1978-04-25 Texas Instruments Incorporated Keyboard apparatus
US4243861A (en) 1977-06-24 1981-01-06 The Cornelius Company Touch switch and contactor therefor
US4261042A (en) 1978-03-28 1981-04-07 Canon Kabushiki Kaisha Key signal entering device for thin electronic apparatus
JPS56108127U (en) 1980-01-17 1981-08-22
US4302648A (en) 1978-01-26 1981-11-24 Shin-Etsu Polymer Co., Ltd. Key-board switch unit
US4317013A (en) 1980-04-09 1982-02-23 Oak Industries, Inc. Membrane switch with universal spacer means
US4365130A (en) 1979-10-04 1982-12-21 North American Philips Corporation Vented membrane switch with contaminant scavenger
US4492829A (en) 1982-02-25 1985-01-08 Rogers Corporation Tactile membrane keyboard with asymmetrical tactile key elements
US4503294A (en) 1982-12-30 1985-03-05 Nippon Mektron Ltd. Keyboard switch
US4527021A (en) 1981-07-15 1985-07-02 Shin-Etsu Polmer Co., Ltd. Keyboard switch assembly
GB2123213B (en) 1982-06-30 1985-10-30 Nippon Mektron Kk Panel keyboard electrical switch
US4559426A (en) 1980-11-03 1985-12-17 Oak Industries Inc. Membrane switch and components having means for preventing creep
US4577822A (en) 1982-05-11 1986-03-25 Masters Wilkerson Manufacturing Co. Ltd. Backing for a photo or picture frame
US4588187A (en) 1984-06-27 1986-05-13 Wico Corporation Port expansion adapter for video game port
US4607147A (en) 1983-12-10 1986-08-19 Alps Electric Co., Ltd. Membrane switch
US4651133A (en) 1984-12-24 1987-03-17 At&T Technologies, Inc. Method and apparatus for capacitive keyboard scanning
US4735394A (en) 1986-01-31 1988-04-05 Ing. C. Olivetti & C., S.P.A. Arrangement for adjusting the inclination of a keyboard
US4864084A (en) 1988-02-18 1989-09-05 C.A.M. Graphics, Co., Inc. Membrane-type touch panel
US4996511A (en) 1988-05-09 1991-02-26 Toshiba Silicone Co., Ltd. Pressure-sensitive resistance element
US5008497A (en) * 1990-03-22 1991-04-16 Asher David J Touch controller
US5021638A (en) 1987-08-27 1991-06-04 Lucas Duraltih Corporation Keyboard cover
US5107401A (en) 1990-07-11 1992-04-21 Samsung Electronics Co., Ltd. Lap top computer with tilting mechanism consisting of a battery pack pivotally attached on a rear surface
US5128829A (en) 1991-01-11 1992-07-07 Health Innovations, Inc. Hinge and stand for hand-held computer unit
US5220521A (en) 1992-01-02 1993-06-15 Cordata Incorporated Flexible keyboard for computers
US5235495A (en) 1992-09-21 1993-08-10 Telepad Corporation Pen-based computer with handle/prop having ratchet locking mechanism
US5283559A (en) 1992-09-21 1994-02-01 International Business Machines Corp. Automatic calibration of a capacitive touch screen used with a fixed element flat screen display panel
US5331443A (en) 1992-07-31 1994-07-19 Crown Roll Leaf, Inc. Laser engraved verification hologram and associated methods
US5363075A (en) 1992-12-03 1994-11-08 Hughes Aircraft Company Multiple layer microwave integrated circuit module connector assembly
US5375076A (en) 1993-09-10 1994-12-20 Compaq Computer Corporation Combined notepad and notebook computer
US5404133A (en) 1990-04-19 1995-04-04 Alps Electric Co., Ltd. Luminous key top
US5480118A (en) 1993-11-09 1996-01-02 Cross; Carroll N. Foldable easel display mount
US5491313A (en) 1994-07-22 1996-02-13 General Motors Corporation Halo lighting for keypad switch assemblies
US5546271A (en) 1992-09-28 1996-08-13 Siemens Nixdorf Informationssysteme Aktiengesellschaft Device for adjusting the angle of a keyboard
US5548477A (en) 1995-01-27 1996-08-20 Khyber Technologies Corporation Combination keyboard and cover for a handheld computer
US5558577A (en) 1994-05-25 1996-09-24 Nintendo Company, Ltd. Electronic game machine and main body apparatus and controllers used therein
US5618232A (en) 1995-03-23 1997-04-08 Martin; John R. Dual mode gaming device methods and systems
US5661279A (en) 1995-10-26 1997-08-26 Sunarrow Co., Ltd. Pushbutton switch
US5666112A (en) 1993-07-29 1997-09-09 Crowley; Robert J. Key for flexible keyboard
US5681220A (en) 1994-03-18 1997-10-28 International Business Machines Corporation Keyboard touchpad combination in a bivalve enclosure
US5737183A (en) 1995-05-12 1998-04-07 Ricoh Company, Ltd. Compact portable computer having a riser that forms when a cover is opened
US5745376A (en) 1996-05-09 1998-04-28 International Business Machines Corporation Method of detecting excessive keyboard force
US5748114A (en) 1993-10-26 1998-05-05 Koehn; Matthias-Reinhard Flat input keyboard for data processing machines or the like and process for producing the same
US5781406A (en) 1996-03-05 1998-07-14 Hunte; Stanley G. Computer desktop keyboard cover with built-in monitor screen & wrist-support accessory
US5807175A (en) 1997-01-15 1998-09-15 Microsoft Corporation Dynamic detection of player actuated digital input devices coupled to a computer port
US5818361A (en) 1996-11-07 1998-10-06 Acevedo; Elkin Display keyboard
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
US5842027A (en) 1993-01-14 1998-11-24 Apple Computer, Inc. Method and apparatus for supplying power to devices coupled to a bus
JPH10326124A (en) 1997-05-26 1998-12-08 Hitachi Ltd Portable information terminal equipment
US5874697A (en) 1997-02-14 1999-02-23 International Business Machines Corporation Thin keyboard switch assembly with hinged actuator mechanism
WO1999019995A1 (en) 1997-10-13 1999-04-22 Qualcomm Incorporated Apparatus and method for optimized power control
US5905485A (en) 1997-02-13 1999-05-18 Breed Automotive Technology, Inc. Controller with tactile sensors and method of fabricating same
US5926170A (en) 1996-08-09 1999-07-20 Sony Corporation Remote control unit with keyboard cover and cover position detector
US5924555A (en) 1996-10-22 1999-07-20 Matsushita Electric Industrial Co., Ltd. Panel switch movable contact body and panel switch using the movable contact body
US5948990A (en) 1996-09-04 1999-09-07 Alps Electric Co., Ltd. Pressure-sensitive resistor
US5971635A (en) 1998-05-11 1999-10-26 Music Sales Corporation Piano-style keyboard attachment for computer keyboard
JPH11338575A (en) 1998-05-21 1999-12-10 Matsushita Electric Ind Co Ltd Information processor
US6002389A (en) * 1996-04-24 1999-12-14 Logitech, Inc. Touch and pressure sensing method and apparatus
US6002581A (en) 1997-08-19 1999-12-14 Gateway 2000, Inc. Lap top computer system with elevating port cover
US6005209A (en) 1997-11-24 1999-12-21 International Business Machines Corporation Thin keyboard having torsion bar keyswitch hinge members
US6012714A (en) 1998-03-12 2000-01-11 Hewlett-Packard Company Automatic document feeder quick release hinge assembly
JP2000010654A (en) 1998-06-19 2000-01-14 Hitachi Ltd Information processor
US6040823A (en) 1997-12-02 2000-03-21 Cts Computer keyboard having top molded housing with rigid pointing stick integral and normal to front surface of housing as one unit part to be used with strain sensors in navigational control
US6042075A (en) 1998-11-10 2000-03-28 Burch, Jr.; Warren E. Computer copy holder for keyboard drawer
US6044717A (en) 1998-09-28 2000-04-04 Xerox Corporation Pressure and force profile sensor and method for detecting pressure
US6055705A (en) 1997-06-30 2000-05-02 Nec Corporation Opening/closing hinge construction for a housing
US6061644A (en) 1997-12-05 2000-05-09 Northern Digital Incorporated System for determining the spatial position and orientation of a body
US6108200A (en) 1998-10-13 2000-08-22 Fullerton; Robert L. Handheld computer keyboard system
US6112797A (en) 1990-10-24 2000-09-05 Hunter Douglas Inc. Apparatus for fabricating a light control window covering
US6128007A (en) 1996-07-29 2000-10-03 Motorola, Inc. Method and apparatus for multi-mode handwritten input and hand directed control of a computing device
US6178443B1 (en) 1996-12-20 2001-01-23 Intel Corporation Method and apparatus for propagating user preferences across multiple computer environments
US6178085B1 (en) 1998-04-27 2001-01-23 Ccl Products Enterprises, Inc. Calculator lid mechanism
US6234820B1 (en) 1997-07-21 2001-05-22 Rambus Inc. Method and apparatus for joining printed circuit boards
JP2001142564A (en) 1999-11-11 2001-05-25 Sharp Corp Information device
US6254105B1 (en) 1999-04-02 2001-07-03 Elo Touchsystems, Inc. Sealing system for acoustic wave touchscreens
US6279060B1 (en) 1998-12-04 2001-08-21 In-System Design, Inc. Universal serial bus peripheral bridge simulates a device disconnect condition to a host when the device is in a not-ready condition to avoid wasting bus resources
US20010023818A1 (en) 2000-03-24 2001-09-27 Nakajo Masaru Sheet shaped key top and manufacturing method thereof
KR20010107055A (en) 2000-05-24 2001-12-07 백경일 portable computer standard-keyboard
US6329617B1 (en) 2000-09-19 2001-12-11 Lester E. Burgess Pressure activated switching device
US20020005108A1 (en) 1998-05-15 2002-01-17 Ludwig Lester Frank Tactile, visual, and array controllers for real-time control of music signal processing, mixing, video, and lighting
US6344791B1 (en) 1998-07-24 2002-02-05 Brad A. Armstrong Variable sensor with tactile feedback
US6366440B1 (en) 1999-12-29 2002-04-02 Compal Electronics, Inc. Magnetic closure mechanism for a portable computer
US20020044216A1 (en) 2000-10-13 2002-04-18 Lg Electronics Inc. Apparatus for automatically adjusting angle of image device for information processing equipment
US6380497B1 (en) 1997-10-09 2002-04-30 Nissha Printing Co., Ltd. High strength touch panel and method of manufacturing the same
US20020070883A1 (en) 2000-07-25 2002-06-13 Dosch & Amand Gmbh & Co. Kg Internet terminal and keyboard for the internet terminal
US6437682B1 (en) 2000-04-20 2002-08-20 Ericsson Inc. Pressure sensitive direction switches
US20020134828A1 (en) 2000-05-18 2002-09-26 Sandbach David Lee Flexible data input device
US20020135457A1 (en) 2000-03-30 2002-09-26 Sandbach David Lee Foldable alpha numeric keyboard
US20020195177A1 (en) 2001-06-21 2002-12-26 The Aerospace Corporation Conductive shape memory metal deployment latch hinge deployment method
US20030007648A1 (en) 2001-04-27 2003-01-09 Christopher Currell Virtual audio system and techniques
US6506983B1 (en) 1996-03-15 2003-01-14 Elo Touchsystems, Inc. Algorithmic compensation system and method therefor for a touch sensor panel
US20030011576A1 (en) 2000-03-30 2003-01-16 Sandbach David Lee Data processing apparatus with replacement keyboard
US20030016282A1 (en) 2001-07-17 2003-01-23 Koizumi David H. Thermochromic writing device
US6511378B1 (en) 2000-05-05 2003-01-28 Intel Corporation Method of identifying game controllers in multi-player game
US6532147B1 (en) 1999-09-24 2003-03-11 International Business Machines Corporation Flexible monitor/display on mobile device
US20030051983A1 (en) 2001-03-07 2003-03-20 Lahr Roy J. Membrane keyswitch for an expandable keyboard and an expandable keyboard device
US6543949B1 (en) 2000-03-23 2003-04-08 Eugene B. Ritchey Keyboard support apparatus
US20030067450A1 (en) 2001-09-24 2003-04-10 Thursfield Paul Philip Interactive system and method of interaction
US6555024B2 (en) 1999-12-28 2003-04-29 Nitta Corporation Pressure-sensitive conductive ink composition
US6565439B2 (en) 1997-08-24 2003-05-20 Sony Computer Entertainment, Inc. Game apparatus, game machine manipulation device, game system and interactive communication method for game apparatus
US20030108720A1 (en) 2001-11-28 2003-06-12 Masayuki Kashino Key sheet
US6585435B2 (en) 2001-09-05 2003-07-01 Jason Fang Membrane keyboard
US6597347B1 (en) 1991-11-26 2003-07-22 Itu Research Inc. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US6600121B1 (en) 2000-11-21 2003-07-29 Think Outside, Inc. Membrane switch
US6603408B1 (en) 1998-06-01 2003-08-05 Brenda Lewellen Gaba Flexible membrane keyboard
US6608664B1 (en) 1999-05-25 2003-08-19 Nec Lcd Technologies, Ltd. Vibration-proof liquid crystal display having mounting end regions of lower rigidity
US20030163611A1 (en) 2002-02-26 2003-08-28 Fujitsu Component Limited Electronic device and method of controlling the same
US6617536B2 (en) 2000-11-29 2003-09-09 Yazaki Corporation Dome switch
US20030173195A1 (en) 2000-05-05 2003-09-18 Laurent Federspiel Sensor mat for a vehicle seat
US20030197687A1 (en) 2002-04-18 2003-10-23 Microsoft Corporation Virtual keyboard for touch-typing using audio feedback
US20030198008A1 (en) 2002-04-18 2003-10-23 Gateway, Inc. Computer having detachable wireless independently operable computer
US6651943B2 (en) 1999-05-03 2003-11-25 Samsung Electronics Co., Ltd. LCD monitor stand
US20030231243A1 (en) 2002-06-18 2003-12-18 Casio Computer Co., Ltd. Digital camera and photographing direction acquisition method
US20040005184A1 (en) 2002-07-03 2004-01-08 Samsung Electronics Co., Ltd. Keyboard of a personal digital assistant
US6685369B2 (en) 2001-12-10 2004-02-03 Andy Lien Housing assembly for membrane keyboard
US6687614B2 (en) 2001-05-01 2004-02-03 Sony Corporation Navigation device, information display device, object creation method, and recording medium
US6695273B2 (en) 2000-04-26 2004-02-24 Iguchi Issei Co., Ltd. Self-standing keyboard support and keyboard with said support
US6704864B1 (en) 1999-08-19 2004-03-09 L.V. Partners, L.P. Automatic configuration of equipment software
US20040046796A1 (en) 2002-08-20 2004-03-11 Fujitsu Limited Visual field changing method
US20040056843A1 (en) 2002-09-20 2004-03-25 First International Computer Inc. Flat-type computer with keyboard
US6721019B2 (en) 2000-05-17 2004-04-13 Hitachi, Ltd. Screen input type display device
US6725318B1 (en) * 2000-02-29 2004-04-20 Microsoft Corporation Automated selection between a USB and PS/2 interface for connecting a keyboard to a computer
US20040095333A1 (en) 2002-08-29 2004-05-20 N-Trig Ltd. Transparent digitiser
US20040115994A1 (en) 2002-12-12 2004-06-17 Thomas Wulff High cycle connector contact system
US20040113956A1 (en) 2002-12-12 2004-06-17 International Business Machines Corporation Apparatus and method for providing feedback regarding finger placement relative to an input device
KR20040066647A (en) 2003-01-20 2004-07-27 삼성전자주식회사 Notebook computer
EP1223722A3 (en) 2001-01-12 2004-08-04 Microsoft Corporation Method and system to access software pertinent to a peripheral device
US6774888B1 (en) 2000-06-19 2004-08-10 International Business Machines Corporation Personal digital assistant including a keyboard which also acts as a cover
US20040156168A1 (en) 2003-02-12 2004-08-12 Levasseur Lewis H. Sealed force-based touch sensor
US6776546B2 (en) 2002-06-21 2004-08-17 Microsoft Corporation Method and system for using a keyboard overlay with a touch-sensitive display screen
US20040160734A1 (en) 2000-05-18 2004-08-19 Samsung Electronics Co., Ltd. Display connector for electronic device
US6781819B2 (en) 2002-08-29 2004-08-24 Lg Electronics Inc. Attachable/detachable keyboard apparatus of portable computer system
US6780019B1 (en) 2003-02-14 2004-08-24 Intel Corporation Pen-based computing system with a releasable socket connector for connecting a base unit to a tablet unit
US6784869B1 (en) 2000-11-15 2004-08-31 The Boeing Company Cursor and display management system for multi-function control and display system
US20040169641A1 (en) 2003-02-28 2004-09-02 Bean James J. Method and apparatus for inputting data
US6798887B1 (en) 1999-06-25 2004-09-28 International Business Machines Corporation Key click masker and method for masking key clicks
US20040212601A1 (en) 2003-04-24 2004-10-28 Anthony Cake Method and apparatus for improving accuracy of touch screen input devices
US6813143B2 (en) 2002-10-21 2004-11-02 Nokia Corporation Mobile device featuring 90 degree rotatable front cover for covering or revealing a keyboard
US6819316B2 (en) 2001-04-17 2004-11-16 3M Innovative Properties Company Flexible capacitive touch sensor
US20040231969A1 (en) 2003-05-21 2004-11-25 Nitta Corporation Pressure-sensitive sensor
US20040258924A1 (en) 2003-06-18 2004-12-23 Armin Berger Composite systems for in-mold decoration
US20040268000A1 (en) 2003-06-24 2004-12-30 Barker John Howard Pass through circuit for reduced memory latency in a multiprocessor system
KR20050014299A (en) 2003-07-30 2005-02-07 엘지전자 주식회사 Controlling device of camera direction of mobile phone
US20050030728A1 (en) 2001-11-09 2005-02-10 Satoshi Kawashima Touch panel assembly
US6856506B2 (en) 2002-06-19 2005-02-15 Motion Computing Tablet computing device with three-dimensional docking support
US20050047773A1 (en) 2003-07-24 2005-03-03 Kyocera Corporation Portable device
US20050055498A1 (en) 2000-12-20 2005-03-10 Microsoft Corporation Automotive computing devices with emergency power shut down capabilities
US20050052831A1 (en) 2003-09-08 2005-03-10 Inventec Corporation Lift-back tablet computer background of the invention
US20050057515A1 (en) 2003-09-16 2005-03-17 Microsoft Corporation Computer keyboard with quantitatively force-sensing keys
US20050059489A1 (en) 2003-09-12 2005-03-17 Kim Taek Sung Motion sensing applications
US20050062715A1 (en) 2003-09-19 2005-03-24 Kabushiki Kaisha Toshiba Information processing apparatus having function of changing orientation of screen image
US20050099400A1 (en) 2003-11-06 2005-05-12 Samsung Electronics Co., Ltd. Apparatus and method for providing vitrtual graffiti and recording medium for the same
US6898315B2 (en) 1998-03-23 2005-05-24 Microsoft Corporation Feature extraction for real-time pattern recognition using single curve per pattern analysis
US6909354B2 (en) 2001-02-08 2005-06-21 Interlink Electronics, Inc. Electronic pressure sensitive transducer apparatus and method for manufacturing same
US20050134717A1 (en) 2003-11-26 2005-06-23 Fuji Photo Film Co., Ltd. Portable device with camera
US20050146512A1 (en) 2003-12-31 2005-07-07 Hill Nicholas P. Touch sensing with touch down and lift off sensitivity
US6950950B2 (en) 2001-12-28 2005-09-27 Hewlett-Packard Development Company, L.P. Technique for conveying overload conditions from an AC adapter to a load powered by the adapter
US20050236848A1 (en) 2004-04-27 2005-10-27 Lg Electronics Inc. Latch device in portable computer
EP1591891A2 (en) 2004-04-29 2005-11-02 Microsoft Corporation Generic USB drivers
US6962454B1 (en) 2000-04-04 2005-11-08 Costello Pamella A Keyboard protective cover
US6970957B1 (en) 2000-04-24 2005-11-29 Microsoft Corporation Dynamically configuring resources for cycle translation in a computer system
US20050264988A1 (en) 2004-05-26 2005-12-01 Nicolosi Matthew T Slide case with pivotable stand member for handheld computing device
US20050264653A1 (en) 2004-05-27 2005-12-01 Starkweather James A Portable electronic device with adjustable image capture orientation and method therefore
US20050283731A1 (en) 2004-06-22 2005-12-22 Ylian Saint-Hilaire Remote audio
US20050285703A1 (en) 2001-05-18 2005-12-29 Magfusion, Inc. Apparatus utilizing latching micromagnetic switches
KR20060003093A (en) 2005-11-11 2006-01-09 후지쯔 가부시끼가이샤 Electronic apparatus
US7007238B2 (en) 1998-10-27 2006-02-28 Glaser Lawrence F Computer pointing device having theme identification means
US20060049920A1 (en) 2004-09-09 2006-03-09 Sadler Daniel J Handheld device having multiple localized force feedback
US20060061555A1 (en) 2004-08-20 2006-03-23 Mullen Jeffrey D Wireless devices with flexible monitors and keyboards
US20060085658A1 (en) 2004-10-15 2006-04-20 Dell Products L.P. PSID and remote on/off functions combined
WO2006044818A1 (en) 2004-10-15 2006-04-27 Eastman Kodak Company Flat-panel area illumination system
US20060092139A1 (en) 2004-11-01 2006-05-04 Manish Sharma Pressure-sensitive input device for data processing systems
US20060096392A1 (en) 2001-07-24 2006-05-11 Tactex Controls Inc. Touch sensitive membrane
US7051149B2 (en) 2002-08-29 2006-05-23 Lite-On Technology Corporation Method for transceiving non-USB device by an adapter and apparatus using the same
US20060125799A1 (en) * 2004-08-06 2006-06-15 Hillis W D Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
JP2006163459A (en) 2004-12-02 2006-06-22 Internatl Business Mach Corp <Ibm> Information processing apparatus, power management method thereof, and program for power management method
US7068496B2 (en) 2004-05-03 2006-06-27 Intel Corporation Docking solution for a tablet notebook computer
US20060154725A1 (en) 2005-01-12 2006-07-13 Microsoft Corporation Game console notification system
US20060152499A1 (en) 2005-01-10 2006-07-13 Roberts Jerry B Iterative method for determining touch location
US20060156415A1 (en) 2005-01-07 2006-07-13 Rubinstein Jonathan J Accessory authentication for electronic devices
US7083295B1 (en) 2003-05-30 2006-08-01 Global Traders And Suppliers, Inc. Electroluminescent bags
US20060174143A1 (en) 2005-02-01 2006-08-03 Sawyers Thomas P Systems and methods for controlling use of power in a computer system
US20060176377A1 (en) 2005-02-04 2006-08-10 Seiko Epson Corporation Projector and exposure adjustment method
US7091436B2 (en) 2001-12-28 2006-08-15 Iee International Electronics & Engineering S.A. Flexible keyboard
US20060181514A1 (en) 2005-02-17 2006-08-17 Andrew Newman Providing input data
US7095404B2 (en) 2001-10-16 2006-08-22 Hewlett-Packard Development Company, L.P. Electronic writing and erasing pencil
US20060187216A1 (en) 2002-04-11 2006-08-24 Synaptics, Inc. Closed-loop sensor on a solid-state object position detector
US7099149B2 (en) 2002-01-29 2006-08-29 Palm, Inc. Encasement for handheld computer
US20060192763A1 (en) 2005-02-25 2006-08-31 Ziemkowski Theodore B Sound-based virtual keyboard, device and method
US20060195522A1 (en) 2003-07-23 2006-08-31 Sony Computer Entertainment Inc. Communication device and connection establishment method
US7106222B2 (en) 2002-09-19 2006-09-12 Siemens Communications, Inc. Keypad assembly
US7116309B1 (en) 1999-04-07 2006-10-03 Fuji Photo Film Co., Ltd. Photowriting display device and photowriting display unit incorporating the same
US7123292B1 (en) 1999-09-29 2006-10-17 Xerox Corporation Mosaicing images with an offset lens
JP2006294361A (en) 2005-04-08 2006-10-26 Toppan Printing Co Ltd Light guide plate and display device
US7136282B1 (en) 2004-01-06 2006-11-14 Carlton Rebeske Tablet laptop and interactive conferencing station system
US20060265617A1 (en) 2005-05-18 2006-11-23 Priborsky Anthony L Power management in a system having multiple power modes
US20060267931A1 (en) 2005-05-13 2006-11-30 Janne Vainio Method for inputting characters in electronic device
US20060272429A1 (en) 2005-06-02 2006-12-07 Ganapathi Srinivasan K Flexible imaging pressure sensor
US20070003267A1 (en) 2005-06-29 2007-01-04 Casio Computer Co., Ltd. Image capture apparatus with auto focus function
USD535292S1 (en) 2005-06-24 2007-01-16 Hon Hai Precision Industry Co. Ltd Notebook computer
US20070056385A1 (en) 2003-06-23 2007-03-15 Holger Lorenz Pressure sensor in the form of a film
US7194662B2 (en) 2003-02-28 2007-03-20 International Business Machines Corporation Method, apparatus and program storage device for providing data path optimization
US20070062089A1 (en) 2005-08-31 2007-03-22 Homer Steven S Display device
US20070072474A1 (en) 2005-04-27 2007-03-29 Nigel Beasley Flexible power adapter systems and methods
US20070069153A1 (en) 2005-09-28 2007-03-29 Vandita Pai-Paranjape Devices and methods capable of authenticating batteries
US7213991B2 (en) 2002-03-12 2007-05-08 Eleksen Limited Flexible foldable keyboard
US20070117600A1 (en) 2005-11-21 2007-05-24 Robertson William H Jr Flexible hinge for portable electronic device
US20070121956A1 (en) 2005-11-29 2007-05-31 Bai Mingsian R Device and method for integrating sound effect processing and active noise control
US20070145945A1 (en) 2005-12-28 2007-06-28 Mcginley James W Method and apparatus to authenticate battery charging device
US20070178891A1 (en) 2006-01-30 2007-08-02 Louch John O Remote control of electronic devices
US20070176902A1 (en) 2005-02-17 2007-08-02 Andrew Newman Providing input data
US7252512B2 (en) 2004-04-21 2007-08-07 Japan Aviation Electronics Industry, Limited Self-alignment magnetic connector reduced in size
US20070182663A1 (en) 2004-06-01 2007-08-09 Biech Grant S Portable, folding and separable multi-display computing system
US20070182722A1 (en) 2004-08-25 2007-08-09 Hotelling Steven P Wide touchpad on a portable computer
US20070185590A1 (en) 2006-02-07 2007-08-09 Reindel Kenneth A Programmable Hardware Element Pre-Regulator
US7260221B1 (en) 1998-11-16 2007-08-21 Beepcard Ltd. Personal communicator authentication
US20070200830A1 (en) 2006-02-28 2007-08-30 Nintendo Co., Ltd. Input device using touch panel
US20070220708A1 (en) 2006-03-26 2007-09-27 Chatsworth Products, Inc. Indexing hinge
US20070234420A1 (en) 2004-04-27 2007-10-04 Novotney Donald J Method and system for authenticating an accessory
US20070230227A1 (en) 2004-04-29 2007-10-04 Palmer Douglas A Universal Power Adapter
WO2007112172A1 (en) 2006-03-24 2007-10-04 Synaptics Incorporated Touch sensor effective area enhancement
US7280348B2 (en) 2003-02-14 2007-10-09 Intel Corporation Positioning mechanism for a pen-based computing system
US20070236873A1 (en) 2006-04-11 2007-10-11 Sony Corporation Electronic apparatus
US20070236408A1 (en) 2006-03-30 2007-10-11 Kabushiki Kaisha Toshiba Computing device, computing device system and power control method
US20070236475A1 (en) 2006-04-05 2007-10-11 Synaptics Incorporated Graphical scroll wheel
US20070247432A1 (en) 2002-06-27 2007-10-25 Oakley Nicholas W Multiple mode display apparatus
US20070260892A1 (en) 2006-05-08 2007-11-08 Paul Christopher R System and method for authenticating a power source
US7301759B2 (en) 2004-05-26 2007-11-27 Silicon Electron Pyrimid Ltd. Portable electronic product with a bracket
US20070283179A1 (en) 2006-06-05 2007-12-06 Shenzhen Tcl New Technology Ltd Low power mode override system and method
US20070297625A1 (en) 2006-06-22 2007-12-27 Sony Ericsson Mobile Communications Ab Wireless communications devices with three dimensional audio systems
US20070296709A1 (en) 2006-06-27 2007-12-27 Cypress Semiconductor Corporation Apparatus and method for detecting multiple buttons with one pin
US20080005423A1 (en) 2006-06-06 2008-01-03 Robert Alan Jacobs Method and device for acting on stylus removal
KR20080006404A (en) 2006-07-12 2008-01-16 엘지전자 주식회사 A latch system for potable computer
US20080059888A1 (en) 2006-08-30 2008-03-06 Sony Ericsson Mobile Communications Ab Orientation based multiple mode mechanically vibrated touch screen display
US20080053222A1 (en) 2005-10-06 2008-03-06 Cypak Ab Single use, self-contained assay device for quantitative and qualitative measurements
US7348513B2 (en) 2005-12-23 2008-03-25 Lite-On Technology Corporation Membrane switch
US7365967B2 (en) 2000-05-01 2008-04-29 Patent Category Corp. Collapsible structures having enhancements
US20080104437A1 (en) 2006-10-30 2008-05-01 Samsung Electronics Co., Ltd. Computer system and control method thereof
US20080129520A1 (en) 2006-12-01 2008-06-05 Apple Computer, Inc. Electronic device with enhanced audio feedback
US20080151478A1 (en) 2006-12-21 2008-06-26 Jr-Jiun Chern Hinge for laptop computer
US20080158185A1 (en) * 2007-01-03 2008-07-03 Apple Inc. Multi-Touch Input Discrimination
US20080167832A1 (en) 2005-06-10 2008-07-10 Qsi Corporation Method for determining when a force sensor signal baseline in a force-based input device can be updated
US20080174570A1 (en) 2006-09-06 2008-07-24 Apple Inc. Touch Screen Device, Method, and Graphical User Interface for Determining Commands by Applying Heuristics
US20080186660A1 (en) 2007-02-02 2008-08-07 Lai Yang Portable computer
US20080228969A1 (en) 2004-08-27 2008-09-18 Sin Hui Cheah Apparatus and Method for Enabling Digital and Analog Data Communication Over a Data Bus
US20080238884A1 (en) 2007-03-29 2008-10-02 Divyasimha Harish Edge sensors forming a touchscreen
US20080253822A1 (en) 2007-04-16 2008-10-16 Matias Corporation Folding keyboard with numeric keypad
US7447934B2 (en) 2005-06-27 2008-11-04 International Business Machines Corporation System and method for using hot plug configuration for PCI error recovery
US20080297878A1 (en) 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
US20080307242A1 (en) 2007-06-05 2008-12-11 Apple Inc. Computer system power source with improved light-load efficiency
US20080309636A1 (en) 2007-06-15 2008-12-18 Ricoh Co., Ltd. Pen Tracking and Low Latency Display Updates on Electronic Paper Displays
US7469386B2 (en) 2002-12-16 2008-12-23 Microsoft Corporation Systems and methods for interfacing with computer devices
US20080316002A1 (en) 2007-06-25 2008-12-25 Brunet Peter T Pre-configuration of user preferences
US20080316183A1 (en) 2007-06-22 2008-12-25 Apple Inc. Swipe gestures for touch screen keyboards
US20080320190A1 (en) 2007-06-22 2008-12-25 Apple Inc. Communication between a host device and an accessory via an intermediate device
US20090009476A1 (en) 2007-07-05 2009-01-08 Daley Iii Charles A Bag computer manual character input device and cover
US7486165B2 (en) 2006-10-16 2009-02-03 Apple Inc. Magnetic latch mechanism
EP2026178A1 (en) 2007-08-10 2009-02-18 IEE INTERNATIONAL ELECTRONICS &amp; ENGINEERING S.A. Touchpad with strip-shaped input
US7499037B2 (en) 2005-03-29 2009-03-03 Wells Gardner Electronics Corporation Video display and touchscreen assembly, system and method
US7502803B2 (en) 2003-05-28 2009-03-10 Hewlett-Packard Development Company, L.P. System and method for generating ACPI machine language tables
US20090073957A1 (en) 2006-10-03 2009-03-19 Avaya Technology Llc Apparatus and methods for data distribution devices having selectable power supplies
KR20090029411A (en) 2007-09-18 2009-03-23 한국과학기술원 Rollable flexibility keyboard
US20090083562A1 (en) 2003-08-11 2009-03-26 Lg Electronics Inc. Convertible computer
US20090089600A1 (en) 2007-09-28 2009-04-02 Nokia Corporation Power supply efficiency optimization
US20090102805A1 (en) 2007-10-18 2009-04-23 Microsoft Corporation Three-dimensional object simulation using audio, visual, and tactile feedback
US7528337B2 (en) 2007-05-15 2009-05-05 Panasonic Corporation Pressure sensitive conductive sheet and panel switch using same
US20090127005A1 (en) 2007-11-14 2009-05-21 N-Trig Ltd. System and method for detection with a digitizer sensor
US7539882B2 (en) 2005-05-30 2009-05-26 Rambus Inc. Self-powered devices and methods
US7542052B2 (en) 2002-05-31 2009-06-02 Hewlett-Packard Development Company, L.P. System and method of switching viewing orientations of a display
US20090140985A1 (en) 2007-11-30 2009-06-04 Eric Liu Computing device that determines and uses applied pressure from user interaction with an input interface
US20090163147A1 (en) 2007-10-22 2009-06-25 Motion Computing, Inc. Method for assigning control channels
US7558594B2 (en) 2002-07-16 2009-07-07 Nokia Corporation Flexible cover for a mobile telephone
US20090174687A1 (en) 2008-01-04 2009-07-09 Craig Michael Ciesla User Interface System
US20090174759A1 (en) 2008-01-04 2009-07-09 Viable Communications, Inc. Audio video communications device
US7559834B1 (en) 2002-12-02 2009-07-14 Microsoft Corporation Dynamic join/exit of players during play of console-based video game
US20090187860A1 (en) 2008-01-23 2009-07-23 David Fleck Radial control menu, graphical user interface, method of controlling variables using a radial control menu, and computer readable medium for performing the method
US20090189873A1 (en) 2008-01-29 2009-07-30 Cody George Peterson Projected Field Haptic Actuation
US20090195497A1 (en) 2008-02-01 2009-08-06 Pillar Ventures, Llc Gesture-based power management of a wearable portable electronic device with display
US20090195518A1 (en) 2007-10-01 2009-08-06 Igt Method and apparatus for detecting lift off on a touchscreen
US20090207144A1 (en) 2008-01-07 2009-08-20 Next Holdings Limited Position Sensing System With Edge Positioning Enhancement
USRE40891E1 (en) 1991-11-26 2009-09-01 Sandio Technology Corp. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US20090231275A1 (en) 2005-01-30 2009-09-17 Simtrix Limited Computer mouse peripheral
US20090239586A1 (en) 2006-06-23 2009-09-24 Nxp B.V. Orientation sensing in a multi part device
US7594638B2 (en) 2005-06-30 2009-09-29 Thomson Licensing Foot stand assembly with multi-viewing angles
US20090244832A1 (en) 2008-04-01 2009-10-01 Yves Behar Portable computer with multiple display configurations
US20090244872A1 (en) 2008-03-28 2009-10-01 Shenzhen Futaihong Precision Industry Co., Ltd. Supporting mechanism and portable electronic device using same
US20090251008A1 (en) 2008-04-04 2009-10-08 Shigeru Sugaya Power Exchange Device, Power Exchange Method, Program, and Power Exchange System
US20090259865A1 (en) 2008-04-11 2009-10-15 Qualcomm Incorporated Power Management Using At Least One Of A Special Purpose Processor And Motion Sensing
US20090262492A1 (en) 2007-10-26 2009-10-22 Seal Shield, Llc Submersible keyboard
US20090265670A1 (en) 2007-08-30 2009-10-22 Kim Joo Min User interface for a mobile device using a user's gesture in the proximity of an electronic device
US7620244B1 (en) 2004-01-06 2009-11-17 Motion Computing, Inc. Methods and systems for slant compensation in handwriting and signature recognition
US20090285491A1 (en) 2008-05-19 2009-11-19 Ravenscroft Donald L Spatial source collection and services system
US20090296331A1 (en) 2007-07-19 2009-12-03 Heng Kah Choy Dual screen presentation notebook computer
US20090303204A1 (en) 2007-01-05 2009-12-10 Invensense Inc. Controlling and accessing content using motion processing on mobile devices
US7636921B2 (en) 2004-09-01 2009-12-22 Ati Technologies Inc. Software and methods for previewing parameter changes for a graphics display driver
US20090315830A1 (en) 2006-04-25 2009-12-24 Wayne Carl Westerman Keystroke tactility arrangement on a smooth touch surface
US7639876B2 (en) 2005-01-14 2009-12-29 Advanced Digital Systems, Inc. System and method for associating handwritten information with one or more objects
US20090321490A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Laptop computer carrier
US20090320244A1 (en) 2008-06-27 2009-12-31 Yu-Feng Lin Pivoting Slide Hinge
US20100001963A1 (en) 2008-07-07 2010-01-07 Nortel Networks Limited Multi-touch touchscreen incorporating pen tracking
US20100013319A1 (en) 2008-07-16 2010-01-21 Seiko Epson Corporation Power transmission control device, power transmission device, power receiving control device, power receiving device, and electronic apparatus
US20100026656A1 (en) 2008-07-31 2010-02-04 Apple Inc. Capacitive sensor behind black mask
US20100039081A1 (en) 2008-08-13 2010-02-18 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. System for supplying and receiving power, power supply device and method thereof
US20100038821A1 (en) 2008-08-18 2010-02-18 Microsoft Corporation Tactile Enhancement For Input Devices
US20100039764A1 (en) 2008-08-15 2010-02-18 Howard Locker Transformer Case for Notebook Slate Computer with Wireless Keyboard
US20100045633A1 (en) 2000-11-30 2010-02-25 Palm, Inc. Input detection system for a portable electronic device
US20100045609A1 (en) 2008-08-20 2010-02-25 International Business Machines Corporation Method for automatically configuring an interactive device based on orientation of a user relative to the device
KR20100022059A (en) 2007-06-21 2010-02-26 노키아 코포레이션 Touch sensor and method for operating a touch sensor
US20100052880A1 (en) 2007-04-12 2010-03-04 Nokia Corporation Keypad
US20100051356A1 (en) 2008-08-25 2010-03-04 N-Trig Ltd. Pressure sensitive stylus for a digitizer
US20100053534A1 (en) 2008-08-27 2010-03-04 Au Optronics Corporation Touch panel
US20100051432A1 (en) 2008-09-04 2010-03-04 Goda Technology Co., Ltd. Membrane type computer keyboard
US20100073329A1 (en) 2008-09-19 2010-03-25 Tiruvilwamalai Venkatram Raman Quick Gesture Input
US20100077237A1 (en) 2007-05-01 2010-03-25 Sawyers Thomas P Bi-Directional Control of Power Adapter and Load
US20100079379A1 (en) 2008-09-26 2010-04-01 Sony Ericsson Mobile Communications Ab Portable communication device having an electroluminescent driven haptic keypad
US20100081377A1 (en) 2008-09-26 2010-04-01 Manjirnath Chatterjee Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US20100083108A1 (en) 2008-09-26 2010-04-01 Research In Motion Limited Touch-screen device having soft escape key
US20100085321A1 (en) 2008-10-03 2010-04-08 Mark Stephen Pundsack Small touch sensitive interface allowing selection of multiple functions
US20100103112A1 (en) 2008-04-22 2010-04-29 Korea Advanced Institute Of Science And Technology Fabric type input device
US20100106983A1 (en) 2008-10-29 2010-04-29 Keith Kasprzak System and Method for Adjusting Information Handling System Over Current Protection
US20100102182A1 (en) 2008-10-29 2010-04-29 Pi-Fen Lin Portable electronic device and magnetic fixation board therefor
US20100105443A1 (en) 2008-10-27 2010-04-29 Nokia Corporation Methods and apparatuses for facilitating interaction with touch screen apparatuses
US20100117993A1 (en) 1996-08-12 2010-05-13 Tyco Electronics Corporation Acoustic condition sensor employing a plurality 0f mutually non-orthogonal waves
US20100123686A1 (en) 2008-11-19 2010-05-20 Sony Ericsson Mobile Communications Ab Piezoresistive force sensor integrated in a display
US7729493B2 (en) 2002-01-29 2010-06-01 Palm, Inc. Cover for mobile computer
US20100133398A1 (en) 2008-11-28 2010-06-03 Hsien-Cheng Chiu Electronic device with magnetic supporting structure
US7731147B2 (en) 2003-08-26 2010-06-08 Soon-Ja Cho Universal bookholder
US7733326B1 (en) 2004-08-02 2010-06-08 Prakash Adiseshan Combination mouse, pen-input and pen-computer device
US20100142130A1 (en) 2008-12-08 2010-06-10 Shenzhen Futaihong Precision Industry Co., Ltd. Portable electronic device
US20100149104A1 (en) 2008-12-12 2010-06-17 Hewlett-Packard Development Company, L.P. Integrated keyboard and touchpad
US20100149377A1 (en) 2008-12-12 2010-06-17 Koichi Shintani Imaging apparatus
US20100148995A1 (en) 2008-12-12 2010-06-17 John Greer Elias Touch Sensitive Mechanical Keyboard
US20100149134A1 (en) 1998-01-26 2010-06-17 Wayne Westerman Writing using a touch sensor
US20100149111A1 (en) 2008-12-12 2010-06-17 Immersion Corporation Systems and Methods For Stabilizing a Haptic Touch Panel or Touch Surface
US20100148999A1 (en) 2008-12-16 2010-06-17 Casparian Mark A Keyboard with user configurable granularity scales for pressure sensitive keys
KR20100067366A (en) 2008-12-11 2010-06-21 한울정보기술(주) Key unit and sensing unit for a touch sensor
US20100156798A1 (en) 2008-12-19 2010-06-24 Verizon Data Services, Llc Accelerometer Sensitive Soft Input Panel
US20100156913A1 (en) 2008-10-01 2010-06-24 Entourage Systems, Inc. Multi-display handheld device and supporting system
US20100161522A1 (en) 2008-12-18 2010-06-24 Motorola, Inc. Increasing user input accuracy on a multifunctional electronic device
US20100164857A1 (en) 2008-12-31 2010-07-01 Shenzhen Huawei Communication Technologies Co. Ltd Displaying device, terminal of displaying device, and display method
US20100164897A1 (en) 2007-06-28 2010-07-01 Panasonic Corporation Virtual keypad systems and methods
US20100171891A1 (en) 2007-05-18 2010-07-08 Kabushiki Kaisha Sega Doing Business As Sega Corp Digitizer function-equipped liquid crystal display device information processing electronic device, and game device
US20100174421A1 (en) 2009-01-06 2010-07-08 Qualcomm Incorporated User interface for mobile devices
US20100180063A1 (en) 2007-06-22 2010-07-15 Apple Inc. Serial pass-through device
US20100188299A1 (en) 2009-01-07 2010-07-29 Audiovox Corporation Laptop computer antenna device
US7773076B2 (en) 1998-08-18 2010-08-10 CandleDragon Inc. Electronic pen holding
US20100205472A1 (en) 2004-12-10 2010-08-12 Apple Inc. Method and system for operating a portable electronic device in a power-limited manner
US7777972B1 (en) 2009-02-19 2010-08-17 Largan Precision Co., Ltd. Imaging optical lens assembly
US20100206614A1 (en) 2007-10-16 2010-08-19 Sung Mee Park Electronic fabric and preparing thereof
US20100206644A1 (en) 2009-02-13 2010-08-19 Waltop International Corporation Electromagnetic Induction Handwriting System and Coordinate Determining Method Thereof
US7782342B2 (en) 2004-08-16 2010-08-24 Lg Electronics Inc. Apparatus, method and medium for controlling image orientation
US20100214257A1 (en) 2008-11-18 2010-08-26 Studer Professional Audio Gmbh Detecting a user input with an input device
US20100222110A1 (en) 2009-03-02 2010-09-02 Lg Electronics Inc. Mobile terminal
US20100231556A1 (en) 2009-03-10 2010-09-16 Tandberg Telecom As Device, system, and computer-readable medium for an interactive whiteboard system
US20100235546A1 (en) 2009-03-16 2010-09-16 Jeff Terlizzi Methods and apparatus for adaptive accessory detection and mode negotiation
US20100231522A1 (en) 2005-02-23 2010-09-16 Zienon, Llc Method and apparatus for data entry input
US20100238620A1 (en) 2009-03-23 2010-09-23 Ram David Adva Fish Magnetic Notebooks and Tablets
US20100238075A1 (en) 2009-03-18 2010-09-23 Sierra Wireless, Inc. Multiple antenna system for wireless communication
US20100245221A1 (en) 2009-03-30 2010-09-30 Kent Displays Incorporated Display with overlayed electronic skin
US20100250988A1 (en) 2007-12-27 2010-09-30 Panasonic Corporation Video display system, display device, plug-in module and power control method of plug-in module
US7813715B2 (en) 2006-08-30 2010-10-12 Apple Inc. Automated pairing of wireless accessories with host devices
US20100259876A1 (en) 2007-10-24 2010-10-14 Laird Technologies Korea Yh Stand hinge for an electronic device and an electronic device with same
US20100259482A1 (en) 2009-04-10 2010-10-14 Microsoft Corporation Keyboard gesturing
US20100265182A1 (en) 2009-04-20 2010-10-21 Microsoft Corporation Context-based state change for an adaptive input device
US7822338B2 (en) 2006-01-20 2010-10-26 Sony Ericsson Mobile Communications Ab Camera for electronic device
US20100271771A1 (en) 2009-04-23 2010-10-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Detachable portable computing device
US20100274932A1 (en) 2009-04-27 2010-10-28 Sony Corporation Control system, operation device and control method
JP2010244514A (en) 2009-03-19 2010-10-28 Sony Corp Sensor device and information processing apparatus
KR20100115675A (en) 2009-04-20 2010-10-28 임한웅 Convenience get folded a keyboard
US20100279768A1 (en) 2009-04-29 2010-11-04 Apple Inc. Interactive gaming with co-located, networked direction and location aware devices
US20100289457A1 (en) 2009-05-18 2010-11-18 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
US20100295812A1 (en) 2005-07-25 2010-11-25 Plastic Logic Limited Flexible touch screen display
US20100306538A1 (en) 2009-05-28 2010-12-02 Qualcomm Incorporated Trust Establishment from Forward Link Only to Non-Forward Link Only Devices
US20100302378A1 (en) 2009-05-30 2010-12-02 Richard Lee Marks Tracking system calibration using object position and orientation
US20100304793A1 (en) 2009-05-29 2010-12-02 Chong-Sok Kim Mobile device having two touch screen display panels
US20100308778A1 (en) 2006-08-30 2010-12-09 Kazuo Yamazaki Electronic system, electronic device and power supply device
US20100309617A1 (en) 2009-06-08 2010-12-09 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Electronic device having adjustable leg
US20100308844A1 (en) 2009-06-03 2010-12-09 Synaptics Incorporated Input device and method with pressure-sensitive layer
US20100315348A1 (en) 2009-06-11 2010-12-16 Motorola, Inc. Data entry-enhancing touch screen surface
US20100313680A1 (en) 2009-06-15 2010-12-16 Samsung Electro-Mechanics Co., Ltd. Input device
US20100315373A1 (en) 2007-10-26 2010-12-16 Andreas Steinhauser Single or multitouch-capable touchscreens or touchpads comprising an array of pressure sensors and the production of such sensors
US20100324457A1 (en) 2008-12-10 2010-12-23 Jacob Bean Skeletal-muscular position monitoring device
US20100325155A1 (en) 2009-06-23 2010-12-23 James Skinner Systems and Methods for Providing Access to Various Files Across a Network
US20100321877A1 (en) 2005-11-09 2010-12-23 George Moser Reconfigurable Computer
US20100331059A1 (en) 2009-06-30 2010-12-30 Jeffrey Apgar Apparatus with swivel hinge and associated method
US7865639B2 (en) 2007-01-04 2011-01-04 Whirlpool Corporation Appliance with an electrically adaptive adapter to alternatively couple multiple consumer electronic devices
US20110012873A1 (en) 2009-07-15 2011-01-20 Prest Christopher D Display modules
US20110019123A1 (en) 2009-03-02 2011-01-27 Christopher Prest Techniques for Strengthening Glass Covers for Portable Electronic Devices
US7884807B2 (en) 2007-05-15 2011-02-08 Synaptics Incorporated Proximity sensor and method for indicating a display orientation change
US20110031287A1 (en) 2008-09-09 2011-02-10 Zero Chroma, LLC Holder for Electronic Device with Support
US20110032127A1 (en) 2009-08-07 2011-02-10 Roush Jeffrey M Low touch-force fabric keyboard
US20110037721A1 (en) 2009-08-12 2011-02-17 David Cranfill Printed Force Sensor Within A Touch Screen
US20110036965A1 (en) 2009-08-14 2011-02-17 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Electronic device having adjustable table stand
US7893921B2 (en) 2004-05-24 2011-02-22 Alps Electric Co., Ltd. Input device
US20110043990A1 (en) 2007-11-08 2011-02-24 Sideline, Inc. Secondary Computing Device Display System
US20110055407A1 (en) 2009-09-01 2011-03-03 Apple Inc. Device-dependent selection between modes for asymmetric serial protocols
US20110050626A1 (en) 2009-09-01 2011-03-03 Microchip Technology Incorporated Backlighting inductive touch buttons
US20110050576A1 (en) 2009-08-31 2011-03-03 Babak Forutanpour Pressure sensitive user interface for mobile devices
US20110060926A1 (en) 2008-01-22 2011-03-10 Brooks Robert C Delay Circuit With Reset Feature
US20110057724A1 (en) 2009-08-28 2011-03-10 Pabon Gus Charles High- and Low-Power Power Supply with Standby Power Saving Features
US20110069148A1 (en) 2009-09-22 2011-03-24 Tenebraex Corporation Systems and methods for correcting images in a multi-sensor system
US20110074688A1 (en) 2004-05-07 2011-03-31 Hull Eric J Multi-position, multi-level user interface system
US7928964B2 (en) 2005-04-22 2011-04-19 Microsoft Corporation Touch input data handling
USD636397S1 (en) 2010-12-28 2011-04-19 Andrew Green Computer stand
US7932890B2 (en) 2007-08-30 2011-04-26 Citizen Electronics Co., Ltd. Lightguide plate and electronic device
WO2011049609A2 (en) 2009-10-19 2011-04-28 Bayer Materialscience Ag Flexure assemblies and fixtures for haptic feedback
US20110102752A1 (en) 2009-10-30 2011-05-05 Inventec Corporation Positioning stand and electronic apparatus having the same
US20110102326A1 (en) 2008-12-16 2011-05-05 Casparian Mark A Systems and methods for implementing haptics for pressure sensitive keyboards
US20110102356A1 (en) 2008-06-27 2011-05-05 Nokia Corporation Portable electronic device with a plurality of hinged configurations and associated method
US20110107958A1 (en) 2009-11-12 2011-05-12 Apple Inc. Input devices and methods of operation
US20110113368A1 (en) 2009-11-06 2011-05-12 Santiago Carvajal Audio/Visual Device Graphical User Interface
US7945717B2 (en) 2008-12-09 2011-05-17 Symbol Technologies, Inc. Method and apparatus for providing USB pass through connectivity
US7944520B2 (en) 2006-08-11 2011-05-17 Sharp Kabushiki Kaisha Liquid crystal display device and electronic apparatus provided with same
US20110115738A1 (en) 2008-12-25 2011-05-19 Takahiro Suzuki Touch panel having press detection function and pressure sensitive sensor for the touch panel
US20110117970A1 (en) 2009-11-19 2011-05-19 Samsung Electronics Co., Ltd. Mobile device and method for touch lock control based on motion sensing
US20110134032A1 (en) * 2009-12-09 2011-06-09 Kuo-Chung Chiu Method for controlling touch control module and electronic device thereof
US20110134043A1 (en) 2008-08-27 2011-06-09 Xing Chen Multi-state input system
US20110157046A1 (en) 2009-12-30 2011-06-30 Seonmi Lee Display device for a mobile terminal and method of controlling the same
US7973771B2 (en) 2007-04-12 2011-07-05 3M Innovative Properties Company Touch sensor with electrode array
US20110167181A1 (en) 2010-01-06 2011-07-07 Apple Inc. Accessory for a portable computing device
US20110167287A1 (en) 2010-01-06 2011-07-07 Apple Inc. Providing power to an accessory during portable computing device hibernation
US20110164370A1 (en) 2010-01-06 2011-07-07 Apple Inc. Assembly of display module
US20110167391A1 (en) 2010-01-06 2011-07-07 Brian Momeyer User interface methods and systems for providing force-sensitive input
US7978281B2 (en) 2008-09-16 2011-07-12 General Dynamics Land Systems Low stress mounting support for ruggedized displays
US20110167992A1 (en) 2010-01-12 2011-07-14 Sensitronics, LLC Method and Apparatus for Multi-Touch Sensing
US20110169762A1 (en) 2007-05-30 2011-07-14 Microsoft Corporation Recognizing selection regions from multiple simultaneous input
US20110176035A1 (en) 2008-06-27 2011-07-21 Anders Poulsen Tilt and shift adaptor, camera and image correction method
US20110184646A1 (en) 2010-01-26 2011-07-28 Palm, Inc. Using relative position data in a mobile computing device
US20110184824A1 (en) 2010-01-28 2011-07-28 Bank Of America Corporation Tactile overlay for point of sale terminal
US20110179864A1 (en) 2010-01-27 2011-07-28 Stmicroelectronics, Inc. Dual accelerometer detector for clamshell devices
US20110191480A1 (en) 2010-02-03 2011-08-04 Stmicroelectronics, Inc. Packet-based digital display interface signal mapping to micro serial interface
US20110188199A1 (en) 2010-01-29 2011-08-04 Yang Pan Portable tablet computing device with a low power operation mode as a media player
US20110193787A1 (en) 2010-02-10 2011-08-11 Kevin Morishige Input mechanism for providing dynamically protruding surfaces for user interaction
US20110205372A1 (en) 2010-02-25 2011-08-25 Ivan Miramontes Electronic device and method of use
US8018386B2 (en) 2003-06-12 2011-09-13 Research In Motion Limited Multiple-element antenna with floating antenna element
US20110221678A1 (en) 2010-03-12 2011-09-15 Anton Davydov Device, Method, and Graphical User Interface for Creating and Using Duplicate Virtual Keys
US20110227913A1 (en) 2008-11-28 2011-09-22 Arn Hyndman Method and Apparatus for Controlling a Camera View into a Three Dimensional Computer-Generated Virtual Environment
US20110231682A1 (en) 2010-03-19 2011-09-22 I/O Interconnect, Ltd. Power management method and related power management system
US8026904B2 (en) 2007-01-03 2011-09-27 Apple Inc. Periodic sensor panel baseline adjustment
KR20110109791A (en) 2010-03-30 2011-10-06 김원식 Portable input interface device using flexible film
US20110242138A1 (en) 2010-03-31 2011-10-06 Tribble Guy L Device, Method, and Graphical User Interface with Concurrent Virtual Keyboards
US20110248941A1 (en) 2010-03-17 2011-10-13 Samer Abdo System and method for capturing hand annotations
US20110248152A1 (en) 2010-04-13 2011-10-13 Silicon Laboratories, Inc. Apparatus and Circuit with a Multi-Directional Arrangement of Optical Elements
US20110248920A1 (en) 2010-04-09 2011-10-13 Microsoft Corporation Keyboard with hinged keys and display functionality
US20110261001A1 (en) 2010-04-23 2011-10-27 Jin Liu Apparatus and method for impact resistant touchscreen display module
US20110265287A1 (en) 2010-04-30 2011-11-03 Hon Hai Precision Industry Co., Ltd. Hinge assembly
KR20110120002A (en) 2010-04-28 2011-11-03 지앤아이(주) Mouse-pad of entering data
US20110267272A1 (en) 2010-04-30 2011-11-03 Ikey, Ltd. Panel Mount Keyboard System
US8053688B2 (en) 2006-06-07 2011-11-08 International Business Machines Corporation Method and apparatus for masking keystroke sounds from computer keyboards
US20110273475A1 (en) 2007-06-08 2011-11-10 Scott Herz Methods and systems for providing sensory information to devices and peripherals
KR20110122333A (en) 2010-05-04 2011-11-10 삼성전기주식회사 Mobile device and method for implementing augmented reality using the same
US8069356B2 (en) 2010-01-06 2011-11-29 Apple Inc. Accessory power management
US20110290686A1 (en) 2010-05-28 2011-12-01 Yao-Hung Huang Electronic device case
US20110295697A1 (en) 2010-05-27 2011-12-01 Neville Boston Method and system for rendering content on the exterior of a vehicle
US20110297566A1 (en) 2010-06-07 2011-12-08 Targus Group International, Inc. Portable electronic device case with cleaning accessory
US20110298919A1 (en) 2010-06-02 2011-12-08 Maglaque Chad L Apparatus Using an Accelerometer to Determine a Point of View for Capturing Photographic Images
US20110302518A1 (en) 2010-06-07 2011-12-08 Google Inc. Selecting alternate keyboard characters via motion input
US8077160B2 (en) 2007-01-03 2011-12-13 Apple Inc. Storing baseline information in EEPROM
US20110304577A1 (en) 2010-06-11 2011-12-15 Sp Controls, Inc. Capacitive touch screen stylus
US20110305875A1 (en) 2008-09-05 2011-12-15 Apple Inc. Electronic device assembly
US20110310038A1 (en) 2010-06-18 2011-12-22 Samsung Electronics Co., Ltd. Method and apparatus for correcting touch coordinates in touch system
US20110320204A1 (en) 2010-06-29 2011-12-29 Lenovo (Singapore) Pte. Ltd. Systems and methods for input device audio feedback
US20110316807A1 (en) 2010-06-28 2011-12-29 Bradley Corrion Dynamic bezel for a mobile device
US8090885B2 (en) 2008-01-14 2012-01-03 Microsoft Corporation Automatically configuring computer devices wherein customization parameters of the computer devices are adjusted based on detected removable key-pad input devices
US20120002820A1 (en) 2010-06-30 2012-01-05 Google Removing Noise From Audio
US20120007821A1 (en) 2010-07-11 2012-01-12 Lester F. Ludwig Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (hdtp) user interfaces
US20120013519A1 (en) 2010-07-15 2012-01-19 Sony Ericsson Mobile Communications Ab Multiple-input multiple-output (mimo) multi-band antennas with a conductive neutralization line for signal decoupling
US20120023459A1 (en) 2008-01-04 2012-01-26 Wayne Carl Westerman Selective rejection of touch contacts in an edge region of a touch surface
US20120023401A1 (en) 2010-04-16 2012-01-26 Google Inc. Extended keyboard user interface
US20120026096A1 (en) 2008-08-13 2012-02-02 Adesco Inc. Keyboard apparatus integrated with combined touch input module
US20120024682A1 (en) 2010-07-30 2012-02-02 Primax Electronics Ltd. Two-level pressure sensitive keyboard
US20120026048A1 (en) 2008-09-25 2012-02-02 Enrique Ayala Vazquez Clutch barrel antenna for wireless electronic devices
US20120032901A1 (en) 2010-08-06 2012-02-09 Samsung Electronics Co., Ltd. Display apparatus and control method thereof
US20120032891A1 (en) 2010-08-03 2012-02-09 Nima Parivar Device, Method, and Graphical User Interface with Enhanced Touch Targeting
US20120032887A1 (en) 2010-08-05 2012-02-09 Young Lighting Technology Corporation Touch keyboard and electronic device
US8115499B2 (en) 2009-05-22 2012-02-14 Freescale Semiconductor, Inc. Device with proximity detection capability
US8117362B2 (en) 2008-08-14 2012-02-14 Homerun Holdings Corporation Programmable multi-function Z-wave adapter for Z-wave wireless networks
US20120038495A1 (en) 2010-08-12 2012-02-16 Alps Electric Co., Ltd. Operation feeling imparting type trackball device
US20120038496A1 (en) 2010-08-10 2012-02-16 Cliff Edwards Gesture-enabled keyboard and associated apparatus and computer-readable storage medium
US8120166B2 (en) 2008-08-26 2012-02-21 Shinko Electric Industries Co., Ltd. Semiconductor package and method of manufacturing the same, and semiconductor device and method of manufacturing the same
US8118274B2 (en) 2009-07-29 2012-02-21 Apple Inc. Multiple position stand
US20120047368A1 (en) 2010-08-20 2012-02-23 Apple Inc. Authenticating a multiple interface device on an enumerated bus
US20120044179A1 (en) 2010-08-17 2012-02-23 Google, Inc. Touch-based gesture detection for a touch-sensitive device
KR101113530B1 (en) 2003-10-10 2012-02-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Wake-on-touch for vibration sensing touch input devices
US20120050975A1 (en) 2010-08-24 2012-03-01 Garelli Adam T Electronic device display module
US20120062564A1 (en) 2010-09-15 2012-03-15 Kyocera Corporation Mobile electronic device, screen control method, and storage medium storing screen control program
US20120069540A1 (en) 2010-09-17 2012-03-22 Apple Inc. Electronic device with magnetic attachment
US20120068919A1 (en) 2010-09-17 2012-03-22 Apple Inc. Sensor
US20120077384A1 (en) 2009-09-14 2012-03-29 Transwitch Corporation Apparatus for enabling simultaneous content streaming and power charging of handheld devices
US20120075249A1 (en) 2009-01-28 2012-03-29 Synaptics Incorporated Proximity sensing for capacitive touch sensors
US20120081316A1 (en) 2010-10-01 2012-04-05 Imerj LLC Off-screen gesture dismissable keyboard
US8154524B2 (en) 2008-06-24 2012-04-10 Microsoft Corporation Physics simulation-based interaction for surface computing
US20120092279A1 (en) 2010-10-18 2012-04-19 Qualcomm Mems Technologies, Inc. Touch sensor with force-actuated switched capacitor
US20120094257A1 (en) 2007-11-15 2012-04-19 Electronic Brailler Remote braille education system and device
US8162282B2 (en) 2009-06-05 2012-04-24 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Electronic device with support
US20120099749A1 (en) 2007-08-20 2012-04-26 Google Inc. Electronic Device with Hinge Mechanism
US8169421B2 (en) 2006-06-19 2012-05-01 Cypress Semiconductor Corporation Apparatus and method for detecting a touch-sensor pad gesture
US20120103778A1 (en) 2010-10-29 2012-05-03 Minebea Co., Ltd. Input apparatus
USD659139S1 (en) 2010-07-08 2012-05-08 Zagg Intellectual Property Holding Co., Inc. Protective cover, including keyboard, for mobile computing device
US20120117409A1 (en) 2010-11-08 2012-05-10 Samsung Electronics Co., Ltd. Methods of charging auxiliary power supplies in data storage devices and related devices
US20120113137A1 (en) 2004-06-09 2012-05-10 Canon Kabushiki Kaisha Image Processing Apparatus, Image Processing Method, Program for Implementing the Method, and Storage Medium Storing the Program
US20120115553A1 (en) 2010-11-05 2012-05-10 Mahe Isabel G Adaptive antenna diversity system
US20120113579A1 (en) 2010-11-04 2012-05-10 Lenovo (Singapore) Pte. Ltd. Keyboard for slate personal computers
US20120127118A1 (en) 2010-11-22 2012-05-24 John Nolting Touch sensor having improved edge response
US20120140396A1 (en) 2010-12-07 2012-06-07 Zachary Joseph Zeliff Tablet pc cover with integral keyboard
US20120139727A1 (en) 2011-03-28 2012-06-07 Physical Apps, Llc Physical interaction device for personal electronics and method for use
US20120145525A1 (en) 2010-12-09 2012-06-14 Canon Kabushiki Kaisha Switch unit and electronic device including switch unit
US20120162693A1 (en) 2010-12-28 2012-06-28 Brother Kogyo Kabushiki Kaisha Image recording device and computer accessible storage storing program therefor
US20120175487A1 (en) 2011-01-12 2012-07-12 Roland Corporation Music stand device
US20120182249A1 (en) 2009-09-29 2012-07-19 Yuko Endo Mount structure of touch input device having pressure sensitive sensor
US20120182242A1 (en) 2002-09-20 2012-07-19 Donnelly Corporation Interior rearview mirror system
US8229509B2 (en) 2009-02-27 2012-07-24 Microsoft Corporation Protective shroud for handheld device
US8229522B2 (en) 2007-01-05 2012-07-24 Samsung Electronics Co., Ltd. Folder-type portable communication device having flexible display unit
US8231099B2 (en) 2010-04-22 2012-07-31 E-Lead Electronic Co., Ltd. Protective cover support rack for portable electronic devices
US20120194448A1 (en) 2011-01-31 2012-08-02 Apple Inc. Cover attachment with flexible display
US20120194393A1 (en) 2011-01-31 2012-08-02 Apple Inc. Antenna, shielding and grounding
US8243432B2 (en) 2010-01-07 2012-08-14 Shenzhen Futaihong Precision Industry Co., Ltd. Support mechanism for portable electronic device
US8255708B1 (en) 2007-08-10 2012-08-28 Marvell International Ltd. Apparatuses and methods for power saving in USB devices
US20120218194A1 (en) 2011-02-28 2012-08-30 Richard Ian Silverman Virtual keyboard feedback
US20120221877A1 (en) 2011-02-25 2012-08-30 Research In Motion Limited Method and apparatus for managing power levels in a handheld mobile communication device
US20120223866A1 (en) 2011-03-01 2012-09-06 Enrique Ayala Vazquez Multi-element antenna structure with wrapped substrate
US20120224073A1 (en) 2008-01-21 2012-09-06 Canon Kabushiki Kaisha Image-blur correction device, image pickup device, and optical device
US8264310B2 (en) 2010-09-17 2012-09-11 Apple Inc. Accessory device for peek mode
US20120227259A1 (en) 2011-02-24 2012-09-13 Cypress Semiconductor Corporation Single layer touch sensor
US20120229634A1 (en) 2011-03-11 2012-09-13 Elisabeth Laett Method and system for monitoring the activity of a subject within spatial temporal and/or behavioral parameters
US8267368B2 (en) 2008-06-05 2012-09-18 Panasonic Corporation Electronic device
US20120235635A1 (en) 2011-03-18 2012-09-20 Koichi Sato Electronic apparatus
US8274784B2 (en) 2010-05-24 2012-09-25 Dell Products L.P. Adjustable multi-orientation display support system
US20120242584A1 (en) 2011-03-22 2012-09-27 Nokia Corporation Method and apparatus for providing sight independent activity reports responsive to a touch gesture
US20120246377A1 (en) 2011-03-21 2012-09-27 Bhesania Firdosh K HID over Simple Peripheral Buses
US20120243165A1 (en) 2011-03-25 2012-09-27 Wistron Corporation Dual-screen portable computer and a switching method of the same
US8279589B2 (en) 2010-02-01 2012-10-02 Christine Hana Kim Apparatus and method for data entry from a removable portable device cover
US20120250873A1 (en) 2011-03-31 2012-10-04 Bose Corporation Adaptive feed-forward noise reduction
US20120249443A1 (en) 2011-03-29 2012-10-04 Anderson Glen J Virtual links between different displays to present a single virtual object
US20120256959A1 (en) 2009-12-30 2012-10-11 Cywee Group Limited Method of controlling mobile device with touch-sensitive display and motion sensor, and mobile device
US20120260177A1 (en) 2011-04-08 2012-10-11 Google Inc. Gesture-activated input using audio recognition
US20120274811A1 (en) 2011-04-28 2012-11-01 Dmitry Bakin Imaging devices having arrays of image sensors and precision offset lenses
CN101675406B (en) 2007-06-15 2012-11-21 苹果公司 Systems and methods for providing device-to-device handshaking through a power supply signal
US20120298491A1 (en) 2011-05-27 2012-11-29 Ozias Orin M Sub-membrane keycap indicator
US20120299872A1 (en) 2009-12-11 2012-11-29 Kazuhiro Nishikawa Installation structure of thin-type display and resistive film type touch panel, resistive film type touch panel unit with front-surface protrusions, and thin-type display unit with back-surface protrusions
US20120300275A1 (en) 2011-05-23 2012-11-29 360Brandvision, LLC Accessory for reflecting an image from a display screen of a portable electronic device
US8322290B1 (en) 2006-11-22 2012-12-04 Giancarlo Mignano Multi-use table
US20120312955A1 (en) 2011-06-08 2012-12-13 Randolph Ovie L Handle for hand held device
US8346206B1 (en) 2007-07-23 2013-01-01 At&T Mobility Ii Llc Customizable media feedback software package and methods of generating and installing the package
US20130009413A1 (en) 2011-07-08 2013-01-10 Chiu Jr Herbert Multifunctional strap system for handheld portable electronic devices
US20130016468A1 (en) 2011-07-12 2013-01-17 Uniglobe Hnt Co., Ltd. Wireless keyboard for tablet pc with stand
US20130015311A1 (en) 2011-07-13 2013-01-17 Samsung Electronics Co., Ltd. Slim-type quick cradle for a portable terminal
US20130031353A1 (en) 2011-07-28 2013-01-31 Fujitsu Limited Information processing device, non-transitory, computer readable storage medium, and method of controlling information processing device
US8371174B2 (en) 2009-08-31 2013-02-12 Universal Cement Corporation Micro-deformable piezoresistive material and manufacturing method thereof and pressure sensor using the same
US20130044059A1 (en) 2011-08-17 2013-02-21 Tianjin Funayuanchuang Technology Co.,Ltd. Touch-control type keyboard
US20130044074A1 (en) 2011-08-19 2013-02-21 Apple Inc. In-cell or on-cell touch sensor with color filter on array
US20130046397A1 (en) 2010-11-19 2013-02-21 Nest Labs, Inc. Thermostat user interface
US8384566B2 (en) 2010-05-19 2013-02-26 Mckesson Financial Holdings Pressure-sensitive keyboard and associated method of operation
US8387078B2 (en) 2007-09-27 2013-02-26 Intel Corporation Determining the context of a computing device that is powered off
US8387938B2 (en) 2011-04-29 2013-03-05 Jow Tong Technology Co., Ltd. Electronic device holder
US20130063873A1 (en) 2011-09-12 2013-03-14 Apple Inc. Integrated inductive charging in protective cover
US20130067126A1 (en) 2011-09-14 2013-03-14 Mark A. Casparian Systems and methods for implementing a multi-function mode for pressure sensitive sensors and keyboards
US20130069916A1 (en) 2010-03-29 2013-03-21 Elo Touch Solutions, Inc. Method for detecting a sustained contact and corresponding device
US20130073877A1 (en) 2011-09-20 2013-03-21 Broadcom Corporation Power Management System Suitable for Use with Multi-Series-Cell Batteries
US8403576B2 (en) 2008-01-07 2013-03-26 Google Inc. Keyboard for hand held computing device
US20130076635A1 (en) 2011-09-26 2013-03-28 Ko Ja (Cayman) Co., Ltd. Membrane touch keyboard structure for notebook computers
US20130076617A1 (en) 2008-04-24 2013-03-28 Ambrus Csaszar Adaptive tracking system for spatial input devices
US20130082950A1 (en) 2011-09-29 2013-04-04 Samsung Electronics Co. Ltd. Input apparatus and input method of a portable terminal using a pen
US20130082824A1 (en) 2011-09-30 2013-04-04 Nokia Corporation Feedback response
US20130088431A1 (en) 2011-10-11 2013-04-11 Nokia Corporation Apparatus Cover with Keyboard
US8424160B2 (en) 2010-08-11 2013-04-23 E-Lead Electronics Co., Ltd. Asymmetrical resistant hinge set
US20130107144A1 (en) 2011-11-01 2013-05-02 Kent Displays Incorporated Writing tablet information recording device
US20130106766A1 (en) 2011-10-28 2013-05-02 Atmel Corporation Active Stylus with Configurable Touch Sensor
US20130135214A1 (en) 2011-11-28 2013-05-30 At&T Intellectual Property I, L.P. Device feedback and input via heating and cooling
US8464079B2 (en) 2010-07-20 2013-06-11 Dell Products L.P. Battery life extending power supply system
US20130159749A1 (en) 2011-12-16 2013-06-20 Qualcomm Incorporated Power conservation techniques for use in devices with selectable power modes
US20130162554A1 (en) 2010-09-17 2013-06-27 Apple Inc Multi-peek mode tablet device
US20130172906A1 (en) 2010-03-31 2013-07-04 Eric S. Olson Intuitive user interface control for remote catheter navigation and 3D mapping and visualization systems
WO2009034484A3 (en) 2007-09-14 2013-07-18 Sony Ericsson Mobile Communications Ab Hinge for foldable type electronic apparatus and the foldable type electronic apparatus
US20130191741A1 (en) 2012-01-24 2013-07-25 Motorola Mobility, Inc. Methods and Apparatus for Providing Feedback from an Electronic Device
US8498100B1 (en) 2012-03-02 2013-07-30 Microsoft Corporation Flexible hinge and removable attachment
US8514568B2 (en) 2010-12-20 2013-08-20 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Electronic device having rotatable support
US20130217451A1 (en) 2010-10-27 2013-08-22 Nec Corporation Portable electronic device
US8520371B2 (en) 2011-03-16 2013-08-27 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Digital photo frame
US20130226794A1 (en) 2012-02-23 2013-08-29 Mastercard International Incorporated System and method for facilitating cash-based ecommerce transactions
US20130228435A1 (en) 2012-03-02 2013-09-05 Microsoft Corporation Sensor Stack Venting
US20130229366A1 (en) 2012-03-02 2013-09-05 Rajesh Manohar Dighde Support for an Optically Bonded Display Device
US20130232571A1 (en) 2012-03-02 2013-09-05 Jim Tom Belesiu Accessory Device Authentication
US20130229570A1 (en) 2012-03-02 2013-09-05 Microsoft Corporation Shifted lens camera for mobile computing devices
US20130229386A1 (en) 2012-03-02 2013-09-05 Microsoft Corporation Input device writing surface
US20130232742A1 (en) 2012-03-08 2013-09-12 Government Of The United States, As Represented By The Secretary Of The Air Force Load carriage connector and system
US20130242495A1 (en) 2012-03-02 2013-09-19 Microsoft Corporation Connection device for computing devices
US20130241860A1 (en) 2008-01-04 2013-09-19 Tactus Technology, Inc. User interface system
US20130262886A1 (en) 2012-03-28 2013-10-03 Panasonic Corporation Power supply control device
EP2353978B1 (en) 2010-02-03 2013-10-23 Ursus S.P.A. Telescopic bicycle kickstand structure
US8582280B2 (en) 2008-01-11 2013-11-12 Sang Kyu Ryu Foldable keyboard for portable computer
US20130300647A1 (en) 2012-05-14 2013-11-14 Microsoft Corporation Accessory Device Architecture
US8587701B2 (en) 2010-07-22 2013-11-19 Kabushiki Kaisha Toshiba Image processing apparatus, camera module, and image processing method
US8599542B1 (en) 2013-05-17 2013-12-03 Zagg Intellectual Property Holding Co., Inc. Combined cover, keyboard and stand for tablet computer with reversable connection for keyboard and reading configuration
US20130321992A1 (en) 2012-05-31 2013-12-05 Asustek Computer Inc. Cover assembly and electronic device using the same
US20130329360A1 (en) 2012-06-06 2013-12-12 Leonardo Aldana Electronic device support with magnetic indexing
US20130332628A1 (en) 2012-06-08 2013-12-12 Panos C. Panay User Experience Adaptation
US20130339757A1 (en) 2012-06-13 2013-12-19 Karunakar P. Reddy Systems and methods for providing supplemental power to battery powered information handling systems
US20130342976A1 (en) 2012-06-25 2013-12-26 Fih (Hong Kong) Limited Support mechanism and electronic device using same
US20140078063A1 (en) 2012-09-18 2014-03-20 Microsoft Corporation Gesture-initiated keyboard functions
US20140085814A1 (en) 2011-04-11 2014-03-27 Peter J Kielland Portable Computer Support
US20140118241A1 (en) 2012-11-01 2014-05-01 Microsoft Corporation Input location correction tables for input panels
US20140132550A1 (en) 2012-03-02 2014-05-15 Microsoft Corporation Electrical Contacts and Connectors
US8744070B2 (en) 2010-08-12 2014-06-03 Huawei Device Co., Ltd. User device
US20140167585A1 (en) 2012-12-18 2014-06-19 Hon Hai Precision Industry Co., Ltd. Rotating mechanism and electronic device with same
US8762746B1 (en) 2011-03-22 2014-06-24 Amazon Technologies, Inc. Power management in electronic devices
US8767388B2 (en) 2010-10-20 2014-07-01 Samsung Electronics Co., Ltd Support assembly and computer device having the same
US20140185215A1 (en) 2012-03-02 2014-07-03 Microsoft Corporation Flexible Hinge Spine
US20140185220A1 (en) 2012-03-02 2014-07-03 Microsoft Corporation Flexible Hinge Support Layer
US8797765B2 (en) 2011-08-15 2014-08-05 Universal Scientific Industrial (Shanghai) Co., Ltd. Angle adjustable device and electronic display unit using the same
US8825187B1 (en) 2011-03-15 2014-09-02 Motion Reality, Inc. Surround sound in a sensory immersive motion capture simulation environment
US8891232B2 (en) 2011-09-23 2014-11-18 Htc Corporation Support stand and standable hand-held device
US8908858B2 (en) 2012-08-31 2014-12-09 Hon Hai Precision Industry Co., Ltd. Rotating mechanism and electronic device with same
US8934221B2 (en) 2012-03-16 2015-01-13 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Electronic device with support mechanism
US8939422B2 (en) 2012-07-16 2015-01-27 Wistron Corporation Support device
US8964376B2 (en) 2010-01-26 2015-02-24 Hewlett-Packard Development Company, L.P. Handle attachment

Family Cites Families (1224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1100331A (en) 1964-03-05 1968-01-24 Chloride Overseas Ltd Improvements relating to moulds for thin castings
US3542453A (en) 1967-10-25 1970-11-24 Frederick W Kantor Grating device composed of elongated layers
US3979568A (en) 1974-09-23 1976-09-07 Xerox Corporation Keyboard switch assembly having raised contacts supported by helicline legs on a common conductive sheet
JPS52107722U (en) 1976-02-13 1977-08-16
JPS52107722A (en) 1976-03-08 1977-09-09 Hitachi Ltd Keyboard
DE2810459C3 (en) 1977-03-14 1986-11-13 Burundukov Valentin M
JPS645445B2 (en) 1978-12-08 1989-01-30 Kanetsu Kogyo
US4279021A (en) 1979-02-15 1981-07-14 Telxon Corporation Portable data entry apparatus including plural selectable functional configurations
US4326193A (en) 1979-09-12 1982-04-20 Allen-Bradley Company Terminal with interchangeable application module
US4239338A (en) 1979-10-22 1980-12-16 Corning Glass Works Silver halide optical information storage media
US4317011A (en) 1980-01-21 1982-02-23 Chicago Decal Company Membrane touch switch
US4294507A (en) 1980-01-25 1981-10-13 International Business Machines Corporation Controllably deformed elastic waveguide elements
JPS6037923B2 (en) * 1980-01-29 1985-08-29 Shinetsu Polymer Co
US4323740A (en) 1980-02-04 1982-04-06 Rogers Corporation Keyboard actuator device and keyboard incorporating the device
JPS6014315B2 (en) 1980-04-08 1985-04-12 Nippon Kokuju Tetsudo
JPS56159134U (en) 1980-04-23 1981-11-27
JPS56159134A (en) 1980-05-12 1981-12-08 Ricoh Co Ltd Mold for injection molding
US4375018A (en) 1980-06-16 1983-02-22 Sheldahl, Inc. Membrane switch having adhesive label as edge seal
US4724605A (en) 1980-10-01 1988-02-16 Texas Instruments Incorporated Method for making area actuated switch
DE3042052C2 (en) 1980-11-07 1984-08-09 Mtu Muenchen Gmbh
JPS57126617U (en) * 1981-01-31 1982-08-06
US4758087A (en) 1981-03-09 1988-07-19 Polaroid Corporation Fiber optic transducer
JPS633410B2 (en) 1981-07-10 1988-01-23 Rhythm Watch Co
US4451113A (en) 1982-08-02 1984-05-29 Mid Coast Electronics Magnetic safety receptacle and plug
US4576436A (en) 1983-01-31 1986-03-18 Maurice Daniel Light distribution and collection assemblies and methods
JPS6014315A (en) 1983-07-04 1985-01-24 Matsushita Electric Ind Co Ltd Operation input device
JPS6216615B2 (en) 1983-08-11 1987-04-14 Ooyama Fuuzu Mashinarii Kk
US4615579A (en) 1983-08-29 1986-10-07 Canadian Patents & Development Ltd. Prism light guide luminaire
JPS60216479A (en) 1984-04-10 1985-10-29 Canon Kk Connector unit
US4643604A (en) 1984-09-04 1987-02-17 Bertin Enrico Magnetic pen holder
GB2178570A (en) 1985-06-07 1987-02-11 Remanco Systems Inc Computer overlay keyboard
US4677417A (en) * 1985-12-06 1987-06-30 Alps Electric Co., Ltd. Tablet type input device
US4652704A (en) 1985-12-30 1987-03-24 Sperry Corporation Keyboard switch
JPS6310419A (en) * 1986-07-01 1988-01-18 Kakomu Denshi Kk Keyboard
US4801771A (en) 1986-10-13 1989-01-31 Yamaha Corporation Force sensitive device
US4735495A (en) 1986-12-12 1988-04-05 General Electric Co. Light source for liquid crystal display panels utilizing internally reflecting light pipes and integrating sphere
GB8630155D0 (en) 1986-12-17 1987-01-28 Philips Electronic Associated Liquid crystal display illumination system
GB8700106D0 (en) 1987-01-06 1987-02-11 Wiggins Teape Group Ltd Release paper
US4795977A (en) 1987-03-19 1989-01-03 Pacific Western Systems, Inc. Interface system for interfacing a device tester to a device under test
US5004673A (en) 1987-04-20 1991-04-02 Environmental Research Institute Of Michigan Method of manufacturing surface relief patterns of variable cross-sectional geometry
JPH0723067B2 (en) 1987-06-26 1995-03-15 淳理 水野 Runaway prevention device for a vehicle
US4824268A (en) 1987-08-27 1989-04-25 Diernisse H V Ergonomic keyboard
US4799752A (en) 1987-09-21 1989-01-24 Litton Systems, Inc. Fiber optic gradient hydrophone and method of using same
US4990900A (en) 1987-10-01 1991-02-05 Alps Electric Co., Ltd. Touch panel
JPH0195596A (en) 1987-10-08 1989-04-13 Casio Comput Co Ltd Small-sized electronic equipment
JPH0245820A (en) 1988-08-08 1990-02-15 Kokoku Rubber Gijutsu Kenkyusho:Kk Coordinate input device
US4983787A (en) 1988-09-01 1991-01-08 Takahiro Kunikane Coordinate input unit
US5220318A (en) 1988-12-22 1993-06-15 Ampex Corporation Apparatus for selectively varying keyboard switching force
US5106181A (en) 1989-04-12 1992-04-21 Rockwell Iii Marshall A Optical waveguide display system
US5019898A (en) 1989-04-26 1991-05-28 The California Institute Of Technology Real-time pseudocolor density encoding of an image
GB8909757D0 (en) 1989-04-28 1989-06-14 Lo Anthony T S Stereo camera with a mono override
US5488575A (en) 1989-05-02 1996-01-30 Norand Corporation Portable work station and data collection terminal including switchable multi purpose touch screen display
US6266685B1 (en) 1991-07-11 2001-07-24 Intermec Ip Corp. Hand-held data collection system with stylus input
JP2934463B2 (en) 1989-11-09 1999-08-16 クラリオン株式会社 Operation unit detachable device
WO1991008915A1 (en) 1989-12-15 1991-06-27 New Creations Plus Photo display defining image
JPH03201016A (en) 1989-12-27 1991-09-02 Sony Corp Handwriting input device
US5253362A (en) 1990-01-29 1993-10-12 Emtek Health Care Systems, Inc. Method for storing, retrieving, and indicating a plurality of annotations in a data cell
JP2644909B2 (en) 1990-07-02 1997-08-25 富士写真フイルム株式会社 Proof photography equipment
CN2078463U (en) * 1990-07-25 1991-06-05 盛谏 Pressure-sensitive switch matrix for computer input by handwriting/keying
JP2683148B2 (en) 1990-09-04 1997-11-26 アルプス電気株式会社 Transparent Tatsuchisuitsuchi
US5319455A (en) 1990-09-28 1994-06-07 Ictv Inc. System for distributing customized commercials to television viewers
US5053585A (en) 1990-10-12 1991-10-01 Interlink Electronics, Incorporated Multipurpose keyboard using digitizer pad featuring spatial minimization of a pressure contact area and method of making same
US5149923A (en) 1991-03-15 1992-09-22 Lucas Duralith Corporation Backlit tactile keyboard with improved tactile and electrical characteristics
US5138119A (en) 1991-03-15 1992-08-11 Lucas Duralith Corporation Backlit tactile keyboard with improved tactile and electrical characteristics
JPH04317899A (en) 1991-04-16 1992-11-09 Nec Corp Space umbilical connector
JPH04363823A (en) 1991-06-11 1992-12-16 Hitachi Keiyo Eng Co Ltd Key-in device
CA2045907C (en) 1991-06-28 1998-12-15 Gerald B. Anderson A method for storing and retrieving annotations and redactions in final form documents
CA2112682C (en) 1991-07-03 2002-04-23 Michael A. Teitel Virtual image display device
US5218177A (en) 1991-12-10 1993-06-08 Lexmark International, Inc. Screened pattern causing gaps around keyboard membrane spacer hole to increase venting and reduced bounce
US5991087A (en) 1993-11-12 1999-11-23 I-O Display System Llc Non-orthogonal plate in a virtual reality or heads up display
JPH05228970A (en) 1992-02-21 1993-09-07 Sony Corp Injection compression molding method, and injection mold and injection compression molding machine used therefor
US5313535A (en) 1992-02-27 1994-05-17 Nynex Corporation Optical path length modulator
US5806955A (en) 1992-04-16 1998-09-15 Tir Technologies, Inc. TIR lens for waveguide injection
JPH0614315A (en) 1992-06-26 1994-01-21 Matsushita Electric Ind Co Ltd Video signal processor
US5510783A (en) 1992-07-13 1996-04-23 Interlink Electronics, Inc. Adaptive keypad
US5249978A (en) 1992-07-15 1993-10-05 International Business Machines Corporation High power connector
US5406415A (en) 1992-09-22 1995-04-11 Kelly; Shawn L. Imaging system for a head-mounted display
US6463585B1 (en) 1992-12-09 2002-10-08 Discovery Communications, Inc. Targeted advertisement using television delivery systems
CA2155317A1 (en) 1992-12-21 1994-07-07 Old Town Canoe Co., Inc. A layered article prepared by spraying a thermoset resin to form each layer
US5596700A (en) 1993-02-17 1997-01-21 International Business Machines Corporation System for annotating software windows
US5339382A (en) 1993-02-23 1994-08-16 Minnesota Mining And Manufacturing Company Prism light guide luminaire with efficient directional output
JPH06250761A (en) 1993-02-26 1994-09-09 Toshiba Corp Equipment for preparing document
JPH06342679A (en) * 1993-06-01 1994-12-13 Pfu Ltd Structure for installing magnet connector and console panel
US6411266B1 (en) 1993-08-23 2002-06-25 Francis J. Maguire, Jr. Apparatus and method for providing images of real and virtual objects in a head mounted display
JPH07182282A (en) 1993-09-28 1995-07-21 At & T Global Inf Solutions Internatl Inc Postscript for computer video display
EP0724758A4 (en) 1993-10-07 1998-03-04 Virtual Vision Inc Binocular head mounted display system
US5621494A (en) 1993-10-25 1997-04-15 Canon Kabushiki Kaisha Camera having light-source determining function
US5576981A (en) 1993-11-17 1996-11-19 Intermec Corporation Portable computer with interchangeable keypad and method for operating same
DE69432283T2 (en) 1993-12-01 2004-01-22 Sharp K.K. Display for three-dimensional images
JP2910546B2 (en) 1993-12-28 1999-06-23 日本電気株式会社 Method of manufacturing a reflection plate
US5487143A (en) 1994-04-06 1996-01-23 Altera Corporation Computer user interface having tiled and overlapped window areas
WO1996002009A1 (en) 1994-07-08 1996-01-25 Forskningscenter Risø An optical measurement method and apparatus
JPH0868910A (en) 1994-08-29 1996-03-12 Enplas Corp Light transmission plate for surface light source and its production
JPH09508997A (en) 1994-12-07 1997-09-09 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Data processing equipment
US5584713A (en) 1994-12-09 1996-12-17 Matsushita Electric Works, Ltd. Electrical connector
US5808800A (en) 1994-12-22 1998-09-15 Displaytech, Inc. Optics arrangements including light source arrangements for an active matrix liquid crystal image generator
GB9828618D0 (en) 1995-02-22 1999-02-17 Pirelli Cavi E Sistemi Spa Etching optical fibres
JPH08273471A (en) 1995-04-04 1996-10-18 Matsushita Electric Ind Co Ltd Pressure sensitive switch
US5929946A (en) 1995-05-23 1999-07-27 Colorlink, Inc. Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization
US6417892B1 (en) 1995-05-23 2002-07-09 Colorlink, Inc. Color filters, sequencers and displays using color selective light modulators
US5648643A (en) 1995-06-16 1997-07-15 Knowles; Terence J. Acoustic wave touch panel with inlayed, etched arrays and method of making the panel
US5613751A (en) 1995-06-27 1997-03-25 Lumitex, Inc. Light emitting panel assemblies
US5886675A (en) 1995-07-05 1999-03-23 Physical Optics Corporation Autostereoscopic display system with fan-out multiplexer
JP3602207B2 (en) 1995-07-12 2004-12-15 富士写真フイルム株式会社 Surgical fluorescence image obtaining apparatus
DE69714879T2 (en) 1996-01-30 2003-05-08 Sumitomo Wiring Systems Connection system with an associated process
JPH0970644A (en) 1995-09-05 1997-03-18 Aisin Seiki Co Ltd Resin core
JPH0980354A (en) 1995-09-12 1997-03-28 Toshiba Corp Stereoscopic video device
US5825982A (en) 1995-09-15 1998-10-20 Wright; James Head cursor control interface for an automated endoscope system for optimal positioning
US5712995A (en) 1995-09-20 1998-01-27 Galileo Frames, Inc. Non-overlapping tiling apparatus and method for multiple window displays
KR100428523B1 (en) 1995-09-22 2004-08-25 코닌클리케 필립스 일렉트로닉스 엔.브이. A flat-panel picture display device
JP3602896B2 (en) 1995-09-29 2004-12-15 アルプス電気株式会社 A sheet-like switch
JPH09178949A (en) 1995-12-25 1997-07-11 Sharp Corp Plane illumination device
JP3780026B2 (en) 1996-01-08 2006-05-31 キヤノン株式会社 Image display device
JP3052997B2 (en) 1996-01-12 2000-06-19 日本電気株式会社 Handwriting input display device
US6072551A (en) 1996-02-14 2000-06-06 Physical Optics Corporation Backlight apparatus for illuminating a display with controlled light output characteristics
US5838403A (en) 1996-02-14 1998-11-17 Physical Optics Corporation Liquid crystal display system with internally reflecting waveguide for backlighting and non-Lambertian diffusing
US5861990A (en) 1996-03-08 1999-01-19 Kaiser Optical Systems Combined optical diffuser and light concentrator
US6278490B1 (en) 1996-05-23 2001-08-21 Olympus Optical Co., Ltd. Exposure control for an image pickup apparatus that uses an electronic flash
US5920317A (en) 1996-06-11 1999-07-06 Vmi Technologies Incorporated System and method for storing and displaying ultrasound images
JPH104540A (en) 1996-06-14 1998-01-06 Matsushita Electric Ind Co Ltd Phs video phone
US5920315A (en) 1996-07-17 1999-07-06 International Business Machines Corporation Multi-pane window with recoiling workspaces
US5771042A (en) 1996-07-17 1998-06-23 International Business Machines Corporation Multi-size control for multiple adjacent workspaces
US5772903A (en) 1996-09-27 1998-06-30 Hirsch; Gregory Tapered capillary optics
US5803748A (en) 1996-09-30 1998-09-08 Publications International, Ltd. Apparatus for producing audible sounds in response to visual indicia
GB9620486D0 (en) 1996-10-02 1996-11-20 Travis Adrian R L Flat panel 3D display
US5973677A (en) 1997-01-07 1999-10-26 Telxon Corporation Rechargeable, untethered electronic stylus for computer with interactive display screen
US5995084A (en) 1997-01-17 1999-11-30 Tritech Microelectronics, Ltd. Touchpad pen-input and mouse controller
JP4190039B2 (en) 1997-01-31 2008-12-03 オリンパス株式会社 Electronic camera
JP3783977B2 (en) 1997-02-17 2006-06-07 キヤノン株式会社 Stereoscopic imaging apparatus and a stereoscopic image display method
US5909211A (en) 1997-03-25 1999-06-01 International Business Machines Corporation Touch pad overlay driven computer system
US5983073A (en) * 1997-04-04 1999-11-09 Ditzik; Richard J. Modular notebook and PDA computer systems for personal computing and wireless communications
JPH10301055A (en) 1997-04-25 1998-11-13 Sony Corp Image display device
US6351273B1 (en) 1997-04-30 2002-02-26 Jerome H. Lemelson System and methods for controlling automatic scrolling of information on a display or screen
JP3310905B2 (en) * 1997-05-30 2002-08-05 株式会社日立製作所 Portable information processing apparatus
JP3876942B2 (en) 1997-06-13 2007-02-07 株式会社ワコム Light digitizer
US6144439A (en) 1997-07-29 2000-11-07 Kaiser Electro-Optics, Inc. Method and apparatus for reducing ghost images with a tilted cholesteric l