JP4182076B2 - Light guide plate and flat illumination device - Google Patents

Light guide plate and flat illumination device Download PDF

Info

Publication number
JP4182076B2
JP4182076B2 JP2005098906A JP2005098906A JP4182076B2 JP 4182076 B2 JP4182076 B2 JP 4182076B2 JP 2005098906 A JP2005098906 A JP 2005098906A JP 2005098906 A JP2005098906 A JP 2005098906A JP 4182076 B2 JP4182076 B2 JP 4182076B2
Authority
JP
Japan
Prior art keywords
surface portion
incident end
light
guide plate
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005098906A
Other languages
Japanese (ja)
Other versions
JP2006278251A (en
Inventor
伸吾 松本
カリル カランタル
Original Assignee
日本ライツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライツ株式会社 filed Critical 日本ライツ株式会社
Priority to JP2005098906A priority Critical patent/JP4182076B2/en
Publication of JP2006278251A publication Critical patent/JP2006278251A/en
Application granted granted Critical
Publication of JP4182076B2 publication Critical patent/JP4182076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、導光板の厚さが入射端面部の位置が最小になるようにして、裏面部が入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなして、光源からの光が指向性を有していても入射端面部から反入射端面部に進む時にはテーパーリークを起さず、反入射端面部で反射され入射端面部に進む時、表面部や裏面部の第1の傾斜面部でテーパーリークを起したり、全反射を行って各々反対側の面に出射したり、また裏面部の第2の傾斜面部では全反射の反射角度が小さく表面部に対して略垂直な角度で出射することができる導光板と、この導光板の入射端面部と反入射端面部との方向に対する出射角の小さい出射光を導光板の出射光側の上部に備えたレンチキュラーレンズ体によって、出射光をさらに入射端面部と反入射端面部との方向に直角方向に出射光の出射角度を小さくすることができ、さらに入射端面部近傍に光源からの強い光の映り込みを回避するとともに導光板の側面近傍に光源を備える場合において光源が少ない時による導光板の入射端面部付近の両端部での暗部発生を回避することができる導光板および平面照明装置に関するものである。   According to the present invention, the light guide plate is formed so that the position of the incident end surface portion is minimized, and the gentle first inclined surface portion and the sharp second inclined surface portion whose back surface faces in the opposite direction to the incident end surface portion. Even if the light from the light source has directivity, it does not cause taper leak when traveling from the incident end face to the non-incident end face, and is reflected by the anti-incident end face. When proceeding to the incident end face part, a taper leak occurs at the first inclined face part of the front face part or the back face part, the total reflection is performed and the light is emitted to the opposite surface, or the second slope of the back face part is obtained. A light guide plate that has a small total reflection angle at the surface portion and can be emitted at an angle substantially perpendicular to the surface portion, and an emitted light with a small exit angle with respect to the incident end surface portion and the anti-incident end surface portion of the light guide plate By a lenticular lens body provided on the upper side of the light guide plate on the outgoing light side. In addition, the outgoing light can further reduce the outgoing angle of the outgoing light in the direction perpendicular to the direction of the incident end face portion and the anti-incident end face portion, and avoid reflection of strong light from the light source in the vicinity of the incident end face portion. The present invention relates to a light guide plate and a flat illumination device capable of avoiding the generation of dark portions at both end portions near the incident end face portion of the light guide plate when the light source is provided near the side surface of the light guide plate.

従来の導光板および平面照明装置としては、光源からの光を最大限に利用する目的で導光板の厚さを入射端面部から離れるほど厚さを薄くさせる、所謂楔形状に成形して、入射端面部から入射端面部の反対方向に向かう光のテーパーリークを利用する方法が知られている。   As a conventional light guide plate and flat illumination device, the light guide plate is formed into a so-called wedge shape, with the thickness decreasing as the distance from the incident end face portion increases in order to maximize the light from the light source. A method is known that utilizes a taper leak of light traveling from the end face to the direction opposite to the incident end face.

さらに、大きな平明照明装置の場合には、上記の導光体の厚さを入射端面部から離れるほど厚さを薄くし、入射端面部から入射端面部の反対方向に向かう光のテーパーリークを利用する方法を用いて導光板の対向する2つの端面を入射端面部とする方法が知られている。   Furthermore, in the case of a large flat illumination device, the thickness of the light guide is reduced as it is farther from the incident end face, and a taper leak of light from the incident end face to the opposite direction of the incident end face is used. There is known a method in which two opposite end faces of the light guide plate are made incident end face portions by using the method of the above.

また、従来の導光板の出射面と反対側に白色の光散乱剤を印刷する場合には、入射端面部から遠ざかるほど印刷部を増加させたり、導光板に凸凹等のドットを設ける場合でも入射端面部から遠ざかるほどドットを増加させていた。   In addition, when printing a white light scattering agent on the opposite side of the exit surface of the conventional light guide plate, it is incident even when the printed portion is increased away from the incident end face portion or dots such as irregularities are provided on the light guide plate. The dots were increased as the distance from the end face portion increased.

また、従来の光源がLED等の点光源を用いた平面照明装置として、導光板の側面にLEDを複数並べ、これらLEDに対向する位置の導光板の入射端面部にプリズム等の凸や凹の形状を設け、導光板の両端隅部分的まで光線が達するようにする方法が知られている。
特開2003−337333号公報 特開2003−029260号公報
In addition, as a conventional planar illumination device using a point light source such as an LED, a plurality of LEDs are arranged on the side surface of the light guide plate, and a convex or concave such as a prism is formed on the incident end surface of the light guide plate at a position facing these LEDs There is known a method of providing a shape so that the light beam reaches a part of both corners of the light guide plate.
JP 2003-337333 A JP 2003-029260 A

上述した従来の導光板および平面照明装置として、ここでは楔形状の導光板21に光を入射させたときの光線の軌跡を図18および図19を参照しながら説明する。
図18に示すように、従来の導光板21は、入射端面部31から入射端面部31の反対側に位置する反入射端面部41に向かう程に厚さが薄くなる楔形状をなしている。このため、入射光L01が入射端面部31の反対側に位置する反入射端面部41に進む間において、光線L01は表面部61に向かう表面部61に対しての入射角が約42°内(アクリル樹脂の場合)ならば表面部61で全反射し、光線L02として裏面部71方向に進む。しかし、導光板21は光線が進む方向に対して薄なる楔形状なので、裏面部71に対する入射角が臨界角より小さいために臨界角を破り、光線L03や光線L04として裏面部71より出射してしまう。
尚、ここでは説明上、裏面部71のみに臨界角を破る出射光を示したが、表面部61にも同様に臨界角を破る出射光が存在する。
As the above-described conventional light guide plate and flat illumination device, the locus of light rays when light is incident on the wedge-shaped light guide plate 21 will be described with reference to FIGS.
As shown in FIG. 18, the conventional light guide plate 21 has a wedge shape in which the thickness decreases from the incident end surface portion 31 toward the counter incident end surface portion 41 located on the opposite side of the incident end surface portion 31. Therefore, while the incident light L01 travels to the counter-incident end surface portion 41 located on the opposite side of the incident end surface portion 31, the incident angle of the light beam L01 with respect to the surface portion 61 toward the surface portion 61 is within about 42 ° ( In the case of acrylic resin), the light is totally reflected by the front surface portion 61 and proceeds in the direction of the back surface portion 71 as a light ray L02. However, since the light guide plate 21 has a wedge shape that is thin with respect to the direction in which the light beam travels, the incident angle with respect to the back surface portion 71 is smaller than the critical angle, so the critical angle is broken and the light beam L03 and the light beam L04 are emitted from the back surface portion 71. End up.
Here, for the sake of explanation, the outgoing light that breaks the critical angle is shown only on the back surface portion 71, but the outgoing light that breaks the critical angle similarly exists on the front surface portion 61 as well.

このように、図19(a)および図19(b)に示すように、光源9からの光を最大限に利用する目的で導光板21の厚さを入射端面部31から離れるほど厚さを薄くさせる、所謂楔形状に成形して、入射端面部31から入射端面部31の反対方向に向かう光のテーパーリークを利用する方法では、光源9が指向性のある場合に入射端面部31の近傍で直ちに臨界角を破り、即ちテーパーリークによって高輝度な光が出射される。そして、この光は高輝度で指向性の強い出射光のため、光源全体、例えば半導体発光素子(LED)の光源9の場合には半導体発光素子9自身の形状が出射面から観測(映り込み)されてしまう課題がある。   Thus, as shown in FIGS. 19A and 19B, the thickness of the light guide plate 21 is increased as the distance from the incident end face portion 31 is increased in order to make maximum use of light from the light source 9. In the method of using a tapered leak of light that is formed into a so-called wedge shape that is thinned and is directed from the incident end surface portion 31 in the opposite direction to the incident end surface portion 31, when the light source 9 is directional, the vicinity of the incident end surface portion 31 is obtained. Then, the critical angle is immediately broken, that is, high brightness light is emitted by the taper leak. Since this light is emitted light having high brightness and strong directivity, the shape of the semiconductor light emitting element 9 itself is observed (reflected) from the light emitting surface of the entire light source, for example, the light source 9 of the semiconductor light emitting element (LED). There is a problem that will be done.

さらに、上記のように導光板の厚さを入射端面部31から離れるほど厚さを薄くした導光板21では、半導体発光素子9自身の形状が出射面から観測されてしまうのを回避するべく、実際には入射端面部31近傍を利用しないで用いるため、平面照明装置の必要面積以上に大きな導光板21を使用しなければならない課題がある。   Furthermore, in the light guide plate 21 in which the thickness of the light guide plate is reduced as the distance from the incident end face portion 31 increases as described above, the shape of the semiconductor light emitting element 9 itself is not observed from the exit surface. Actually, since the vicinity of the incident end face portion 31 is not used, there is a problem that the light guide plate 21 larger than the necessary area of the flat illumination device must be used.

また、従来の大きな平面照明装置の場合、上記の導光板21の厚さを入射端面部31から離れるほど厚さを薄くし、入射端面部31から入射端面部31の反対方向に向かう光のテーパーリークを利用する方法を用いて導光板21の対向する2つの端面を入射端面部31とする構成では、図20に示すように、導光板21の中心部分の厚さが最も薄い部分となり、全体を軽量化すればするほど中心部分の厚さが薄くなり機械的(構造的)強度に課題がある。   Further, in the case of a conventional large flat illumination device, the thickness of the light guide plate 21 is reduced as the distance from the incident end surface portion 31 is decreased, and the light taper from the incident end surface portion 31 in the opposite direction to the incident end surface portion 31 is achieved. In the configuration in which the two opposing end faces of the light guide plate 21 are made incident end face portions 31 using a leak-utilizing method, the central portion of the light guide plate 21 has the smallest thickness as shown in FIG. As the weight is reduced, the thickness of the central portion is reduced and there is a problem in mechanical (structural) strength.

さらに、光源としてRGB(赤色発光、緑色発光、青色発光)の三色の光源を用いて白色光を得るため、RGBの各光源を順次並べてアレー状にした場合には、各発光色が入射端面部近傍では混ざりにくい。このために、入射端面部近傍では白色にならず各発光色が出射面から斑状に出射してしまう課題がある。   Furthermore, in order to obtain white light by using three color light sources of RGB (red light emission, green light emission, blue light emission) as light sources, when each RGB light source is arranged in an array, each emission color is incident on the end face. It is difficult to mix in the vicinity of the part. For this reason, there is a problem in that each emission color does not become white in the vicinity of the incident end face portion and is emitted in a patchy manner from the emission surface.

また、従来の光源にLED等の点光源を用いた平面照明装置として、導光板の入射端面部にLEDを複数並べ、これらLEDに対向する位置の導光板の入射端面部にプリズム等の凸や凹の形状を設けた構成では、光源が点光源であるために光ビーム強度分布が円状や楕円状となり、光源に対向する導光板の入射端面部にプリズム加工を施すことで光源の左右方向に光を分散させて導光板から光を均一に出射させているが、隣り合っているLED等の光源の光が重なり合い輝度の斑が発生してしまう課題がある。   In addition, as a flat illumination device using a point light source such as an LED as a conventional light source, a plurality of LEDs are arranged on the incident end surface portion of the light guide plate, and a projection such as a prism is formed on the incident end surface portion of the light guide plate at a position facing these LEDs. In a configuration with a concave shape, the light source is a point light source, so the light beam intensity distribution is circular or elliptical, and prism processing is applied to the incident end surface portion of the light guide plate facing the light source, thereby moving the light source in the horizontal direction. However, there is a problem in that light from adjacent light sources such as LEDs overlaps to cause brightness spots.

さらに、従来の導光板と、1つのLED等の点光源を入射端面部の中心に用いた平面照明装置では、図19(a)および図19(b)に示すように、LED等の半導体発光素子の光源9では指向性を有するために、光束が狭い範囲で反入射端面部41方向に進むとともに入射端面部31から反入射端面部41方向に進む間に臨界角を破ってしまうために、入射端面部31の両端部分(入射端面部31と入射光線L0との間)が暗部となってしまう課題がある。   Further, in a conventional illumination device using a light guide plate and a point light source such as one LED at the center of the incident end face, as shown in FIGS. 19A and 19B, semiconductor light emission such as an LED is performed. In order to have directivity in the light source 9 of the element, the critical angle is broken while traveling in the direction of the anti-incident end face portion 41 in the narrow range and from the incident end face portion 31 in the direction of the anti-incident end face portion 41. There is a problem that both end portions of the incident end surface portion 31 (between the incident end surface portion 31 and the incident light beam L0) become dark portions.

また、従来の導光板や平面照明装置では、導光板内に閉じ込めた光を単にテーパーリークや導光板の表面部や裏面部に設けた溝や凸凹形状で出射させているので、光源からの光をそのまま出射したり拡散したりしている。このため、光の輝度やエネルギが低い状態での光しか出射することができず、例えば液晶表示装置のRGBの各ピクセルに対して弱い光のため、開口面積を広くしなければならず、そのためにピクセルを微細化するための障害となっていた。   In addition, in the conventional light guide plate and flat illumination device, the light confined in the light guide plate is simply emitted by a taper leak or a groove or uneven shape provided on the front or back surface of the light guide plate. Are emitted or diffused as they are. For this reason, only light in a state where the luminance and energy of light are low can be emitted. For example, since the light is weak with respect to each pixel of RGB of the liquid crystal display device, the aperture area must be widened. It was an obstacle to miniaturize pixels.

本発明は、上記のような課題を解決するためになされたもので、以下に示す特徴を有する導光板および平面照明装置を提供することにある。まず、指向性の有する光源からなり、例えば複数の半導体発光素子の単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材利用の白色光であるとともにアレー状または指向性の有する単体の半導体発光素子からなる光源と、当該光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに略直角に交わる側面部とを有し、表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、これらの面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を入射端面部に近づくほど増加するように設けた薄板状矩形立方体形状の導光板と、導光板の入射端面部および出射面以外の部分を覆うとともに反射面が凹凸形状またはプリズム形状である反射体と、導光板の出射面側の上部に設けたレンチキュラーレンズ体とを具備することによって、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、初めてテーパーリークを発生することができるとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができ、特に第2の傾斜面部による全反射した光は略垂直な出射光を得ることができる。   The present invention has been made to solve the above-described problems, and provides a light guide plate and a flat illumination device having the following characteristics. First, a light source having directivity, for example, monochromatic light of a plurality of semiconductor light emitting elements or red light, green light, three primary colors of blue light, or white light using a wavelength conversion material, and an array or directivity of a single unit A light source composed of the semiconductor light emitting element, an incident end face part that guides light from the light source, a surface part or / and a back part that emits the light, and a side part that intersects the front part and the back part at a substantially right angle The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion, and the distance between the front surface portion and the back surface portion at the anti-incident end surface portion that is the maximum separation distance from the incident end surface portion is The back surface portion has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion facing in the opposite direction to the incident end surface portion are alternately connected, and these surfaces form a mirror surface. With surface or / and back The light guide plate has a thin rectangular cubic shape with fine light deflection elements that increase as it approaches the incident end surface, and covers the portions other than the incident end surface and the exit surface of the light guide plate, and the reflective surface is uneven. By providing a reflector having a shape or a prism shape and a lenticular lens body provided on the upper side of the light exit surface of the light guide plate, the light beam guided from the incident end surface portion into the light guide plate is opposite to the incident end surface portion. There is no light beam that breaks the critical angle while proceeding to the anti-incident end face part located at, and many light rays are totally reflected on each surface of the light guide plate, and the angle at which the total reflection is made on the front and back parts is on the anti-incident end face part. As the light travels, the angle changes to a larger angle. When the light beam reflected by the non-incident end face part travels again in the direction of the incident end face part, there are many light rays that are deflected by the first inclined surface part and break the critical angle at the surface part or near the critical angle. Existed for the first time It can generate parleeks and breaks the critical angle when it reaches a fine light deflecting element and emits it from the light guide plate. The second inclined surface part totally emits light even if it is not close to the critical angle and emits directly from the surface part. In particular, the light totally reflected by the second inclined surface portion can obtain substantially vertical outgoing light.

また、反入射端面部をフレネルレンズ形状にすることによって、反入射端面部での入射端面部方向への反射光を平行な光線として反射することができる。また、表面部と裏面部との間に延存する凸状や凹状の稜を形成することによって、側面部方向に光を分散することができる。このため導光板の出射面から斑の無い均一な出射光を得ることができる。   Further, by making the anti-incident end face part into a Fresnel lens shape, the reflected light toward the incident end face part at the anti-incident end face part can be reflected as a parallel light beam. Moreover, light can be disperse | distributed to a side part part by forming the convex-shaped and concave ridge extending between a surface part and a back surface part. For this reason, it is possible to obtain uniform emission light without spots from the emission surface of the light guide plate.

さらに、反入射端面部の凸状や凹状の稜の断面の傾斜面が直線や円弧状の三角形状にすることにより、例えば側面方向の幅が広い導光板であり、入射端面部の中心に点状の光源であっても、より広がりを有する反射光を得ることができる。   Furthermore, by making the inclined surface of the cross section of the convex or concave ridge of the anti-incident end face portion into a straight or arcuate triangular shape, for example, a light guide plate having a wide width in the side surface direction, and a dot at the center of the incident end face portion. Even in the case of a light source having a shape, it is possible to obtain reflected light having a larger spread.

また、稜の頂部が平坦に欠切することにより、反入射端面部に進入してきた方向へ反射させることができる。そのため、光源や導光板の形状に捉われなく導光板の出射面から斑の無い均一な出射光を得ることができる。   Further, since the top of the ridge is cut out flat, it can be reflected in the direction of entering the counter-incident end face. Therefore, it is possible to obtain uniform emission light without spots from the emission surface of the light guide plate without being caught by the shape of the light source or the light guide plate.

さらに、反入射端面部の厚さ方向や側面部方向が円弧形状であるので、反入射端面部での反射光に集光性を得ることができる。このため、複数の点状光源等の場合、光源からの反射光が側面方向から漏れにくくしながら互いに混合され、導光板の出射面から斑の無い均一な出射光を得ることができる。   Further, since the thickness direction and the side surface direction of the anti-incident end surface portion are arc-shaped, it is possible to obtain a light collecting property on the reflected light at the anti-incident end surface portion. For this reason, in the case of a plurality of point light sources or the like, the reflected light from the light source is mixed with each other while hardly leaking from the side surface direction, and uniform outgoing light without spots can be obtained from the outgoing surface of the light guide plate.

またさらに、反入射端面部が表面部方向や裏面部方向に傾斜面部を有するので、反入射端面部での反射光を第1の傾斜面部や第2の傾斜面部方向に反射させたり、表面部方向の傾斜面部と裏面部方向の傾斜面部とで2回反射することで第1の傾斜面部や第2の傾斜面部方向に反射させることができ、暗線や輝線等のバンディング現象を防止したり、第1の傾斜面部や第2の傾斜面部方向に反射させる角度をコントロールすることで出射面からの出射角度を制御することができる。   Furthermore, since the anti-incident end face part has an inclined surface part in the surface part direction or the back surface part direction, the reflected light at the anti-incident end face part is reflected in the first inclined surface part or the second inclined surface part direction, or the surface part. It can be reflected in the direction of the first inclined surface portion and the second inclined surface portion by reflecting twice in the inclined surface portion in the direction and the inclined surface portion in the back surface direction, and banding phenomenon such as dark lines and bright lines can be prevented, The emission angle from the emission surface can be controlled by controlling the angle of reflection in the direction of the first inclined surface portion or the second inclined surface portion.

さらにまた、反入射端面部を微細なコーナーキュービック形状を有して、例えば複数の点状光源である場合に、複数の光源からの光を互いに微細なコーナーキュービック形状内で入射と反射とが同じ方向であるので、反入射端面部で反射され入射端面部方向に戻るときに導光板内で混ざり合い第1の傾斜面部や第2の傾斜面部で出射面方向に反射され、出射面から広がりのある出射光を得ることができる。   Furthermore, when the anti-incident end face portion has a fine corner cubic shape, for example, when it is a plurality of point light sources, the incident light and the reflection are the same in the fine corner cubic shape. Therefore, when the light is reflected at the anti-incident end face portion and returns to the incident end face portion direction, it is mixed in the light guide plate and reflected at the first inclined face portion or the second inclined face portion and reflected from the outgoing face direction. Some outgoing light can be obtained.

また、これら導光板の出射面側の上部にレンチキュラーレンズ体を具備し、第2の傾斜面部で臨界角に近い光線でなくとも全反射を行い直接表面部から略垂直に出射することができ、この略垂直の出射光は入射端面部と反入射端面部方向(ここではZ方向とする)での伝播によって鋭いピーク幅の光線となって出射した光をレンチキュラーレンズ体によって入射端面部および反入射端面部の左右方向(X−Y方向)に集光させることができ、例えばLCDでのRGBの各ピクセルに対して各方向に対して鋭い光束を出射するので、ピクセルの開口面積を小さくすることができる。そして、RGBの各々のピクセルのサイズを小さくすることによって、より微細で単位面積当たりのピクセル量を多くすることができるため鮮明な画像を提供することができる。   In addition, the light guide plate has a lenticular lens body at the upper part on the exit surface side, and can be emitted almost vertically from the surface portion directly by performing total reflection even if the second inclined surface portion is not a light beam close to the critical angle, This substantially vertical emitted light is emitted as a light beam having a sharp peak width by propagation in the direction of the incident end face and the anti-incident end face (in this case, the Z direction). It can be focused in the left and right direction (XY direction) of the end face, and for example, a sharp light beam is emitted in each direction for each RGB pixel in the LCD, so that the aperture area of the pixel is reduced. Can do. Further, by reducing the size of each pixel of RGB, the amount of pixels per unit area can be increased more finely, so that a clear image can be provided.

さらに、光源の映り込みや輝度斑を無くすことができるとともにRGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射せず一度導光板の入射端面部の反対側で全反射してから出射する。このために、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができ、輝度とともに輝度斑や発光色斑をコントロールすることができ、ならびに導光板の利用出射面を大きく取れ、さらに大型の導光板や平面照明装置でも光源近傍の両端の入射端面部が最小で中央部が最大の厚みとなり、機械的に優れた強度の導光板および平面照明装置を提供できる。   Furthermore, the reflection of light sources and brightness spots can be eliminated, and even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately in the vicinity of the incident end face part, but once totally reflected on the opposite side of the incident end face part of the light guide plate. And then exit. For this reason, in order to proceed while repeating total reflection several times in the light guide plate in the meantime, RGB single color light can be mixed to obtain complete white light, and brightness spots and emission color spots can be controlled along with luminance. In addition, the light exiting surface of the light guide plate can be made large, and even with a large light guide plate or flat illumination device, the incident end surface portions at both ends in the vicinity of the light source have the minimum thickness and the central portion has the maximum thickness. A light guide plate and a flat illumination device can be provided.

本発明の請求項1に係る導光板は、薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射することを特徴とする。 The light guide plate according to claim 1 of the present invention has a thin rectangular cube shape, and the distance between the front surface portion and the back surface portion gradually increases as the distance from the incident end surface portion increases. The distance between the front surface and the back surface is maximized at the counter-incident end surface, which is the maximum separation distance from the light incident end surface, and the back surface is a mirror surface. Has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion facing in the opposite direction to the incident end surface portion are alternately and continuously connected, and a critical angle when proceeding from the incident end surface portion to the non-incident end surface portion. Without being broken, the critical angle is broken by the first inclined surface portion when it is reflected from the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, and a taper leak is generated and the reflection angle of total reflection by the second inclined surface portion that is emitted substantially perpendicular angle smaller And features.

請求項1に係る導光板は、薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。 The light guide plate according to claim 1 has a thin plate-like rectangular cube shape, and the distance between the front surface portion and the back surface portion is gradually increased as the distance from the incident end surface portion increases. The distance between the front and back surfaces becomes the maximum at the counter-incident end surface, which is the maximum separation distance from the incident end surface, and the back surface composed of the mirror surface is the incident end surface. The first inclined surface part and the sharp second inclined surface part facing in the opposite direction are connected in a staircase shape, and the critical angle is not broken when proceeding from the incident end face part to the anti-incident end face part. When the light is reflected at the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, the critical angle is broken by the first inclined surface portion to generate a taper leak, and the reflection angle of total reflection is substantially small by the second inclined surface portion. since emitted perpendicular angle, the incident end There is no light beam that breaks the critical angle while the light beam guided from the part into the light guide plate proceeds to the anti-incident end surface part located on the opposite side of the incident end surface part, and many light beams are totally reflected on each surface of the light guide plate, The angle of total reflection at the front and back surfaces changes to a larger angle toward the anti-incident end surface, and the light beam reflected at the anti-incident end surface is deflected by the first inclined surface when traveling again toward the incident end surface. There are many rays that break the critical angle or near the critical angle on the surface, and when the fine light deflection element is reached with the taper leak, the critical angle is broken and emitted from the light guide plate. Even if it is not a light beam close to, it can be totally reflected and emitted directly from the surface portion.

また、請求項2に係る導光板は、薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するとともに入射端面部から反入射端面部方向に進むときにも光偏向素子の傾斜面によって臨界角を破り出射することを特徴とする。 Further, the light guide plate according to claim 2 has a thin rectangular cube shape, and on the front surface portion and / or the back surface portion , fine dot-shaped light so that the quantity or area increases as the incident end surface portion is approached. A deflection element is provided, and the distance between the front and back surfaces is minimized at the incident end surface so that the distance between the front and back surfaces gradually increases as the distance from the incident end surface is increased. The first inclined surface portion where the distance between the front surface portion and the back surface portion is maximum at the anti-incident end surface portion that is the maximum separation distance from the end surface portion, and the back surface portion formed of the mirror surface is directed in the opposite direction to the incident end surface portion. And a sharp second inclined surface portion alternately and continuously connected to each other, and when proceeding from the incident end surface portion to the anti-incident end surface portion, the critical angle is not broken and the reflected light is reflected by the anti-incident end surface portion. From the first inclined surface portion to the incident end surface portion The field angle is broken to generate a taper leak, and the reflection angle of the total reflection is small and the light is emitted at a substantially vertical angle by the second inclined surface portion, and the light deflection element is inclined even when traveling from the incident end surface portion toward the non-incident end surface portion. A critical angle is broken by a surface and emitted .

請求項2に係る導光板は、薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するとともに入射端面部から反入射端面部方向に進むときにも光偏向素子の傾斜面によって臨界角を破り出射するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。また、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。 The light guide plate according to claim 2 has a thin rectangular cube shape, and a fine dot-shaped light deflecting element such that the number or area of the front surface portion and / or the back surface portion increases as the distance from the incident end surface portion increases. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the incident end surface portion increases. The distance between the front surface portion and the back surface portion is maximum at the anti-incidence end surface portion that is the maximum separation distance from the surface, and the back surface portion formed of the mirror surface is sharp with the gentle first inclined surface portion facing in the opposite direction to the incident end surface portion. A staircase shape is formed in which the second inclined surface portions are alternately and continuously connected. When proceeding from the incident end surface portion to the anti-incident end surface portion, the critical angle is not broken and the light is reflected at the anti-incident end surface portion and incident from the anti-incident end surface portion. The critical angle by the first inclined surface when traveling to the end surface Breaking taper leak occurs, the reflection angle of total reflection is small and the light is emitted at a substantially vertical angle by the second inclined surface portion, and is also critical depending on the inclined surface of the light deflection element when traveling from the incident end surface portion toward the non-incident end surface portion. Since the light breaks off the corner and exits , the light beam guided into the light guide plate from the incident end surface portion does not break the critical angle while traveling to the counter-incident end surface portion located on the opposite side of the incident end surface portion, and each surface of the light guide plate The total reflection of many light beams at the front and back surfaces changes to a larger angle toward the anti-incident end surface, and the light reflected at the anti-incident end surface proceeds again toward the incident end surface. Sometimes there are many light beams that are deflected by the first inclined surface part and break the critical angle at the surface part or near the critical angle. When the fine light deflecting element is reached with the taper leak, the critical angle is broken and emitted from the light guide plate. , Even in the second inclined surface, not a ray close to the critical angle can be emitted directly from the surface portion subjected to total reflection. In addition, the light incident from the incident end face does not reach the critical angle even if it reaches the front or back surface of the light guide plate, and the light that has been totally reflected once by the anti-incident end face on the opposite side of the incident end face. Because there are many rays that break the critical angle or close to the critical angle, it is necessary to increase the amount of light emitted as it approaches the incident end surface in order to exit from the exit surface while returning from the anti-incident end surface to the incident end surface. Therefore, the closer to the incident end face portion, the more the number or area of the light deflection elements increases, so that uniform outgoing light can be obtained.

さらに、請求項3に係る導光板は、第2の傾斜面部の傾斜角度が第1の傾斜面部の傾斜角度の2倍以上で90°以下であることを特徴とする。   Furthermore, the light guide plate according to claim 3 is characterized in that the inclination angle of the second inclined surface portion is not less than twice the inclination angle of the first inclined surface portion and not more than 90 °.

請求項3に係る導光板は、第2の傾斜面部の傾斜角度が第1の傾斜面部の傾斜角度の2倍以上で90°以下であるので、第2の傾斜面部で全反射する光の表面部方向への偏向角が大きくなる。   In the light guide plate according to claim 3, since the inclination angle of the second inclined surface portion is not less than twice the inclination angle of the first inclined surface portion and not more than 90 °, the surface of the light totally reflected by the second inclined surface portion The deflection angle in the part direction increases.

また、請求項4に係る導光板は、反入射端面部を、2つの側面部から同距離位置を中心とし、側面部方向に曲率が変化するフレネルレンズ形状または表面部と裏面部との間に延存する凸状または/および凹状の稜を形成することを特徴とする。   In the light guide plate according to claim 4, the anti-incident end surface portion is centered on the same distance position from the two side surface portions, and the Fresnel lens shape whose curvature changes in the direction of the side surface portion or between the front surface portion and the back surface portion. An extended convex or / and concave ridge is formed.

請求項4に係る導光板は、反入射端面部を、2つの側面部から同距離位置を中心とし、側面部方向に曲率が変化するフレネルレンズ形状または表面部と裏面部との間に延存する凸状または/および凹状の稜を形成するので、反入射端面部での入射端面部方向への反射光を平行な光線として反射することができ、表面部と裏面部との間に延存する凸状や凹状の稜を形成することによって、側面部方向に光を分散することができる。   The light guide plate according to claim 4 has the anti-incident end surface portion extending between the Fresnel lens shape or the front surface portion and the back surface portion whose curvature changes in the direction of the side surface centered at the same distance position from the two side surface portions. Since the convex or / and concave ridges are formed, the reflected light in the direction of the incident end face at the non-incident end face can be reflected as a parallel light beam, and the convex extending between the front surface and the back surface. By forming a ridge having a shape or a concave shape, light can be dispersed in the direction of the side surface.

さらに、請求項5に係る導光板は、凸状の稜および凹状の稜の断面の傾斜面が直線または円弧状の三角形状または稜の頂部が平坦に欠切したことを特徴とする。   Furthermore, the light guide plate according to claim 5 is characterized in that the inclined surface of the cross section of the convex ridge and the concave ridge is a straight or arcuate triangular shape or the top of the ridge is notched flat.

請求項5に係る導光板は、凸状の稜および凹状の稜の断面の傾斜面が直線または円弧状の三角形状または稜の頂部が平坦に欠切したので、例えば側面方向の幅が広い導光板であり、入射端面部の中心に点状の光源があっても、より広がりを有する反射光を得ることができる。
また、稜の頂部が平坦に欠切した場合には、反入射端面部に進入してきた方向へ反射させることができる。
In the light guide plate according to the fifth aspect, the convex ridge and the inclined surface of the cross section of the concave ridge are straight or arcuate triangular or the top of the ridge is notched flat. Even if there is a point light source at the center of the incident end face portion of the light plate, reflected light having a larger spread can be obtained.
Moreover, when the top part of a ridge is notched flat, it can reflect in the direction which approached the anti-incident end surface part.

また、請求項6に係る導光板は、反入射端面部が、表面部と裏面部との厚さ方向または/および側面部方向が円弧形状であることを特徴とする。   The light guide plate according to claim 6 is characterized in that the anti-incident end face part has an arc shape in the thickness direction of the front face part and the back face part and / or the side face part direction.

請求項6に係る導光板は、反入射端面部が、表面部と裏面部との厚さ方向または/および側面部方向が円弧形状であるので、厚さ方向が円弧形状の場合には反入射端面部での反射光に集光性を得ることができる。これにより、無駄なく第1の傾斜面部や第2の傾斜面部方向に集光でき、明るい出射光を得ることができる。
また、側面部方向が円弧形状の場合には、反入射端面部での反射光に集光性を得ることができるため、複数の点状光源等の場合、光源からの反射光が側面方向から漏れにくくしながら互いに混合される。
In the light guide plate according to claim 6, the anti-incident end face portion has an arc shape in the thickness direction of the front surface portion and the back surface portion and / or the side surface portion direction. Condensability can be obtained for the reflected light at the end face. Thereby, it can condense to the 1st inclined surface part and the 2nd inclined surface part direction without waste, and can obtain bright emitted light.
In addition, when the side surface direction is an arc shape, it is possible to obtain a light collecting property on the reflected light at the anti-incident end surface portion. Therefore, in the case of a plurality of point light sources, the reflected light from the light source is They are mixed with each other while preventing leakage.

さらに、請求項7に係る導光板は、反入射端面部が、表面部方向または/および裏面部方向に傾斜面部を有することを特徴とする。   Furthermore, the light guide plate according to claim 7 is characterized in that the non-incident end surface portion has an inclined surface portion in a front surface portion direction and / or a back surface portion direction.

請求項7に係る導光板は、反入射端面部が、表面部方向または/および裏面部方向に傾斜面部を有するので、反入射端面部での反射光を第1の傾斜面部や第2の傾斜面部方向に反射させたり、表面部方向の傾斜面部と裏面部方向の傾斜面部とで2回反射することで第1の傾斜面部や第2の傾斜面部に反射させることができる。   In the light guide plate according to the seventh aspect, since the anti-incident end surface portion has the inclined surface portion in the front surface portion direction and / or the back surface portion direction, the reflected light at the anti-incident end surface portion is reflected by the first inclined surface portion or the second inclined surface portion. It can be reflected to the first inclined surface portion or the second inclined surface portion by reflecting in the surface portion direction or reflecting twice on the inclined surface portion in the front surface portion direction and the inclined surface portion in the rear surface portion direction.

また、請求項8に係る導光板は、反入射端面部が、微細なコーナーキュービック形状を有することを特徴とする。   The light guide plate according to an eighth aspect is characterized in that the anti-incident end face portion has a fine corner cubic shape.

請求項8に係る導光板は、反入射端面部が、微細なコーナーキュービック形状を有するので、例えば複数の点状光源である場合に、複数の光源からの光を互いの微細なコーナーキュービック形状内で入射と反射とが同じ方向であるので、反入射端面部で反射され入射端面部方向に戻るときに導光板内で混ざり合い第1の傾斜面部や第2の傾斜面部で出射面方向に反射される。   In the light guide plate according to claim 8, since the anti-incident end surface portion has a fine corner cubic shape, for example, when it is a plurality of point light sources, the light from the plurality of light sources is within the fine corner cubic shape. In this case, the incident and reflection directions are the same, so when reflected in the anti-incident end face portion and mixed back in the incident end face portion direction, they are mixed in the light guide plate and reflected by the first inclined face portion and the second inclined face portion in the outgoing face direction. Is done.

また、請求項9に係る平面照明装置は、指向性の有する光源と、
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする。
Further, a flat illumination device according to claim 9 is a light source having directivity,
Forms an incident end face for guiding light from the light source, and a surface portion and / or back surface and emits the light, the thin plate rectangular cubic shape having a side portion intersecting to the these surface portions and the back portion, the incident The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the end surface portion increases, and the maximum separation distance from the incident end surface portion. The distance between the front surface portion and the back surface portion is maximum at the anti-incident end surface portion, and the back surface portion made of a mirror surface has a gentle first inclined surface portion and a sharp second inclination facing the opposite direction to the incident end surface portion. It has a staircase shape in which the surface portion is alternately and continuously connected, and does not break the critical angle when proceeding from the incident end surface portion to the anti-incident end surface portion, and is reflected at the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion. Sometimes the first inclined surface breaks the critical angle and tapers A light guide plate for emitting a substantially normal angle smaller reflection angle of the total reflection by the second inclined surface portion as well as generate,
And a reflector having reflectivity that covers portions other than the incident end face and the exit face of the light guide plate.

請求項9に係る平面照明装置は、指向性の有する光源と、
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、このため、入射端面部近傍でテーパーリークは起こらないので、指向性の強い光源でも入射端面部近傍での光輝度の出射光や半導体発光素子自身等の光源の形状が出射面から観測(映り込み)や輝度斑が無い。
A flat illumination device according to claim 9 is a light source having directivity,
Forms an incident end face for guiding light from the light source, and a surface portion and / or back surface and emits the light, the thin plate rectangular cubic shape having a side portion intersecting to the these surface portions and the back portion, the incident The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the end surface portion increases, and the maximum separation distance from the incident end surface portion. The distance between the front surface portion and the back surface portion is maximum at the anti-incident end surface portion, and the back surface portion made of a mirror surface has a gentle first inclined surface portion and a sharp second inclination facing the opposite direction to the incident end surface portion. It has a staircase shape in which the surface portion is alternately and continuously connected, and does not break the critical angle when proceeding from the incident end surface portion to the anti-incident end surface portion, and is reflected at the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion. Sometimes the first inclined surface breaks the critical angle and tapers A light guide plate for emitting a substantially normal angle smaller reflection angle of the total reflection by the second inclined surface portion as well as generate,
A light-reflecting reflector that covers a portion other than the incident end face and the exit face of the light guide plate, so that the light beam guided from the incident end face into the light guide plate is located on the opposite side of the incident end face. There is no light beam that breaks the critical angle while going to the incident end face, and many light rays are totally reflected on each surface of the light guide plate. to change, light, etc. many present near the light and the critical angle break the critical angle at the first deflected by the inclined surface portion surface portion when going light again incident end face direction reflected by the anti-incident end face, this Therefore, taper leak does not occur in the vicinity of the incident end face, so even with a highly directional light source, the emitted light of the light intensity near the incident end face and the shape of the light source such as the semiconductor light emitting element itself are observed (reflected). ) Or brightness spots.

さらに、反入射端面部で全反射をした光線によって始めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しない。このため、発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するので、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。   Furthermore, since a taper leak can be caused only by a light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, it does not immediately emit near the incident end face part. For this reason, it is possible to avoid the occurrence of light emission color spots, and the incident light is totally reflected once on the opposite side of the incident end face portion of the light guide plate, and then emitted, so the total reflection in the light guide plate is repeated several times during that time. However, in order to proceed, RGB monochromatic light is mixed and complete white light can be obtained.

また、請求項10に係る平面照明装置は、指向性の有する光源と、A planar illumination device according to claim 10 is a light source having directivity,
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、A thin plate-like rectangular cube shape having an incident end face part that guides light from the light source, a surface part or / and a back part that emits the light, and a side part that intersects with the front part and the back part, In the area or / and the back surface, a fine dot-shaped light deflecting element is provided so that the quantity or area increases as it approaches the incident end surface, and the distance between the front surface and the back surface increases as the distance from the incident end surface increases. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance gradually increases, and between the front surface portion and the back surface portion at the anti-incident end surface portion that is the maximum separation distance from the incident end surface portion. The back surface portion made of a mirror surface has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion that are opposite to the incident end surface portion are alternately and continuously connected, Critical when traveling from the incident end face to the anti-incident end face Without being broken, the critical angle is broken by the first inclined surface portion when it is reflected from the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, and a taper leak is generated and the reflection angle of total reflection by the second inclined surface portion A light guide plate that emits light at a small and substantially vertical angle;
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする。And a reflector having reflectivity that covers portions other than the incident end face and the exit face of the light guide plate.

請求項10に係る平面照明装置は、指向性の有する光源と、A planar illumination device according to claim 10 is a light source having directivity,
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、A thin plate-like rectangular cube shape having an incident end face part that guides light from the light source, a surface part or / and a back part that emits the light, and a side part that intersects with the front part and the back part, In the area or / and the back surface, a fine dot-shaped light deflecting element is provided so that the quantity or area increases as it approaches the incident end surface, and the distance between the front surface and the back surface increases as the distance from the incident end surface increases. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance gradually increases, and between the front surface portion and the back surface portion at the anti-incident end surface portion that is the maximum separation distance from the incident end surface portion. The back surface portion made of a mirror surface has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion that are opposite to the incident end surface portion are alternately and continuously connected, Critical when traveling from the incident end face to the anti-incident end face Without being broken, the critical angle is broken by the first inclined surface portion when it is reflected from the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, and a taper leak is generated and the reflection angle of total reflection by the second inclined surface portion A light guide plate that emits light at a small and substantially vertical angle;
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。また、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。A light-reflecting reflector that covers a portion other than the incident end face and the exit face of the light guide plate, so that the light beam guided from the incident end face into the light guide plate is located on the opposite side of the incident end face. There is no light beam that breaks the critical angle while going to the incident end face, and many light rays are totally reflected on each surface of the light guide plate. When the light beam reflected by the non-incident end face portion again travels in the direction of the incident end face portion, there are many light rays that are deflected by the first inclined surface portion and break the critical angle at the surface portion or near the critical angle, and are tapered. When a fine light deflecting element is reached together with a leak, the critical angle is broken and emitted from the light guide plate, and the second inclined surface portion can be directly reflected from the surface portion by performing total reflection even if the light beam is not close to the critical angle. In addition, the light incident from the incident end face does not reach the critical angle even if it reaches the front or back surface of the light guide plate, and the light that has been totally reflected once by the anti-incident end face on the opposite side of the incident end face. Because there are many rays that break the critical angle or close to the critical angle, it is necessary to increase the amount of light emitted as it approaches the incident end surface in order to exit from the exit surface while returning from the anti-incident end surface to the incident end surface. Therefore, the closer to the incident end face portion, the more the number or area of the light deflection elements increases, so that uniform outgoing light can be obtained.

さらに、反入射端面部で全反射をした光線によって初めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しない。このため、発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するので、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。Furthermore, since the taper leak can be caused only by the light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately in the vicinity of the incident end face part. For this reason, it is possible to avoid the occurrence of light emission color spots, and the incident light is totally reflected once on the opposite side of the incident end face portion of the light guide plate, and then emitted, so the total reflection in the light guide plate is repeated several times during that time. However, in order to proceed, RGB monochromatic light is mixed and complete white light can be obtained.

また、請求項11に係る平面照明装置は、導光板の出射面側の上部にレンチキュラーレンズ体を具備することを特徴とする。 The flat illumination device according to an eleventh aspect is characterized in that a lenticular lens body is provided in an upper portion on the light exit surface side of the light guide plate.

請求項11に係る平面照明装置は、導光板の出射面側の上部にレンチキュラーレンズ体を具備するので、第2の傾斜面部で臨界角に近い光線でなくとも全反射を行って直接表面部から略垂直に出射することができ、この略垂直な出射光は入射端面部と反入射端面部方向(ここではZ方向とする)での伝播によって鋭いピーク幅の光線となって出射した光をレンチキュラーレンズ体によって入射端面部および反入射端面部の左右方向(X−Y方向)に集光させることができる。 Since the planar illumination device according to claim 11 includes a lenticular lens body on the light exit surface of the light guide plate, the second inclined surface portion performs total reflection even if the light beam is not close to the critical angle, and directly from the surface portion. The substantially perpendicular emission light can be emitted substantially vertically, and the light emitted as a light beam having a sharp peak width by propagation in the direction of the incident end face portion and the anti-incident end face portion (here, Z direction) is lenticular. The lens body can collect light in the left-right direction (XY direction) of the incident end surface portion and the anti-incident end surface portion.

さらに、請求項12に係る平面照明装置は、光源が、指向性の有する半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材利用の白色光であるとともにこれらを単体またはアレー状に構成したことを特徴とする。 Furthermore, in the planar illumination device according to claim 12 , the light source is composed of a directional semiconductor light-emitting element, and is monochromatic light or red light, green light, blue light, three primary colors, or white light using a wavelength conversion material. These are configured as a single body or an array.

請求項12に係る平面照明装置は、光源が、指向性の有する半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材利用の白色光であるとともにこれらを単体またはアレー状に構成したので、高輝度の出射光を得ることができるとともに目的に応じて高輝度の白色光を出射することができ、アレー状に構成することにより光源の形状が出射面から観測(映り込み)や輝度斑が無い出射光を得ることができる。 In the planar illumination device according to claim 12 , the light source is composed of a directional semiconductor light emitting element, and is monochromatic light or red light, green light, blue light, or primary light of wavelength conversion material or white light using a wavelength conversion material. Since it is configured as a single unit or an array, it is possible to obtain high-luminance outgoing light and to emit high-luminance white light according to the purpose. It is possible to obtain outgoing light that is free from observation (reflection) and luminance spots.

また、請求項13に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であることを特徴とする。 The flat illumination device according to claim 13 is characterized in that the reflection surface of the reflector has an uneven shape or a prism shape.

請求項13に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であるので、入射端面部から入射端面部の反対側に位置する反入射端面部に進んだ光線や出射面の反対側の面に出射した光線や漏れた光線等をより確実に再度導光板内に戻すことができ、凹凸形状やプリズム形状を制御することにより再度導光板内に戻す位置をコントロールすることができる。さらに光源がRGB等の三原色光の場合に三原色光の光をプリズム面による反射によって導光板内で混ざり合うことができる。 In the planar illumination device according to the thirteenth aspect, since the reflecting surface of the reflector has a concavo-convex shape or a prism shape, the light beam or the exit surface that has traveled from the incident end surface portion to the counter-incident end surface portion located on the opposite side of the incident end surface portion The light emitted to the opposite surface or the leaked light can be returned to the light guide plate more reliably, and the position to return to the light guide plate can be controlled again by controlling the uneven shape and prism shape. . Further, when the light source is light of three primary colors such as RGB, the light of the three primary colors can be mixed in the light guide plate by reflection by the prism surface.

以上のように、請求項1に係る導光板は、薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。特に第2の傾斜面部による全反射をした光は略垂直な出射光を得ることができる。 As described above, the light guide plate according to claim 1 has a thin rectangular cube shape, and the distance between the surface portion and the back surface portion gradually increases as the distance from the incident end surface portion increases. minimum becomes a period of distance incidence end face of the back portion, a period of the distance between the surface portion and the back portion in the counter-incident end face which is the maximum distance away from the incident end face is maximized, consisting mirror The back surface portion has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion facing in the opposite direction to the incident end surface portion are alternately and continuously connected, and when proceeding from the incident end surface portion to the anti-incident end surface portion Without breaking the critical angle, it is reflected at the anti-incident end face part and travels from the anti-incident end face part to the incident end face part, breaks the critical angle by the first inclined face part, generates a taper leak, and is totally reflected by the second inclined face part. The light is emitted at a small angle with a small reflection angle. Since light rays break critical angle between guided from the incident end face in the light guide plate beam traveling counter-incident end surface portion located on the opposite side of the entrance end face is not a lot of light on each side of the light guide plate The angle at which the light is totally reflected and totally reflected on the front surface portion and the back surface portion changes to a larger angle toward the anti-incident end surface portion, and the first inclination is obtained when the light beam reflected on the anti-incident end surface portion travels again toward the incident end surface portion. There are many rays that are deflected by the surface part and break the critical angle at the surface part or near the critical angle. When the fine light deflecting element is reached together with the taper leak, the critical angle is broken and emitted from the light guide plate. Even if the light is not close to the critical angle, it can be totally reflected at the surface portion and can be directly emitted from the surface portion. In particular, light that has been totally reflected by the second inclined surface portion can obtain substantially vertical outgoing light.

そのため、光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端をも暗部がなく明るい均一な出射光を得ることができる。このため、その分実際に使用でき得る導光板の面積が大きく取れ、さらに光源が並列(アレー状)に設けてあっても互いに隣り合う光源からの光を重ならずに輝度斑の発生を防ぐことができる。また、大型化する場合に両端を入射端面部とし、中心部分の厚さが一番厚いので導光板の機械的安定および強度に優れる。   Therefore, the amount of light can be controlled, the light source is not reflected, and bright uniform outgoing light can be obtained without dark portions at both ends of the incident end surface near the incident end surface. For this reason, the area of the light guide plate that can actually be used can be increased, and even if the light sources are provided in parallel (array shape), the occurrence of luminance spots is prevented without overlapping light from adjacent light sources. be able to. Further, when the size is increased, both ends are set as incident end faces, and the thickness of the central portion is the thickest, so that the light guide plate is excellent in mechanical stability and strength.

さらに、反入射端面部で全反射をした光線によって初めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しない。このため、発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するので、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。Furthermore, since the taper leak can be caused only by the light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately in the vicinity of the incident end face part. For this reason, it is possible to avoid the occurrence of light emission color spots, and the incident light is totally reflected once on the opposite side of the incident end face portion of the light guide plate, and then emitted, so the total reflection in the light guide plate is repeated several times during that time. However, in order to proceed, RGB monochromatic light is mixed and complete white light can be obtained.

また、請求項2に係る導光板は、薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するとともに入射端面部から反入射端面部方向に進むときにも光偏向素子の傾斜面によって臨界角を破り出射するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。また、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。 Further, the light guide plate according to claim 2 has a thin rectangular cube shape, and on the front surface portion and / or the back surface portion , fine dot-shaped light so that the quantity or area increases as the incident end surface portion is approached. A deflection element is provided, and the distance between the front and back surfaces is minimized at the incident end surface so that the distance between the front and back surfaces gradually increases as the distance from the incident end surface is increased. The first inclined surface portion where the distance between the front surface portion and the back surface portion is maximum at the anti-incident end surface portion that is the maximum separation distance from the end surface portion, and the back surface portion formed of the mirror surface is directed in the opposite direction to the incident end surface portion. And a sharp second inclined surface portion alternately and continuously connected to each other, and when proceeding from the incident end surface portion to the anti-incident end surface portion, the critical angle is not broken and the reflected light is reflected by the anti-incident end surface portion. From the first inclined surface portion to the incident end surface portion The field angle is broken to generate a taper leak, and the reflection angle of the total reflection is small and the light is emitted at a substantially vertical angle by the second inclined surface portion, and the light deflection element is inclined even when traveling from the incident end surface portion toward the non-incident end surface portion. Since the light breaks off the critical angle by the surface, the light beam guided from the incident end surface part into the light guide plate does not break the critical angle while proceeding to the anti-incident end surface part located on the opposite side of the incident end surface part, and the light guide plate Many rays are totally reflected on each surface of the surface, and the angle of total reflection on the front surface portion and the back surface portion changes to a larger angle toward the anti-incident end surface portion, and the light rays reflected on the anti-incident end surface portion are incident again on the incident end surface portion. There are many light rays that are deflected by the first inclined surface part and break the critical angle at the surface part when traveling in the direction, or light rays close to the critical angle, etc., and break the critical angle when reaching a fine light deflecting element with taper leak. Out of And it can be emitted from the surface directly unit performs total reflection even in the second inclined surface, not a ray close to the critical angle. In addition, the light incident from the incident end face does not reach the critical angle even if it reaches the front or back surface of the light guide plate, and the light that has been totally reflected once by the anti-incident end face on the opposite side of the incident end face. Because there are many rays that break the critical angle or close to the critical angle, it is necessary to increase the amount of light emitted as it approaches the incident end surface in order to exit from the exit surface while returning from the anti-incident end surface to the incident end surface. Therefore, the closer to the incident end face portion, the more the number or area of the light deflection elements increases, so that uniform outgoing light can be obtained.

そのため、光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端をも暗部がなく明るい均一な出射光を得ることができる。このため、その分実際に使用でき得る導光板の面積が大きく取れ、さらに光源が並列(アレー状)に設けてあっても互いに隣り合う光源からの光を重ならずに輝度斑の発生を防ぐことができる。また、大型化する場合に両端を入射端面部とし、中心部分の厚さが一番厚いので導光板の機械的安定および強度に優れる。Therefore, the amount of light can be controlled, the light source is not reflected, and bright uniform outgoing light can be obtained without dark portions at both ends of the incident end surface near the incident end surface. For this reason, the area of the light guide plate that can actually be used can be increased, and even if the light sources are provided in parallel (array shape), the occurrence of luminance spots is prevented without overlapping light from adjacent light sources. be able to. Further, when the size is increased, both ends are set as incident end faces, and the thickness of the central portion is the thickest, so that the light guide plate is excellent in mechanical stability and strength.

さらに、反入射端面部で全反射をした光線によって初めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しない。このため、発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するので、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。Furthermore, since the taper leak can be caused only by the light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately in the vicinity of the incident end face part. For this reason, it is possible to avoid the occurrence of light emission color spots, and the incident light is totally reflected once on the opposite side of the incident end face portion of the light guide plate, and then emitted, so the total reflection in the light guide plate is repeated several times during that time. However, in order to proceed, RGB monochromatic light is mixed and complete white light can be obtained.

さらに、請求項3に係る導光板は、第2の傾斜面部の傾斜角度が第1の傾斜面部の傾斜角度の2倍以上で90°以下であるので、第2の傾斜面部で全反射する光の表面部方向への偏向角が大きくなる。そのため、表面部への入射角が小さくなり出射光が垂直方向に出射しやすくなる。   Furthermore, the light guide plate according to claim 3 is such that the angle of inclination of the second inclined surface portion is not less than twice the angle of inclination of the first inclined surface portion and not more than 90 °, and therefore the light totally reflected by the second inclined surface portion. The angle of deflection in the direction of the surface portion increases. Therefore, the angle of incidence on the surface portion is reduced, and the emitted light is easily emitted in the vertical direction.

また、請求項4に係る導光板は、反入射端面部を、2つの側面部から同距離位置を中心とし、側面部方向に曲率が変化するフレネルレンズ形状または表面部と裏面部との間に延存する凸状または/および凹状の稜を形成するので、反入射端面部での入射端面部方向への反射光を平行な光線として反射することができ、表面部と裏面部との間に延存する凸状や凹状の稜を形成することによって、側面部方向に光を分散することができる。そのため、導光板の出射面から斑の無い均一な出射光を得ることができる。   In the light guide plate according to claim 4, the anti-incident end surface portion is centered on the same distance position from the two side surface portions, and the Fresnel lens shape whose curvature changes in the direction of the side surface portion or between the front surface portion and the back surface portion. Since the extending convex or / and concave ridges are formed, the reflected light in the direction of the incident end face at the non-incident end face can be reflected as a parallel light beam, extending between the front surface and the back surface. By forming the existing convex or concave ridges, the light can be dispersed in the direction of the side surface. Therefore, uniform emission light without spots can be obtained from the emission surface of the light guide plate.

請求項5に係る導光板は、凸状の稜および凹状の稜の断面の傾斜面が直線または円弧状の三角形状または稜の頂部が平坦に欠切したので、例えば側面方向の幅が広い導光板であり、入射端面部の中心に点状の光源があっても、より広がりを有する反射光を得ることができる。
また、稜の頂部が平坦に欠切した場合には、反入射端面部に進入してきた方向へ反射させることができる。
そのため、光源や導光板の形状に捉われなく導光板の出射面から斑の無い均一な出射光を得ることができる。
In the light guide plate according to the fifth aspect, the convex ridge and the inclined surface of the cross section of the concave ridge are straight or arcuate triangular or the top of the ridge is notched flat. Even if there is a point light source at the center of the incident end face portion of the light plate, reflected light having a larger spread can be obtained.
Moreover, when the top part of a ridge is notched flat, it can reflect in the direction which approached the anti-incident end surface part.
Therefore, it is possible to obtain uniform emission light without spots from the emission surface of the light guide plate without being caught by the shape of the light source or the light guide plate.

請求項6に係る導光板は、反入射端面部が、表面部と裏面部との厚さ方向または/および側面部方向が円弧形状であるので、厚さ方向が円弧形状の場合には反入射端面部での反射光に集光性を得ることができる。これにより、無駄なく第1の傾斜面部や第2の傾斜面部方向に集光でき、明るい出射光を得ることができる。
また、側面部方向が円弧形状の場合には、反入射端面部での反射光に集光性を得ることができるため、複数の点状光源等の場合、光源からの反射光が側面方向から漏れにくくしながら互いに混合される。そのために、導光板の出射面から斑の無い均一な出射光を得ることができる。
さらに、反入射端面部が表面部と裏面部との厚さ方向および側面部方向が円弧形状にした時には、所謂トーリックレンズの役割を得ることができる。そのため、1つの光源に対しても2つの焦点を持つので、導光板内部に存在する光を無駄なく利用することができる。
In the light guide plate according to claim 6, the anti-incident end face portion has an arc shape in the thickness direction of the front surface portion and the back surface portion and / or the side surface portion direction. Condensability can be obtained for the reflected light at the end face. Thereby, it can condense to the 1st inclined surface part and the 2nd inclined surface part direction without waste, and can obtain bright emitted light.
In addition, when the side surface direction is an arc shape, it is possible to obtain a light collecting property on the reflected light at the anti-incident end surface portion. Therefore, in the case of a plurality of point light sources, the reflected light from the light source is They are mixed with each other while preventing leakage. Therefore, uniform outgoing light without spots can be obtained from the outgoing surface of the light guide plate.
Further, when the anti-incident end surface portion has a circular shape in the thickness direction and the side surface direction between the front surface portion and the back surface portion, a so-called toric lens can be obtained. Therefore, since one light source has two focal points, light existing inside the light guide plate can be used without waste.

請求項7に係る導光板は、反入射端面部が、表面部方向または/および裏面部方向に傾斜面部を有するので、反入射端面部での反射光を第1の傾斜面部や第2の傾斜面部方向に反射させたり、表面部方向の傾斜面部と裏面部方向の傾斜面部とで2回反射することで第1の傾斜面部や第2の傾斜面部に反射させることができる。   In the light guide plate according to the seventh aspect, since the anti-incident end surface portion has the inclined surface portion in the front surface portion direction and / or the back surface portion direction, the reflected light at the anti-incident end surface portion is reflected by the first inclined surface portion or the second inclined surface portion. It can be reflected to the first inclined surface portion or the second inclined surface portion by reflecting in the surface portion direction or reflecting twice on the inclined surface portion in the front surface portion direction and the inclined surface portion in the rear surface portion direction.

請求項8に係る導光板は、反入射端面部が、微細なコーナーキュービック形状を有するので、例えば複数の点状光源である場合に、複数の光源からの光を互いの微細なコーナーキュービック形状内で入射と反射とが同じ方向であるので、反入射端面部で反射され入射端面部方向に戻るときに導光板内で混ざり合い第1の傾斜面部や第2の傾斜面部で出射面方向に反射される。そのために、出射面から広がりのある出射光を得ることができる。   In the light guide plate according to claim 8, since the anti-incident end surface portion has a fine corner cubic shape, for example, when it is a plurality of point light sources, the light from the plurality of light sources is within the fine corner cubic shape. In this case, the incident and reflection directions are the same, so when reflected in the anti-incident end face portion and mixed back in the incident end face portion direction, they are mixed in the light guide plate and reflected by the first inclined face portion and the second inclined face portion in the outgoing face direction. Is done. Therefore, it is possible to obtain outgoing light having a spread from the outgoing surface.

また、請求項9に係る平面照明装置は、指向性の有する光源と、
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、このため、入射端面部近傍でテーパーリークは起こらないので、指向性の強い光源でも入射端面部近傍での光輝度の出射光や半導体発光素子自身等の光源の形状が出射面から観測(映り込み)や輝度斑が無い。
Further, a flat illumination device according to claim 9 is a light source having directivity,
Forms an incident end face for guiding light from the light source, and a surface portion and / or back surface and emits the light, the thin plate rectangular cubic shape having a side portion intersecting to the these surface portions and the back portion, the incident The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the end surface portion increases, and the maximum separation distance from the incident end surface portion. The distance between the front surface portion and the back surface portion is maximum at the anti-incident end surface portion, and the back surface portion made of a mirror surface has a gentle first inclined surface portion and a sharp second inclination facing the opposite direction to the incident end surface portion. It has a staircase shape in which the surface portion is alternately and continuously connected, and does not break the critical angle when proceeding from the incident end surface portion to the anti-incident end surface portion, and is reflected at the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion. Sometimes the first inclined surface breaks the critical angle and tapers A light guide plate for emitting a substantially normal angle smaller reflection angle of the total reflection by the second inclined surface portion as well as generate,
A light-reflecting reflector that covers a portion other than the incident end face and the exit face of the light guide plate, so that the light beam guided from the incident end face into the light guide plate is located on the opposite side of the incident end face. There is no light beam that breaks the critical angle while going to the incident end face, and many light rays are totally reflected on each surface of the light guide plate. to change, light, etc. many present near the light and the critical angle break the critical angle at the first deflected by the inclined surface portion surface portion when going light again incident end face direction reflected by the anti-incident end face, this Therefore, taper leak does not occur in the vicinity of the incident end face, so even with a highly directional light source, the emitted light of the light intensity near the incident end face and the shape of the light source such as the semiconductor light emitting element itself are observed (reflected). ) Or brightness spots.

そのために、光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端をも暗部がなく明るい均一な出射光を得ることができる。これにより、その分実際に使用でき得る導光板の面積が大きく取れ、さらに光源が並列(アレー状)に設けてあっても互いに隣り合う光源からの光を重ならずに輝度斑の発生を防ぐことができ、また大型化する場合に両端を入射端面部とするため中心部分の厚さが一番厚いので導光板の機械的安定および強度に優れる。   Therefore, the amount of light can be controlled, the light source is not reflected, and both the ends of the incident end face near the incident end face have no dark part and bright uniform emitted light can be obtained. As a result, the area of the light guide plate that can be actually used can be increased, and even if the light sources are arranged in parallel (array shape), the occurrence of luminance spots is prevented without overlapping light from adjacent light sources. In addition, when the size of the light guide plate is increased, both ends are made incident end face portions, so that the thickness of the central portion is the thickest, so that the light guide plate is excellent in mechanical stability and strength.

さらに、反入射端面部で全反射をした光線によって始めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しないので発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するために、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。   Furthermore, since a taper leak can only occur due to a light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, light is not emitted immediately in the vicinity of the incident end face part. In order for incident light to be emitted after being totally reflected once on the opposite side of the incident end face portion of the light guide plate, in order to travel while repeating total reflection several times in the light guide plate, Monochromatic light can be mixed to obtain complete white light.

請求項10に係る平面照明装置は、指向性の有する光源と、A planar illumination device according to claim 10 is a light source having directivity,
光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、表面部または/および裏面部には、入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、入射端面部から離れるに従い表面部と裏面部との間の間距離が徐々に大きく成るように表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において表面部と裏面部との間の間距離が最大になり、鏡面から成る裏面部は入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、入射端面部から反入射端面部に進む時には臨界角を破らず、反入射端面部にて反射され反入射端面部から入射端面部に進む時に第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、A thin plate-like rectangular cube shape having an incident end face part that guides light from the light source, a surface part or / and a back part that emits the light, and a side part that intersects with the front part and the back part, In the area or / and the back surface, a fine dot-shaped light deflecting element is provided so that the quantity or area increases as it approaches the incident end surface, and the distance between the front surface and the back surface increases as the distance from the incident end surface increases. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance gradually increases, and between the front surface portion and the back surface portion at the anti-incident end surface portion that is the maximum separation distance from the incident end surface portion. The back surface portion made of a mirror surface has a staircase shape in which a gentle first inclined surface portion and a sharp second inclined surface portion that are opposite to the incident end surface portion are alternately and continuously connected, Critical when traveling from the incident end face to the anti-incident end face Without being broken, the critical angle is broken by the first inclined surface portion when it is reflected from the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, and a taper leak is generated and the reflection angle of total reflection by the second inclined surface portion A light guide plate that emits light at a small and substantially vertical angle;
導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部から導光板内に導かれた光線は入射端面部の反対側に位置する反入射端面部に進む間では臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させ、この表面部や裏面部で全反射する角度が反入射端面部に向かうに従い大きな角度に変化し、反入射端面部で反射した光線を再度入射端面部方向に進む時に第1の傾斜面部により偏向され表面部で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射し、第2の傾斜面部では臨界角に近い光線でなくとも全反射を行い直接表面部から出射することができる。また、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。A light-reflecting reflector that covers a portion other than the incident end face and the exit face of the light guide plate, so that the light beam guided from the incident end face into the light guide plate is located on the opposite side of the incident end face. There is no light beam that breaks the critical angle while going to the incident end face, and many light rays are totally reflected on each surface of the light guide plate. When the light beam reflected by the non-incident end face portion again travels in the direction of the incident end face portion, there are many light rays that are deflected by the first inclined surface portion and break the critical angle at the surface portion or near the critical angle, and are tapered. When a fine light deflecting element is reached together with a leak, the critical angle is broken and emitted from the light guide plate, and the second inclined surface portion can be directly reflected from the surface portion by performing total reflection even if the light beam is not close to the critical angle. In addition, the light incident from the incident end face does not reach the critical angle even if it reaches the front or back surface of the light guide plate, and the light that has been totally reflected once by the anti-incident end face on the opposite side of the incident end face. Because there are many rays that break the critical angle or close to the critical angle, it is necessary to increase the amount of light emitted as it approaches the incident end surface in order to exit from the exit surface while returning from the anti-incident end surface to the incident end surface. Therefore, the closer to the incident end face portion, the more the number or area of the light deflection elements increases, so that uniform outgoing light can be obtained.

そのために、光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端をも暗部がなく明るい均一な出射光を得ることができる。これにより、その分実際に使用でき得る導光板の面積が大きく取れ、さらに光源が並列(アレー状)に設けてあっても互いに隣り合う光源からの光を重ならずに輝度斑の発生を防ぐことができ、また大型化する場合に両端を入射端面部とするため中心部分の厚さが一番厚いので導光板の機械的安定および強度に優れる。Therefore, the amount of light can be controlled, the light source is not reflected, and both the ends of the incident end face near the incident end face have no dark part and bright uniform emitted light can be obtained. As a result, the area of the light guide plate that can be actually used can be increased, and even if the light sources are arranged in parallel (array shape), the occurrence of luminance spots is prevented without overlapping light from adjacent light sources. In addition, when the size of the light guide plate is increased, both ends are made incident end face portions, so that the thickness of the central portion is the thickest, so that the light guide plate is excellent in mechanical stability and strength.

さらに、反入射端面部で全反射をした光線によって初めてテーパーリークは起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しない。このため、発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するので、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができる。Furthermore, since the taper leak can be caused only by the light beam totally reflected at the anti-incident end face part, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately in the vicinity of the incident end face part. For this reason, it is possible to avoid the occurrence of light emission color spots, and the incident light is totally reflected once on the opposite side of the incident end face portion of the light guide plate, and then emitted, so the total reflection in the light guide plate is repeated several times during that time. However, in order to proceed, RGB monochromatic light is mixed and complete white light can be obtained.

請求項11に係る平面照明装置は、導光板の出射面側の上部にレンチキュラーレンズ体を具備するので、第2の傾斜面部で臨界角に近い光線でなくとも全反射を行い直接表面部から略垂直に出射することができ、この略垂直の出射光は入射端面部と反入射端面部方向(ここでZ方向とする)での伝播によって鋭いピーク幅の光線となって出射した光をレンチキュラーレンズ体によって入射端面部および反入射端面部の左右方向(X−Y方向)に集光させることができる。 Since the planar illumination device according to the eleventh aspect includes the lenticular lens body at the upper part on the light exit surface side of the light guide plate, the second inclined surface portion performs total reflection even if the light beam is not close to the critical angle, and is substantially directly from the surface portion. The substantially perpendicular emission light can be emitted vertically, and the light emitted as a light beam having a sharp peak width by propagation in the direction of the incident end face portion and the anti-incident end face portion (here, the Z direction) is lenticular lens. The light can be condensed in the left-right direction (XY direction) of the incident end face part and the anti-incident end face part by the body.

そのために、例えば、LCDでのRGBの各ピクセルに対して各方向に対して鋭い光束を出射するので、ピクセルの開口面積を小さくすることができる。このため、RGBの各々のピクセルのサイズを小さくすることによって、より微細で単位面積当たりのピクセル量を多くすることができ、鮮明が画像を提供することができる。   Therefore, for example, a sharp light beam is emitted in each direction with respect to each pixel of RGB on the LCD, so that the aperture area of the pixel can be reduced. For this reason, by reducing the size of each pixel of RGB, it is possible to increase the amount of pixels per unit area that is finer, and to provide a clear image.

さらに、請求項12に係る平面照明装置は、光源が、指向性の有する半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材利用の白色光であるとともにこれらを単体またはアレー状に構成したので、高輝度の出射光を得ることができるとともに目的に応じて高輝度の白色光を出射することができ、アレー状に構成することにより光源の形状が出射面から観測(映り込み)や輝度斑が無い出射光を得ることができる。そのため、目的に応じて導光板の側面に設けてCCFLの代わりや導光板の隅に設けたりして高輝度の白色光を出射することができ、クリアな白色光や単色光を得ることができる。 Furthermore, in the planar illumination device according to claim 12 , the light source is composed of a directional semiconductor light-emitting element, and is monochromatic light or red light, green light, blue light, three primary colors, or white light using a wavelength conversion material. Since these are configured as a single unit or an array, it is possible to obtain high-intensity outgoing light and to emit high-intensity white light according to the purpose. By configuring in an array, the shape of the light source is emitted. From the surface, it is possible to obtain outgoing light that is free from observation (reflection) and luminance spots. Therefore, depending on the purpose, it can be provided on the side of the light guide plate instead of the CCFL or at the corner of the light guide plate to emit high-intensity white light, and clear white light or monochromatic light can be obtained. .

また、請求項13に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であるので、入射端面部から入射端面部の反対側に位置する反入射端面部に進んだ光線や出射面の反対側の面に出射した光線や漏れた光線等をより確実に再度導光板内に戻すことができ、凹凸形状やプリズム形状を制御することにより再度導光板内に戻す位置をコントロールすることができ、さらに光源がRGB等の三原色光の場合に三原色光の光をプリズム面による反射によって導光板内で混ざり合うことができる。 In the flat illumination device according to claim 13 , since the reflecting surface of the reflector has an uneven shape or a prism shape, the light beam or the light emitted from the incident end surface portion to the counter incident end surface portion located on the opposite side of the incident end surface portion It is possible to return the light emitted from the surface opposite to the surface or leaked light into the light guide plate more reliably, and to control the position to return to the light guide plate again by controlling the uneven shape and prism shape. Further, when the light source is light of three primary colors such as RGB, the light of the three primary colors can be mixed in the light guide plate by reflection by the prism surface.

そのため、凹凸形状やプリズム形状を制御することにより再度導光板内に戻す位置をコントロールすることができ、最終の出射光の輝度、光量分布および出射角等を調整することができる。さらに光源がRGB等の三原色光の場合に三原色光の光をプリズム面による反射によって導光板内で混ざり合うことができる。このため、光源からの光を無駄にせず光源から導光板の出射光に変換する効率が優れている。   Therefore, it is possible to control the position of returning to the light guide plate again by controlling the concavo-convex shape and the prism shape, and it is possible to adjust the luminance, light amount distribution, emission angle, and the like of the final emitted light. Further, when the light source is light of three primary colors such as RGB, the light of the three primary colors can be mixed in the light guide plate by reflection by the prism surface. For this reason, the efficiency which converts the light from a light source into the emitted light of a light-guide plate without wasting is excellent.

以下、本発明の実施の形態を添付図面に基づいて説明する。
なお、本発明は導光板が薄板状矩形立方体形状を成して表面部と裏面部との間の間距離が入射端面部で最小になり、入射端面部から最大離距離である反入射端面部において間距離が最大になり、裏面部が入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなしてこれらの面が鏡面をなすとともに表面部や裏面部には微細な光偏向素子を設けたもので、またこの導光板と、指向性の有する光源と、導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体と、導光板の出射面側の上部にレンチキュラーレンズ体とを具備することによって、導光板の入射端面部近傍での光源の映り込みや輝度斑や発光色斑の発生をコントロールすることができ、ならびに導光板の利用出射面を大きく取れる導光板および平面照明装置を提供するものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, the light guide plate has a thin rectangular cube shape, and the distance between the front surface portion and the back surface portion is the minimum at the incident end surface portion, and the anti-incident end surface portion is the maximum separation distance from the incident end surface portion. These surfaces have a staircase shape in which the first distance between the first inclined surface portion and the second inclined surface portion, which have a back surface facing away from the incident end surface portion, are alternately and continuously connected. Has a mirror surface and is provided with fine light deflection elements on the front surface and the back surface, and covers the light guide plate, the light source having directivity, and the portions other than the incident end surface and the output surface of the light guide plate. By including a reflector having reflectivity and a lenticular lens body on the light exit side of the light guide plate, reflection of the light source near the incident end surface portion of the light guide plate and generation of luminance spots and light emission color spots As well as the light guide plate The exit surface larger take the light guide plate and is intended to provide a planar lighting device.

図1は本発明に係る平面照明装置の一例を示す略斜視図、図2は本発明に係る導光板の一例を示す略断面図および軌跡図、図3は本発明に係る導光板の部分略断面図および軌跡図、図4は本発明に係る導光板の他の例を示す略斜視図、図5は本発明に係る導光板の他の例を示す略斜視図、図6は本発明に係る導光板の他の例を示す略平面図、図7は本発明に係る導光板の他の例を示す部分略斜視図、図8は本発明に係る導光板の他の例を示す略平面図、図9は本発明に係る導光板の他の例を示す略斜視図、図10は本発明に係る導光板の他の例を示す略斜視図、図11は本発明に係る導光板の他の例を示す略斜視図、図12は本発明に係る導光板の他の例を示す略断面図および軌跡図、図13は本発明に係る導光板の他の例を示す略平面図および軌跡図、図14(a)〜(f)は本発明に係る導光板に設けられる凸状の稜や凹状の稜の各例を示す部分拡大図、図15は本発明に係る説明図、図16は本発明に係る平面照明装置の他の例を示す略斜視図、図17(a)〜(f)は本発明に係る導光板の他の例を示す裏面部側から見た略平面図である。   1 is a schematic perspective view showing an example of a flat illumination device according to the present invention, FIG. 2 is a schematic cross-sectional view and a trajectory diagram showing an example of a light guide plate according to the present invention, and FIG. 3 is a partial schematic diagram of the light guide plate according to the present invention. 4 is a schematic perspective view showing another example of the light guide plate according to the present invention, FIG. 5 is a schematic perspective view showing another example of the light guide plate according to the present invention, and FIG. FIG. 7 is a partial schematic perspective view showing another example of the light guide plate according to the present invention, and FIG. 8 is a schematic plan view showing another example of the light guide plate according to the present invention. 9 is a schematic perspective view showing another example of the light guide plate according to the present invention, FIG. 10 is a schematic perspective view showing another example of the light guide plate according to the present invention, and FIG. 11 is a diagram of the light guide plate according to the present invention. 12 is a schematic perspective view showing another example, FIG. 12 is a schematic cross-sectional view and a locus diagram showing another example of the light guide plate according to the present invention, and FIG. 13 is a schematic plan view showing another example of the light guide plate according to the present invention. 14 (a) to (f) are partially enlarged views showing examples of convex ridges and concave ridges provided on the light guide plate according to the present invention, and FIG. 15 is an explanatory diagram according to the present invention. FIG. 16 is a schematic perspective view showing another example of the flat illumination device according to the present invention, and FIGS. 17A to 17F are schematic plan views as seen from the back surface side showing another example of the light guide plate according to the present invention. FIG.

図1に示す平面照明装置1(1A)は、導光板2(2A)と光源10と反射体11およびレンチキュラーレンズ体12から構成されている。   A flat illumination device 1 (1A) shown in FIG. 1 includes a light guide plate 2 (2A), a light source 10, a reflector 11, and a lenticular lens body 12.

導光板2は、屈折率が1.4〜1.7程度の透明なアクリル樹脂(PMMA)やポリカーボネート(PC)等で形成され、光源10からの光を導く入射端面部3と、この入射端面部3と反対側に位置する反入射端面部4と、光を出射する表面部8と、この表面部8と反対側に位置する裏面部5と、表面部8と裏面部5とに接続する側面部14とからなる。導光板2の表面部8や裏面部5には、図示しないが、光を全反射や屈折する光偏向素子として、例えば特開2003−035824号公報などに記載されたもの等の加工が施されている。
尚、図1の例では、矩形形状の導光板2Aの1側面を入射端面部3として用いているが、入射端面部3は導光板2の周辺側のどこでも良く、形状も限定されるものではない。
The light guide plate 2 is formed of a transparent acrylic resin (PMMA) or polycarbonate (PC) having a refractive index of about 1.4 to 1.7, and includes an incident end face portion 3 that guides light from the light source 10, and the incident end face. The anti-incident end face part 4 located on the opposite side to the part 3, the surface part 8 for emitting light, the back part 5 located on the opposite side of the surface part 8, and the surface part 8 and the back part 5 are connected. It consists of a side part 14. Although not shown in the figure, the front surface portion 8 and the back surface portion 5 of the light guide plate 2 are processed, for example, as described in Japanese Patent Application Laid-Open No. 2003-035824 as a light deflection element that totally reflects or refracts light. ing.
In the example of FIG. 1, one side surface of the rectangular light guide plate 2A is used as the incident end surface portion 3, but the incident end surface portion 3 may be anywhere on the peripheral side of the light guide plate 2, and the shape is not limited. Absent.

また、導光板2は、表面部8と裏面部5との間の間距離(導光板2の厚さ)が入射端面部3で最小(薄く)になり、入射端面部3から少なくとも最大離距離(入射端面部3の反対側に位置する反入射端面部4)において間距離(厚さ)が最大(厚く)になるような形状を有する。そして、光源10は、導光板2の厚さが薄い入射端面部3の近傍に配置し、光源10の反対側(最大離距離)が導光板2の厚さが厚い配置となる。   In the light guide plate 2, the distance between the front surface portion 8 and the back surface portion 5 (thickness of the light guide plate 2) is minimum (thin) at the incident end surface portion 3, and at least the maximum separation distance from the incident end surface portion 3. The distance (thickness) is maximized (thick) at the (anti-incident end face portion 4 located on the opposite side of the incident end face portion 3). The light source 10 is disposed in the vicinity of the incident end face portion 3 where the thickness of the light guide plate 2 is thin, and the light guide plate 2 is disposed on the opposite side (maximum separation distance) of the light guide plate 2.

さらに、導光板2の裏面部5は、入射端面部3と反対方向(反入射端面部4)に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とが交互に連続的に接続した階段形状をなしている。また、実際には、各第1の傾斜面部6の傾斜角度は、入射端面部3の裏面部5側角部と反入射端面部4の裏面部5側角部とを結ぶ直線の傾斜角度(表面部8とのなす角度)とほぼ一致している。さらに、各第2の傾斜面部7は、第1の傾斜面部6の傾斜角度の2倍以上であり、平坦な表面部8とのなす角度が90°以下に設定されている。また、これら第1の傾斜面部6と第2の傾斜面部7の面は鏡面をなしている。   Further, the back surface portion 5 of the light guide plate 2 has a first inclined surface portion 6 and a sharp second inclined surface portion 7 alternately and continuously facing the direction opposite to the incident end surface portion 3 (the anti-incident end surface portion 4). It has a connected staircase shape. Actually, the inclination angle of each first inclined surface portion 6 is an inclination angle of a straight line connecting the rear surface portion 5 side corner portion of the incident end surface portion 3 and the rear surface portion 5 side corner portion of the anti-incident end surface portion 4 ( The angle with the surface portion 8). Further, each second inclined surface portion 7 is set to be twice or more the inclination angle of the first inclined surface portion 6, and the angle formed with the flat surface portion 8 is set to 90 ° or less. The surfaces of the first inclined surface portion 6 and the second inclined surface portion 7 are mirror surfaces.

図1および図2に示す導光板2Aでは、第1の傾斜面部6と第2の傾斜面部7とからなる階段形状の各境界線が入射端面部3と平行な直線をなしており、各境界線間が等間となっている。なお、導光板2Aが大きい場合には、入射端面部3から離れるほど各境界線間の距離を長くするのが好ましい。   In the light guide plate 2A shown in FIG. 1 and FIG. 2, each step-shaped boundary line composed of the first inclined surface portion 6 and the second inclined surface portion 7 forms a straight line parallel to the incident end surface portion 3, and each boundary The distance between the lines is equal. In addition, when 2 A of light-guide plates are large, it is preferable to lengthen the distance between each boundary line, so that it leaves | separates from the incident end surface part 3. FIG.

導光板2の表面部8や裏面部5には、図示しないが、例えば特開2003−035824号公報などに記載された光偏向素子が設けられている。これにより、入射端面部3からの入射光が入射端面部3の反対側に位置する反入射端面部4に進む間において導光板2が楔形状であっても臨界角を破る光線は無く進んで反入射端面部4で全反射をして、再度入射端面部3方向に光線が進む時に光偏向素子により屈折等を行い臨界角を破り表面部8から出射することができる。   Although not shown, the light deflection element described in, for example, Japanese Patent Application Laid-Open No. 2003-035824 is provided on the front surface portion 8 and the back surface portion 5 of the light guide plate 2. As a result, while the incident light from the incident end surface portion 3 travels to the anti-incident end surface portion 4 located on the opposite side of the incident end surface portion 3, even if the light guide plate 2 has a wedge shape, there is no ray breaking the critical angle. The light is totally reflected at the anti-incidence end face portion 4, and when the light beam travels again in the direction of the incident end face portion 3, it can be refracted by the light deflecting element to break the critical angle and be emitted from the surface portion 8.

また、導光板2に入射した光は、屈折角γが0≦|γ|≦Sin-1(1/n)の式を満たす範囲で導光板2内に進む。例えば一般の導光板2に使用されている樹脂材料であるアクリル樹脂の屈折率はn=1.49程度であるので、入射端面部3の表面部8方向から裏面部5方向への光および裏面部5方向から表面部8方向への光の最大入射角が90°となり、入射端面部3で屈折する屈折角γがγ=0〜±42°程度の範囲内になる。
但し、表面部8近傍では裏面部5方向のみのγ=−42°のみ、裏面部5近傍では表面部8方向のみのγ=+42°のみとなる。
Further, the light incident on the light guide plate 2 travels into the light guide plate 2 in a range where the refraction angle γ satisfies the expression 0 ≦ | γ | ≦ Sin −1 (1 / n). For example, since the refractive index of acrylic resin, which is a resin material used for a general light guide plate 2, is about n = 1.49, light from the front surface portion 8 direction of the incident end surface portion 3 to the rear surface portion 5 direction and the back surface The maximum incident angle of light from the portion 5 direction to the surface portion 8 direction is 90 °, and the refraction angle γ refracted at the incident end surface portion 3 is in the range of γ = 0 to ± 42 °.
However, only γ = −42 ° only in the direction of the back surface 5 near the front surface portion 8 and only γ = + 42 ° only in the direction of the front surface portion 8 near the back surface portion 5.

さらに、屈折角γ=0〜±42°の範囲内で導光板2内に入射した光は、導光板2と空気層(屈折率n=1)との境界面において、Sinα=(1/n)の式により臨界角を表わすことができる。例えば一般の導光板2に使用されている樹脂材料であるアクリル樹脂の屈折率はn=1.49程度であるので、臨界角αはα=42°程度になり、導光板2の表面部8や裏面部5に光線を偏向する凸や凹等が無かったり、臨界角αを越えなければ導光板2内の光は表面部8や裏面部5で全て全反射しながら反入射端面部4方向へ進むことになる。   Further, the light incident on the light guide plate 2 within the range of the refraction angle γ = 0 to ± 42 ° is Sin α = (1 / n) at the boundary surface between the light guide plate 2 and the air layer (refractive index n = 1). ) Can be used to express the critical angle. For example, since the refractive index of acrylic resin, which is a resin material used for the general light guide plate 2, is about n = 1.49, the critical angle α is about α = 42 °, and the surface portion 8 of the light guide plate 2 If there is no convex or concave for deflecting the light beam on the back surface part 5 or the critical angle α is not exceeded, the light in the light guide plate 2 is totally reflected by the front surface part 8 and the back surface part 5 while facing the anti-incident end face part 4 To go to.

しかし、本発明の導光板2は、厚さ(表面部8と裏面部5との間の間距離)が入射端面部3から入射端面部3の反対側に位置する反入射端面部4に向かう程厚く(入射端面部3から最大離距離で最大に厚く)なる楔形状(一般または従来の導光板のような入射端面部から最大離距離に向かう程厚さが薄くなる楔形状とは逆)であるので、図3に示すように、入射端面部3からの入射光Ln1が入射端面部3の反対側に位置する反入射端面部4に進む間に導光板2が楔形状であっても臨界角を破る光線は無く、表面部8や裏面部5で全反射を繰り返した光線Ln2が反入射端面部4で全反射をして、再度入射端面部3方向に光線Ln3が進む時に光偏向素子13により屈折等を行って臨界角を破り表面部8から光線Ln4として出射することができる。
尚、ここでは光偏向素子13について、凸形状および凹形状について記したが、何れも凸形状や凹形状の傾斜面で屈折し外部に出射する。
However, in the light guide plate 2 of the present invention, the thickness (the distance between the front surface portion 8 and the back surface portion 5) is directed from the incident end surface portion 3 to the anti-incident end surface portion 4 located on the opposite side of the incident end surface portion 3. Wedge shape that becomes thicker (thickest at the maximum separation distance from the incident end face portion 3) (opposite to the wedge shape that decreases in thickness toward the maximum separation distance from the incident end face portion as in a general or conventional light guide plate) Therefore, as shown in FIG. 3, even if the light guide plate 2 is wedge-shaped while the incident light Ln1 from the incident end surface portion 3 proceeds to the anti-incident end surface portion 4 located on the opposite side of the incident end surface portion 3. There is no light beam that breaks the critical angle, and the light beam Ln2 that has undergone total reflection at the front surface portion 8 and the back surface portion 5 undergoes total reflection at the anti-incident end surface portion 4, and light deflects when the light beam Ln3 travels again in the direction of the incident end surface portion 3. The element 13 can be refracted or the like to break the critical angle and emit from the surface portion 8 as the light ray Ln4. Kill.
Here, although the convex shape and the concave shape are described with respect to the light deflecting element 13, both are refracted by the convex or concave inclined surface and emitted to the outside.

さらに、本例の導光板2は、図示しないが、入射端面部3に近づくほど数量または面積が増加するように光偏向素子13を表面部8や裏面部5に設けている。これにより、最初に光源10から入射端面部3に入射した光は導光板2の表面部8や裏面部5に達しても臨界角αに達する光が存在せず、表面部8や裏面部5で全反射を繰り返しながら入射端面部3の反対側の反入射端面部4に進み、反入射端面部4で全反射し、再度入射端面部3方向に進んだ光が導光板2の厚さが徐々に薄くなり、臨界角αを破る光線や臨界角αに近い光線等が多く存在し、反入射端面部4から入射端面部3に戻る間に臨界角α付近の光線が光偏向素子13の傾斜面によって屈折等を引き起こし出射面(表面部8)から出射する。   Furthermore, although not shown, the light guide plate 2 of the present example is provided with the light deflection elements 13 on the front surface portion 8 and the back surface portion 5 so that the quantity or area increases as it approaches the incident end surface portion 3. As a result, the light that first enters the incident end face portion 3 from the light source 10 does not reach the critical angle α even if it reaches the front surface portion 8 or the back surface portion 5 of the light guide plate 2, and the front surface portion 8 or the back surface portion 5. Then, while repeating total reflection, the light proceeds to the anti-incident end surface portion 4 on the opposite side of the incident end surface portion 3, totally reflected by the anti-incident end surface portion 4, and again traveled in the direction of the incident end surface portion 3. There are many light rays that gradually become thinner and break the critical angle α, light rays that are close to the critical angle α, and the like, and light rays near the critical angle α are reflected by the light deflection element 13 while returning from the anti-incident end face portion 4 to the incident end face portion 3. Refraction or the like is caused by the inclined surface, and the light exits from the exit surface (surface portion 8).

また、反入射端面部4から入射端面部3に戻る間に出射面(表面部8)から出射され入射端面部3に近づくほど(戻るほど)光量の減衰等に対応させて一層多数の光線を出射面(表面部8)から出射するために入射端面部3に近づくほど出射させる光量を多くする必要があるので、入射端面部3に近づくほど光偏向素子13の数量または面積が増加することにより均一な出射光を得ることができる。
なお、図3では、導光板2の裏面部5での入射端面部3の反対方向(反入射端面部4)に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とを図示せず、全体の形状等がわかり易いように1つの緩やかな傾斜面として裏面部5を図示している。
Further, while returning from the non-incident end face part 4 to the incident end face part 3, the light exits from the exit surface (surface part 8) and approaches the incident end face part 3 (as it returns), so that a larger number of light beams are associated with the attenuation of the amount of light. Since it is necessary to increase the amount of light to be emitted as it approaches the incident end surface portion 3 in order to emit from the emission surface (surface portion 8), the quantity or area of the light deflection element 13 increases as the distance from the incident end surface portion 3 increases. Uniform outgoing light can be obtained.
In FIG. 3, a gentle first inclined surface portion 6 and a sharp second inclined surface portion 7 facing the direction opposite to the incident end surface portion 3 (anti-incident end surface portion 4) on the back surface portion 5 of the light guide plate 2 are illustrated. Although not shown, the back surface portion 5 is illustrated as one gentle inclined surface so that the overall shape and the like can be easily understood.

実際には、図2に示すように、導光板2(2A)の裏面部5は、入射端面部3と反対方向(反入射端面部4)に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とが交互に連続的に接続した階段形状をなしている。また、これらの面が鏡面をなしている。   Actually, as shown in FIG. 2, the back surface portion 5 of the light guide plate 2 (2 </ b> A) has a gentle first inclined surface portion 6 and a sharp first surface facing the direction opposite to the incident end surface portion 3 (the anti-incident end surface portion 4). The two inclined surface portions 7 are formed in a staircase shape that is continuously connected alternately. Moreover, these surfaces are mirror surfaces.

したがって、導光板2は概略楔形状であり、反入射端面部4に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とが交互に連続的に接続した階段形状をなしているが、入射端面部3からの入射光Ln1が入射端面部3の反対側に位置する反入射端面部4に進む間において臨界角を破る光線は無く、表面部8と裏面部5の緩やかな第1の傾斜面部6や鋭い第2の傾斜面部7で全反射を繰り返し、反入射端面部4に達し反入射端面部4で全反射をして、全反射した光線Ln2が再度入射端面部3方向に進む。このとき緩やかな第1の傾斜面部6ではあまりテーパーリークは起き難く、起きた場合でも裏面部5に沿うように大きな出射角度で出射する。また、緩やかな第1の傾斜面部6で全反射して表面部8からテーパーリークを起した場合でも表面部8に沿うように大きな出射角度で出射する。   Therefore, the light guide plate 2 has a substantially wedge shape, and has a stepped shape in which the gentle first inclined surface portion 6 and the sharp second inclined surface portion 7 facing the counter incident end surface portion 4 are alternately and continuously connected. However, there is no light beam that breaks the critical angle while the incident light Ln1 from the incident end surface portion 3 travels to the counter incident end surface portion 4 located on the opposite side of the incident end surface portion 3, and the gentle second of the front surface portion 8 and the rear surface portion 5 The first inclined surface portion 6 or the sharp second inclined surface portion 7 repeats total reflection, reaches the anti-incident end surface portion 4, undergoes total reflection at the anti-incident end surface portion 4, and the totally reflected light beam Ln2 is again directed to the incident end surface portion 3. Proceed to At this time, the taper leak hardly occurs in the gentle first inclined surface portion 6, and even when it occurs, the light is emitted at a large emission angle along the back surface portion 5. Further, even when a taper leak occurs from the surface portion 8 due to total reflection at the gentle first inclined surface portion 6, the light is emitted at a large emission angle along the surface portion 8.

しかし、鋭い第2の傾斜面部7に到達した光線は、テーパーリークを起こし易い状態の光線であるため、第2の傾斜面部7によって全反射をして光線Ln3が表面部8方向に進み、表面部8から略直角に光線Ln4を出射することができる。   However, since the light beam that has reached the sharp second inclined surface portion 7 is a light beam that is likely to cause a taper leak, it is totally reflected by the second inclined surface portion 7 and the light beam Ln3 proceeds in the direction of the surface portion 8, The light beam Ln4 can be emitted from the portion 8 at a substantially right angle.

また、第2の傾斜面部7の傾斜角度を第1の傾斜面部6の傾斜角度の2倍以上で90°以下にしたので、上記の様に表面部8から略直角に光線Ln4を出射することができたり、第1の傾斜面部6の緩やかな傾斜角度によるテーパーリークによる出射角度よりも略2倍の出射角度で出射する範囲を得るため第1の傾斜面部6の傾斜角度に対する倍率によって視野角等の出射角を自由にコントロールすることができる。   In addition, since the inclination angle of the second inclined surface portion 7 is set to 90 ° or less and more than twice the inclination angle of the first inclined surface portion 6, the light ray Ln4 is emitted from the surface portion 8 at a substantially right angle as described above. Or a viewing angle depending on the magnification with respect to the inclination angle of the first inclined surface portion 6 in order to obtain a range in which the first inclined surface portion 6 emits light at an emission angle that is approximately twice the emission angle due to the taper leak due to the gentle inclination angle of the first inclined surface portion 6. It is possible to freely control the emission angle such as.

このように、導光板2の各面で多くの光線を全反射させ、表面部8や裏面部5で全反射する角度が入射端面部3に向かうに従い大きな角度に変化し反入射端面部4に達し、反入射端面部4で反射した光線を再度入射端面部3方向に進む時に表面部8では臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子13に達した時に臨界角を破り導光板2から出射するとともに裏面部5では第1の傾斜面部6で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子13に達した時に臨界角を破り導光板2から出射することができる。   As described above, many light rays are totally reflected on each surface of the light guide plate 2, and the angle at which the light is totally reflected by the front surface portion 8 and the back surface portion 5 changes to a larger angle toward the incident end surface portion 3, and is reflected on the anti-incident end surface portion 4. When the light beam that has reached the anti-incident end face portion 4 travels again in the direction of the incident end face portion 3, there are many light rays that break the critical angle or near the critical angle at the surface portion 8. When it reaches 13, the critical angle is broken and emitted from the light guide plate 2, and at the back surface portion 5, there are many light rays that break the critical angle at the first inclined surface portion 6, light rays close to the critical angle, and the like. When the deflection element 13 is reached, the critical angle is broken and the light can be emitted from the light guide plate 2.

また、第2の傾斜面部7では臨界角に近い光線でなくとも大きな偏向角の全反射を行い略垂直な光や広範囲の光を直接表面部8から出射することができる。そのために、入射端面部3近傍でテーパーリークは起こらないので、指向性の強い光源10でも入射端面部3近傍での光輝度の出射光や半導体発光素子自身等の光源10の形状が出射面から観測(映り込み)や輝度斑が無い。   Further, the second inclined surface portion 7 can totally reflect light with a large deflection angle even if it is not a light beam close to the critical angle, and can emit substantially vertical light or a wide range of light directly from the surface portion 8. For this reason, taper leak does not occur in the vicinity of the incident end face 3, so that even in the light source 10 having strong directivity, the shape of the light source 10 such as the emitted light with the light intensity near the incident end face 3 or the semiconductor light emitting element itself is changed from the exit face. There is no observation (reflection) or brightness spots.

さらに、反入射端面部4で全反射をした光線によって始めてテーパーリーク等を起こすことができるので、RGB等の単色光源10を並べた光源10の場合でも入射端面部3近傍ですぐに出射せず発光色斑の発生を回避することができる。また、入射光が一度導光板2の入射端面部3の反対側で全反射してから出射するために、その間に導光板2内を幾度か全反射を繰り返しながら進行するので、RGBの単色光が混合され完全な白色光を得ることができる。   Furthermore, since a taper leak or the like can be caused only by a light beam totally reflected at the anti-incident end face portion 4, even in the case of the light source 10 in which the monochromatic light sources 10 such as RGB are arranged, the light does not immediately emit in the vicinity of the incident end face portion 3. Occurrence of luminescent color spots can be avoided. In addition, since the incident light is once totally reflected on the side opposite to the incident end face portion 3 of the light guide plate 2 and then emitted, it travels while repeating the total reflection several times in the meantime. Can be mixed to obtain complete white light.

また、第2の傾斜面部7で臨界角に近い光線でなくとも全反射を行い直接表面部8から略直角に出射することができ、この略垂直な出射光は入射端面部3と反入射端面部4方向(ここでZ方向とする)での伝播によって鋭いピーク幅の光線となって出射することができる。   Further, even if the second inclined surface portion 7 is not a light ray close to the critical angle, it can be totally reflected and emitted directly from the surface portion 8 at a substantially right angle, and this substantially perpendicular emission light is incident on the incident end face portion 3 and the anti-incident end face. It can be emitted as a light beam having a sharp peak width by propagation in the direction of the portion 4 (here, Z direction).

さらに、光源10が単一の場合でも一度、入射端面部3の反対側の反入射端面部4で全反射した光が入射端面部3全体に進み、入射端面部3の方向に進むにつれて光偏向素子13を入射端面部3に近づくほど光偏向素子13の数量または面積が増加するので、光源10の両端方向である入射端面部3の両端部でも均一な出射光を得ることができる。   Further, even when there is a single light source 10, the light totally reflected by the anti-incident end surface portion 4 on the opposite side of the incident end surface portion 3 travels to the entire incident end surface portion 3 and is deflected as it proceeds in the direction of the incident end surface portion 3. Since the number or area of the light deflection elements 13 increases as the element 13 approaches the incident end face 3, uniform emitted light can be obtained at both ends of the incident end face 3, which are both ends of the light source 10.

また、このように光源10が単一の場合には、図6および図7に示すように、反入射端面部4を2つの側面部14から同距離位置を中心とし、側面部14方向に曲率が変化するフレネルレンズ形状4cを形成する。これにより、入射端面部3から導光板2内に進入した光は、全反射を繰り返し反入射端面部4まで進む。そして、フレネルレンズ形状4cの反入射端面部4で反射する時、フレネルレンズ形状4cであるので、入射端面部3方向への反射光を平行な光線として反射することができる。
よって、反入射端面部4からの平行な反射光線によって一様に第1の傾斜面部6に進むことができ、第1の傾斜面部6で一様に全反射して、導光板の出射面から斑の無い均一な出射光を得ることができる。
When the light source 10 is single as described above, as shown in FIGS. 6 and 7, the anti-incident end surface portion 4 is centered on the same distance position from the two side surface portions 14, and is curved in the direction of the side surface portion 14. To form a Fresnel lens shape 4c. Thereby, the light that has entered the light guide plate 2 from the incident end face portion 3 repeats total reflection and proceeds to the anti-incident end face portion 4. When the light is reflected by the anti-incident end face portion 4 of the Fresnel lens shape 4c, the reflected light toward the incident end face portion 3 can be reflected as a parallel light beam because of the Fresnel lens shape 4c.
Therefore, the parallel reflected light beam from the anti-incident end surface portion 4 can uniformly travel to the first inclined surface portion 6, and the first inclined surface portion 6 is totally totally reflected from the exit surface of the light guide plate. Uniform outgoing light without spots can be obtained.

さらに、図4に略斜視図および図13に光の軌跡を示す。反入射端面部4を表面部8と裏面部5との間に延存する凸状の稜4bおよび凹状の稜4b’を連続的に形成し、側面部14方向に広がりを持った光線L1は、側面部14で全反射を繰り返しながら反入射端面部4方向に進む。光線L2は、凸状の稜4bの傾斜部で全反射をし反射光線L3となり、さらに対向する傾斜部で全反射をし反射光線L4となって、入射端面部3方向に戻すことができ、戻る間に第1の傾斜面部6に達し表面部8方向に進み外部に出射することができる。
同様に、図5に示すように、反入射端面部4を表面部8と裏面部5との間に延存する凸 状の稜4b(凹状の稜4b’)を部分的に形成した場合には、例えば光源を入射端面部3の中心のみに設けた時、凸状の稜4bを反入射端面部4の中心部分に多く設け、側面部14方向に向かう程少なく設けて、凸状の稜4bによる反射光を入射端面部3の両端方向に反射させることができる。
このように、凸状の稜4bや凹状の稜4b’によって側面部14方向に光を分散することができる。
Further, FIG. 4 shows a schematic perspective view and FIG. 13 shows a light locus. A light ray L1 that continuously forms a convex ridge 4b and a concave ridge 4b ′ extending between the front surface portion 8 and the back surface portion 5 in the anti-incident end surface portion 4 and spreads in the direction of the side surface portion 14, Proceeding in the direction toward the anti-incident end face 4 while repeating total reflection at the side face 14. The light ray L2 is totally reflected at the inclined portion of the convex ridge 4b to become a reflected light beam L3, further totally reflected at the opposite inclined portion to become a reflected light beam L4, and can be returned in the direction of the incident end face portion 3, While returning, it can reach the first inclined surface portion 6, proceed in the direction of the surface portion 8, and exit to the outside.
Similarly, when the convex ridge 4b (concave ridge 4b ′) extending between the front surface portion 8 and the back surface portion 5 is partially formed as shown in FIG. For example, when the light source is provided only at the center of the incident end surface portion 3, the convex ridge 4b is provided more at the central portion of the non-incident end surface portion 4, and the convex ridge 4b is provided less toward the side surface portion 14. Can be reflected in the both end directions of the incident end face part 3.
Thus, the light can be dispersed in the direction of the side surface portion 14 by the convex ridge 4b and the concave ridge 4b ′.

また、図14(a)〜(f)に示すように、これら凸状の稜4bや凹状の稜4b’等の稜の断面を示す。図14(a)の4b1は傾斜面が直線であり、図14(b),(c)の4b2,4b3は傾斜面が円弧状であって、4b2は凹状の円弧状、4b3は凸状の円弧形状を有し、例えば側面部14方向の幅が広い導光板2であったり、入射端面部3の中心に点状の光源10であっても、より広がりを有する反射光を得ることができる。
さらに、図14(a)〜(c)の4b1や4b2および4b3等の三角形状または稜の頂部が平坦に欠切した4b4や4b5および4b6では、傾斜面では上記と同様であるが、平坦部によって反入射端面部4に進入してきた方向へ反射させることができる。
そのため、光源10や導光板2の形状に捉われなく導光板2の出射面(表面部8)から斑の無い均一な出射光を得ることができる。
Moreover, as shown to Fig.14 (a)-(f), the cross section of ridges, such as these convex ridges 4b and concave ridges 4b ', is shown. 14b1 in FIG. 14 (a) has a straight inclined surface, 4b2 and 4b3 in FIGS. 14 (b) and 14 (c) have circular arcs, 4b2 has a concave arc shape, and 4b3 has a convex shape. Even if the light guide plate 2 has an arc shape and has a wide width in the direction of the side surface portion 14 or the point light source 10 at the center of the incident end surface portion 3, it is possible to obtain reflected light having a larger spread. .
Furthermore, in 4b4, 4b5, and 4b6 in which the tops of the triangles or ridges such as 4b1, 4b2, and 4b3 in FIGS. 14 (a) to 14 (c) are cut flat, the inclined surface is similar to the above, but the flat portion Thus, the light can be reflected in the direction that has entered the anti-incident end face portion 4.
Therefore, it is possible to obtain uniform emission light without spots from the emission surface (surface portion 8) of the light guide plate 2 without being caught by the shape of the light source 10 or the light guide plate 2.

また、図8は反入射端面部4の側面部14方向が円弧形状4dにした図を示す。
反入射端面部4を円弧形状4dとすることによって、入射端面部3から反入射端面部4に向かった光は、反入射端面部4での反射光に円弧形状4dによって集光性を得ることができ、そのため例えば複数の点光源10等の場合に、光源10からの反射光が側面部14方向から漏れにくくしながら互いに混合される。
そのために、導光板2の出射面(表面部8)から斑の無い均一な出射光を得ることができる。
FIG. 8 is a view in which the direction of the side surface 14 of the anti-incident end surface 4 is an arc shape 4d.
By making the anti-incident end face portion 4 into an arc shape 4d, the light directed from the incident end face portion 3 toward the anti-incident end face portion 4 obtains light condensing characteristics by the arc shape 4d on the reflected light at the anti-incident end face portion 4. Therefore, for example, in the case of a plurality of point light sources 10 and the like, the reflected light from the light source 10 is mixed with each other while being difficult to leak from the side surface portion 14 direction.
Therefore, uniform outgoing light without spots can be obtained from the outgoing surface (surface portion 8) of the light guide plate 2.

また、図示しないが、反入射端面部4が表面部8と裏面部5との厚さ方向に円弧形状にした場合には、反入射端面部4での厚さ方向に対して、反射光に集光性を得ることができために無駄なく第1の傾斜面部6や第2の傾斜面部7方向に集光できるため、明るい出射光を得ることができる。   Although not shown, when the anti-incident end surface portion 4 has an arc shape in the thickness direction between the front surface portion 8 and the back surface portion 5, the reflected light is reflected in the thickness direction at the anti-incident end surface portion 4. Since the light condensing property can be obtained, the light can be condensed in the direction of the first inclined surface portion 6 and the second inclined surface portion 7 without waste, so that bright emitted light can be obtained.

さらに、図9に示すように、反入射端面部4が表面部8と裏面部5との厚さ方向およびに側面部14方向が円弧形状4d2にしたときには、所謂トーリックレンズ4d2の役割を得ることができる。
そのため、1つの光源10に対しても2つの焦点を持つので、導光板2内部に存在する光を無駄なく利用することができる。
Furthermore, as shown in FIG. 9, when the anti-incident end face portion 4 has a thickness direction between the front surface portion 8 and the back surface portion 5 and the side surface portion 14 has an arc shape 4d2, the role of a so-called toric lens 4d2 is obtained. Can do.
Therefore, since one light source 10 has two focal points, the light existing inside the light guide plate 2 can be used without waste.

また、図10に反入射端面部4が表面部8方向(厚さ方向)に傾斜面部4fおよび裏面部5方向(厚さ方向)に傾斜面部4gを有したものである。
入射端面部3から反入射端面部4に向かった光は、傾斜面部4fによって反射した反射光を裏面部5方向に向かって第1の傾斜面部6や第2の傾斜面部7方向に反射させ、第2の傾斜面部7等により出射面(表面部8)方向に進み外部に出射することができる。
さらに、図12で示す光の軌跡のように、入射端面部3から反入射端面部4に向かった光線Ln1が1度傾斜面部4gで反射し、傾斜面部4gで反射した反射光Ln22が再度傾斜面部4gに対向する傾斜面部4fに進み、傾斜面部4fで再び反射して、反射光Ln2が第2の傾斜面部7方向に進み、第2の傾斜面部7によって反射した光線Ln3は出射面(表面部8)方向に進み、出射面(表面部8)から外部に光線Ln4を出射する。
そのために、暗線や輝線等のバンディング現象を防止したり、第1の傾斜面部6や第2の傾斜面部7方向に反射させる角度をコントロールすることで出射面(表面部8)からの出射角度を制御することができる。
Further, in FIG. 10, the anti-incident end face part 4 has an inclined face part 4f in the front face part 8 direction (thickness direction) and an inclined face part 4g in the rear face part 5 direction (thickness direction).
The light traveling from the incident end surface portion 3 toward the non-incident end surface portion 4 reflects the reflected light reflected by the inclined surface portion 4f toward the back surface portion 5 toward the first inclined surface portion 6 or the second inclined surface portion 7, The second inclined surface portion 7 or the like can proceed toward the emission surface (surface portion 8) and can be emitted to the outside.
Further, as shown in the light trajectory shown in FIG. 12, the light beam Ln1 from the incident end face portion 3 toward the non-incident end face portion 4 is reflected by the inclined surface portion 4g once, and the reflected light Ln22 reflected by the inclined surface portion 4g is inclined again. Proceeding to the inclined surface portion 4f facing the surface portion 4g, reflected again by the inclined surface portion 4f, the reflected light Ln2 proceeds in the direction of the second inclined surface portion 7, and the light beam Ln3 reflected by the second inclined surface portion 7 is emitted from the output surface (surface The light beam Ln4 is emitted to the outside from the emission surface (surface portion 8).
For this purpose, the emission angle from the emission surface (surface portion 8) is controlled by preventing banding phenomenon such as dark lines and bright lines, or by controlling the angle of reflection in the direction of the first inclined surface portion 6 and the second inclined surface portion 7. Can be controlled.

また、図15に示すように、一点鎖線の立方体の端部をカットしたような形状のコーナーキュービック形状4eを形成する。そして、図11に示すように、このコーナーキュービック形状4eを反入射端面部4に微細に設ける。
コーナーキュービック形状4eは、図15に示すように、辺や角度がみな等しい三角錐形状で、このコーナーキュービック形状4eに向かった光線は元の方向に戻る性質を有するものである。
反入射端面部4が微細なコーナーキュービック形状4eを有する導光板2は、例えば複数の点光源10である場合に、複数の光源10からの光を互いの微細なコーナーキュービック形状4e内で入射と反射とが同じ方向であるので、入射端面部3方向から進んだ光は、反入射端面部4で反射され入射端面部3方向に戻るときに導光板2内で混ざり合い第1の傾斜面部6や第2の傾斜面部7で出射面方向に反射されるために、出射面から広がりのある出射光を得ることができる。
Further, as shown in FIG. 15, a corner cubic shape 4e having a shape obtained by cutting an end portion of a one-dot chain line cube is formed. Then, as shown in FIG. 11, the corner cubic shape 4 e is finely provided on the anti-incident end surface portion 4.
As shown in FIG. 15, the corner cubic shape 4 e is a triangular pyramid shape having the same sides and angles, and the light beam directed to the corner cubic shape 4 e has a property of returning to the original direction.
When the anti-incident end face portion 4 has a fine corner cubic shape 4e, for example, when the light guide plate 2 is a plurality of point light sources 10, the light from the plurality of light sources 10 is incident within the fine corner cubic shape 4e. Since the reflection is in the same direction, the light traveling from the direction of the incident end surface portion 3 is mixed in the light guide plate 2 when reflected by the counter-incident end surface portion 4 and returns to the direction of the incident end surface portion 3. Further, since the light is reflected in the direction of the emission surface by the second inclined surface portion 7, it is possible to obtain emission light having a spread from the emission surface.

また、図示しないが、画面サイズの大きな平面照明装置1の場合には、導光板2の対向する両端面に入射端面部3を設ける構造とし、本発明の概念から導光板2は表面部8と裏面部5との間の距離(導光板2の厚さ)が入射端面部3で最小(薄く)になり、両端の入射端面部3から中心において距離(厚さ)が最大(厚く)になるような形状を有する。
即ち、図示しないが、平面照明装置1は導光板2の対向する両端面近傍に2つの光源10を有し、この2つの光源10に対向する導光板2の厚さが厚くなり、中心部で表面部8と互いに中心方向に向かう裏面部5との距離が最大になる。
Although not shown, in the case of the flat illumination device 1 having a large screen size, the light guide plate 2 has a structure in which the incident end surface portions 3 are provided on both opposite end surfaces of the light guide plate 2. The distance (thickness of the light guide plate 2) to the back surface portion 5 is minimum (thin) at the incident end surface portion 3, and the distance (thickness) is maximum (thick) at the center from the incident end surface portions 3 at both ends. It has such a shape.
That is, although not shown, the flat illumination device 1 has two light sources 10 in the vicinity of opposite end faces of the light guide plate 2, and the thickness of the light guide plate 2 facing the two light sources 10 is increased, and at the center portion. The distance between the front surface portion 8 and the back surface portion 5 directed toward the center is maximized.

故に、導光板2は、厚さ(表面部8と裏面部5との間の距離)が2つの入射端面部3から各入射端面部3の反対側に向かう程導光板2の厚さが厚く(各入射端面部3から中心の位置が最大に厚く)なる形状であるので、各入射端面部3からの入射光が中心に進む間に導光板2がテーパ形状であっても互いに中心までは臨界角αを破る光線は無く、表面部8や裏面部5で全反射を繰り返した光線は互いに対向する導光板2内および互いに対向する入射端面部3で全反射をして、再度互いに入射した各入射端面部3方向に光線が進む時に光偏向素子13により屈折等を行って臨界角αを破り表面部8から光線を出射することができる。   Therefore, the thickness of the light guide plate 2 increases as the thickness (distance between the front surface portion 8 and the back surface portion 5) increases from the two incident end surface portions 3 to the opposite side of each incident end surface portion 3. Since the shape is such that the center position of each incident end face portion 3 is thickest to the maximum, even if the light guide plate 2 is tapered while the incident light from each incident end face portion 3 proceeds to the center, the distance from the center to each other is reduced. There is no light beam that breaks the critical angle α, and light beams that have undergone total reflection on the front surface portion 8 and the back surface portion 5 are totally reflected in the light guide plate 2 facing each other and the incident end surface portions 3 facing each other, and enter each other again. When the light beam travels in the direction of each incident end face 3, the light deflecting element 13 can refract the light to break the critical angle α and emit the light from the surface 8.

また、図示しないが、半導体発光素子等(LED等)からなる光源10を入射端面部3の中心に1つだけ設けた場合にも、光源10が半導体発光素子等のため光束が狭い範囲で反入射端面部4方向に進むが、入射端面部3から反入射端面部4方向に進む間には臨界角αを破る光線は存在せず、反入射端面部4で全反射をして光線Lnが再度入射端面部3方向に進む間に臨界角αを破り、さらに表面部8に設けた光偏向素子13により臨界角α付近の光線が光偏向素子13の傾斜面によって屈折等を引き起こし一層多数の光線を表面部8に出射することができる。これにより、入射端面部3の両端部に暗部ができず均一で明るい出射光を得ることができる。   Although not shown, when only one light source 10 composed of a semiconductor light emitting element (LED or the like) is provided at the center of the incident end face 3, the light source 10 is a semiconductor light emitting element or the like, so that the light beam is reflected within a narrow range. While traveling in the direction of the incident end face 4, there is no light beam that breaks the critical angle α while traveling from the incident end face 3 toward the anti-incident end face 4, and the light Ln is totally reflected by the anti-incident end face 4. The critical angle α is broken while proceeding again in the direction of the incident end face portion 3, and the light deflecting element 13 provided on the surface portion 8 causes the light near the critical angle α to be refracted by the inclined surface of the light deflecting element 13, so Light can be emitted to the surface portion 8. Thereby, a dark part cannot be formed in the both ends of the incident end surface part 3, and uniform and bright emitted light can be obtained.

このように、本発明の導光板2は、導光板2の厚さが入射端面部3の位置が最も薄く、入射端面部3から離れる程、導光板2の厚さが厚くなるように構成するとともに裏面部5を入射端面部3と反対方向に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とが交互に連続的に接続した階段形状をなし、これらの面が鏡面をなすとともに表面部8または/および裏面部5には微細な光偏向素子13を設ける。このため、入射端面部3から導光板2内に導かれた光線は入射端面部3の反対側に位置する反入射端面部4に進む間では臨界角を破る光線は無く、導光板2の各面で多くの光線を全反射させ、この表面部8や裏面部5で全反射する角度が反入射端面部4に向かうに従い大きな角度に変化し、反入射端面部4で反射した光線を再度入射端面部3方向に進む時に第1の傾斜面部6により偏向され表面部8で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子13に達した時に臨界角を破り導光板2から出射し、第2の傾斜面部7では臨界角に近い光線でなくとも全反射を行い直接表面部8から出射することができる。特に第2の傾斜面部7による全反射した光は略垂直な出射光を得ることができる。   Thus, the light guide plate 2 of the present invention is configured such that the thickness of the light guide plate 2 is the thinnest at the position of the incident end surface portion 3 and the thickness of the light guide plate 2 increases as the distance from the incident end surface portion 3 increases. In addition, the back surface 5 has a stepped shape in which a gentle first inclined surface portion 6 and a sharp second inclined surface portion 7 facing in the opposite direction to the incident end surface portion 3 are alternately connected, and these surfaces are mirror surfaces. In addition, a fine light deflection element 13 is provided on the front surface 8 and / or the back surface 5. For this reason, there is no light beam that breaks the critical angle while the light beam guided from the incident end surface part 3 into the light guide plate 2 travels to the anti-incident end surface part 4 located on the opposite side of the incident end surface part 3. Many light rays are totally reflected on the surface, and the angle of total reflection on the front surface portion 8 and the back surface portion 5 changes to a larger angle toward the anti-incident end surface portion 4, and the light rays reflected on the anti-incident end surface portion 4 are incident again. When a light beam that is deflected by the first inclined surface portion 6 when traveling in the direction of the end surface portion 3 and breaks the critical angle at the surface portion 8 or a light beam that is close to the critical angle is present, the fine light deflection element 13 is reached together with the taper leak. The critical angle is broken and the light is emitted from the light guide plate 2. The second inclined surface portion 7 can totally emit light directly from the surface portion 8 even if it is not a light ray close to the critical angle. In particular, the light totally reflected by the second inclined surface portion 7 can obtain substantially vertical outgoing light.

そのため、光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部3近傍の入射端面部3の両端をも暗部がなく明るく均一な出射光を得ることができる。これにより、その分実際に使用でき得る導光板2の面積が大きく取れ、さらに光源10が並列(アレー状)に設けてあっても互いに隣り合う光源10からの光を重ならずに輝度斑の発生を防ぐことができる。また、導光板を大型化する場合には、対向する両端面を入射端面部3とし、中心部分の厚さが一番厚いので導光板2の機械的安定および強度に優れる。   Therefore, the amount of light can be controlled, the light source is not reflected, and both ends of the incident end surface portion 3 in the vicinity of the incident end surface portion 3 have no dark portions, and bright and uniform emitted light can be obtained. As a result, the area of the light guide plate 2 that can be actually used can be increased, and even if the light sources 10 are provided in parallel (array form), the light from the adjacent light sources 10 does not overlap with each other. Occurrence can be prevented. Further, when the light guide plate is enlarged, the opposite end faces are the incident end face portions 3 and the thickness of the central portion is the thickest, so that the light guide plate 2 is excellent in mechanical stability and strength.

光源10は、半導体発光素子であって、LEDやレーザ等からなり、RGB(赤色、緑色、青色)の各単色光を入射端面部3の近傍に設けたり、RGB(赤色発光、緑色発光、青色発光)からなる複数の半導体発光素子を組み合わせたアレー状に構成したユニットを入射端面部3に設けても良い。特に、光源10として高輝度を必要とする場合は、4元素化合物やInGaAlP系、InGaAlN系、InGaN系等の化合物の高輝度の発光素子を用いる。   The light source 10 is a semiconductor light emitting element, and is composed of an LED, a laser, or the like, and each RGB (red, green, blue) monochromatic light is provided in the vicinity of the incident end face 3 or RGB (red light emission, green light emission, blue color). A unit configured in an array shape in which a plurality of semiconductor light emitting elements composed of (light emission) are combined may be provided on the incident end face 3. In particular, in the case where high luminance is required as the light source 10, a high-luminance light emitting element of a quaternary compound or a compound such as InGaAlP, InGaAlN, or InGaN is used.

さらに、光源10として、半導体発光素子と波長変換材とを用いて白色光を得ても良い。例えば、InGaAlN系の半導体発光素子の青色発光の出射光によって励起し黄色や橙色等に発光する波長変換材(YAG系)を設け、半導体発光素子自身の青色発光色と波長変換材からの黄色や橙色等の発光色とによって混合された発光色が白色となる光源10でも良い。   Furthermore, as the light source 10, white light may be obtained using a semiconductor light emitting element and a wavelength conversion material. For example, a wavelength conversion material (YAG system) that is excited by blue light emitted from an InGaAlN-based semiconductor light-emitting element and emits light in yellow, orange, or the like is provided. The light source 10 in which the emission color mixed with the emission color such as orange becomes white may be used.

また、光源10は、入射端面部3が大きい場合や導光板2自体が大きい場合にCCFL(冷陰極管)を用いても良く、これらは線状をなし、直接光は導光板2の入射端面部3から導光板2内に入射し、他の光は図示しないリフレクタで反射されながら光源10とリフレクタとの空間を通って導光板2内に入射する。
尚、この線状の光源10の場合には、従来の導光板21では、入射端面部31の近傍に光輝度な輝線が現れてしまうが、本発明の導光板2を用いることによって輝線の発生を防ぐことができる。
The light source 10 may use CCFLs (cold cathode fluorescent lamps) when the incident end face portion 3 is large or the light guide plate 2 itself is large. These light sources 10 are linear, and direct light is incident on the incident end face of the light guide plate 2. The light enters the light guide plate 2 from the portion 3, and other light enters the light guide plate 2 through the space between the light source 10 and the reflector while being reflected by a reflector (not shown).
In the case of this linear light source 10, a bright line with high luminance appears in the vicinity of the incident end face 31 in the conventional light guide plate 21, but generation of a bright line by using the light guide plate 2 of the present invention. Can be prevented.

反射体11は、図示しないが、反射面が凹凸形状またはプリズム形状を成し、熱可塑性樹脂に例えば酸化チタンのような白色材料を混入したシートや熱可塑性樹脂のシートにアルミニウム等の金属蒸着を施したり、金属箔を積層した物やシート状金属からなる。反射体11は、入射端面部3と表面部8以外の部分を覆い、光源10からの光が導光板2によって表面部8に出射した以外の光を反射または乱反射し、再び導光板2に入射させて光源10からの光を全て表面部8から出射するようにする。
また、反入射端面部4や裏面部5に用いる反射体11の凹凸形状やプリズム形状を制御することにより再度導光板2内に戻す位置をコントロールし、最終の出射光の輝度、光量分布および出射角等を調整することができる。
Although not shown, the reflector 11 has a reflective surface having an uneven shape or a prism shape, and metal such as aluminum is deposited on a sheet of thermoplastic resin mixed with a white material such as titanium oxide or a sheet of thermoplastic resin. It consists of the thing which gave or laminated | stacked metal foil, and a sheet-like metal. The reflector 11 covers a portion other than the incident end face portion 3 and the surface portion 8, reflects or irregularly reflects light other than the light from the light source 10 emitted to the surface portion 8 by the light guide plate 2, and enters the light guide plate 2 again. Thus, all the light from the light source 10 is emitted from the surface portion 8.
Further, the position of returning to the inside of the light guide plate 2 is controlled by controlling the concave and convex shape and the prism shape of the reflector 11 used for the anti-incident end face part 4 and the back face part 5, and the luminance, light quantity distribution and outgoing light of the final outgoing light are controlled. Corners etc. can be adjusted.

さらに、反射体11は、反射面が凹凸形状またはプリズム形状であるので、光源10がRGB等の三原色光の光をプリズム面による反射によって導光板2内で混ざり合うことができ、光源10からの光を無駄にせず光源10から導光板2の出射光に変換する効率を良くすることができる。   Furthermore, since the reflecting surface of the reflector 11 has an uneven shape or a prism shape, the light source 10 can mix light of three primary colors such as RGB within the light guide plate 2 by reflection by the prism surface. The efficiency of converting light from the light source 10 to the light emitted from the light guide plate 2 can be improved without wasting light.

レンチキュラーレンズ体12は、PET(ポリエチレンテレフタレート)やアクリル樹脂(PMMA)やポリカーボネート(PC)等で形成される。図1に示すレンチキュラーレンズ体12は、微小円柱レンズ(半面)を平行に多数並べたもので、入射端面部3から反入射端面部4まで同じ半円状の断面を有し、入射端面部3と平行方向に多数並べて一体化されたもので、導光板2(2A)からの出射光を集光させるものである。   The lenticular lens body 12 is formed of PET (polyethylene terephthalate), acrylic resin (PMMA), polycarbonate (PC), or the like. The lenticular lens body 12 shown in FIG. 1 has a large number of micro cylindrical lenses (half surfaces) arranged in parallel, has the same semicircular cross section from the incident end surface portion 3 to the anti-incident end surface portion 4, and the incident end surface portion 3. The light emitted from the light guide plate 2 (2A) is condensed.

また、後述する図16に示すレンチキュラーレンズ体12は、入射端面部3から離れるほど断面の大きさが大きくなった半円状の断面を有し、入射端面部3から放射状に多数並べたもので、導光板2(2B)からの出射光を集光させるものである。   Further, the lenticular lens body 12 shown in FIG. 16 to be described later has a semicircular cross section in which the size of the cross section increases as the distance from the incident end face portion 3 increases, and a large number of lenticular lens bodies 12 are arranged radially from the incident end face portion 3. The light emitted from the light guide plate 2 (2B) is collected.

また、ここでは図示しないが、例えば光源10がCCFL(冷陰極管)のような指向性がラジアル方向を示すような場合には、光源10(CCFL)の周囲にリフレクタを設けて導光板2の入射端面部3と光源10とを包囲するようにし、光源10からの光を反射し、反射光を導光板2の入射端面部3に再び入射させる。リフレクタは、白色の絶縁性材料やアルミニウム等の金属を蒸着したシート状または金属等から構成することができる。   Although not shown here, for example, when the directivity of the light source 10 such as CCFL (cold cathode fluorescent lamp) indicates the radial direction, a reflector is provided around the light source 10 (CCFL) to The incident end face 3 and the light source 10 are surrounded, the light from the light source 10 is reflected, and the reflected light is incident again on the incident end face 3 of the light guide plate 2. The reflector can be made of a white insulating material or a sheet or metal deposited with a metal such as aluminum.

次に、本発明の導光板2と平面照明装置1の他の例を図16に示す。図16に示す平面照明装置1(1B)は、指向性の有する光源10を導光板2(2B)の1端隅近傍に備えている。そして、薄板状矩形立方体形状を成した導光板2Bの一端に入射端面部3を設け、表面部8と裏面部5との間の間距離(導光板2bの厚さ)が入射端面部3で最小になり、入射端面部3から少なくとも最大離距離の端隅4(入射端面部3の対向対象端隅4)において間距離が最大になり、裏面部5が入射端面部3と反対の端隅4方向に向く緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とが交互に連続的に接続して入射端面部3から放射状に階段形状をなしている。   Next, another example of the light guide plate 2 and the flat illumination device 1 of the present invention is shown in FIG. The flat illumination device 1 (1B) shown in FIG. 16 includes a directional light source 10 in the vicinity of one end corner of the light guide plate 2 (2B). An incident end face portion 3 is provided at one end of the light guide plate 2B having a thin rectangular cubic shape, and the distance between the front surface portion 8 and the back surface portion 5 (thickness of the light guide plate 2b) is the incident end face portion 3. The distance between the incident end face part 3 and the rear end part 5 is the opposite end corner to the incident end face part 3. The gentle first inclined surface portions 6 and the sharp second inclined surface portions 7 facing in four directions are alternately and continuously connected to form a staircase shape radially from the incident end surface portion 3.

また、上述した階段形状をなす緩やかな第1の傾斜面部6と鋭い第2の傾斜面部7とは鏡面をなすとともに導光板2Bの表面部8には微細な光偏向素子13が設けられる。   Further, the gentle first inclined surface portion 6 and the sharp second inclined surface portion 7 that form the above-mentioned step shape form a mirror surface, and a fine light deflection element 13 is provided on the surface portion 8 of the light guide plate 2B.

さらに、導光板2Bの出射面側(表面部8)の上部に導光板2Bの入射端面部3(入射端面部3の外側延長線上)を中心とした入射端面部3から放射状にレンチキュラーレンズ体12を備える。また、導光板2Bの入射端面部3および出射面(表面部8)以外の部分を覆う反射性を有した反射体11を備えている。   Further, the lenticular lens body 12 is formed radially from the incident end surface 3 centering on the incident end surface 3 of the light guide plate 2B (on the outside extension line of the incident end surface 3) on the upper side of the light exit surface (surface portion 8) of the light guide plate 2B. Is provided. Further, the light guide plate 2 </ b> B includes a reflector 11 having reflectivity that covers a portion other than the incident end surface portion 3 and the emission surface (surface portion 8).

なお、ここでは、光の作用や効果は上記と同様であり、上記で説明したので、ここでは省略する。但し、図1や図2での導光板2Aでは入射端面部3と反入射端面部4との相互方向に係る光の作用であったが、図16での導光板2Bおよび平面照明装置1Bでは光源10や入射端面部3を中心として入射端面部3を挟む2つの側面方向へ放射状に広がり、その2つの側面から入射端面部3から最大離距離の端隅4を挟む2つの側面部での反射作用が異なっているもので、またこの導光板2Bからの出射光に対応したレンチキュラーレンズ体12である。   Here, the action and effect of light are the same as described above, and since they have been described above, they are omitted here. However, in the light guide plate 2A in FIG. 1 and FIG. 2, it was the effect of light in the mutual direction of the incident end face portion 3 and the anti-incident end face portion 4, but in the light guide plate 2B and the flat illumination device 1B in FIG. The light source 10 and the incident end surface portion 3 are centered on two side surfaces sandwiching the incident end surface portion 3 in a radial direction, and the two side surfaces sandwich the end corner 4 having the maximum separation distance from the incident end surface portion 3 from the two side surfaces. This is a lenticular lens body 12 having a different reflection action and corresponding to the light emitted from the light guide plate 2B.

ところで、図16に示す導光板2Bの階段形状は、図17(a)〜(c)に示す何れかの形状とすることもできる。なお、図17(a)〜(c)では、階段形状の境界線を一点鎖線で示している。図17(a)の例の階段形状は、入射端面部3と端隅4とを結ぶ仮想線L上で境界線が略直角に交わるように、導光板2Bの隅部の入射端面部3に接続する両端側面側から直線で接続されたものである。そして、階段形状の各境界線間が等間隔となっている。図17(b)の例の階段形状は、入射端面部3を中心として、導光板2Bの隅部の入射端面部3に接続する両端側面側から円弧状に接続されたものである。そして、階段形状の各境界線間が等間隔となっている。図17(c)の例の階段形状は、入射端面部3と端隅4とを結ぶ仮想線Lに対して境界線が略直角に交わるように、導光板2Bの隅部の入射端面部3に接続する両端側面側から直線で接続されたものである。そして、階段形状の各境界線間が等間隔となっている。なお、図16および図17(a)〜(c)の導光板2が大きい(入射端面部3からの距離が長い)場合には、各境界線間の距離を入射端面部3から離れるほど長くするのが好ましい。   Incidentally, the staircase shape of the light guide plate 2B shown in FIG. 16 can be any one of the shapes shown in FIGS. Note that, in FIGS. 17A to 17C, the staircase-shaped boundary line is indicated by a one-dot chain line. The staircase shape in the example of FIG. 17A is formed on the incident end surface 3 at the corner of the light guide plate 2B so that the boundary line intersects substantially perpendicularly on the virtual line L connecting the incident end surface 3 and the end corner 4. It is connected in a straight line from the side surfaces of both ends to be connected. And between each boundary line of staircase shape is equal intervals. The step shape in the example of FIG. 17B is connected in a circular arc shape from both side surfaces connected to the incident end surface portion 3 at the corner of the light guide plate 2B with the incident end surface portion 3 as the center. And between each boundary line of staircase shape is equal intervals. The stepped shape in the example of FIG. 17C has the incident end surface portion 3 at the corner of the light guide plate 2B so that the boundary line intersects the virtual line L connecting the incident end surface portion 3 and the end corner 4 at a substantially right angle. It is connected in a straight line from the side surfaces on both ends connected to the. And between each boundary line of staircase shape is equal intervals. When the light guide plate 2 shown in FIGS. 16 and 17A to 17C is large (the distance from the incident end face 3 is long), the distance between the boundary lines becomes longer as the distance from the incident end face 3 increases. It is preferable to do this.

ここでは、これら光の作用や効果は図1乃至図3を用いて説明した場合と同様であるため、その説明を省略するが、図16の平面照明装置1においても、レンチキュラーレンズ体12は導光板2からの出射光に対応した形状(図17(a)〜(c)に示す形状)のものが用いられる。   Here, since the action and effect of these lights are the same as those described with reference to FIGS. 1 to 3, the description thereof will be omitted, but the lenticular lens body 12 is also guided in the flat illumination device 1 of FIG. The thing of the shape (shape shown to Fig.17 (a)-(c)) corresponding to the emitted light from the optical plate 2 is used.

ところで、本例の導光板2としては、図17(d)〜(f)に示すように、上述した図17(a)〜(c)に示す導光板2Bを4枚組み合わせて構成することもできる。図17(d)の例では、図17(a)に示す4枚の導光板2Bを4つの端隅4で一致するように組み合わせ、各入射端面部3間を結ぶ仮想線L上に階段形状の境界線の角部が位置して階段形状が同心矩形状に形成される。そして、端隅4を中心とする同心矩形状の各境界線間が等間隔となっている。図17(e)の例では、図17(b)に示す4枚の導光板2Bを4つの端隅4で一致するように組み合わせ、端隅4を中心として階段形状が同心円状に形成される。そして、端隅4を中心とする同心円状の各境界線間が等間隔となっている。図17(f)の例では、図17(c)に示す4枚の導光板2Bを4つの端隅4で一致するように組み合わせ、各入射端面部3間を結ぶ仮想線Lと略直角をなして階段形状の直線部が位置して階段形状が同心矩形状に形成される。そして、端隅4を中心とする同心矩形状の各境界線間が等間隔となっている。   By the way, as shown in FIGS. 17D to 17F, the light guide plate 2 of this example may be configured by combining four light guide plates 2B shown in FIGS. 17A to 17C described above. it can. In the example of FIG. 17D, the four light guide plates 2B shown in FIG. 17A are combined so as to coincide with each other at the four end corners 4, and a staircase shape is formed on the imaginary line L connecting the respective incident end face portions 3. The corners of the boundary line are positioned and the staircase shape is formed in a concentric rectangular shape. And between the boundary lines of the concentric rectangular shape centering on the end corner 4, there is an equal interval. In the example of FIG. 17 (e), the four light guide plates 2B shown in FIG. 17 (b) are combined so as to coincide with each other at the four end corners 4, and the step shape is formed concentrically with the end corners 4 as the center. . And between the concentric boundary lines centering on the end corner 4, there is an equal interval. In the example of FIG. 17 (f), the four light guide plates 2 B shown in FIG. 17 (c) are combined so as to coincide with each other at the four end corners 4, and are approximately perpendicular to the imaginary line L connecting the incident end face portions 3. Thus, the straight portion of the staircase shape is located and the staircase shape is formed in a concentric rectangular shape. And between the boundary lines of the concentric rectangular shape centering on the end corner 4, there is an equal interval.

なお、図17(d)〜(f)の導光板2が大きい(入射端面部3からの距離が長い)場合には、各境界線間の距離を入射端面部3から離れるほど長くするのが好ましい。例えば図17(d)の導光板2Bの場合には、端隅4から4つの入射端面部3に近づくほど端隅4を中心とする同心矩形状の各境界線間の距離を短くする。   When the light guide plate 2 shown in FIGS. 17D to 17F is large (the distance from the incident end face 3 is long), the distance between the boundary lines is increased as the distance from the incident end face 3 increases. preferable. For example, in the case of the light guide plate 2 </ b> B of FIG. 17D, the distance between the concentric rectangular boundary lines centering on the end corner 4 is shortened from the end corner 4 toward the four incident end face portions 3.

ここで、上述した図17(d)〜(f)の何れかの導光板2Bを採用した場合、各4隅の入射端面部3近傍に光源10を備えた構成となり、導光板2Bの上方に設けるレンチキュラーレンズ体12も使用する4枚の導光板2Bの形状(図17(a)〜(c)の何れかの形状)に対応したものが用いられる。   Here, when any one of the light guide plates 2B shown in FIGS. 17D to 17F described above is employed, the light source 10 is provided in the vicinity of the incident end surface portion 3 at each of the four corners, and the light guide plate 2B is disposed above the light guide plate 2B. The one corresponding to the shape of the four light guide plates 2B (the shape in any one of FIGS. 17A to 17C) to be used is also used.

このように、本発明の導光板2および平面照明装置1は、導光板2の厚さが入射端面部3の位置が最も薄く、入射端面部3から離れる程、導光板2の厚さが厚くなるように構成することにより入射端面部3から入射端面部3の反対側に位置する反入射端面部4方向に進む(以下、順方向)時には導光板2の各面の鏡面でより多く全反射をし、反入射端面部4に達し反入射端面部4で全反射を行った後に、再度入射端面部3方向に進む(以下、逆方向)。そして、逆方向に進む時には導光板2の厚さが段々薄くなるため、第1の傾斜面部6により偏向され表面部8で臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子13に達した時に臨界角を破り導光板2から出射し、第2の傾斜面部7では臨界角に近い光線でなくとも偏向する角度が大きくなっているので、全反射を行った時に表面部8への入射角が小さくなり、直接表面部8から出射することができる。特に第2の傾斜面部7による全反射した光は略垂直な出射光を得ることができる。   Thus, in the light guide plate 2 and the flat illumination device 1 of the present invention, the thickness of the light guide plate 2 is the thinnest at the position of the incident end surface portion 3, and the thickness of the light guide plate 2 increases as the distance from the incident end surface portion 3 increases. By being configured in this way, when traveling in the direction from the incident end face 3 toward the opposite incident end face 4 located on the opposite side of the incident end face 3 (hereinafter referred to as the forward direction), more total reflection is performed on the mirror surface of each surface of the light guide plate 2. After reaching the anti-incident end face portion 4 and performing total reflection at the anti-incident end face portion 4, the process proceeds again in the direction of the incident end face portion 3 (hereinafter, reverse direction). Since the thickness of the light guide plate 2 is gradually reduced when proceeding in the reverse direction, there are many light rays that are deflected by the first inclined surface portion 6 and break the critical angle at the surface portion 8 or light rays close to the critical angle. The critical angle is broken when the light deflecting element 13 is reached together with the leak, and is emitted from the light guide plate 2, and the second inclined surface portion 7 has a larger deflection angle even if it is not a light beam close to the critical angle. , The incident angle to the surface portion 8 becomes small, and the light can be directly emitted from the surface portion 8. In particular, the light totally reflected by the second inclined surface portion 7 can obtain substantially vertical outgoing light.

また、表面部8の入射端面部3に近づくほど分布量が増すように設けた光偏向素子13により、臨界角α付近の光線が光偏向素子13の傾斜面によって屈折等を引き起こし、一層多数の光線を表面部8に出射し、均一で高輝度の出射光を得ることができる。   Further, the light deflection element 13 provided so that the amount of distribution increases as it approaches the incident end face portion 3 of the surface portion 8, so that the light beam near the critical angle α causes refraction by the inclined surface of the light deflection element 13, and more A light beam is emitted to the surface portion 8, and uniform and high-luminance outgoing light can be obtained.

同様に導光板2の両端に入射端面部3を設けた場合には、導光板2の厚さが入射端面部3の位置が最も薄く、導光板2の中心部分で導光板2の厚さが最も厚くなるような構成のため、順方向では各面の鏡面で全反射のみとなり、中心部を超えた位置からおよび逆方向での中心部を超えた位置から各々導光板2の厚さが段々薄くなるため、光線が進みながら臨界角を破り、表面部8から出射するとともに表面部8の入射端面部3に近づくほど分布量が増すように設けた光偏向素子13により臨界角α付近の光線が光偏向素子13の傾斜面によって屈折等を引き起こし一層多数の光線を表面部8に出射するとともに均一で高輝度の出射光を得ることができる。しかも、第2の傾斜面部7では臨界角に近い光線でなくとも偏向する角度が大きくなっているので、全反射を行った時に表面部8への入射角が小さくなり、直接表面部8から出射することができる。   Similarly, when the incident end surface portions 3 are provided at both ends of the light guide plate 2, the thickness of the light guide plate 2 is the thinnest at the position of the incident end surface portion 3, and the thickness of the light guide plate 2 is the central portion of the light guide plate 2. Because of the thickest configuration, only the total reflection is obtained at the mirror surface of each surface in the forward direction, and the thickness of the light guide plate 2 gradually increases from the position beyond the center and from the position beyond the center in the reverse direction. The light beam breaks the critical angle while the light beam travels, and is emitted from the surface portion 8, and the light beam near the critical angle α is provided by the light deflection element 13 provided so that the amount of distribution increases as it approaches the incident end surface portion 3 of the surface portion 8. However, the inclined surface of the light deflecting element 13 causes refraction and the like, and more light rays are emitted to the surface portion 8, and uniform and high-luminance outgoing light can be obtained. Moreover, since the second inclined surface portion 7 has a large deflection angle even if it is not a light beam close to the critical angle, the angle of incidence on the surface portion 8 becomes small when total reflection is performed, and the light is emitted directly from the surface portion 8. can do.

よって、入射端面部3の近傍では光源10からの直接的な高輝度な光、所謂映り込みを出射せずに導光板2の全体に明るく斑のない光を出射する。特に導光板2の両端に入射端面部3を設けた場合には、機械的強度に優れ、映り込みの無い分だけ実質的な大きな出射面を確保することができる。そして、光源10が三原色光(RGB)を用いて白色光源10とする場合にも入射端面部3近傍では出射しないので、各色(RGB)光線が順方向に進む間に混ざり合い臨界角αを破る時には完全な白色光として出射することができる。   Therefore, in the vicinity of the incident end face portion 3, light that is directly bright from the light source 10, that is, so-called reflection is not emitted, and light that is bright and free of spots is emitted on the entire light guide plate 2. In particular, when the incident end face portions 3 are provided at both ends of the light guide plate 2, the mechanical strength is excellent, and a substantially large exit surface can be secured as much as there is no reflection. Even when the light source 10 uses the three primary color lights (RGB) as the white light source 10, it does not emit near the incident end face 3, so that each color (RGB) light beam mixes and breaks the critical angle α while traveling in the forward direction. Sometimes it can be emitted as perfect white light.

また、半導体発光素子のように指向性の有る光源10を入射端面部3の中心に1つだけ設けた場合に、光束が狭い範囲で反入射端面部4方向に進むため、従来では導光板2の入射端面部3の両端部分が暗部となってしまうが、入射端面部3から反入射端面部4方向に進む間には臨界角αを破る光線は存在せず、反入射端面部4で全反射をして光線Lnが再度入射端面部3方向に進む間に臨界角αを破り、さらに表面部8に設けた光偏向素子13により臨界角α付近の光線が光偏向素子13の傾斜面によって屈折等を引き起こし一層多数の光線を表面部8に出射することができる。このため、入射端面部3の両端部に暗部ができず均一で明るい出射光を得ることができる。   Further, when only one directional light source 10 such as a semiconductor light emitting element is provided at the center of the incident end face 3, the light beam travels in the direction toward the non-incident end face 4 in a narrow range. Although both end portions of the incident end surface portion 3 become dark portions, there is no light beam that breaks the critical angle α while traveling from the incident end surface portion 3 toward the anti-incident end surface portion 4, and the anti-incident end surface portion 4 While the light beam Ln is reflected and travels again in the direction of the incident end face portion 3, the critical angle α is broken, and the light deflection element 13 provided on the surface portion 8 causes the light beam near the critical angle α to be reflected by the inclined surface of the light deflection element 13. A larger number of light rays can be emitted to the surface portion 8 by causing refraction and the like. For this reason, dark portions cannot be formed at both end portions of the incident end surface portion 3, and uniform and bright outgoing light can be obtained.

以上のように本発明の導光板は、導光板の厚さを入射端面部を最低の厚さとし、入射端面部から離れるほど厚くなるようにするとともに裏面部には緩やかな傾斜面を有する第1の傾斜面部と鋭い傾斜面を有する第2の傾斜面部とに接続し、第1の傾斜面部よりも鋭い第2の傾斜面部(第1の傾斜面部の傾斜角度の2倍以上)を有して互いに交互に連続的に接続して階段形状に成型したもので、この導光板とレンチキュラーレンズ体等を備えて平面照明装置を構成している。   As described above, in the light guide plate of the present invention, the thickness of the light guide plate is such that the incident end surface portion is the minimum thickness, and the light guide plate is made thicker as the distance from the incident end surface portion increases, and the back surface portion has a gently inclined surface. And a second inclined surface portion that is sharper than the first inclined surface portion (more than twice the inclination angle of the first inclined surface portion). These are connected to each other alternately and formed into a staircase shape, and the light guide plate and the lenticular lens body are provided to constitute a flat illumination device.

小型の液晶表示装置等のバックライトから大型の液晶表示装置等のバックライトまで適し、特に高輝度で輝度斑や色温度斑の無い出射光を得ることができる。例えばモバイル製品から液晶テレビ等汎用品から特殊な用途に至る導光板および平面照明装置を提供することができる。   Suitable for backlights such as small liquid crystal display devices and backlights such as large liquid crystal display devices. Particularly, it is possible to obtain emitted light with high brightness and no luminance spots or color temperature spots. For example, it is possible to provide a light guide plate and a flat illumination device ranging from a mobile product to a general-purpose product such as a liquid crystal television to a special purpose.

本発明に係る平面照明装置の一例を示す略斜視図である。It is a schematic perspective view which shows an example of the plane illuminating device which concerns on this invention. 本発明に係る導光板の一例を示す略断面図および軌跡図である。It is a schematic sectional view and a locus diagram showing an example of a light guide plate according to the present invention. 本発明に係る導光板の部分略断面図および軌跡図である。It is the partial schematic sectional drawing and locus | trajectory figure of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略平面図である。It is a schematic plan view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す部分略斜視図である。It is a partial schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略平面図である。It is a schematic plan view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略断面図および軌跡図である。It is the schematic sectional drawing and locus diagram which show the other example of the light-guide plate which concerns on this invention. 本発明に係る導光板の他の例を示す略平面図および軌跡図である。It is the schematic plan view and locus diagram which show the other example of the light-guide plate which concerns on this invention. (a)〜(f) 本発明に係る導光板に設けられる凸状の稜や凹状の稜の各例を示す部分拡大図である。(A)-(f) It is the elements on larger scale which show each example of the convex ridge provided in the light-guide plate which concerns on this invention, or a concave ridge. 本発明に係る説明図である。It is explanatory drawing which concerns on this invention. 本発明に係る平面照明装置の他の例を示す略斜視図である。It is a schematic perspective view which shows the other example of the planar illuminating device which concerns on this invention. (a)〜(f) 本発明に係る導光板の他の例を示す裏面部側から見た略平面図である。(A)-(f) It is the schematic plan view seen from the back surface part side which shows the other example of the light-guide plate which concerns on this invention. 従来の導光板の略図である。1 is a schematic view of a conventional light guide plate. (a),(b) 従来の導光板等の略図である。(A), (b) It is schematic drawings of the conventional light-guide plate. 従来の導光板等の略図である。1 is a schematic view of a conventional light guide plate and the like.

符号の説明Explanation of symbols

1(1A,1B) 平面照明装置
2(2A,2B) 導光板
3 入射端面部
4 反入射端面部
4b 凸状の稜
4b’ 凹状の稜
4b1,4b2,4b3 傾斜面
4b4,4b5,4b6 平坦頂部
4c フレネル形状
4d 円弧形状
4d2 トーリックレンズ
4e コーナーキュービック形状
4f,4g 傾斜面部
5 裏面部
6 第1の傾斜面部
7 第2の傾斜面部
8 表面部
9 光源
10 光源
11 反射体
12 レンチキュラーレンズ体
13 光偏向素子
14 側面部
21 導光板
31 入射端面部
41 反入射端面部
61 表面部
71 裏面部
L 仮想線
L1,L2,L3,L4,Ln1,Ln2,Ln3,Ln4,Lo,Lo1,Lo2,Lo3,Lo4,Ln22 光線
γ 屈折角
n 屈折率
α 臨界角
1 (1A, 1B) Flat illumination device 2 (2A, 2B) Light guide plate 3 Incident end face 4 Anti-incident end face 4b Convex ridge 4b 'Concave ridge 4b1, 4b2, 4b3 Inclined surface 4b4, 4b5, 4b6 Flat top 4c Fresnel shape 4d Arc shape 4d2 Toric lens 4e Corner cubic shape 4f, 4g Inclined surface portion 5 Back surface portion 6 First inclined surface portion 7 Second inclined surface portion 8 Surface portion 9 Light source 10 Light source 11 Reflector 12 Lenticular lens body 13 Light deflection Element 14 Side surface portion 21 Light guide plate 31 Incident end surface portion 41 Non-incident end surface portion 61 Front surface portion 71 Back surface portion L Virtual line L1, L2, L3, L4, Ln1, Ln2, Ln3, Ln4, Lo, Lo1, Lo2, Lo3, Lo4 , Ln22 Ray γ Refraction angle n Refractive index α Critical angle

Claims (13)

指向性の有する光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに交わる側面部とを有する導光板であって、
薄板状矩形立方体形状を成し、前記入射端面部から離れるに従い前記表面部と前記裏面部との間の間距離が徐々に大きく成るように前記表面部と前記裏面部との間の間距離が前記入射端面部で最小になり、前記入射端面部から最大離距離である反入射端面部において前記表面部と前記裏面部との間の前記間距離が最大になり、鏡面から成る前記裏面部は前記入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、前記入射端面部から前記反入射端面部に進む時には臨界角を破らず、前記反入射端面部にて反射され前記反入射端面部から前記入射端面部に進む時に前記第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに前記第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射することを特徴とする導光板。
A light guide plate having an incident end face portion that guides light having directivity, a front surface portion that emits the light, and / or a back surface portion, and a side surface portion that intersects the front surface portion and the back surface portion,
The distance between the front surface portion and the back surface portion is such that the distance between the front surface portion and the back surface portion gradually increases with increasing distance from the incident end surface portion. The distance between the front surface portion and the back surface portion is maximized at the anti-incident end surface portion which is the smallest at the incident end surface portion and is the maximum separation distance from the incident end surface portion, and the back surface portion formed of a mirror surface is When a gradual shape is formed in which a gentle first inclined surface portion and a sharp second inclined surface portion facing in the opposite direction to the incident end surface portion are alternately connected, and when proceeding from the incident end surface portion to the counter incident end surface portion Without breaking the critical angle, the first inclined surface portion breaks the critical angle when reflected from the anti-incident end surface portion and proceeds from the anti-incident end surface portion to the incident end surface portion, thereby generating a taper leak and the second inclination. Total reflection by face A light guide plate, wherein the reflection angle is emitted substantially perpendicular angle smaller.
指向性の有する光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに交わる側面部とを有する導光板であって、
薄板状矩形立方体形状を成し、前記表面部または/および前記裏面部には、前記入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、前記入射端面部から離れるに従い前記表面部と前記裏面部との間の間距離が徐々に大きく成るように前記表面部と前記裏面部との間の間距離が前記入射端面部で最小になり、前記入射端面部から最大離距離である反入射端面部において前記表面部と前記裏面部との間の前記間距離が最大になり、鏡面から成る前記裏面部は前記入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、前記入射端面部から前記反入射端面部に進む時には臨界角を破らず、前記反入射端面部にて反射され前記反入射端面部から前記入射端面部に進む時に前記第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに前記第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射するとともに前記入射端面部から前記反入射端面部方向に進むときにも前記光偏向素子の傾斜面によって臨界角を破り出射することを特徴とする導光板。
A light guide plate having an incident end face portion that guides light having directivity, a front surface portion that emits the light, and / or a back surface portion, and a side surface portion that intersects the front surface portion and the back surface portion,
A thin plate-like rectangular cube is formed, and the front end portion and / or the back surface portion is provided with a fine dot-shaped light deflecting element so that the quantity or area increases as it approaches the incident end surface portion, and the incident end surface The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the surface portion increases. The distance between the front surface portion and the back surface portion is maximized at the anti-incident end surface portion that is the maximum separation distance from the portion, and the back surface portion formed of a mirror surface is a gentle second surface facing in the opposite direction to the incident end surface portion. The first inclined surface portion and the sharp second inclined surface portion are formed in a staircase shape alternately and continuously, and when proceeding from the incident end surface portion to the anti-incident end surface portion, the critical angle is not broken, and the anti-incident end surface portion is formed. The anti-incident end face portion is reflected by Then, the first inclined surface portion breaks the critical angle to generate a taper leak when proceeding to the incident end surface portion, and the second inclined surface portion emits at a substantially vertical angle with a small reflection angle of total reflection. the light guide plate you characterized by emitting defeating critical angle by the inclined surface of the optical deflector element also when proceeding to the reaction incidence end face direction from parts.
前記第2の傾斜面部は、傾斜角度が前記第1の傾斜面部の傾斜角度の2倍以上で90°以下であることを特徴とする請求項1又は2記載の導光板。 The second inclined surface is claim 1 or 2, wherein the light guide plate, wherein the inclination angle is less than 90 ° at least twice the inclination angle of the first inclined surface portion. 前記反入射端面部は、2つの前記側面部から同距離位置を中心とし、前記側面部方向に曲率が変化するフレネルレンズ形状または前記表面部と前記裏面部との間に延存する凸状または/および凹状の稜を形成することを特徴とする請求項1又は2記載の導光板。 The anti-incident end surface portion is centered on the same distance from the two side surface portions, and has a Fresnel lens shape whose curvature changes in the direction of the side surface portion or a convex shape extending between the front surface portion and the back surface portion. and claim 1 or 2, wherein the light guide plate and forming a concave edge. 前記凸状の稜および前記凹状の稜は、断面の傾斜面が直線または円弧状の三角形状または前記稜の頂部が平坦に欠切したことを特徴とする請求項4記載の導光板。 5. The light guide plate according to claim 4, wherein the convex ridge and the concave ridge are formed such that a slope of a cross section is a straight or arcuate triangular shape or a top portion of the ridge is notched flat. 前記反入射端面部は、前記表面部と前記裏面部との厚さ方向または/および前記側面部方向が円弧形状であることを特徴とする請求項1又は2記載の導光板。 3. The light guide plate according to claim 1, wherein the anti-incident end surface portion has an arc shape in a thickness direction of the front surface portion and the back surface portion and / or the side surface portion direction. 前記反入射端面部は、前記表面部方向または/および前記裏面部方向に傾斜面部を有することを特徴とする請求項1、2、4、6の何れかに記載の導光板。 The anti-incident end face portion, claim 1, characterized in that it has a slope portion on the surface portion direction and / or the back portion direction, 2, the light guide plate according to any one of 4,6. 前記反入射端面部は、微細なコーナーキュービック形状を有することを特徴とする請求項1又は2記載の導光板。 The anti-incident end face portion, claim 1 or 2, wherein the light guide plate and having a fine corner cubic shape. 指向性の有する光源と、
前記光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、前記入射端面部から離れるに従い前記表面部と前記裏面部との間の間距離が徐々に大きく成るように前記表面部と前記裏面部との間の間距離が前記入射端面部で最小になり、前記入射端面部から最大離距離である反入射端面部において前記表面部と前記裏面部との間の前記間距離が最大になり、鏡面から成る前記裏面部は前記入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、前記入射端面部から前記反入射端面部に進む時には臨界角を破らず、前記反入射端面部にて反射され前記反入射端面部から前記入射端面部に進む時に前記第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに前記第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、
前記導光板の前記入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする平面照明装置。
A directional light source;
A thin plate-like rectangular cube shape having an incident end face portion for guiding light from the light source, a front surface portion and / or a back surface portion for emitting the light, and a side surface portion intersecting the front surface portion and the back surface portion is formed. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the front surface portion and the back surface portion gradually increases as the distance from the incident end surface portion increases. The distance between the front surface portion and the back surface portion is maximum at the counter-incident end surface portion that is the maximum separation distance from the incident end surface portion, and the back surface portion formed of a mirror surface is in the opposite direction to the incident end surface portion. The first inclined surface portion and the sharp second inclined surface portion facing each other in a staircase shape alternately connected, and when proceeding from the incident end surface portion to the anti-incident end surface portion, the critical angle is not broken, Reflected by the anti-incident end face and the anti-incident A light guide plate for emitting a substantially normal angle reflection angle is small of the total reflection by the second inclined surface portion as well as generating a tapered leak defeating critical angle by the first inclined surface when the surface proceeds to the incident end face ,
A planar illumination device comprising: a reflector having reflectivity that covers a portion other than the incident end surface portion and the emission surface of the light guide plate.
指向性の有する光源と、A directional light source;
前記光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに交わる側面部とを有した薄板状矩形立方体形状を成し、前記表面部または/および前記裏面部には、前記入射端面部に近づくほど数量または面積が増加するように微細なドット状の光偏向素子を設け、前記入射端面部から離れるに従い前記表面部と前記裏面部との間の間距離が徐々に大きく成るように前記表面部と前記裏面部との間の間距離が前記入射端面部で最小になり、前記入射端面部から最大離距離である反入射端面部において前記表面部と前記裏面部との間の前記間距離が最大になり、鏡面から成る前記裏面部は前記入射端面部と反対方向に向く緩やかな第1の傾斜面部と鋭い第2の傾斜面部とが交互に連続的に接続した階段形状をなし、前記入射端面部から前記反入射端面部に進む時には臨界角を破らず、前記反入射端面部にて反射され前記反入射端面部から前記入射端面部に進む時に前記第1の傾斜面部によって臨界角を破りテーパーリークを発生するとともに前記第2の傾斜面部によって全反射の反射角度が小さく略垂直な角度で出射する導光板と、A thin plate-like rectangular cube shape having an incident end face portion for guiding light from the light source, a front surface portion and / or a back surface portion for emitting the light, and a side surface portion intersecting the front surface portion and the back surface portion is formed. The surface portion and / or the back surface portion is provided with fine dot-shaped light deflecting elements so that the quantity or area increases as the distance from the incident end surface portion increases, and the surface portion increases as the distance from the incident end surface portion increases. The distance between the front surface portion and the back surface portion is minimized at the incident end surface portion so that the distance between the back surface portion and the back surface portion gradually increases, and is the maximum separation distance from the incident end surface portion. The distance between the front surface portion and the back surface portion is maximized at the anti-incident end surface portion, and the back surface portion formed of a mirror surface has a gentle first inclined surface portion and a sharp first surface facing in the opposite direction to the incident end surface portion. The two inclined surface parts are connected alternately. When connecting from the incident end face part to the anti-incident end face part, the critical angle is not broken and reflected from the anti-incident end face part and going from the anti-incident end face part to the incident end face part. A light guide plate that breaks a critical angle by the first inclined surface portion and generates a taper leak and emits light at a substantially vertical angle with a small reflection angle of total reflection by the second inclined surface portion;
前記導光板の前記入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする平面照明装置。A flat illumination device comprising: a reflector having reflectivity that covers a portion other than the incident end surface portion and the emission surface of the light guide plate.
前記導光板の出射面側の上部にレンチキュラーレンズ体を具備することを特徴とする請求項9又は10記載の平面照明装置。 The flat illumination device according to claim 9 or 10 , further comprising a lenticular lens body at an upper portion on an emission surface side of the light guide plate. 前記光源は、指向性の有する半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材利用の白色光であるとともにこれらを単体またはアレー状に構成したことを特徴とする請求項9又は10記載の平面照明装置。 The light source is composed of a directional semiconductor light emitting element, and is composed of monochromatic light, red light, green light, blue light, or white light using a wavelength conversion material, and is configured as a single element or an array. The flat illumination device according to claim 9 or 10, characterized in that 前記反射体は、反射面が凹凸形状またはプリズム形状であることを特徴とする請求項9又は10記載の平面照明装置。 The reflector plane illumination device according to claim 9 or 10, wherein the reflecting surface is uneven or prism shape.
JP2005098906A 2005-03-30 2005-03-30 Light guide plate and flat illumination device Expired - Fee Related JP4182076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098906A JP4182076B2 (en) 2005-03-30 2005-03-30 Light guide plate and flat illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098906A JP4182076B2 (en) 2005-03-30 2005-03-30 Light guide plate and flat illumination device

Publications (2)

Publication Number Publication Date
JP2006278251A JP2006278251A (en) 2006-10-12
JP4182076B2 true JP4182076B2 (en) 2008-11-19

Family

ID=37212782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098906A Expired - Fee Related JP4182076B2 (en) 2005-03-30 2005-03-30 Light guide plate and flat illumination device

Country Status (1)

Country Link
JP (1) JP4182076B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062735B2 (en) * 2007-05-18 2012-10-31 シチズン電子株式会社 Display device
KR100877413B1 (en) 2007-06-04 2009-01-07 엘지전자 주식회사 Backlight unit and liquid crystal display comprising the same
JP2009032558A (en) * 2007-07-27 2009-02-12 Casio Hitachi Mobile Communications Co Ltd Light guide body structure
WO2009028291A1 (en) * 2007-08-24 2009-03-05 Sharp Kabushiki Kaisha Light guide unit, illuminating device and liquid crystal display device
US7660047B1 (en) * 2008-09-03 2010-02-09 Microsoft Corporation Flat panel lens
KR101607287B1 (en) * 2008-11-07 2016-04-12 삼성디스플레이 주식회사 Light guiding plate, backlight assembly and display apparatus having the same
US7976740B2 (en) 2008-12-16 2011-07-12 Microsoft Corporation Fabrication of optically smooth light guide
US8354806B2 (en) * 2009-08-21 2013-01-15 Microsoft Corporation Scanning collimation of light via flat panel lamp
JP5060592B2 (en) * 2010-06-04 2012-10-31 京楽産業.株式会社 Game machine
US9201185B2 (en) 2011-02-04 2015-12-01 Microsoft Technology Licensing, Llc Directional backlighting for display panels
JP5669210B2 (en) * 2011-12-08 2015-02-12 シャープ株式会社 Display device
US9354748B2 (en) 2012-02-13 2016-05-31 Microsoft Technology Licensing, Llc Optical stylus interaction
US9870066B2 (en) 2012-03-02 2018-01-16 Microsoft Technology Licensing, Llc Method of manufacturing an input device
US9134807B2 (en) 2012-03-02 2015-09-15 Microsoft Technology Licensing, Llc Pressure sensitive key normalization
US9075566B2 (en) 2012-03-02 2015-07-07 Microsoft Technoogy Licensing, LLC Flexible hinge spine
US20130300590A1 (en) 2012-05-14 2013-11-14 Paul Henry Dietz Audio Feedback
US8947353B2 (en) 2012-06-12 2015-02-03 Microsoft Corporation Photosensor array gesture detection
US9256089B2 (en) 2012-06-15 2016-02-09 Microsoft Technology Licensing, Llc Object-detecting backlight unit
US8964379B2 (en) 2012-08-20 2015-02-24 Microsoft Corporation Switchable magnetic lock
WO2017145388A1 (en) * 2016-02-26 2017-08-31 河西工業株式会社 Vehicle interior component and light guide plate
JP2018181822A (en) * 2017-04-21 2018-11-15 ミネベアミツミ株式会社 Planar illumination device
WO2018193755A1 (en) * 2017-04-21 2018-10-25 ミネベアミツミ株式会社 Planar illumination device
WO2018198329A1 (en) * 2017-04-28 2018-11-01 河西工業株式会社 Sun visor

Also Published As

Publication number Publication date
JP2006278251A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4182076B2 (en) Light guide plate and flat illumination device
JP4385031B2 (en) Light guide plate and flat illumination device
JP4588729B2 (en) Flat lighting device
JP4900439B2 (en) Planar light source device and display device using the same
JP5066520B2 (en) Planar illumination device and liquid crystal display device using the same
JP4198281B2 (en) Light guide plate and flat illumination device
JP3955505B2 (en) Light guide plate
WO2004055429A1 (en) Light guide plate, illuminating device using same, area light source and display
KR101509372B1 (en) Surface light source device and liquid crystal display device
JP2018098162A (en) Surface light source device and display device
KR20170004205A (en) Light guide plate and plane light source device having the same
JP2008027665A (en) Light guide plate and flat lighting device
CN110969958A (en) LED display screen
JP4436845B2 (en) Light guide plate
JP4324133B2 (en) Light guide plate and flat illumination device
JP2005056711A (en) Light guide plate unit and flat lighting system
JP4260767B2 (en) Light guide plate and flat illumination device
JP3927490B2 (en) Flat lighting device
JP4681075B1 (en) Illumination device and display device
JP4260512B2 (en) Flat lighting device
JP2003066239A (en) Light transmission plate and planar illuminator
JP4138787B2 (en) Light guide plate, flat illumination device, and liquid crystal display device
JP4295782B2 (en) Light guide
JP2006202559A (en) Surface light source apparatus
JP4413668B2 (en) Light guide plate, light source device and flat light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees