JP4681075B1 - Illumination device and display device - Google Patents
Illumination device and display device Download PDFInfo
- Publication number
- JP4681075B1 JP4681075B1 JP2010006184A JP2010006184A JP4681075B1 JP 4681075 B1 JP4681075 B1 JP 4681075B1 JP 2010006184 A JP2010006184 A JP 2010006184A JP 2010006184 A JP2010006184 A JP 2010006184A JP 4681075 B1 JP4681075 B1 JP 4681075B1
- Authority
- JP
- Japan
- Prior art keywords
- light
- convex
- triangular pyramid
- grating
- guide plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Abstract
【課題】散乱による混色は放射角の制御が困難で効率が低いため、放射角を制御して高効率に混色する照明装置および表示装置を実現する。
【解決手段】菱形屈折面の一方の対角線を基準面上に設け、基準面対角線より上側と下側の菱形屈折面の隣接する辺を接して並べて凸型と凹型の三角錐屈折格子4を形成し、菱形屈折面が基準面の法線となす傾斜角を屈折面への入射角αと屈折角βとの差分の角度γで設定し、3方向の平行光光源からの平行光が光源に対向する側の屈折面だけに入射して基準面の鉛直上方に屈折し、出射方向を一致させて混合する。
導光板の出射面に三角錐屈折格子4、導光板の底面に凸反射面5を形成し、平行光を導光板の側面から凸反射面に入射する構造からなる液晶表示装置は凸反射面で光束を拡大して三角錐屈折格子に反射してサブ画素に照射し、3方向からの3色の平行光を菱形のサブ画素からなる画素に照射する。
【選択図】 図12Since the color mixing due to scattering is difficult to control the radiation angle and the efficiency is low, an illumination device and a display device that control the radiation angle and mix colors with high efficiency are realized.
One diagonal line of a rhomboid refracting surface is provided on the reference plane, and adjacent sides of the rhomboid refracting surface above and below the reference plane diagonal line are arranged in contact with each other to form a convex and concave triangular pyramidal refraction grating 4. The angle of inclination between the rhomboid refracting surface and the normal of the reference surface is set as the difference angle γ between the incident angle α and the refracting angle β on the refracting surface, and the parallel light from the three-way parallel light source is used as the light source. The light is incident only on the refracting surface on the opposite side, refracted vertically above the reference surface, and mixed by matching the emission direction.
A liquid crystal display device having a structure in which a triangular pyramid refraction grating 4 is formed on the exit surface of the light guide plate and a convex reflection surface 5 is formed on the bottom surface of the light guide plate so that parallel light is incident on the convex reflection surface from the side surface of the light guide plate. The light beam is magnified and reflected by the triangular pyramid refraction grating to irradiate the sub-pixel, and the parallel light of three colors from three directions is irradiated to the pixel composed of the rhomboid sub-pixel.
[Selection] FIG.
Description
本発明は3色以上の発光素子からの光を三角錐格子状に構成した反射素子または屈折素子で出射方向を制御して混色特性を改善した照明装置および表示装置に関するものである。 The present invention relates to an illuminating device and a display device in which light emission from three or more colors of light emitting elements is controlled by a reflecting element or a refracting element configured in a triangular pyramid lattice to improve the color mixing characteristics.
半導体発光素子は小型、高効率、長寿命、低電圧動作、高速応答などの優れた特徴のため各種表示装置・照明装置などに広く使用されている。
液晶表示装置は赤、緑、青の3原色発光素子による不連続なスペクトルでも3色の制御信号によりその中間色を表示するため3色の発光素子を用いた3原色光を利用可能である。3色の発光素子を円錐内面に設けて後方散乱によって混色距離を長くしている提案(図24、特許文献1)は多重反射に伴なう吸収が増えて効率が低下する。3色の発光素子を同一パッケージに収め、発光素子に近い部分の反射鏡の傾斜を急にして各発光素子と反射鏡の距離と角度の差異を緩和する提案があるが(図25、特許文献2)、局部的条件でしか均等な混色が得られない。3色の発光素子を同一パッケージ内で十分に混色するのが難しく、素子の電源電圧が異なるなどの理由で下記の蛍光白色発光ダイオードが多く使用されている。
Semiconductor light emitting devices are widely used in various display devices and lighting devices because of their excellent features such as small size, high efficiency, long life, low voltage operation, and high speed response.
The liquid crystal display device can use three primary color lights using three color light emitting elements in order to display an intermediate color by a control signal of three colors even in a discontinuous spectrum by three primary color light emitting elements of red, green, and blue. In the proposal (FIG. 24, Patent Document 1) in which light emitting elements of three colors are provided on the inner surface of the cone and the color mixing distance is increased by backscattering, absorption due to multiple reflection increases and efficiency decreases. There is a proposal to reduce the difference in the distance and angle between each light emitting element and the reflecting mirror by placing three color light emitting elements in the same package and steeply tilting the reflecting mirror in a portion near the light emitting element (FIG. 25, Patent Document). 2) Uniform color mixing can be obtained only under local conditions. The following fluorescent white light-emitting diodes are often used because it is difficult to sufficiently mix the three-color light-emitting elements in the same package and the power supply voltages of the elements are different.
青色発光ダイオードの青色光を黄色蛍光体に照射し、補色による蛍光白色発光ダイオードのスペクトルは先鋭な青色となだらかな黄色域の2つのピークから成っている(特許文献3)。赤色域が非常に少なく、緑にも大きなディップを持つ青みの強いスペクトル特性である。しかし、蛍光白色発光ダイオードは3原色の混色に比べて簡単に製造出来るため携帯電話などの液晶表示装置のバックライト、LED電球などとして利用されている。 The blue phosphor of the blue light emitting diode is irradiated on the yellow phosphor, and the spectrum of the fluorescent white light emitting diode by complementary color consists of two peaks in a sharp yellow color and a gentle yellow region (Patent Document 3). It has a strong bluish spectral characteristic with very little red range and a large dip in green. However, since the fluorescent white light emitting diode can be easily manufactured as compared with the mixed color of the three primary colors, the fluorescent white light emitting diode is used as a backlight of a liquid crystal display device such as a mobile phone, an LED bulb, and the like.
半導体発光素子の発光効率の向上に伴って蛍光ランプより小型化が可能な発光ダイオードによる照明への応用が進んでいる。発光ダイオードは許容温度上昇が他の光源に比べて小さいため、大きな光束を得るのは多数のチップが必要になって高価なため、効率を重視されて青みの強いスペクトルになっている。最も比視感度の高い黄緑色付近の蛍光体を青色発光ダイオードで励起して補色による蛍光白色光を一般照明に使用した場合、赤色域やディップ波長域の被照射体は連続スペクトルの白色光に比べて暗くなる。赤色蛍光体などを混合する方法やイットリウムの一部をガドリニウムに置換して長波長側にシフトし、演色性を改善しつつ効率向上する提案がある(特許文献3)。 With the improvement of the light emission efficiency of semiconductor light emitting devices, the application to illumination by light emitting diodes that can be made smaller than fluorescent lamps is progressing. Since the light emitting diode has a small allowable temperature rise compared to other light sources, it requires a large number of chips to obtain a large luminous flux, and is expensive. Therefore, the spectrum is strongly bluish with emphasis on efficiency. When the fluorescent light near yellowish green with the highest relative visibility is excited with a blue light-emitting diode and fluorescent white light by complementary color is used for general illumination, the irradiated object in the red or dip wavelength range becomes white light in the continuous spectrum. It becomes darker than that. There are proposals for mixing red phosphors and the like, and for replacing yttrium with gadolinium and shifting to the longer wavelength side to improve efficiency while improving color rendering (Patent Document 3).
白色光バックライト光源からカラーフィルタで3色に分解する際に2/3の光量がカラーフィルタで吸収されて効率が低下する。カラーフィルタを使用せずに3原色発光素子を用いて加法混色する方法として、導光板に45°の溝を画素数設け、溝の界面で液晶パネル方向に全反射する導光板を3層重ねた提案がある(図26、特許文献4)。
複数の棒状導光体の界面に遮光層を設け、複数色発光ダイオードの色別光を遮光して棒状導光体内を伝播し、カラーフィルタを用いずに3色光を液晶ストライプに供給する方法が提案されている(図27、特許文献5)。
液晶パネルの3辺に3色の光源を設置し、導光板に四角錐をマトリックス状に設けて四角錐の傾斜面によって液晶パネルの所定の画素に照射する液晶表示装置が提案されている(図28、特許文献6)。
棚田状に凸反射面を配置した導光板に3原色の平行光を伝播させて画素方向に光束を拡大して反射し、各色の反射光を反射・透過素子でストライプに分配する提案がある(図29、特許文献7)。
頂角と谷角が90°の角度を有するプリズムの底面に2方向から2色の光を入射し、入射角が大きい傾斜面に入射した光は屈折光を同一方向に混色して出射し、入射角が大きい傾斜面に入射した光は臨界角以上になって全反射するので他方の光源に戻る。戻る光線を活用するためにバンドパスミラーを用いて他の光源側から出射する構造が提案されている(図32、特許文献8)。
When the white light backlight source is separated into three colors by the color filter, 2/3 light amount is absorbed by the color filter and the efficiency is lowered. As a method of additive color mixing using light emitting elements of three primary colors without using a color filter, a 45 ° groove is provided in the light guide plate in the number of pixels, and three light guide plates that totally reflect in the liquid crystal panel direction at the groove interface are stacked. There is a proposal (FIG. 26, Patent Document 4).
There is a method in which a light shielding layer is provided at the interface of a plurality of rod-shaped light guides, light of each color of light emitting diodes is shielded and propagated through the rod-shaped light guide, and three-color light is supplied to the liquid crystal stripe without using a color filter. It has been proposed (FIG. 27, Patent Document 5).
There has been proposed a liquid crystal display device in which light sources of three colors are installed on three sides of a liquid crystal panel, square pyramids are provided in a matrix on a light guide plate, and predetermined pixels of the liquid crystal panel are irradiated by inclined surfaces of the quadrangular pyramids (see FIG. 28, Patent Document 6).
There is a proposal to propagate parallel light of the three primary colors to a light guide plate having a convex reflection surface arranged in a terraced shape, expand the light beam in the pixel direction and reflect it, and distribute the reflected light of each color into stripes by the reflective / transmissive elements ( FIG. 29, Patent Document 7).
Two colors of light are incident on the bottom surface of the prism having an apex angle and a valley angle of 90 ° from two directions, and the light incident on the inclined surface having a large incident angle is emitted by mixing the refracted light in the same direction. The light incident on the inclined surface having a large incident angle exceeds the critical angle and is totally reflected, and returns to the other light source. In order to utilize the returning light beam, a structure for emitting light from another light source side using a band pass mirror has been proposed (FIG. 32, Patent Document 8).
撮像用光源として線光源に近い3波長冷陰極管が多く使用されているが各色の蛍光材料が線スペクトルのため波長特性の凹凸が大きく、正確な色再現が出来ない。発光ダイオードの光度がピークの約半値になる半値幅は20nm〜60nmのため6色〜9色を用いて可視光域をカバーする提案がある(特許文献7)。7種類の発光素子を基板中央付近に並べ、焦点面より浅い位置のレンズ内に封入し、焦点面の散乱材層で混色することにより各色の半値波長で繋げて白色光を形成し、線光源変換素子で変換してスキャナー光源としての応用が示されている。 A three-wavelength cold cathode tube close to a line light source is often used as an imaging light source. However, since the fluorescent material of each color has a line spectrum, the wavelength characteristics are uneven and accurate color reproduction cannot be achieved. Since the full width at half maximum at which the luminous intensity of the light emitting diode is about half the peak is 20 nm to 60 nm, there is a proposal to cover the visible light region using 6 to 9 colors (Patent Document 7). Seven types of light-emitting elements are arranged near the center of the substrate, enclosed in a lens shallower than the focal plane, and mixed with the scattering material layer on the focal plane to form white light by connecting at half-value wavelengths of each color. An application as a scanner light source after conversion by a conversion element is shown.
3色の発光素子を同一パッケージに配置し、発光素子近傍の反射鏡の傾斜を急にするなどの構造によって混色する特許文献1の提案は各発光素子から反射鏡への距離と角度が異なるのでチップの並びに従った色斑を生じる。正反射による混色が難しいので円錐内面の散乱層で後方散乱させて散乱距離を長く取るなどの混色のため、反射光が光源側に戻り多重反射の際に吸収されて効率が低下する。 The proposal of Patent Document 1 in which three color light emitting elements are arranged in the same package and the colors are mixed by a structure such as steep inclination of the reflecting mirror in the vicinity of the light emitting element is different in distance and angle from each light emitting element to the reflecting mirror. This produces color spots that follow the tip. Since color mixing by regular reflection is difficult, color mixing such as back scattering by the scattering layer on the inner surface of the cone to increase the scattering distance causes the reflected light to return to the light source side and be absorbed during multiple reflections, thereby reducing efficiency.
青色発光ダイオードの青色光を黄色蛍光体に照射した補色による白色発光ダイオードは尖鋭なスペクトルの青色光となだらかな黄色光のスペクトルを持ち、赤色域と青緑色域が不足している(特許文献3)。蛍光体の配合比率を増大するに従って青色光のピークが低下して蛍光のピークが増大するが、蛍光が進行方向の蛍光体に当たらずに透過すると黄色光を呈し、別の黄色蛍光体に当たると蛍光体が有色不透明で蛍光波長に対しては蛍光変換率が低いために吸収される。吸収を補って蛍光体配合比率を上げると更に効率が低下する。蛍光白色発光ダイオードは効率を優先されて青色光スペクトルが大きい青白い光で、平均演色評価数が約70と、演色性が低い照明である。 A white light emitting diode with a complementary color obtained by irradiating a yellow phosphor with blue light from a blue light emitting diode has a sharp blue light and a gentle yellow light spectrum, and lacks a red region and a blue green region (Patent Document 3). ). As the blending ratio of the phosphor increases, the peak of blue light decreases and the peak of fluorescence increases.However, when the fluorescence passes through the phosphor in the direction of travel, it exhibits yellow light and hits another yellow phosphor. The fluorescent material is absorbed because it is colored and opaque and has a low fluorescence conversion rate with respect to the fluorescence wavelength. Increasing the phosphor blending ratio by compensating for absorption further reduces the efficiency. Fluorescent white light emitting diodes are bluish-white light with a high blue light spectrum given priority to efficiency, and an average color rendering index of about 70, which is low color rendering.
演色性を改善するために広い波長帯域の蛍光体を混合するとき、変換効率と比視感度に応じた蛍光体の配合比率で混合する必要がある。比視感度・変換効率の低い赤色などでは長波長蛍光体の量が増え、長波長蛍光体から発せられた光は短波長蛍光体では吸収だけで蛍光変換されないので更に蛍光体を増やす必要が生じる。黄色蛍光が黄色蛍光体に当たる確率と赤色蛍光が赤色蛍光体に当たる確率も増大して効率が低下する。このため、複数種の蛍光体を混合分散して連続スペクトルの白色光を実現するのは効率が低下する問題がある。 When mixing phosphors having a wide wavelength band in order to improve color rendering, it is necessary to mix them at a blending ratio of the phosphors according to conversion efficiency and specific luminous efficiency. The amount of long-wavelength phosphors increases in red with low specific visibility and conversion efficiency, and the light emitted from the long-wavelength phosphors is absorbed only by the short-wavelength phosphors and is not converted to fluorescence. . The probability that the yellow fluorescent light hits the yellow fluorescent material and the probability that the red fluorescent light hits the red fluorescent material also increase, and the efficiency decreases. For this reason, there is a problem that the efficiency is lowered when a plurality of kinds of phosphors are mixed and dispersed to realize white light having a continuous spectrum.
カラーフィルタを使用せずに3原色発光素子を用いて加法混色する方法として、導光板に45°の溝を画素数設け、溝の界面で液晶パネル方向に全反射する導光板を3層重ねた特許文献4の提案は、45°の傾斜をサブ画素数設けるため画面幅の1/3の厚さが必要になり、画面幅300mmでは導光板1層あたり100mm厚が必要で、ストライプ数の溝を加工する工数により高価になる。 As a method of additive color mixing using light emitting elements of three primary colors without using a color filter, a 45 ° groove is provided in the light guide plate in the number of pixels, and three light guide plates that totally reflect in the liquid crystal panel direction at the groove interface are stacked. The proposal of Patent Document 4 requires a thickness of 1/3 of the screen width to provide a 45 ° inclination and the number of sub-pixels. A screen width of 300 mm requires a thickness of 100 mm per layer of the light guide plate. It becomes expensive due to the man-hours for processing.
複数の棒状導光体の界面に遮光層を設け、色別光を遮光して棒状導光体内を伝播し、カラーフィルタを用いずに3色光を液晶ストライプに供給する特許文献5の提案は、遮光処理されたサブ画素幅の糸状導光部材を束ねて製造するのが難しく、遮光層を設けた透光シートを積層するとシート厚の公差が積算して液晶の画素寸法に一致しなくなる。各遮光層で仕切られた透光材内を拡散光が伝播するので、金属遮光膜の場合は反射する毎に吸収されて遠方ほど暗くなる。 Patent Document 5 proposes that a light-shielding layer is provided at the interface between a plurality of rod-shaped light guides, light of each color is shielded and propagated through the rod-shaped light guide, and three-color light is supplied to the liquid crystal stripe without using a color filter. It is difficult to bundle and manufacture a light guide member having a sub-pixel width subjected to a light shielding process. When a light transmitting sheet provided with a light shielding layer is laminated, tolerances of the sheet thickness are integrated and do not match the pixel dimensions of the liquid crystal. Since diffused light propagates through the light-transmitting material partitioned by the respective light shielding layers, in the case of a metal light shielding film, it is absorbed every time it is reflected and becomes darker in the distance.
導光板に四角錐による反射体を多数設け、3方向からの3原色光を画素に反射して混色する特許文献6の提案は、手前の四角錐に遮られて逆V型の反射光しか得られず、四角錐に斜めの平行光を照射すると側面にも当たるので散乱光になり他の画素に入射して不鮮明になる。 The proposal of Patent Document 6 in which a light guide plate is provided with a large number of reflectors made of a quadrangular pyramid and reflects and mixes the three primary color lights from three directions to the pixels, and only a reverse V-shaped reflected light is obtained by being blocked by the front quadrangular pyramid. However, when oblique parallel light is irradiated onto the quadrangular pyramid, it also hits the side surface, so that it becomes scattered light and enters other pixels and becomes unclear.
棚田状に凸反射面を配置した導光板と反射・透過素子でストライプに分配する特許文献7の提案は構造が異なる2種類の導光素子を用いるため正確な位置合わせが必要である。 The proposal of Patent Document 7 in which a light guide plate having a convex reflection surface arranged in a terraced shape and a reflection / transmission element distributes stripes uses two types of light guide elements having different structures, and therefore requires accurate alignment.
入射光は対を成す双方の傾斜屈折面に入射し、一方の傾斜屈折面で屈折して底面の鉛直方向に出射する条件では対をなす他方の屈折面に入射する光は入射角が臨界角以上のため全反射して他方の光源側に戻る。全反射光をバンドパスミラーで再反射して利用すれば損失を回避出来るが複雑で高価である。 The incident light is incident on both of the pair of inclined refracting surfaces, and the light incident on the other refracting surface forming a pair is incident on the critical angle when the light is refracted by one inclined refracting surface and emitted in the vertical direction of the bottom surface. Thus, the light is totally reflected and returned to the other light source side. If total reflected light is rereflected by a bandpass mirror and used, loss can be avoided, but it is complicated and expensive.
短冊状反射面の長軸方向を光源からの平行光の進行方向に直交させて基準面上に配置し、短冊状反射面の短軸方向を交互に±30°の傾斜を持たせて三角波状に並べると、三角波状反射格子4が形成される。三角波状反射格子と短冊状反射面の短軸方向で斜め上方30°の方向に平行光光源を対称位置に設けた構造を図1に示す。
夫々の平行光光源と三角波状格子の対をなす反射面が平行になっているので対をなす平行光光源側に配置された反射面には入射出来ず、水平面から30°上方の平行光光源双方からの平行光は三角波状反射鏡の光源方向反射面に沿って入射する。反射面に対向する光源の平行光が反射面に入射すると、双方から入射した光はいずれも鉛直上方に反射する。
三角波状格子の傾斜および傾斜光の傾斜角度をα、傾斜面の法線と鉛直方向のなす角度をβとすると、数1のように傾斜α,βは30°である。
左右平行光光源からの反射光はいずれも光源側の反射面に従った櫛形になり、左右からの平行光が櫛形に交互に並んだ反射光である。格子ピッチを肉眼では認識出来ない寸法のストライプにして左右の平行光光源を別色の2色にすると併置加法混色される。
The strip-shaped reflecting surface is arranged on the reference plane with the major axis direction orthogonal to the traveling direction of the parallel light from the light source, and the minor axis direction of the strip-shaped reflecting surface is alternately inclined by ± 30 ° to form a triangular wave Are arranged, the triangular wave reflection grating 4 is formed. FIG. 1 shows a structure in which a parallel light source is provided at a symmetrical position in the direction of 30 ° obliquely upward in the minor axis direction of the triangular wave reflection grating and the strip-like reflection surface.
Since the reflecting surfaces forming the pair of each parallel light source and the triangular wave lattice are parallel, they cannot enter the reflecting surface arranged on the side of the parallel light source forming the pair, and the parallel light source 30 ° above the horizontal plane. Parallel light from both sides is incident along the light source direction reflecting surface of the triangular wave reflector. When the parallel light of the light source facing the reflecting surface is incident on the reflecting surface, the light incident from both sides is reflected vertically upward.
Assuming that the inclination of the triangular wave lattice and the inclination angle of the inclined light is α, and the angle between the normal of the inclined surface and the vertical direction is β, the inclinations α and β are 30 ° as shown in Equation 1.
The reflected light from the left and right parallel light sources is a reflected light in which all of the reflected lights are in a comb shape according to the reflecting surface on the light source side, and the parallel lights from the left and right are alternately arranged in a comb shape. If the lattice pitch is a stripe having a size that cannot be recognized by the naked eye, and the left and right parallel light sources are two different colors, the additive color mixing is performed.
左右平行光光源からの反射光が櫛形に交互に並んだ反射光で併置加法混色されるのと同様に、傾斜が30°の三角錐反射面で3方向の平行光を鉛直方向に反射すると正三角形配置のデルタ配列で混合して出射する。三角錐反射面に照射する光源は図2のように3方向に配置し、基準面に向かって30°下向きに照射する配置のため、各反射面は対向する光源以外からの入射はなく、手前の三角錐に遮られることのない構造である。三角波状格子と同一の傾斜面のため基準面鉛直方向に3色の混色光を平行光として出射するため3原色表示装置の光源などとして利用することが出来る。三角錐を凸型と凹型で構成すると上下の三角形が連結し、3方向を向いた傾斜面の形状は図2のように菱形を組み合わせたものである。図3は三角錐の基準面を破線で示し、凸型三角錐の頂部を○で、凹型三角錐の谷部を●で表している。 Similarly to the case where the reflected light from the right and left parallel light sources is combined and mixed by the reflected light alternately arranged in a comb shape, it is positive when the parallel light in three directions is reflected in the vertical direction on the triangular pyramid reflecting surface with an inclination of 30 °. The light is mixed and emitted in a delta arrangement with a triangular arrangement. The light sources that irradiate the triangular pyramid reflecting surface are arranged in three directions as shown in FIG. 2 and are arranged to irradiate 30 ° downward toward the reference surface. The structure is not obstructed by the triangular pyramid. Since the same inclined surface as that of the triangular wave lattice, the mixed color light of the three colors is emitted as parallel light in the vertical direction of the reference surface, so that it can be used as a light source of a three primary color display device. When the triangular pyramid is composed of a convex shape and a concave shape, the upper and lower triangles are connected, and the shape of the inclined surface facing three directions is a combination of rhombuses as shown in FIG. In FIG. 3, the reference surface of the triangular pyramid is indicated by a broken line, the top of the convex triangular pyramid is indicated by ◯, and the valley of the concave triangular pyramid is indicated by ●.
三角波状格子は屈折面で構成することも出来、2つの方向から入射して三角波状に構成された面で屈折して平行光として出射する状態を図3に示す。屈折格子構成物質の屈折率n2、周囲媒体の屈折率n1とし、右側光源から屈折格子の右側傾斜面に入射角αで入射した光は数2(1)のスネル則により屈折角βで屈折する。三角波状屈折格子の傾斜面角度は中心線に対してγとして対をなす屈折面に平行に入射するので右側光源光は右側傾斜面にしか入射せず、傾斜面と入射光は対称なので左側光源光も同様である。三角波状屈折格子の傾斜面角度γを数2(2)のようにβとαの差で設定することにより双方の屈折光は中心線に平行に出射する。屈折格子の水平面に角度δで左右から対称に入射すると屈折面に角度αで入射するので混色して平行光として出射する。
代表的な透光高分子であるポリメチルメタクリレートとポリカーボネートにおけるα、β、γ、δの例を示す。
Examples of α, β, γ, and δ in polymethyl methacrylate and polycarbonate, which are typical light-transmitting polymers, are shown.
屈折格子を三角錐で構成して出射方向を一致させると図4のように3方向からの光を混色出来る。三角錐の3つの傾斜面角度は何れも中心線に対してγであり、3方向からの平行光が底面となす入射角はδである。底面で屈折した光は進行方向の1面にのみに入射して他の2面に平行なので入射しない。図4は右側に配置された光源Aからの平行光Aが底面で屈折した後に三角錐の左側の屈折面に入射角αで入射して鉛直方向に屈折して出射し、左奥に配置された光源Bからの平行光Bが底面で屈折した後に三角錐の右側の屈折面で鉛直方向に屈折して出射し、左手前側に配置された光源Cからの平行光Cが底面で屈折した後に三角錐の奥側の屈折面で鉛直方向に屈折して出射する。奥側の屈折面は図4では陰になっている。 If the refractive grating is formed of a triangular pyramid and the emission directions are made coincident, light from three directions can be mixed as shown in FIG. The three inclined surface angles of the triangular pyramid are all γ with respect to the center line, and the incident angle between the parallel light from the three directions and the bottom surface is δ. The light refracted at the bottom surface is incident on only one surface in the traveling direction and is not incident because it is parallel to the other two surfaces. In FIG. 4, the parallel light A from the light source A arranged on the right side is refracted on the bottom surface, then enters the left refracting surface of the triangular pyramid at an incident angle α, is refracted in the vertical direction, and exits, and is arranged on the back left side. After the parallel light B from the light source B is refracted on the bottom surface, the light is refracted in the vertical direction on the right refractive surface of the triangular pyramid and emitted, and the parallel light C from the light source C arranged on the left front side is refracted on the bottom surface. The light is refracted in the vertical direction on the refractive surface at the back of the triangular pyramid and emitted. The refracting surface on the back side is shaded in FIG.
基準面上に三角錐を同一方向に複数並べると、三角錐屈折面で3方向の平行光を鉛直方向に屈折して混合して出射するが、基準面上に前記三角錐の向きとは逆方向を向いた三角形のスペースが生じる。このスペースに上に凸の三角錐を設けても、屈折光を鉛直方向に出射することは出来ない。このスペースに基準面より窪んだ凹型三角錐を設け、前記凸型三角錐と凹型三角錐で構成すると上下の三角形が連結し、傾斜した屈折面の形状は図5のように菱形を組み合わせたものである。つまり、菱形屈折面の一方の対角線を基準面上に設け、基準面上の対角線より上側の菱形屈折面の隣接する辺を接して並べて基準面より上に凸型の三角錐屈折格子を形成し、対角線より下側の菱形屈折面の隣接する辺を接して並べて基準面より窪んだ凹型の三角錐屈折格子を形成し、屈折面への入射角と屈折角との差分の角度で菱形屈折面が基準面の法線となす傾斜角を設定し、三角錐屈折格子を周囲媒体より屈折率の大きい物質で構成して高屈折率側から低屈折率側に出射する構造である。3方向の平行光光源からの平行光が夫々、光源に対向する側の屈折面だけに入射して基準面の鉛直上方に屈折し、出射方向を一致させて混合することが出来る。
図5は三角錐の底面を破線で示し、凸型三角錐の頂部を○で、凹型三角錐の谷部を●で表している。屈折面の形状は菱形だが、凸型三角錐と凹型三角錐を組み合わせた構造なので三角錐屈折格子4と呼ぶことにする。凸型三角錐と凹型三角錐で構成すると平行光に対向する菱形に無駄なく平行光を照射することが出来る。
三角錐屈折面に照射する光源は図4のように3方向に配置し、基準面に向けて仰角で上記δの角度で照射する配置のため、各屈折面は対向する光源以外からの入射はなく、手前の三角錐に遮られることのない構造である。基準面の垂直方向に3色の混色光を平行光として出射するため3原色表示装置の光源などに利用出来る。
When a plurality of triangular pyramids are arranged in the same direction on the reference plane, the parallel light in the three directions is refracted and mixed in the vertical direction on the triangular pyramid refracting surface, but is emitted in the opposite direction to the direction of the triangular pyramids on the reference plane. A triangular space pointing in the direction is created. Even if a convex triangular pyramid is provided in this space, the refracted light cannot be emitted in the vertical direction. In this space, a concave triangular pyramid recessed from the reference plane is provided. When the convex triangular pyramid and the concave triangular pyramid are used, the upper and lower triangles are connected, and the shape of the inclined refractive surface is a combination of diamonds as shown in FIG. It is. In other words, one diagonal line of the rhomboid refracting surface is provided on the reference plane, and the adjacent sides of the rhomboid refracting surface above the diagonal line on the reference plane are arranged in contact with each other to form a convex triangular pyramid refraction grating above the reference plane. A concave triangular pyramid refraction grating that is recessed from the reference plane is formed by adjoining adjacent sides of the rhomboid refractive surface below the diagonal line, and the rhomboid refractive surface is the difference between the incident angle on the refractive surface and the refraction angle Is a structure in which the inclination angle formed by the normal to the reference plane is set, the triangular pyramid refraction grating is made of a material having a higher refractive index than the surrounding medium, and is emitted from the high refractive index side to the low refractive index side. The parallel light from the three-direction parallel light sources can enter only the refracting surface on the side facing the light source and be refracted vertically above the reference surface, and can be mixed by matching the emission directions.
In FIG. 5, the bottom of the triangular pyramid is indicated by a broken line, the top of the convex triangular pyramid is indicated by ◯, and the valley of the concave triangular pyramid is indicated by ●. Although the shape of the refracting surface is a rhombus, it is called a triangular pyramid refraction grating 4 because it is a structure combining a convex triangular pyramid and a concave triangular pyramid. When the convex triangular pyramid and the concave triangular pyramid are used, it is possible to irradiate parallel light on the rhombus facing the parallel light without waste.
The light sources that irradiate the triangular pyramid refracting surface are arranged in three directions as shown in FIG. 4 and are radiated at the above-mentioned angle δ at the elevation angle toward the reference surface. The structure is not obstructed by the front triangular pyramid. Since mixed color light of three colors is emitted as parallel light in the direction perpendicular to the reference plane, it can be used as a light source for a three-primary color display device.
屈折格子に入射する光が平行光の場合、表示装置の背面に複数の平行光光源を設けるための大きな空間を必要とするが、サイドライト導光板の出射面側に前記三角錐屈折格子を形成して薄型化した構造について説明する。導光板の出射面側に三角錐屈折格子4を形成し、導光板の底面に凸反射面5を形成して、導光板側面から底面に対して傾斜した平行光を凸反射面5に入射すると、反射して三角錐屈折格子に光束を拡大して照射する。平行光が凸反射面で光束を拡大して反射し、三角錐屈折格子で屈折して被照射面におけるサブ画素27の透過部の幅Wに拡大する様子を図6に示す。凸反射面の円周に沿った曲面長さdからサブ画素幅Wに拡大するのが光束拡大率である。被照射面までの距離tは導光板厚と液晶挟持基板厚の和であり、サブ画素の透過部の幅をW、導光板凸面傾斜部の円周に沿った曲面長さをdとすると、凸反射面の曲率半径rは数3で示される。
入射光の底面に対する傾斜θi は段差sと画素幅Xより数4で求められる。
3方向から3色の入射光を凸反射面に入射すると、夫々が光束を拡げて反射して三角錐屈折格子の菱形屈折面に照射されて、サブ画素に照射される。菱形屈折面で略鉛直方向に屈折して出射するので菱形屈折面の基準面に直交する対角線の長さは三角錐屈折格子の上方のサブ画素幅Wと同等である。菱形のサブ画素形状を組み合わせるので画素の形状は6角形である。
If the light incident on the refraction grating is parallel light, a large space is required to provide a plurality of parallel light sources on the back of the display device, but the triangular pyramid refraction grating is formed on the exit surface side of the sidelight light guide plate. The thinned structure will be described. When the triangular pyramid refraction grating 4 is formed on the exit surface side of the light guide plate, the convex reflection surface 5 is formed on the bottom surface of the light guide plate, and parallel light inclined with respect to the bottom surface from the side surface of the light guide plate is incident on the convex reflection surface 5 Then, the light beam is reflected and irradiated to the triangular pyramid refraction grating by expanding the light beam. FIG. 6 shows a state in which the parallel light is reflected by enlarging the light flux on the convex reflecting surface, refracted by the triangular pyramid refraction grating, and enlarged to the width W of the transmission part of the sub-pixel 27 on the irradiated surface. The light beam expansion rate is expanded from the curved surface length d along the circumference of the convex reflecting surface to the sub-pixel width W. The distance t to the irradiated surface is the sum of the light guide plate thickness and the liquid crystal sandwich substrate thickness, where W is the width of the transmissive portion of the sub-pixel, and d is the curved surface length along the circumference of the convex inclined portion of the light guide plate. The radius of curvature r of the convex reflecting surface is expressed by Equation 3.
The inclination θi of the incident light with respect to the bottom surface can be obtained from Equation 4 from the step s and the pixel width X.
When incident light of three colors from three directions is incident on the convex reflection surface, each of the light beams spreads and reflects, and is irradiated onto the rhomboid refraction surface of the triangular pyramid refraction grating, and is irradiated onto the sub-pixel. Since the diamond-shaped refracting surface refracts in a substantially vertical direction and exits, the length of the diagonal line orthogonal to the reference surface of the diamond-shaped refracting surface is equal to the sub-pixel width W above the triangular pyramid refraction grating. Since the rhomboid sub-pixel shapes are combined, the pixel shape is a hexagon.
光束を拡大する拡散光が三角錐を構成する他の2面に入射しないようにするには他の2面に平行あるいは他の2面の陰になって入射しない必要がある。この条件で混色した光は数2(1)のスネル則に従って光束を拡大して出射する。図8の光線Aは三角錐を構成する他の2面の稜に平行に進行して基準面に鉛直方向に出射する。凸反射面による光束拡大光を平行光に変換する凸屈折面を三角錐屈折格子との間に設けた2層構造になるが、三角錐屈折格子に入射する角度を一定にすることも出来る。拡散光の放射角が大きくなるほど光線B,C,Dの出射光は鉛直方向より傾斜した出射光である。三角錐を構成する他の2面に入射すると光線Eのように全反射して数2とは異なった方向に出射する。 In order to prevent the diffused light that expands the light beam from entering the other two surfaces constituting the triangular pyramid, it is not necessary to enter the other two surfaces in parallel or behind the other two surfaces. The light mixed under these conditions expands and emits the light beam according to the Snell law of Equation 2 (1). The light ray A in FIG. 8 travels parallel to the ridges of the other two surfaces constituting the triangular pyramid and is emitted in the vertical direction to the reference surface. Although it has a two-layer structure in which a convex refracting surface for converting light beam expanded light by the convex reflecting surface into parallel light is provided between the triangular pyramidal refraction grating, the angle of incidence on the triangular pyramid refraction grating can be made constant. As the radiation angle of the diffused light increases, the outgoing lights of the rays B, C, and D are outgoing lights that are inclined from the vertical direction. When the light enters the other two surfaces constituting the triangular pyramid, the light is totally reflected like a light ray E and is emitted in a direction different from Equation 2.
図9、図10は三角錐屈折格子における2面の断面を示したものである。図9は1本の円筒凸反射面で反射して1列のサブ画素の列に照射する状態を示しているが、図10のように1本の円筒凸反射面から複数のサブ画素の列に照射することも出来る。サブ画素列の数は整数に限らず、次の凸反射面からの光が連続するならば端数も可能である。画素数よりも導光板底面の円筒凸反射面が少ない列数で構成し、1本の円筒凸反射面から複数のサブ画素の列に照射すると、1列のサブ画素の列に照射するときよりも凸反射面の寸法が大きく、円筒凸反射面の列数を削減出来るので3方向を向いた凸反射面の成型が容易になる。
複数のサブ画素列に分配する数を増やすに従って図8の光線B,C,Dのように傾斜するので出射方向を鉛直方向にするために出射面の傾斜を数2(1)に従って補正するか、隣接する他色のサブ画素に入射しない放射角に留める必要がある。図8の光線B,C,Dは谷部に遮られて頂部付近に死角部分が発生して光量が減少するので、輝度むらの影響が生じない放射角に留めることが望ましい。導光板厚を薄くした場合も光線B,C,Dのように傾斜するので同様である。
9 and 10 show cross sections of two faces in a triangular pyramid refraction grating. FIG. 9 shows a state in which the light beam is reflected by one cylindrical convex reflecting surface and irradiated to one column of sub-pixels, but a plurality of sub-pixel columns are formed from one cylindrical convex reflecting surface as shown in FIG. Can also be irradiated. The number of sub-pixel columns is not limited to an integer, and a fraction is also possible if the light from the next convex reflection surface is continuous. When the cylindrical convex reflection surface on the bottom surface of the light guide plate is formed with a smaller number of columns than the number of pixels and irradiation is performed on a plurality of subpixel columns from one cylindrical convex reflection surface, the column is irradiated on one subpixel column. However, since the size of the convex reflection surface is large and the number of columns of the cylindrical convex reflection surface can be reduced, the convex reflection surface facing three directions can be easily molded.
As the number of distribution to the plurality of sub-pixel columns increases, the light is inclined like rays B, C, and D in FIG. 8, so that the inclination of the emission surface is corrected according to Equation 2 (1) in order to make the emission direction vertical. It is necessary to keep the radiation angle so as not to enter the adjacent sub-pixels of other colors. Since the light rays B, C, and D in FIG. 8 are blocked by the valley and a blind spot is generated near the top and the amount of light is reduced, it is desirable to keep the radiation angle free from the influence of uneven brightness. The same applies to the case where the light guide plate thickness is reduced because the light guide plate is inclined like rays B, C, and D.
図9、図10は2方向成分を示すのみなので、3方向成分を平面図で示したのが図11である。導光板底面の3方向を向いた凸反射面で3方向からの平行光を三角錐屈折格子方向に全反射するメカニズムを説明する。図11のB−B′における断面は図9、図10の底面に設けた2方向を向いた三角柱状凸反射面である。図11の横方向に伸びる3本1組で構成される線は導光板側面の上辺と下辺に対向する2辺に平行に設けた円筒凸反射面を三角柱状に頂稜を接して形成したものである。図の右下方向に照射する平行光Bを菱形の屈折格子方向に反射するための円筒凸反射面を導光板の底面に並べ、図の右上方向に照射する平行光Cを菱形の屈折格子方向に反射する円筒凸反射面が接して稜を形成し、図の右下方向に照射する平行光Bと図の右上方向に照射する平行光Cをこの頂稜を接した円筒凸反射面で反射して三角錐屈折格子に入射してサブ画素B,Cに入射する。
左向き方向の平行光光源Aからの光を菱形の屈折格子で鉛直方向に方向変換して上下方向に並べたサブ画素Aに照射する。
図11において右辺に設けた光源Aからの光を反射する複数の凸反射面を2本の三角柱状凸反射面の間にある谷部に設けている。図11の上辺と下辺に設けた光源B,Cからの光は三角柱状凸反射面の陰の谷部にある凸反射面5Aに入射しないので光源Aの光だけをサブ画素Aに照射する。
この谷部に沿った断面A−A′を図12に示す。図12の凸反射面5Aで光束を拡げて反射する光が三角錐格子の屈折面15Aだけに入射してサブ画素27Aに入射する。凸反射面5Aの上に示した凸反射面5Cは同一の断面上に存在するものでなく紙面垂直方向に存在するが透視して示したものである。図11の上辺と下辺に設けた光源B,Cからの光が凸反射面5Cと、更にその裏側に存在する凸反射面5Bで光束を拡げて反射し、夫々三角錐格子の屈折面15Cと15Bに入射してサブ画素27Cと27Bに入射する。凸反射面5B、屈折面15B、サブ画素27Bは裏側にあるので図示していないが、3方向を向いた凸反射面の導光板底面は3方向からの平行光を三角錐屈折格子方向に全反射する。
9 and 10 only show the two-direction component, FIG. 11 shows the three-direction component in a plan view. A mechanism for totally reflecting parallel light from the three directions in the direction of the triangular pyramid refraction on the convex reflection surface facing the three directions on the bottom surface of the light guide plate will be described. 11 is a triangular prism-like convex reflecting surface facing in two directions provided on the bottom surface of FIGS. 9 and 10. In FIG. 11, the line composed of one set of three extending in the horizontal direction is formed by forming a cylindrical convex reflecting surface provided in parallel with two sides facing the upper side and the lower side of the side surface of the light guide plate in the shape of a triangular prism and touching the top edge. It is. A cylindrical convex reflecting surface for reflecting parallel light B irradiated in the lower right direction of the figure in the direction of the rhomboid refraction grating is arranged on the bottom surface of the light guide plate, and parallel light C irradiated in the upper right direction of the figure is in the direction of the rhombus refraction grating The cylindrical convex reflecting surface that reflects the light beam forms a ridge, and the parallel light B that irradiates in the lower right direction of the figure and the parallel light C that irradiates in the upper right direction of the figure are reflected by the cylindrical convex reflecting surface that touches the top edge. Then, the light enters the triangular pyramid refraction grating and enters the sub-pixels B and C.
The light from the parallel light source A in the leftward direction is changed in the vertical direction by the diamond-shaped refractive grating and irradiated to the sub-pixels A arranged in the vertical direction.
In FIG. 11, a plurality of convex reflection surfaces that reflect light from the light source A provided on the right side are provided in a valley portion between two triangular prismatic convex reflection surfaces. Since the light from the light sources B and C provided on the upper side and the lower side in FIG. 11 does not enter the convex reflection surface 5A in the shaded valley of the triangular prismatic convex reflection surface, only the light from the light source A is applied to the subpixel A.
FIG. 12 shows a cross section AA ′ along the valley. The light reflected by expanding the light flux on the convex reflecting surface 5A of FIG. 12 is incident only on the refractive surface 15A of the triangular pyramid lattice and is incident on the sub-pixel 27A. The convex reflection surface 5C shown on the convex reflection surface 5A is not present on the same cross section but is present in the direction perpendicular to the paper surface, but is shown through. The light from the light sources B and C provided on the upper side and the lower side of FIG. 11 is reflected by spreading the light beam on the convex reflection surface 5C and the convex reflection surface 5B existing on the back side thereof, and the refraction surface 15C of the triangular pyramid lattice, respectively. It enters 15B and enters the sub-pixels 27C and 27B. Although the convex reflection surface 5B, the refractive surface 15B, and the sub-pixel 27B are not shown in the figure, the bottom surface of the light guide plate of the convex reflection surface facing the three directions completely transmits the parallel light from the three directions in the direction of the triangular pyramid refraction grating. reflect.
凸反射面Aを円筒に形成した場合、右辺からの光が反射すると三角柱状凸反射面の上部は死角になって照明されないので凸反射面Aを長軸方向にも曲面を形成し、長軸方向の放射角εを制御して三角柱状凸反射面の上部の画素に照射する。凸反射面の長軸方向の曲率半径Rは、凸反射面の長軸方向の長さをLとして数5で示される。
三角柱状凸反射面に直交する方向の凸反射面の長軸方向長さより長い範囲を照射するので前記三角柱状凸反射面の上部の画素に照射することが出来る。
When the convex reflection surface A is formed in a cylindrical shape, when light from the right side is reflected, the upper part of the triangular prismatic convex reflection surface becomes a blind spot and is not illuminated. Therefore, the convex reflection surface A is curved in the long axis direction, and the long axis The direction radiation angle ε is controlled to irradiate the upper pixel of the triangular prismatic convex reflection surface. The radius of curvature R in the major axis direction of the convex reflecting surface is expressed by Equation 5, where L is the length of the convex reflecting surface in the major axis direction.
The range longer than the length in the major axis direction of the convex reflection surface in the direction perpendicular to the triangular prismatic convex reflection surface is irradiated, so that the pixels above the triangular prismatic convex reflection surface can be irradiated.
図11の底面の凸反射面で反射した3方向の光は導光板の上側面に設けた三角錐屈折格子のA,B,C面に入射する。三角錐屈折格子は3つの菱形面を組み合わせた構造なので、導光板の上方に菱形のサブ画素を有する液晶パネルを配置する。図13は3色のサブ画素を菱形で形成してデルタ配列して6角形の画素からなる液晶表示装置の平面図である。図13では説明の都合上、サブ画素の寸法を非常に拡大して表示している。
3色の光源A,B,Cは周辺部に配置して120°異なる方向から照射している。R,G,Bの配列は任意だが、右辺に配置する光源Aの数が最も少ないので高輝度の素子を配置するのが得策である。右辺には左向き方向に照射する平行光光源Aを並べ、図13の上辺と左辺上側に図の右下方向に照射する平行光光源Bを並べ、下辺と左辺下側に図の右上方向に照射する平行光光源Cを並べている。3方向の光を6角形の画素で混色してカラー表示することが出来る。
Light in the three directions reflected by the convex reflecting surface on the bottom surface of FIG. 11 is incident on the A, B, and C surfaces of the triangular pyramid refraction grating provided on the upper surface of the light guide plate. Since the triangular pyramid refraction grating has a structure in which three rhombus surfaces are combined, a liquid crystal panel having rhombic sub-pixels is disposed above the light guide plate. FIG. 13 is a plan view of a liquid crystal display device including hexagonal pixels in which three color sub-pixels are formed in rhombuses and delta-arranged. In FIG. 13, for the convenience of explanation, the dimensions of the sub-pixels are greatly enlarged.
The three color light sources A, B, and C are arranged at the periphery and irradiate from directions different by 120 °. Arrangement of R, G, and B is arbitrary, but since the number of light sources A arranged on the right side is the smallest, it is a good idea to arrange high-luminance elements. The parallel light source A that irradiates in the left direction is arranged on the right side, the parallel light source B that irradiates in the lower right direction of the figure is arranged on the upper side and the upper left side of FIG. 13, and the lower side and the lower left side irradiate in the upper right direction of the figure. The parallel light sources C are arranged. Color display can be performed by mixing light in three directions with hexagonal pixels.
三角錐屈折格子を通して3色光をサブ画素に照射するのでカラーフィルタを用いずに液晶表示装置のカラー表示することが出来、凸反射面と三角錐屈折格子は同一部材からなる導光板なので液晶パネルの画素と位置合わせしてカラー表示することが出来る。菱形サブ画素を点対称に並べた6角形画素のため併置加法混色に優れ、ストライプによる正方形画素より滑らかである。
カラーフィルタは当該色以外を吸収するので透過率が33%以下で、偏光板の吸収などを含めると液晶表示装置全体の効率は8%以下だが、本願発明はカラーフィルタを用いないので効率が3倍になり、白色発光ダイオードに比べて約1/3のRGB発光ダイオード数である。このためカラーフィルタの製造工程削減のみならず、発光ダイオードと電源部のコスト削減も出来る。
Since the three-color light is irradiated to the sub-pixels through the triangular pyramid refraction grating, the color display of the liquid crystal display device can be performed without using a color filter. Since the convex reflection surface and the triangular pyramid refraction grating are light guide plates made of the same member, Color display can be performed by aligning with pixels. Because it is a hexagonal pixel in which rhomboid subpixels are arranged point-symmetrically, it is excellent in side-by-side additive color mixing and is smoother than square pixels with stripes.
Since the color filter absorbs colors other than the color, the transmittance is 33% or less, and the efficiency of the entire liquid crystal display device is 8% or less if the absorption of the polarizing plate is included. However, since the present invention does not use the color filter, the efficiency is 3 The number of RGB light emitting diodes is about 1/3 that of white light emitting diodes. For this reason, not only the manufacturing process of the color filter can be reduced, but also the cost of the light emitting diode and the power supply unit can be reduced.
表示装置では3原色の混色で再現可能だが、照明装置・撮像装置などでは光源の波長特性が欠けていると正確な色再現が出来ない。青色発光ダイオードの青色光を黄色蛍光体に照射した補色による白色発光ダイオードは尖鋭な青色光スペクトルとなだらかな黄色光スペクトルを持ち、青緑色域に大きなディップがある。複数の蛍光体を混合して蛍光白色発光ダイオードを広帯域化するとき、蛍光体を多量に混合することにより蛍光を他の蛍光体で吸収されて効率が更に低下する。このため、蛍光体を混合するのでなく、三角錐屈折格子あるいは三角錐反射格子によって混色すると効率低下を伴わずに波長特性が広帯域化する。 In a display device, reproduction is possible with a mixture of the three primary colors, but in an illumination device, an imaging device, etc., accurate color reproduction cannot be achieved if the wavelength characteristics of the light source are lacking. A white light emitting diode with a complementary color obtained by irradiating a yellow phosphor with blue light from a blue light emitting diode has a sharp blue light spectrum and a gentle yellow light spectrum, and has a large dip in the blue-green region. When a fluorescent white light emitting diode is broadened by mixing a plurality of phosphors, the fluorescence is absorbed by other phosphors by mixing a large amount of phosphors, and the efficiency further decreases. For this reason, if the phosphors are not mixed, but are mixed by a triangular pyramid refraction grating or a triangular pyramid reflection grating, the wavelength characteristics are widened without reducing efficiency.
第1の発光素子を青紫色発光ダイオードとし、黄色蛍光体による波高値が青紫色光波高値の約半分の2山特性で蛍光体を分散すると、青色〜緑色にディップを持ち、赤色域の低下した特性である。
第2の発光素子は第1の発光素子のディップ波長で発光する青緑色発光ダイオードとし、橙色蛍光体による波高値が青緑色光波高値の約半分の2山特性で蛍光体を分散すると、緑色〜黄色にディップを持つ特性である。
第3の発光素子は第1の発光素子のディップ波長で発光する緑色発光ダイオードとし、橙色蛍光体による波高値が緑色光波高値の約半分の2山特性で蛍光体を分散すると、黄色〜橙色にディップを持つ特性である。
三角錐屈折格子を用いて第1〜第3の発光ダイオード光を加法混色すると、第1発光ダイオードのディップ領域は第2、第3の発光ダイオードの励起光で補完される。第1〜第3の発光ダイオードの蛍光スペクトルは加法混色により黄色〜赤色域にかけて波高値が励起光に概略等しく、なだらかな連続スペクトルの蛍光を得ることが出来る。蛍光体で広帯域特性を得る方法は効率が低下するが、ディップ領域に別の励起波長を設けて三角錐屈折格子による混色を行なうことにより高効率に連続波長を実現出来る。要部透視図を図14に、断面図を図15に示す。異なる励起波長の蛍光変換発光ダイオードを三角錐混色装置で混色した合成前と合成後の波長特性を図22に示す。
When the first light-emitting element is a blue-violet light emitting diode and the phosphor is dispersed with a two-peak characteristic in which the peak value due to the yellow phosphor is about half of the peak value of the blue-violet light, it has a dip from blue to green, and the red region has decreased. It is a characteristic.
The second light-emitting element is a blue-green light-emitting diode that emits light at the dip wavelength of the first light-emitting element, and when the phosphor is dispersed with a double peak characteristic in which the peak value of the orange phosphor is about half of the blue-green light peak value, It is a characteristic with a dip in yellow.
The third light-emitting element is a green light-emitting diode that emits light at the dip wavelength of the first light-emitting element. When the phosphor is dispersed with a two-peak characteristic in which the peak value of the orange phosphor is about half of the peak value of the green light, the color changes from yellow to orange. A characteristic with a dip.
When the first to third light emitting diode lights are additively mixed using the triangular pyramid refraction grating, the dip region of the first light emitting diode is complemented with the excitation light of the second and third light emitting diodes. The fluorescence spectra of the first to third light emitting diodes are approximately equal to the excitation light in the yellow to red region by additive color mixing, and a gentle continuous spectrum of fluorescence can be obtained. Although the efficiency of the method for obtaining broadband characteristics with a phosphor is reduced, continuous wavelengths can be realized with high efficiency by providing another excitation wavelength in the dip region and performing color mixing with a triangular pyramid refraction grating. A perspective view of the main part is shown in FIG. 14, and a cross-sectional view is shown in FIG. FIG. 22 shows wavelength characteristics before and after synthesis in which fluorescence conversion light emitting diodes having different excitation wavelengths are mixed with a triangular pyramid color mixing device.
照明装置では平行光よりも放射角を拡げて使用されることが多いので混色された平行光を負焦点距離光学系により平行光よりも放射角を拡げることが出来る。放射方向が異なると一方だけの成分になるので、各光源光とも放射角と方向を揃えることにより均一な混色光を照射することが出来る。図16は屈折格子の出射部に凹レンズアレイを設けたものである。 Since the illumination device is often used with a wider radiation angle than the parallel light, it is possible to widen the radiation angle of the mixed parallel light with respect to the parallel light by the negative focal length optical system. If the radiation direction is different, only one component is obtained. Therefore, each light source light can be irradiated with uniform color mixing light by aligning the radiation angle and direction. In FIG. 16, a concave lens array is provided at the exit of the refractive grating.
屈折格子の傾斜面を凹面にすることにより放射角を拡げることが出来、これを図17に示す。対向する屈折格子傾斜面の凹面の出射光の放射角を揃えることにより均一な混色光を照射することが出来る。対向する屈折格子傾斜面に入射しないためには、屈折格子谷部における接線の傾斜で入射する必要がある。このため屈折格子の頂部に入射しないので頂部は先鋭にする必要はなく、平坦にして成型しやすくすることも出来る。 The radiation angle can be expanded by making the inclined surface of the refractive grating concave, as shown in FIG. Uniform color mixing light can be emitted by aligning the emission angles of the emitted light of the concave surfaces of the opposing refractive grating inclined surfaces. In order not to be incident on the opposing refractive grating inclined surface, it is necessary to enter with a tangential inclination at the refractive grating valley. For this reason, since it does not inject into the top part of a refractive grating, it is not necessary to sharpen a top part, and it can also make it easy to shape | mold by flattening.
屈折格子の傾斜面を凸面にして焦点通過後に放射角を拡げることも出来る。屈折格子の傾斜面が平面であっても入射光が平行光でなく拡散光のとき、屈折格子出射後は拡散光である。屈折格子の基準面を平面でなく、凹面にして屈折格子に拡散光を入射し、拡散光を出射することが出来る。
光源部を1点からの拡散光にすると屈折格子の基準面に入射する角度が位置によって異なってしまうが、複数の点からの拡散光にすれば基準面に入射する角度を揃えることが出来る。
スポットライト、信号機などでは数4、図9の表示面における幅Wよりも、照射範囲あるいは観察可能範囲の放射角θの方が利用しやすいので凸反射面の曲率半径r、円周に沿った曲面長さd、放射角θで表すと数6で示され、数7で近似することも出来る。ここで、放射角は図10のように中心線に対して対称な角度である。
図10は2方向からの平行光を放射角θで同一方向に混色して出射する状態を示している。放射角が等しく方向が一致して格子が認識できない寸法であれば均等に加法混色する。
It is also possible to increase the radiation angle after passing through the focal point by making the inclined surface of the refractive grating convex. Even if the inclined surface of the refractive grating is flat, when the incident light is not parallel light but diffused light, it is diffused light after exiting the refractive grating. By making the reference surface of the refractive grating not a flat surface but a concave surface, diffused light can be incident on the refractive grating and emitted.
If the light source part is diffused light from one point, the angle of incidence on the reference surface of the refractive grating varies depending on the position, but if it is diffused light from a plurality of points, the angle of incidence on the reference surface can be made uniform.
In the case of spotlights, traffic lights, etc., the radiation angle θ of the irradiation range or the observable range is easier to use than the width W on the display surface of FIG. When expressed by the curved surface length d and the radiation angle θ, it is expressed by Equation 6 and can be approximated by Equation 7. Here, the radiation angle is symmetric with respect to the center line as shown in FIG.
FIG. 10 shows a state in which parallel light from two directions is mixed and emitted in the same direction at a radiation angle θ. If the radiation angle is the same and the direction is the same and the grid cannot be recognized, additive color mixing is performed evenly.
個別発光素子で連続スペクトルを得るには、発光ダイオードの光度がピークの約半値になる波長幅は20nm〜60nmのため、各色の半値波長で繋げて6色〜9色を用いると可視光域をカバーして連続スペクトルの白色光を実現可能である。三角錐屈折格子に入射する3つの光源に、更に屈折格子あるいは反射格子による混色光を用いることにより6色あるいは9色を混合することが出来る。散乱による混色でないので放射角の狭い白色光を照射することが出来る。6色を混合すると図23のように連続スペクトルの白色光を合成することが出来る。
この構造の要部透視図の例を図18に示し、断面図の例を図19〜図21に示す。
In order to obtain a continuous spectrum with an individual light emitting element, the wavelength width at which the luminous intensity of the light emitting diode reaches about half the peak is 20 nm to 60 nm. Covering can achieve continuous spectrum white light. Six colors or nine colors can be mixed by using mixed light from the refractive grating or the reflection grating for the three light sources incident on the triangular pyramid refractive grating. Since it is not a color mixture due to scattering, it is possible to irradiate white light with a narrow emission angle. When the six colors are mixed, white light having a continuous spectrum can be synthesized as shown in FIG.
An example of a perspective view of the main part of this structure is shown in FIG. 18, and examples of cross-sectional views are shown in FIGS.
出射面の屈折格子は1つの格子傾斜面に複数の光を入射出来るので、図20は図19に比べて半分の屈折格子数になっている。図21は導光板底面の凸反射格子の光束拡大機能を利用し、図19の導光板出射面の凹屈折面を削除したものである。 Since the refraction grating on the exit surface can enter a plurality of lights on one grating inclined surface, the number of refraction gratings in FIG. 20 is half that in FIG. FIG. 21 uses the light beam expansion function of the convex reflection grating on the bottom surface of the light guide plate and eliminates the concave refractive surface of the light guide plate exit surface of FIG.
複数の発光素子と反射鏡の距離と角度の非対称性による色斑を生じていたが、別の光源光が混入することを防止する反射格子または屈折格子を用いて混合し、同一放射角で出射することにより色斑を防止することが出来る。
反射格子を凸反射面にすることにより入射光の傾斜を小さくして光源部を薄型化することが出来る。
三角錐屈折格子と凸反射面格子を3方向に向けた構造により3色ストライプを1枚の導光板で実現することが出来るため、位置合わせが不要になり生産性が向上し、材料費を削減することが出来る。
蛍光白色発光ダイオードのスペクトルは先鋭な青色となだらかな黄色域の2つのピークから成っているが、混色装置を用いることにより複数の励起光を利用することが出来、高効率に連続スペクトルを実現することが出来る。
蛍光体を多成分系で混合してスペクトルを広帯域化する方法よりも高効率に連続スペクトルの白色光を得ることが出来る。
Color spots were caused by the asymmetry of the distance and angle between multiple light emitting elements and reflectors, but they were mixed using a reflective or refractive grating to prevent mixing of different light sources and emitted at the same radiation angle. By doing so, color spots can be prevented.
By making the reflection grating a convex reflection surface, the inclination of incident light can be reduced and the light source portion can be made thinner.
With a structure in which a triangular pyramid refraction grating and a convex reflecting surface grating are oriented in three directions, a three-color stripe can be realized with a single light guide plate, which eliminates the need for alignment, improves productivity, and reduces material costs. I can do it.
The spectrum of fluorescent white light-emitting diodes consists of two peaks of sharp blue and a gentle yellow range. By using a color mixing device, multiple excitation lights can be used, and a continuous spectrum can be realized with high efficiency. I can do it.
Continuous spectrum white light can be obtained with higher efficiency than the method of broadening the spectrum by mixing phosphors in a multi-component system.
実施例1
三角錐屈折格子を用いることにより菱形サブ画素からなる液晶表示装置について説明する。液晶表示装置の導光板の底面に3種類の凸反射格子を配置し、導光板側面に3種類の光源を配置した平面図を図11に、菱形サブ画素からなる液晶表示装置の平面図を図13に示す。対角1117mm(46型)、フルHD(1920×1080)のとき、画面寸法は横1018mm、縦573mm、画素ピッチ530μm、サブ画素の菱形辺長306μmである。
導光板の底面は3方向を向く3種類の凸反射面を配置している。図の右下方向に照射する平行光Bを円筒凸反射面Bで斜め上方に反射して菱形の屈折格子Bに入射角αで入射する。図の右上方向に照射する平行光Cを前記円筒凸反射面Bと接して稜を形成している円筒凸反射面Cで斜め上方に反射して菱形の屈折格子Bに入射角αで入射する。左向き方向の平行光光源Aからの光を円筒凸反射面Aで斜め上方に反射して菱形の屈折格子に入射角αで入射する。
三角錐屈折格子の屈折面A,B,Cで鉛直方向に方向変換してサブ画素A,B,Cに照射する。
導光板の凸反射面段差が画素寸法より小さいために画素寸法に拡大するが、導光板厚が一定のため凸反射面の曲率半径は一定である。導光板厚tを10mm、凸反射面の段差sを10μmとすると曲率半径rは159μmである。光源からの平行光線をほぼ鉛直方向にある液晶のサブ画素に向けて反射するもので、全反射臨界角以上に傾斜することにより反射層を形成する必要がなく製造費用削減が可能である。
発光ダイオードを光源部の放物面鏡の焦点に放物面鏡の反射光を遮らない位置にオフセットして配置する。光源Aに光度240mcdの発光ダイオード540個を配置し、光源BとCに光度140mcdの発光ダイオード540個を配置することにより、光透過率40%のとき輝度263cd/m2が得られる。このときの消費電力は約130Wになり、白色発光ダイオードとカラーフィルタの場合の約1/3の消費電力である。
透明材料としてポリメチルメタクリレート、脂環式アクリル樹脂、環状オレフィン樹脂、ポリカーボネート、光硬化アクリル樹脂などが可能で、射出圧縮成型などにより成型出来る。光硬化アクリル樹脂は低粘度のモノマー、オリゴマーを出発原料に重合するため精密な成型が可能である。
Example 1
A liquid crystal display device composed of rhomboid sub-pixels by using a triangular pyramid refraction grating will be described. FIG. 11 is a plan view in which three types of convex reflection gratings are arranged on the bottom surface of the light guide plate of the liquid crystal display device, and three types of light sources are arranged on the side surface of the light guide plate, and FIG. 11 is a plan view of the liquid crystal display device having rhomboid subpixels. It is shown in FIG. When the diagonal size is 1117 mm (46 type) and full HD (1920 × 1080), the screen size is 1018 mm wide, 573 mm long, pixel pitch is 530 μm, and the rhombus side length of the subpixel is 306 μm.
The bottom surface of the light guide plate has three types of convex reflecting surfaces facing three directions. The parallel light B irradiated in the lower right direction of the figure is reflected obliquely upward by the cylindrical convex reflection surface B and is incident on the rhomboid refractive grating B at an incident angle α. The parallel light C radiated in the upper right direction of the figure is reflected obliquely upward by the cylindrical convex reflection surface C that forms a ridge in contact with the cylindrical convex reflection surface B, and is incident on the rhomboid refractive grating B at an incident angle α. . The light from the parallel light source A in the leftward direction is reflected obliquely upward by the cylindrical convex reflection surface A and is incident on the rhomboid refraction grating at an incident angle α.
The subpixels A, B, and C are irradiated with the direction changed in the vertical direction by the refractive surfaces A, B, and C of the triangular pyramid refraction grating.
Since the step of the convex reflection surface of the light guide plate is smaller than the pixel size, it is enlarged to the pixel size. However, since the thickness of the light guide plate is constant, the radius of curvature of the convex reflection surface is constant. When the light guide plate thickness t is 10 mm and the step s of the convex reflection surface is 10 μm, the radius of curvature r is 159 μm. Reflecting parallel light rays from the light source toward the sub-pixels of the liquid crystal in the substantially vertical direction. By tilting beyond the total reflection critical angle, it is not necessary to form a reflective layer, and manufacturing costs can be reduced.
The light emitting diode is offset from the focal point of the parabolic mirror of the light source unit at a position where the reflected light of the parabolic mirror is not blocked. By arranging 540 light emitting diodes having a luminous intensity of 240 mcd for the light source A and arranging 540 light emitting diodes having a luminous intensity of 140 mcd for the light sources B and C, a luminance of 263 cd / m 2 can be obtained when the light transmittance is 40%. The power consumption at this time is about 130 W, which is about 1/3 that of the white light emitting diode and the color filter.
As the transparent material, polymethyl methacrylate, alicyclic acrylic resin, cyclic olefin resin, polycarbonate, photocured acrylic resin, and the like can be used, which can be molded by injection compression molding or the like. Since the photo-curing acrylic resin is polymerized from a low-viscosity monomer or oligomer as a starting material, it can be precisely molded.
実施例2
三角錐屈折格子を用い、3方向に3種類の蛍光変換発光ダイオードを用いた照明装置の実施例を図14、図15などにより説明する。第1の蛍光変換発光ダイオードAは励起波長440nm、蛍光波長550nmである。第2の蛍光変換発光ダイオードBは励起波長475nm、蛍光波長590nmである。第3の蛍光変換発光ダイオードCは励起波長510nm、蛍光波長590nmである。図15は第1の蛍光変換発光ダイオードAと第2の蛍光変換発光ダイオードBとの間の断面図のため第3の蛍光変換発光ダイオードCは示していない。
発光素子1A,1Bは夫々軸外放物面鏡6の焦点に設け、紙面奥行き方向に夫々6個設けている。軸外放物面鏡6で平行光に変換され、導光板24に分散して配置された反射面47で反射して三角錐屈折格子15に入射する。
放射角を約±10°にするため三角錐屈折格子の出射面を凹屈折面にしている。
各発光素子に100mAの順電流を流すと計18個の光源で6.3Wになり、変換効率80lm/W で500lmの光束を得られる。混色したスペクトルは図22のように連続スペクトルの白色光である。可視光域の抱絡線が5500Kの白色光に近似するので高い色再現性を求め、赤外線を含まずに温度上昇を避け、紫外線による損傷を避ける用途に適している。
Example 2
An embodiment of an illumination device using a triangular pyramid refraction grating and using three types of fluorescent conversion light emitting diodes in three directions will be described with reference to FIGS. The first fluorescence conversion light emitting diode A has an excitation wavelength of 440 nm and a fluorescence wavelength of 550 nm. The second fluorescence conversion light emitting diode B has an excitation wavelength of 475 nm and a fluorescence wavelength of 590 nm. The third fluorescence conversion light emitting diode C has an excitation wavelength of 510 nm and a fluorescence wavelength of 590 nm. FIG. 15 is a sectional view between the first fluorescence conversion light emitting diode A and the second fluorescence conversion light emitting diode B, and therefore the third fluorescence conversion light emitting diode C is not shown.
Each of the light emitting elements 1A and 1B is provided at the focal point of the off-axis paraboloidal mirror 6 and six in the depth direction of the paper. The light is converted into parallel light by the off-axis paraboloidal mirror 6, is reflected by the reflecting surface 47 that is dispersed and disposed on the light guide plate 24, and enters the triangular pyramid refraction grating 15.
In order to make the radiation angle about ± 10 °, the exit surface of the triangular pyramid refraction grating is a concave refracting surface.
When a forward current of 100 mA is passed through each light emitting element, the total light source becomes 6.3 W with 18 light sources, and a luminous flux of 500 lm can be obtained with a conversion efficiency of 80 lm / W 2. The mixed spectrum is white light having a continuous spectrum as shown in FIG. Since the visible light range is close to white light of 5500K, high color reproducibility is required, and it is suitable for applications that do not include infrared rays, avoid temperature rise, and avoid damage caused by ultraviolet rays.
実施例3
三角錐屈折格子を用い、3方向に6色の発光ダイオードを用いたLED電球の実施例を説明する。図18は要部を透視した斜視図である。三角錐屈折格子に照射するための3方向の光源は図7で説明した双方向を向く凸反射面を有する導光板と双方向の光源である。三角錐屈折格子と双方向を向く凸反射面を有する導光板の断面図を図20に示す。双方向を向く凸反射面を有する導光板は2方向からの平行光を光束を拡げて反射し、導光板出射面の凸屈折面で平行光に戻してから三角錐屈折格子に入射している。三角錐屈折格子の出射光は平行光なので凹屈折面11を設けて必要な放射角に光束を拡げている。放射角が狭い場合は図19のように三角錐屈折格子を凹屈折面で構成しても良い。混色したスペクトルは図32のように連続スペクトルの白色光である。
Example 3
An embodiment of an LED bulb using a triangular pyramid refraction grating and using six-color light emitting diodes in three directions will be described. FIG. 18 is a perspective view of the main part seen through. The light sources in the three directions for irradiating the triangular pyramid refraction grating are the light guide plate having the convex reflection surface facing in both directions and the bidirectional light source described in FIG. FIG. 20 shows a cross-sectional view of a light guide plate having a triangular pyramid refraction grating and a convex reflection surface facing in both directions. A light guide plate having a convex reflection surface facing in both directions reflects and reflects parallel light from two directions by expanding the light beam, returns it to parallel light at the convex refractive surface of the light guide plate exit surface, and then enters the triangular pyramid refraction grating. . Since the outgoing light of the triangular pyramid refraction grating is parallel light, the concave refracting surface 11 is provided to spread the light flux to a necessary radiation angle. When the radiation angle is narrow, the triangular pyramid refraction grating may be constituted by a concave refracting surface as shown in FIG. The mixed spectrum is white light having a continuous spectrum as shown in FIG.
実施例4
凸反射面の格子を双方向に持つ導光板に2色の平行光を入射して混色する実施例として赤色発光ダイオードと緑色発光ダイオードを用いて黄色を合成する信号機について説明する。青信号と呼称されるが正しくは緑色である。色覚障害対策として青みを帯びた緑色で表示されている。黄色信号は橙色を帯びた橙黄色で表示されている。図24は凸反射面を双方向に持つ格子に緑色と赤色の平行光を入射して黄色信号のときは緑色と赤色を混色して黄橙色として表示する信号機の断面図である。
導光板の底面は図7で示した双方向を向いた凸反射面が嶺を形成している。信号機表示面までの距離が約5m以上あるので凸反射面の幅が5mm以下では格子を認識出来ず、赤色光と緑色光が凸反射格子から同一方向に同一放射角で出射したとき、加法混色されて色斑の発生は起こらない。
表示面周囲に光源部を設け、一方に緑色発光ダイオードを、他方に赤色発光ダイオードを各96個の楕円鏡の焦点に設けてから放物面鏡で平行光を形成して一方の凸反射面に入射している。対を成す凸反射面で同一方向に同一放射角で反射し、導光板表面の凹屈折面で必要とする放射角に光束を拡大する。従来の上空や交差する道路まで照射する指向性は消費電流が無駄になるが、上下方向の放射範囲を水平面以下、左右方向の放射角を±45°の範囲にすると消費電流を約1/4に削減することが出来る。このため、1つの表示面に赤と緑の素子を半々で設けても必要な光量得ることが出来る。
500nm以下の青緑色発光ダイオオードを用いて赤色発光ダイオードと混色すると色度座標上の直線が白色域に近づいて淡黄色になるので500nm以上の緑色発光ダイオードと、610nm以上の赤色発光ダイオードを用いると混色直線が馬蹄形をした色度座標の右側縁面に沿うために濃い黄色を混色することが出来る。
従来の3灯信号機では太陽光を受けて非点灯の2灯も明るくなり輝度差が低下する擬似点灯現象があるが、屈折格子による混色では表示面が1灯なので擬似点灯現象は発生せず、黄色の発光素子を削減し、更に指向性の制御による素子数の低減で信号機をコスト削減することが出来る。従来の信号機は指向性が広いため交差する道路側の信号が見えるばかりでなく、上空にも放射しているので消費電流が多くなっているが、必要な指向性範囲にすると消費電流を低減し、素子数の低減により製造コストも削減することが出来る。近年発光効率の向上が著しいが、従来の表示面は発光素子のドットが目立つため素子数を削減すると更に荒い表示になるので素子数の削減は困難である。しかし、凸反射格子を認識出来ない幅で表示するので全体が均一に表示される。このため、指向性の制御と発光効率に応じて発光素子数を削減することが出来る。
Example 4
A signal device that combines yellow light using a red light emitting diode and a green light emitting diode will be described as an example in which two colors of parallel light are incident on and mixed with a light guide plate having a convex reflection surface in both directions. Although it is called a green light, it is green. It is displayed in bluish green as a measure against color blindness. The yellow signal is displayed in orange-yellow with an orange color. FIG. 24 is a cross-sectional view of a traffic light that displays green and red parallel light on a grating having a convex reflecting surface in both directions and displays a yellow-orange color by mixing green and red in the case of a yellow signal.
On the bottom surface of the light guide plate, the convex reflection surface facing in both directions shown in FIG. 7 forms a ridge. Since the distance to the traffic light display surface is about 5 m or more, the grating cannot be recognized if the width of the convex reflection surface is 5 mm or less, and when red light and green light are emitted from the convex reflection grating in the same direction at the same radiation angle, additive color mixing The occurrence of color spots does not occur.
A light source unit is provided around the display surface, a green light emitting diode is provided on one side, and a red light emitting diode is provided on the other side at the focal point of each of 96 elliptical mirrors, and then parallel light is formed by a parabolic mirror to form one convex reflecting surface. Is incident. The pair of convex reflecting surfaces reflect in the same direction at the same radiation angle, and the luminous flux is expanded to the required radiation angle on the concave refractive surface of the light guide plate surface. The directivity to irradiate the conventional sky and intersecting roads consumes current consumption, but if the vertical radiation range is below the horizontal plane and the horizontal radiation angle is within ± 45 °, the current consumption is about 1/4. Can be reduced. For this reason, even if the red and green elements are provided in half on one display surface, the necessary light quantity can be obtained.
When a blue-green light emitting diode of 500 nm or less is used and mixed with a red light emitting diode, the straight line on the chromaticity coordinate approaches a white region and becomes pale yellow. Therefore, when a green light emitting diode of 500 nm or more and a red light emitting diode of 610 nm or more are used. Since the mixed color line is along the right edge of the chromaticity coordinates in the shape of a horseshoe, dark yellow can be mixed.
In the conventional three-lamp traffic light, there is a pseudo-lighting phenomenon in which two non-lighted lights are brightened due to sunlight and the brightness difference decreases, but the mixed lighting by the refractive grating does not cause the pseudo-lighting phenomenon because the display surface is one light, The number of yellow light emitting elements can be reduced, and the number of elements can be reduced by controlling the directivity. Conventional traffic lights have wide directivity, so not only can you see the signals on the intersecting road side, but they also radiate to the sky, so the current consumption has increased, but if you set the required directivity range, the current consumption will be reduced. Further, the manufacturing cost can be reduced by reducing the number of elements. In recent years, the luminous efficiency has been remarkably improved. However, since the dots of the light emitting elements are conspicuous on the conventional display surface, if the number of elements is reduced, the display becomes more rough, so it is difficult to reduce the number of elements. However, since the convex reflection grating is displayed with a width that cannot be recognized, the whole is displayed uniformly. For this reason, the number of light emitting elements can be reduced according to directivity control and light emission efficiency.
1:発光素子 4:三角波状反射格子 5:凸反射面
6:放物面鏡 8:楕円鏡 9:双曲線鏡
10:凸屈折面 11:凹屈折面 15:屈折格子
16:励起光 17:蛍光 18:透光物質
19:平行光 20:拡散光 21:凹面鏡
22:凸面鏡 24:導光板 27:サブ画素
28:液晶挟持基板 29:基板 30:回路基板
31:谷部 32:頂部 33:楕円
34:空気層 37:入射面 38:支持部材
39:散乱面 40:焦点 42:溝
43:四角錐 45:入射光 46:光源
47:バンドパスミラー 48:偏光板 49:プリズム
50:基準面 51:死角
1: Light emitting element 4: Triangular wave reflection grating 5: Convex reflection surface
6: Parabolic mirror 8: Elliptical mirror 9: Hyperbolic mirror
10: Convex refracting surface 11: Concave refracting surface 15: Refraction grating 16: Excitation light 17: Fluorescence 18: Translucent material
19: Parallel light 20: Diffuse light 21: Concave mirror
22: Convex mirror 24: Light guide plate 27: Sub-pixel
28: Liquid crystal sandwich substrate 29: Substrate 30: Circuit board
31: Tanibe 32: Top 33: Ellipse
34: Air layer 37: Incident surface 38: Support member
39: scattering surface 40: focal point 42: groove
43: Square pyramid 45: Incident light 46: Light source
47: Band pass mirror 48: Polarizing plate 49: Prism 50: Reference plane 51: Blind spot
Claims (8)
対角線より下側の菱形屈折面の隣接する辺を接して並べて基準面より窪んだ凹型の三角錐屈折格子を形成し、
菱形屈折面が基準面の法線となす傾斜角を入射角と屈折角との差で設定して高屈折率側から低屈折率側に出射する構造として、
3方向の光源からの平行光が夫々、対向しない屈折面に略平行に伝播して三角錐屈折面の光源に対向する屈折面だけに入射することにより、
基準面の鉛直上方に屈折し、出射方向を一致させて混合することを特徴とする照明装置。 One diagonal line of the rhomboid refracting surface is provided on the reference plane, and adjacent sides of the rhomboid refracting surface above the diagonal line on the reference plane are arranged in contact with each other to form a convex triangular pyramid refraction grating above the reference plane ,
Forming a concave triangular pyramid refraction grating recessed from the reference surface by arranging adjacent sides of the rhomboid refractive surface below the diagonal line in contact with each other,
As the structure in which the angle of inclination that the rhomboid refracting surface makes the normal to the reference surface is set by the difference between the incident angle and the refraction angle, the light is emitted from the high refractive index side to the low refractive index side.
The parallel light from the light sources in the three directions propagates substantially parallel to the non- opposing refracting surfaces and enters only the refracting surfaces facing the triangular pyramid refracting surface .
An illuminating device characterized by being refracted vertically above a reference surface and mixing by making the emission directions coincide.
導光板の側面から底面に対して傾斜した平行光を凸反射面に入射する構造からなり、
凸反射面で光束を拡大して三角錐屈折格子に反射してサブ画素に照射し、3方向からの3色の平行光を菱形のサブ画素からなる画素に照射することを特徴とする照明装置。 The triangular pyramid refraction grating according to claim 1 is formed on the exit surface of the light guide plate, and further a convex reflection surface is formed on the bottom surface of the light guide plate,
It consists of a structure in which parallel light inclined from the side surface of the light guide plate to the bottom surface is incident on the convex reflection surface,
An illumination device characterized in that a light beam is magnified by a convex reflecting surface, reflected by a triangular pyramid refraction grating, irradiated onto a sub-pixel, and irradiated with parallel light of three colors from three directions onto a pixel composed of a rhomboid sub-pixel. .
2本の三角柱状凸反射面の間に、三角柱状凸反射面と直交する方向に複数の凸反射面を設け、
導光板側面の対向する2辺に設けた2色の光源から三角柱状円筒凸反射面に照射し、
三角柱状凸反射面と直交する方向に設けた光源から三角柱状凸反射面と直交する方向の凸反射面に照射する構造からなり、3方向からの平行光を三角錐屈折格子の対向する屈折面に入射して3つのサブ画素に入射することを特徴とする請求項2に記載の照明装置。 Formed on the bottom surface of the light guide plate in the shape of a triangular prism in contact with the top ridge of the cylindrical convex reflection surface parallel to the two opposite sides of the light guide plate side surface,
Between the two triangular prismatic convex reflective surfaces, a plurality of convex reflective surfaces are provided in a direction orthogonal to the triangular prismatic convex reflective surface,
Irradiate a triangular prism-shaped cylindrical convex reflection surface from two color light sources provided on two opposite sides of the light guide plate side surface,
Consisting of a structure in which a light source provided in a direction perpendicular to the triangular prismatic convex reflecting surface irradiates the convex reflecting surface in a direction perpendicular to the triangular prismatic convex reflecting surface, parallel light from three directions is opposed to the triangular pyramid refraction grating. The illumination device according to claim 2, wherein the illumination device is incident on three sub-pixels.
三角柱状凸反射面に直交する方向の凸反射面の長軸方向長さより長い範囲を照射することにより前記三角柱状凸反射面の上部の画素に照射することを特徴とする請求項2記載の照明装置。 A curved surface is formed in the major axis direction of the convex reflection surface in the direction orthogonal to the triangular prismatic convex reflection surface,
3. The illumination according to claim 2, wherein the upper pixel of the triangular prismatic convex reflecting surface is irradiated by irradiating a range longer than the length in the major axis direction of the convex reflecting surface in a direction orthogonal to the triangular prismatic convex reflecting surface. apparatus.
3方向の光を6角形の画素で混色してカラー表示することを特徴とする請求項2に記載の照明装置。 The above triangular pyramid refraction grating, a liquid crystal panel comprising a hexagonal pixel by sub-pixel of the three rhombic arranged, refracted diamond by sub three directions of the light reflected by the convex reflecting surface is triangular pyramid refraction grating It consists of a structure that irradiates pixels,
3. The illumination device according to claim 2, wherein color display is performed by mixing light in three directions with hexagonal pixels.
屈折格子の出射光の放射角を拡げることを特徴とする請求項1に記載の照明装置。 The inclined surface of the triangular pyramid refraction grating is composed of the concave surface of the tangential inclination in the refractive grating valley,
2. The illumination device according to claim 1, wherein a radiation angle of light emitted from the refractive grating is expanded.
放射角θ=d・360°/(2πr)で同一方向に混色して出射することを特徴とする請求項2に記載の照明装置。
Reflecting parallel light from two directions on a convex reflecting surface having a curvature radius r and a curved surface length d along the circumference,
3. The illumination device according to claim 2, wherein the radiating device emits mixed colors in the same direction at a radiation angle θ = d · 360 ° / (2πr).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006184A JP4681075B1 (en) | 2010-01-14 | 2010-01-14 | Illumination device and display device |
TW99101215A TWI375774B (en) | 2009-02-12 | 2010-01-18 | Lighting apparatus and display apparatus |
KR1020100004790A KR101208142B1 (en) | 2009-02-12 | 2010-01-19 | Lighting device and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006184A JP4681075B1 (en) | 2010-01-14 | 2010-01-14 | Illumination device and display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4681075B1 true JP4681075B1 (en) | 2011-05-11 |
JP2011146255A JP2011146255A (en) | 2011-07-28 |
Family
ID=44114128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010006184A Expired - Fee Related JP4681075B1 (en) | 2009-02-12 | 2010-01-14 | Illumination device and display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4681075B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108758555A (en) * | 2018-07-30 | 2018-11-06 | 华域视觉科技(上海)有限公司 | For the triangular curved unit of car light, light distribution decorative pattern and its design generation method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6609770B2 (en) * | 2016-01-12 | 2019-11-27 | 豊丸産業株式会社 | Production means and gaming machine |
CN109765725B (en) | 2019-03-26 | 2021-04-06 | 合肥京东方光电科技有限公司 | Collimation film, collimation backlight module, display module and display device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04114173A (en) * | 1990-09-04 | 1992-04-15 | Canon Inc | Packing material for process cartridge |
JP4716435B2 (en) * | 2007-03-02 | 2011-07-06 | シチズン電子株式会社 | Light source device and display device provided with light source device |
TW200928452A (en) * | 2007-12-19 | 2009-07-01 | Radiant Opto Electronics Corp | Optical film and backlight module using the same |
-
2010
- 2010-01-14 JP JP2010006184A patent/JP4681075B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108758555A (en) * | 2018-07-30 | 2018-11-06 | 华域视觉科技(上海)有限公司 | For the triangular curved unit of car light, light distribution decorative pattern and its design generation method |
Also Published As
Publication number | Publication date |
---|---|
JP2011146255A (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4399678B1 (en) | Illumination device and display device | |
JP4182076B2 (en) | Light guide plate and flat illumination device | |
US8998474B2 (en) | Surface light source device and liquid crystal display apparatus | |
US9091408B2 (en) | Recycling backlights with semi-specular components | |
EP1653149B1 (en) | Planar light source device and display device using the same | |
JP4385031B2 (en) | Light guide plate and flat illumination device | |
JP4114173B1 (en) | Display device and lighting device | |
US11131800B2 (en) | Backlight unit and liquid crystal display device | |
JP7437938B2 (en) | Light source and multi-view backlight using it | |
KR20180100318A (en) | Privacy Display and Dual-Mode Privacy Display System | |
US8684584B2 (en) | Ultra-thin backlight | |
KR101208142B1 (en) | Lighting device and display device | |
JP4681075B1 (en) | Illumination device and display device | |
JP2005332719A (en) | Planar light source device and display device having planar light source device | |
US7699502B2 (en) | Optical member and lighting device having the same | |
JP4356095B1 (en) | Liquid crystal display device and lighting device | |
JP4789026B1 (en) | Mixed color lighting device | |
JP2007059146A (en) | Backlight device and liquid crystal display | |
JP2005302659A (en) | Illumination equipment and display apparatus provided with the same | |
JP4693691B2 (en) | Light emitting device and liquid crystal display device | |
JP4789027B1 (en) | Mixed color lighting device | |
JP3927490B2 (en) | Flat lighting device | |
US10895362B2 (en) | Lighting device having a plurality of light sources and a light guide | |
JP4681077B1 (en) | Lighting device | |
JP4730860B1 (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 3 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
LAPS | Cancellation because of no payment of annual fees |