JP4356095B1 - Liquid crystal display device and lighting device - Google Patents

Liquid crystal display device and lighting device Download PDF

Info

Publication number
JP4356095B1
JP4356095B1 JP2008178344A JP2008178344A JP4356095B1 JP 4356095 B1 JP4356095 B1 JP 4356095B1 JP 2008178344 A JP2008178344 A JP 2008178344A JP 2008178344 A JP2008178344 A JP 2008178344A JP 4356095 B1 JP4356095 B1 JP 4356095B1
Authority
JP
Japan
Prior art keywords
light
guide plate
light guide
liquid crystal
terraced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008178344A
Other languages
Japanese (ja)
Other versions
JP2010020941A (en
Inventor
鈴木優一
Original Assignee
鈴木 優一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木 優一 filed Critical 鈴木 優一
Priority to JP2008178344A priority Critical patent/JP4356095B1/en
Application granted granted Critical
Publication of JP4356095B1 publication Critical patent/JP4356095B1/en
Publication of JP2010020941A publication Critical patent/JP2010020941A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】
液晶表示装置におけるカラーフィルタによる光透過率の低下を回避して低消費電力化し、液晶表示装置の低価格化を実現する。
【解決手段】
被照射寸法、被照射面までの距離と凸反射面5の傾斜幅に応じて設定した曲率の凸反射面を導光板1の底面に棚田状に分散して設け、前記凸反射面を臨界角に基づく全反射面あるいは凸面鏡面とし、
光源からの光が平行光変換手段により平行光に変換されて導光板内を伝播する平行光を前記凸反射面に入射して、光束を拡げて被照射面に反射する。
3色の光源と、前記導光板を3層用い、導光板に分散配置された反射面による段差部をサブ画素幅づつ3層でずらして配置上層側に配置された導光板の凸反射面のピッチ間を下層側に配置された導光板の凸反射面による反射光を透過して3色の光源からの光を表示面の同一画素に照射し、液晶パネルにカラーフィルタを設けることなくカラー表示する。
【選択図】 図4
【Task】
A reduction in light transmittance due to a color filter in a liquid crystal display device is avoided to reduce power consumption, thereby realizing a reduction in price of the liquid crystal display device.
[Solution]
A convex reflection surface having a curvature set according to the irradiation size, the distance to the irradiation surface, and the inclination width of the convex reflection surface 5 is provided on the bottom surface of the light guide plate 1 in a terraced manner, and the convex reflection surface has a critical angle. Based on the total reflection surface or convex mirror surface based on
The light from the light source is converted into parallel light by the parallel light conversion means, and the parallel light propagating through the light guide plate is incident on the convex reflection surface, and the light beam is expanded and reflected on the irradiated surface .
3 and color light sources, the reference light guide plate three layers, a step portion by the convex reflecting surface distributed in the light guide plate by shifting in the sub-pixel width increments three layers arranged, convex upper side arranged the light guide plate Provide a color filter on the liquid crystal panel by transmitting the reflected light from the convex reflection surface of the light guide plate arranged on the lower layer side between the pitches of the reflection surfaces and irradiating the same pixels on the display surface with the light from the three color light sources Display in color.
[Selection] Figure 4

Description

本発明は液晶表示装置および照明装置に関するものである。   The present invention relates to a liquid crystal display device and a lighting device.

液晶表示装置のサイドライト型バックライトは導光板の側面に光源を設置し、導光板の反射面側に多数配置された微小反射材で液晶側に反射させる方式である。光源が拡散光のため、光源に近いほど液晶側に放射する確率を少なくする必要があり、図39のように白色塗料ドットの直径、密度を光源の近くでは小さく、光源から遠ざかるほど大きく設置されている(特許文献1)。しかし、光源近くの小さなドットで反射した光は光束密度が高いために輝点になりやすく、拡散シートを併用する必要がある。
乱反射ドットで反射せずに導光板背後に通過する光は光源に近いほど多くなり、効率低下が著しいので再利用するための反射シートが必要になっている。
乱反射ドットで反射した光は導光板出射面で臨界角以内の光を液晶側に放射し、臨界角以上は反射面側に多重反射する。液晶に照射される臨界角以内の光は垂直方向でなく、光源側からの斜めの光になる。斜めの光は輝度を低下するので導光板と液晶板の間にプリズムシートを設けて鉛直方向に近づける方法が多く用いられている。(特許文献2)。
乱反射方式は多重反射を伴うために、試作評価を繰り返して輝度を均一化されており、開発が非効率という問題もある。これを避けるために平行光線に近づける提案が多く出されている。
A side-light type backlight of a liquid crystal display device is a system in which a light source is installed on the side surface of a light guide plate and is reflected on the liquid crystal side by a number of minute reflectors arranged on the reflective surface side of the light guide plate. Since the light source is diffused light, it is necessary to reduce the probability of radiating to the liquid crystal side as it is closer to the light source. As shown in FIG. 39, the diameter and density of the white paint dots are smaller near the light source and larger as it is farther from the light source. (Patent Document 1). However, the light reflected by the small dots near the light source tends to be a bright spot due to the high luminous flux density, and it is necessary to use a diffusion sheet in combination.
The light that passes through the back of the light guide plate without being reflected by the irregular reflection dots increases as it gets closer to the light source, and the efficiency is significantly reduced. Therefore, a reflective sheet for reuse is required.
The light reflected by the irregular reflection dots radiates light within the critical angle to the liquid crystal side at the light guide plate emission surface, and multiple reflections are reflected to the reflection surface side beyond the critical angle. The light within the critical angle irradiated to the liquid crystal becomes oblique light from the light source side, not in the vertical direction. Since oblique light lowers the luminance, a method in which a prism sheet is provided between the light guide plate and the liquid crystal plate to bring it closer to the vertical direction is often used. (Patent Document 2).
Since the diffuse reflection method involves multiple reflections, the trial evaluation is repeated to make the luminance uniform, and there is a problem that development is inefficient. In order to avoid this, many proposals have been made to approach parallel rays.

入射平行光に対して約45°の金属蒸着反射面と水平面を交互に連続的に配置した導光板の背後に反射板を設けた導光板が提案されている。(図40、特許文献3)。光源が拡散光のため光源からの距離の2乗に反比例して光束密度が低下するため輝度むらが大きく、光源近くでは仰角成分が多いため水平面を透過する光を再利用する反射板が必要になっている。
上記提案は光源に近い部分で仰角光線が多いので、光源からの距離に応じて長辺面を1〜10度の範囲で傾斜させ、短辺面は30〜50°の範囲で入射面を基準に漸次増加することにより輝度むらを改善した導光板が提案されているが、(図41、特許文献4)光源からの距離と傾斜との関数は示されていない。
光源から遠ざかるほど反射面積の大きな四角錐を底面に形成し、四角錐の反射面を焦点とするレンズを導光板出射面に設けて液晶側に平行光線を出射する方式が提案されている(特許文献5)。四角錐が窪みのため平行光は入射出来ず、四角錐よりも底面の反射面の方が遥かに面積が広いため底面における反射光は遠方のレンズ面に当たり多重反射するので効率が低下し、多重反射のため光線追跡が困難である。
導光板に多数の輪帯状の微小放物面反射鏡を設け、断面が鋸歯状になるように組み合わせた放物面フレネル反射鏡が提案されている(特許文献6)。点光源からの放射角度の内、平行光化出来る光線は放物面鏡方向に限られるため反射鏡を併用している。併用した反射鏡からの光線が放物面鏡で反射すると平行光とずれた方向に反射する問題がある。特許文献6には放物面鏡の焦線に設置した線状光源からの光を鋸歯状フレネル面で反射する方式も提案されているが、放物面鏡による平行光と光源からの直接光が混合したもので、放物面鏡の光束密度依存性が非常に大きいために輝度の均一化は困難である。
There has been proposed a light guide plate in which a reflective plate is provided behind a light guide plate in which metal deposition reflective surfaces and horizontal surfaces of about 45 ° with respect to incident parallel light are alternately arranged. (FIG. 40, patent document 3). Since the light source is diffuse light, the luminous flux density decreases in inverse proportion to the square of the distance from the light source, resulting in large luminance unevenness, and since there are many elevation angle components near the light source, a reflector that reuses the light transmitted through the horizontal plane is required. It has become.
In the above proposal, since there are many elevation rays near the light source, the long side surface is inclined in the range of 1 to 10 degrees according to the distance from the light source, and the short side surface is in the range of 30 to 50 ° with respect to the incident surface. Although a light guide plate that has improved brightness unevenness by gradually increasing is proposed (FIG. 41, Patent Document 4), the function of the distance from the light source and the tilt is not shown.
A method has been proposed in which a quadrangular pyramid with a large reflective area is formed on the bottom surface as the distance from the light source increases, and a lens that focuses on the reflecting surface of the quadrangular pyramid is provided on the light guide plate emission surface to emit parallel rays to the liquid crystal side (patent) Reference 5). Since the quadrangular pyramid is recessed, parallel light cannot enter, and the reflecting surface on the bottom surface is much larger than the quadrangular pyramid, so the reflected light on the bottom surface hits the far lens surface and is reflected multiple times, reducing efficiency. Ray tracing is difficult due to reflection.
A parabolic Fresnel reflector in which a large number of ring-shaped minute paraboloid reflectors are provided on the light guide plate and combined so that the cross section is sawtooth-shaped has been proposed (Patent Document 6). Of the radiation angle from the point light source, the rays that can be collimated are limited to the direction of the parabolic mirror, so a reflector is also used. There is a problem that when the light beam from the reflecting mirror used in combination is reflected by the parabolic mirror, it is reflected in a direction shifted from the parallel light. Patent Document 6 proposes a method in which light from a linear light source installed at the focal line of a parabolic mirror is reflected by a sawtooth Fresnel surface, but parallel light by the parabolic mirror and direct light from the light source are proposed. Since the dependence of the parabolic mirror on the light beam density is very large, it is difficult to make the brightness uniform.

光源からの距離に応じて透過率を直線的低下させる45°に傾けた反射面を設けた多重ビームスプリッタ方式が提案されている(特許文献7)。光源が拡散光のため光源近くのビームスプリッタを拡散光が透過し、遠方のビームスプリッタに到達するのは平行光成分のみになるのでビームスプリッタの透過率設定が直線的であっても不均一になる。10等分の例が示されているが、幅300mmの画面サイズでは厚さが30mmになり、重量と材料費に影響する。薄くするために更に分割数を多くするのは膜厚制御が難しく、スパッタリングが多工程で製造コストが高くなる。
携帯機器では同心円状の微小反射材を配置した導光板に白色発光ダイオードによる点光源が使用されているが、線光源の場合より更に輝点が顕著になるので拡散シートを併用されている。図43のように光源の指向性範囲外が暗くなるので光源数を多くして緩和している(特許文献8)。
直下照明型の最もオーソドックスな形状は箱型の平面反射鏡に冷陰極管を並べたものである。薄型にすると管映りが出やすいため、光源を離し、波型などの反射鏡形状(図42)と拡散シートの併用などで均一化が図られている(特許文献9)。余弦関数反射鏡を用いる方式は光束密度が均一な結果が示されている(特許文献10)。光源からの距離と冷陰極管ピッチの関数のため薄型化と光源数の削減の双方を満足することは難しい。
反射鏡の形状は多くの方式が提案され、光線軌跡は示されているが、多くは定量的に扱われていないため均一性は不明確である。拡散シートを厚くするほど輝度を均一化出来るが吸収により効率が低下する。
There has been proposed a multiple beam splitter system provided with a reflective surface inclined at 45 ° that linearly decreases the transmittance according to the distance from the light source (Patent Document 7). Since the light source is diffused light, the diffused light is transmitted through the beam splitter near the light source, and only the parallel light component reaches the far beam splitter, so even if the beam splitter transmittance setting is linear, it is non-uniform Become. An example of 10 equal parts is shown, but with a screen size of 300 mm wide, the thickness is 30 mm, which affects the weight and material costs. If the number of divisions is further increased in order to reduce the thickness, it is difficult to control the film thickness, and sputtering is a multi-step process, resulting in an increased manufacturing cost.
In portable devices, a point light source using a white light emitting diode is used for a light guide plate on which concentric minute reflectors are arranged. However, since a bright spot becomes more prominent than in the case of a line light source, a diffusion sheet is used in combination. Since the outside of the directivity range of the light source becomes dark as shown in FIG. 43, the number of light sources is increased to ease the light source (Patent Document 8).
The most orthodox shape of the direct illumination type is a cold cathode tube arranged in a box-shaped flat reflector. When the thickness is reduced, tube reflection is likely to occur. Therefore, the light source is separated, and a uniform shape is achieved by using a corrugated reflector shape (FIG. 42) and a diffusion sheet (Patent Document 9). A method using a cosine function reflector shows a uniform light flux density (Patent Document 10). Because of the function of the distance from the light source and the cold cathode tube pitch, it is difficult to satisfy both the reduction in thickness and the reduction in the number of light sources.
Many methods have been proposed for the shape of the reflector and the ray trajectory is shown, but the uniformity is unclear because many are not treated quantitatively. The thicker the diffusion sheet, the more uniform the brightness, but the efficiency decreases due to absorption.

液晶のカラー表示の多くはは画素を3分割し、赤、緑、青の顔料が分散されたカラーフィルタによる加法混色法で表示されている。着色材料によって不要な波長成分を吸収するカラーフィルタは、染料を使用すると可溶性のため分散が良く、透過域の透過率が高い長所があるが、カラーフィルタ基板の製造工程において透明電極、配向膜製造工程が高温になり、染料は耐熱性、耐光性で劣るため顔料法が主流となっている。
顔料による着色は顔料粒子に白色光が当たり、その反射光の分光特性によるものである。白色光が粒子に当たらずに貫通すると淡色化し、顔料含有率が高過ぎると透過域の透過率が低下して暗くなってしまう。透過率を高め、遮断特性を急峻にするには微粒化、顔料分散比率と膜厚制御が必要である。
カラーフィルタによって不要帯域である2/3は吸収され、透過域でも吸収があるので光透過率は30%以下である。3波長冷陰極管の発光スペクトルは3波長以外のスペクトルも多く含まれ、これらを十分に遮断しようとすると透過域の透過率も低下して光透過率は更に低下する。カラーフィルタの透過率は液晶装置の中で最も低く、次いで偏光板の約45%などにより、液晶表示装置全体としての透過率は8%以下である。
液晶基板におけるカラーフィルタ製造法として、印刷法は少ない工程で製造可能だが高解像度化が難しく、写真蝕刻法が多く採用されている。しかし、写真蝕刻法は洗浄、レジスト塗布、露光、現像、硬化の工程をブラックマトリクス、赤、緑、青の4層について行うため工程が長く、高価な装置が必要なため液晶パネルの価格に占める割合が最も高価になっている。
Many liquid crystal color displays are displayed by an additive color mixing method using a color filter in which pixels are divided into three and red, green, and blue pigments are dispersed. Color filters that absorb unnecessary wavelength components by coloring materials have the advantages of good dispersion and high transmittance in the transmission region due to their solubility when dyes are used. However, transparent electrodes and alignment films are manufactured in the manufacturing process of color filter substrates. Since the process becomes high temperature and the dye is inferior in heat resistance and light resistance, the pigment method is mainly used.
The coloring by the pigment is due to the spectral characteristics of the reflected light when white light hits the pigment particles. If white light penetrates without hitting the particles, the color is lightened. If the pigment content is too high, the transmittance in the transmission region is lowered and darkened. Atomization, pigment dispersion ratio and film thickness control are required to increase the transmittance and sharpen the blocking characteristics.
2/3 which is an unnecessary band is absorbed by the color filter and is absorbed even in the transmission region, so that the light transmittance is 30% or less. The emission spectrum of the three-wavelength cold-cathode tube includes a lot of spectra other than the three wavelengths, and when trying to sufficiently block these, the transmittance in the transmission region is lowered and the light transmittance is further lowered. The transmittance of the color filter is the lowest among the liquid crystal devices, and the transmittance of the entire liquid crystal display device is 8% or less due to about 45% of the polarizing plate.
As a color filter manufacturing method for a liquid crystal substrate, a printing method can be manufactured with a small number of steps, but it is difficult to achieve high resolution, and a photolithography method is often used. However, the photolithography method requires a long process because the cleaning, resist coating, exposure, development, and curing processes are performed for four layers of black matrix, red, green, and blue, and the cost of the liquid crystal panel occupies an expensive device. The proportion is the most expensive.

冷陰極放電管は発光効率が高いなどの長所のためバックライトに多く採用されているが、発光スペクトルは蛍光材料の波長変換特性により、3原色以外のスペクトルも多く含まれ、透過率が標準的なカラーフィルタではNTSC比約70%である。テレビでは色再現性の要求が強いため、カラーフィルタの濃度を高めることによりNTSC比を高めているが、透過率が低下して消費電力が増大している。
冷陰極管はインバータを必要として小型化などの問題のため携帯用途などでは白色発光ダイオードを使用されている。
白色発光ダイオードは青発光ダイオードによる青色光をその補色である黄色蛍光体に当てて青と黄色加法混色により白色光に変換する方式が白色照明用途などに多く使用されている。液晶表示の場合は2色混色法では赤などの再現性が悪いので青色光を黄色、赤あるいは緑、赤の蛍光材に当てる加法混色方式が採用されている。しかし、青色光を蛍光材料比で波長変換するために配合比バラツキがアンバランスを2倍に増大し、経時変化によってもアンバランスを生じるので発光素子と蛍光材料の経時変化を同等にする必要がある。
3色のチップを同一パッケージに入れた加法混色方式もあるが、小さなパッケージの焦点からのずれが大きく3つのチップの指向性によってアンバランスが生じる。
Cold cathode discharge tubes are widely used in backlights due to their advantages such as high luminous efficiency, but the emission spectrum includes many spectra other than the three primary colors due to the wavelength conversion characteristics of fluorescent materials, and the transmittance is standard. In a color filter, the NTSC ratio is about 70%. Since television has a strong demand for color reproducibility, the NTSC ratio is increased by increasing the density of the color filter, but the transmittance is reduced and the power consumption is increased.
A cold cathode tube requires an inverter, and a white light emitting diode is used in portable applications because of problems such as miniaturization.
White light-emitting diodes are often used for white illumination and the like, in which blue light from blue light-emitting diodes is applied to a yellow phosphor that is a complementary color and converted into white light by additive color mixture of blue and yellow. In the case of a liquid crystal display, since the reproducibility of red or the like is poor in the two-color mixing method, an additive color mixing method in which blue light is applied to yellow, red, green, or red fluorescent materials is employed. However, in order to convert the wavelength of blue light by the ratio of fluorescent material, the variation in the mixing ratio doubles the imbalance, and the imbalance is caused by the change over time. Therefore, it is necessary to make the change over time of the light emitting element and the fluorescent material equal. is there.
There is also an additive color mixing method in which chips of three colors are put in the same package, but there is a large deviation from the focus of a small package, and imbalance occurs due to the directivity of the three chips.

色再現性を重視する用途では赤、緑、青の発光ダイオードの光をダイクロイックプリズムによって混色する方法が採られているが(特許文献11)、3つの独立した光学系により寸法が大きく、高価である。
液晶プロジェクタもダイクロイックプリズムによって混色されているが、照射面積が広いためにメタルハライドランプなどの高光度の白色光源を用い、ダイクロイックミラーで色分解する方法を多く採用されている。
In applications that emphasize color reproducibility, a method of mixing light of red, green, and blue light-emitting diodes with a dichroic prism has been adopted (Patent Document 11), which is large and expensive due to three independent optical systems. is there.
Liquid crystal projectors are also mixed with dichroic prisms, but due to the large irradiation area, a high-luminance white light source such as a metal halide lamp is used and color separation using a dichroic mirror is often employed.

カラーフィルタは価格に占める割合が高く、光利用効率が30%以下に低下するなどの問題があり、セグメント電極数を1/3に削減してTFT基板の製造が容易になる時分割方式が提案されている。
時分割方式は画面の表示周期16.6mSを赤、緑、青に3分割して5.6mS毎に切り替えて視覚的に残像混色する方式である。液晶が階調、色を正しく表現するのは液晶応答の上昇期間、下降期間を差し引いた平坦期間であり、平坦期間の占める割合が低くなると輝度とコントラストが低下する。
時分割方式で動画を再生すると赤、緑、青の3つの画像が観察者の網膜上でずれて合成される色割れ妨害が起こる。これを防止する方法として第4周期目に白、黒、または中間色を挿入する方法などが提案されているが(特許文献12,13)、4分割法では応答速度が2mS以下の必要がある。ネマティック液晶の応答速度は50mS〜100mSのため、高速な液晶材料に制限されるが、強誘電液晶は高速応答な半面、シェブロン構造によるジグザグ欠陥から光漏れを起こしやすく、配向制御が難しくなる。衝撃で層構造が破壊されやすく、自己修復しないなどの難点がある。
Color filters have a high percentage of the price, and there is a problem that the light utilization efficiency is reduced to 30% or less. A time-sharing method is proposed to make the TFT substrate easier by reducing the number of segment electrodes to 1/3. Has been.
The time division method is a method in which the display period of 16.6 mS is divided into red, green, and blue, and is switched every 5.6 mS to visually mix afterimages. The liquid crystal correctly expresses the gradation and the color during the flat period obtained by subtracting the rising period and the falling period of the liquid crystal response. When the proportion of the flat period decreases, the luminance and contrast decrease.
When a moving image is reproduced in a time-sharing manner, color breakage interference occurs in which three images of red, green, and blue are shifted and synthesized on the viewer's retina. As a method for preventing this, a method of inserting white, black, or an intermediate color in the fourth period has been proposed (Patent Documents 12 and 13), and the response speed needs to be 2 mS or less in the 4-division method. Since the response speed of nematic liquid crystal is 50 to 100 mS, it is limited to a high-speed liquid crystal material. However, a ferroelectric liquid crystal is susceptible to light leakage due to a zigzag defect due to a chevron structure on the other hand, and alignment control becomes difficult. The layer structure is easily destroyed by impact, and there are difficulties such as not self-healing.

複数の棒状導光体の界面に遮光層を設け、各導光棒の端面にカラーフィルタを設けて白色光源を対向配置する、あるいは複数色発光ダイオードを対向配置することにより色別光を遮光して棒状導光体内を伝播し、液晶ストライプに供給することにより、液晶パネル自体にカラーフィルタを用いない方法が提案されている(図45、特許文献15)。表示画面はサブ画素が明確に目視出来ない寸法である必要から、ストライプ幅の多くは100μmオーダーで、棒状と言うより糸状の導光体に遮光体を被覆した上で糸状体を積層したものである。各遮光層で仕切られた透光材内を拡散光が伝播するので、金属遮光膜の場合は反射する毎に吸収されて遠方ほど暗くなる。透光材よりも低屈折率の材料で被覆する場合は臨界角以内の拡散光は透過するので混色する。透光シートを積層する製造法ではシート厚の公差が積算すると液晶の画素寸法に一致しなくなる。   A light-shielding layer is provided at the interface of a plurality of rod-shaped light guides, and a color filter is provided on the end face of each light-guide rod so that a white light source is disposed oppositely, or a plurality of color light-emitting diodes are disposed oppositely to block light of different colors. Thus, a method has been proposed in which a color filter is not used in the liquid crystal panel itself by propagating through the rod-shaped light guide and supplying the liquid crystal stripe (FIG. 45, Patent Document 15). Since the display screen needs to have dimensions that the sub-pixels cannot be clearly seen, most of the stripe width is on the order of 100 μm, and it is a rod-like light guide that is covered with a light-shielding body and then laminated with a filament. is there. Since diffused light propagates through the light-transmitting material partitioned by the respective light shielding layers, in the case of a metal light shielding film, it is absorbed every time it is reflected and becomes darker in the distance. When coating with a material having a refractive index lower than that of the light-transmitting material, diffused light within the critical angle is transmitted and thus mixed. In the manufacturing method of laminating translucent sheets, when the sheet thickness tolerance is integrated, the pixel dimensions of the liquid crystal are not matched.

リアプロジェクタはスクリーンに後方から直接投射すると後方の寸法が長くなるため反射鏡を介して折り返し、投射レンズを広角化することにより奥行を短縮化されている(図44、特許文献14)。横1000mm、縦560mmのスクリーンでは反射鏡1枚、画角60°の広角レンズで約500mmの奥行が必要になる。低収差広角レンズはレンズ枚数が増えて高価になるため、反射鏡を凸面鏡にすることにより奥行を短縮した提案などがある。このような対策をとっても奥行は約400mmあり、奥行が利用上の制約になっている。   When the rear projector projects directly onto the screen from the rear, the rear dimension becomes long, so the depth is shortened by folding back through the reflecting mirror and widening the projection lens (FIG. 44, Patent Document 14). A screen having a width of 1000 mm and a length of 560 mm requires one reflector and a wide-angle lens having a field angle of 60 ° and a depth of about 500 mm. Low-aberration wide-angle lenses are expensive because the number of lenses increases, and there is a proposal that shortens the depth by making the reflecting mirror a convex mirror. Even if such measures are taken, the depth is about 400 mm, and the depth is a restriction in use.

特開平6−313883号公報JP-A-6-313883 特開平5−127159号公報JP-A-5-127159 特開平7−20462号公報Japanese Patent Laid-Open No. 7-20462 特開平10−104621号公報JP-A-10-104621 特開2005−71928号公報Japanese Patent Laying-Open No. 2005-71928 特開2004−185020号公報JP 2004-185020 A 特開2006−11445号公報JP 2006-11445 A 特開2005−353506号公報JP 2005-353506 A 特開2001−13880号公報Japanese Patent Laid-Open No. 2001-13880 特開2001−17412号公報JP 2001-17412 A 特開2005−183005号公報JP 2005-183005 A 特開2002−191055号公報JP 2002-191055 A 特開2001−281623号公報JP 2001-281623 A 特開平6−11767号公報JP-A-6-11767 特開平2−111922号公報Japanese Patent Laid-Open No. 2-111922

白色塗料ドットを光源からの距離に応じて密度を変える乱反射方式は光源に近い部分は白色塗料密度が低いため輝点になりやすく、拡散シートを併用する必要が生じ、光効率、価格、厚さに影響している。
光源に近い部分は白色塗料密度が低いために導光板背後に透過した光の損失を防止する反射シートを必要とする。
導光板内の乱反射は斜め光なので、コントラストを低下させるのでプリズムシートで確率中心を鉛直方向に変換する必要が生じる。
多重反射するために、試作評価を繰り返して輝度を均一化されており、開発が非効率である。
The diffuse reflection method that changes the density of white paint dots according to the distance from the light source is likely to become a bright spot because the white paint density is low in the part close to the light source, and it is necessary to use a diffusion sheet together, light efficiency, price, thickness Has an effect.
Since the white paint density is low in the portion close to the light source, a reflection sheet for preventing loss of light transmitted behind the light guide plate is required.
Since the irregular reflection in the light guide plate is oblique light, the contrast is lowered, so that the probability center needs to be converted to the vertical direction by the prism sheet.
In order to make multiple reflections, the prototype evaluation is repeated to make the brightness uniform, and development is inefficient.

カラーフィルタは不要波長を吸収して3原色を得る方式のため光透過率は約30%以下であり液晶装置の中で透過率が最も低く、液晶装置全体の透過率は8%以下となっている。
カラーフィルタにおける着色は顔料粒子で反射することに因っており、散乱光になるために垂直配向、ベンド配向では黒表示モードで液晶分子に斜め光が当たることによる光漏れが発生し、コントラストを低下させる。
カラーフィルタはブラックマトリクス、赤、緑、青を写真蝕刻法などで順次焼き付けるため製造工程が多く、液晶表示装置の製造コストに占める割合が最も高価である。
Since the color filter absorbs unnecessary wavelengths and obtains three primary colors, the light transmittance is about 30% or less, which is the lowest among the liquid crystal devices, and the transmittance of the entire liquid crystal device is 8% or less. Yes.
Coloring in the color filter is due to reflection by the pigment particles. In the vertical alignment and bend alignment due to the scattered light, light leakage occurs due to oblique light hitting the liquid crystal molecules in the black display mode, and contrast is increased. Reduce.
The color filter has many manufacturing processes because black matrix, red, green, and blue are sequentially printed by photolithography, and the ratio of the color filter to the manufacturing cost of the liquid crystal display device is the most expensive.

3波長白色光冷陰極管の発光スペクトルは波長が3原色に一致せず、3波長以外のスペクトルも多く含まれている。冷陰極管はインバータを必要として寸法、価格、効率に影響している。
青発光ダイオードの光を赤、緑蛍光体に当てる混色法白色発光ダイオードは色バランスが蛍光材料の配合比に顕著に影響される。赤、緑、青発光ダイオードを同一パッケージに入れて3色光を混合する簡易な混色方法は見る方向によって色バランスが崩れる。
ダイクロイックプリズムを用いて各素子のバランスをとる方法は光学系が複雑になり高価である。
The emission spectrum of the three-wavelength white light cold cathode tube does not match the three primary colors, and includes many spectra other than the three wavelengths. Cold cathode tubes require an inverter, affecting the size, price and efficiency.
The color balance of the white light emitting diode, which is a mixed color method in which the light of the blue light emitting diode is applied to the red and green phosphors, is significantly affected by the blending ratio of the fluorescent material. A simple color mixing method in which red, green, and blue light emitting diodes are mixed in the same package and the three color lights are mixed causes the color balance to be lost depending on the viewing direction.
The method of balancing each element using a dichroic prism is complicated and expensive.

赤、緑、青の発光ダイオードを交互に点灯する時分割方式はフィールド周期16.6mSを3分割した5.6mSから表示時間約3mSを差し引いて約2.6mS以下になる。
3分割方式では高速な動画が赤、緑、青にずれて表示される色割れを起こす問題があり、4分割方式などが提案されているが、4分割方式では約2mS以下の高速応答の液晶が必要になる。
The time-division method in which red, green, and blue light-emitting diodes are alternately turned on is about 2.6 mS or less by subtracting the display time of about 3 mS from 5.6 mS obtained by dividing the field period of 16.6 mS into three.
The three-division method has the problem of causing color breakup in which high-speed moving images are displayed shifted to red, green, and blue. The four-division method has been proposed, but the four-division method has a high-speed response liquid crystal of about 2 mS or less. Is required.

複数の棒状導光体の界面に遮光層を設け、色別光を遮光して棒状導光体内を伝播し、液晶ストライプに供給することにより、液晶パネル自体にカラーフィルタを用いない方法は各遮光層で仕切られた透光材内を拡散光が伝播するので、金属遮光膜の場合は反射する毎に吸収されて遠方ほど暗くなる。透光材よりも低屈折率の材料で被覆する場合は臨界角以内の拡散光は透過するので混色する。透光シートを積層する製造法ではシート厚の公差が積算すると液晶の画素寸法に一致しなくなる。   A method that does not use a color filter in the liquid crystal panel itself by providing a light-shielding layer at the interface of a plurality of rod-shaped light guides, propagating light by color, propagating through the rod-shaped light guide, and supplying it to the liquid crystal stripe Since diffused light propagates through the light-transmitting material partitioned by the layers, the metal light-shielding film is absorbed every time it is reflected and becomes darker as it goes farther. When coating with a material having a refractive index lower than that of the light-transmitting material, diffused light within the critical angle is transmitted and thus mixed. In the manufacturing method of laminating translucent sheets, when the sheet thickness tolerance is integrated, the pixel dimensions of the liquid crystal are not matched.

リアプロジェクタはスクリーンに後方から直接投射すると後方の寸法が長くなるため反射鏡を介し、広角レンズを用いて奥行を短縮化されている。横1000mm、縦560mmのスクリーンでは画角60度の広角レンズで奥行約500mmになる。奥行が利用上の制約になっている。   When the rear projector projects directly onto the screen from the rear, the rear dimension becomes longer, and therefore the depth is shortened using a wide-angle lens via a reflecting mirror. A screen with a width of 1000 mm and a length of 560 mm has a depth of about 500 mm with a wide-angle lens having a field angle of 60 degrees. Depth is a usage constraint.

別色の光源光と混色を防止するために光源からの光を平行光変換手段によって平行光を形成し、画素ピッチで棚田状に凸反射面5が分散配置されている導光板内に入射する。
棚田状導光板1を側面から見た構造は、図1のように液晶側に対向する反射面側に凸反射面5を配置した棚田状構造のものである。この凸反射面5は光源からの平行光線を略鉛直方向にある液晶の画素に向けて反射し、凸反射面が画素寸法より小さいために画素寸法に拡大するための負焦点距離の反射面である。光を伝播する導光板内では凸面だが、導光板外面から見ると凹面になっている。この凸反射面5は図2のように臨界角以上に傾斜すると全反射することが出来る。蒸着膜などの鏡面反射層にして反射することでも良く、臨界角の制約はなくなるが蒸着工程などが必要になり価格上昇になる。
凸反射面5の光源側において水平面となす傾斜角θd、入射角θ1との間には

の関係が成り立ち、全反射条件θ1>θcより

の必要がある。光源は完全な点光源ではないために平行性公差があるのでθdは公差の余裕をとる必要がある。
平行光が凸反射面で光束を拡大して被照射面におけるサブ画素の透過部の幅Wに拡大する様子を図3に示す。被照射面までの距離tは導光板厚と液晶透明基板厚の和になり、サブ画素の透過部の幅をW、導光板凸面傾斜部の円周に沿った幅をdとすると、凸反射面の曲率半径rは

で表される。棚田状構造の導光板の位置による厚さtの変化に応じて曲率半径rを変えることにより均一に画素透過部幅に照射することが出来る。
In order to prevent color mixing with light sources of different colors, the light from the light source is formed into parallel light by the parallel light conversion means, and is incident on the light guide plate in which the convex reflection surfaces 5 are distributed and arranged in a terraced manner at a pixel pitch. .
The terraced light guide plate 1 viewed from the side has a terraced structure in which the convex reflection surface 5 is arranged on the reflection surface side facing the liquid crystal side as shown in FIG. The convex reflecting surface 5 reflects a parallel light beam from a light source toward a liquid crystal pixel in a substantially vertical direction, and is a reflecting surface having a negative focal length for enlarging the pixel size because the convex reflecting surface is smaller than the pixel size. is there. Although it is convex in the light guide plate that propagates light, it is concave when viewed from the outer surface of the light guide plate. The convex reflecting surface 5 can be totally reflected when tilted to a critical angle or more as shown in FIG. Reflection may be performed by using a mirror reflection layer such as a vapor deposition film. The critical angle is not limited, but a vapor deposition process is required, resulting in an increase in price.
Between the inclined angle θ d and the incident angle θ 1 formed with the horizontal plane on the light source side of the convex reflecting surface 5

From the total reflection condition θ 1 > θ c

Need of. Since the light source is not a perfect point light source, there is a parallelism tolerance, so θ d needs to have a tolerance margin.
FIG. 3 shows a state in which the parallel light expands the light flux on the convex reflection surface and expands to the width W of the transmission portion of the sub-pixel on the irradiated surface. The distance t to the irradiated surface is the sum of the thickness of the light guide plate and the liquid crystal transparent substrate, where W is the width of the transmissive portion of the subpixel and d is the width along the circumference of the convex inclined portion of the light guide plate. The radius of curvature r of the surface is

It is represented by By changing the radius of curvature r in accordance with the change in the thickness t depending on the position of the light guide plate having a terraced structure, it is possible to uniformly irradiate the pixel transmission portion width.

光源からの光を平行光変換手段によって平行光を形成して導光素子に入射し、導光板内を伝播する平行光を、導光板の底面に設けた反射面に臨界角以上の入射角で入射して全反射し、あるいは前記反射面を鏡面として反射し、被照射寸法、被照射体までの距離に応じて反射面の曲率を設定することにより光束を拡げて目的方向に反射する。図4のように3色の光源と、棚田状導光板を3層用い、同一画素に照射する3層の棚田状段差部をサブ画素幅のストライプピッチでずらすことにより別色の光源光用の傾斜反射面に阻害されることなく液晶パネルにカラーフィルタを設けずにカラー表示することが出来る。導光板内部に凸反射面を形成するため3層構成としているが、押出し成型などにより内部に凸反射面を形成可能であれば単一の導光板でも同一機能を実現出来る。
凸反射面は円筒面を直線状に並べると液晶面において直線的なストライプとして表示出来るが、凸反射面をジグザグ状に折り曲げて配置することでジグザグ状ストライプも実現出来る。
The light from the light source is formed into parallel light by the parallel light conversion means and enters the light guide element, and the parallel light propagating through the light guide plate is incident on the reflection surface provided on the bottom surface of the light guide plate at an incident angle greater than the critical angle. Incident light is totally reflected, or the reflection surface is reflected as a mirror surface, and the light flux is expanded and reflected in a target direction by setting the curvature of the reflection surface according to the irradiated dimension and the distance to the irradiated object. As shown in FIG. 4, three layers of light sources and three layers of terraced light guide plates are used, and the three layers of terraced stepped portions that irradiate the same pixel are shifted by the stripe pitch of the subpixel width. Color display can be performed without providing a color filter on the liquid crystal panel without being obstructed by the inclined reflecting surface. Although a three-layer structure is used to form a convex reflection surface inside the light guide plate, the same function can be realized even with a single light guide plate if the convex reflection surface can be formed inside by extrusion molding or the like.
The convex reflection surface can be displayed as a linear stripe on the liquid crystal surface when the cylindrical surfaces are arranged in a straight line, but a zigzag stripe can also be realized by arranging the convex reflection surface in a zigzag manner.

導光板の各凸反射面の曲率半径は数3によりサブ画素ストライプ幅と液晶面までの距離に応じて3層で設定されるが、液晶面までの距離が3層で異なるので各層毎に曲率半径が異なっている。
3色の点光源と、棚田状導光板を3層用い、棚田状段差部をサブ画素幅のストライプピッチでずらした状態の斜視図を図5に示す。同一画素に照射する凸反射面の曲率半径が3層の導光板で異なり、液晶面側の曲率半径を短く設定した状態である。光源は3色の発光ダイオードを用い、軸外放物面鏡の焦点に設けたものである。軸外放物面鏡は導光板の厚さ方向、幅方向とも放物線にすることにより平行光に変換出来る。幅方向の寸法は焦点距離、光束密度分布、光源の光度、指向性などにより設定されるので幅を広くするためには放物面の奥行を長くする必要がある。
The radius of curvature of each convex reflecting surface of the light guide plate is set according to Equation 3 in three layers according to the sub-pixel stripe width and the distance to the liquid crystal surface, but since the distance to the liquid crystal surface is different in three layers, the curvature is different for each layer. The radii are different.
FIG. 5 is a perspective view showing a state in which three layers of point light sources and three layers of terraced light guide plates are used and the terraced stepped portion is shifted by the stripe pitch of the sub-pixel width. The curvature radius of the convex reflection surface irradiated to the same pixel is different in the three-layer light guide plate, and the curvature radius on the liquid crystal surface side is set short. The light source uses light emitting diodes of three colors and is provided at the focal point of an off-axis parabolic mirror. The off-axis parabolic mirror can be converted into parallel light by making the thickness direction and width direction of the light guide plate parabolic. Since the dimension in the width direction is set by the focal length, the light flux density distribution, the luminous intensity of the light source, the directivity, etc., it is necessary to lengthen the depth of the paraboloid in order to increase the width.

同一画素に照射する3層の棚田状段差部をサブ画素幅のストライプピッチでずらし、各導光板の出射面に正焦点距離屈折面を設けて平行光に変換することにより、凸反射面の曲率半径を各層とも同一にして同一形状の導光板を3層積み重ねて各色のサブ画素に平行光を入射することによりカラー表示することが出来る。各導光板の出射面に正焦点距離屈折面を設けて平行光に変換すると各色のサブ画素に平行光を入射することが出来、凸反射面の曲率半径は各層とも同一になる。このため1種類の形状の導光板を3層積み重ねるので金型製造コストが安価になり、1種類なので製造性も良くなる。
3色の光源と、棚田状段差部をサブ画素幅のストライプピッチでずらした状態、及び光源は3色の発光ダイオードを用い、軸外放物面鏡の焦点に設けた点は前記と同様だが、液晶面までの距離が各層で異なるので導光板の出射面側に正焦点距離の屈折面を設け、同一構造の棚田状導光板を3層用いたときの斜視図を図6に示す。
The curvature of the convex reflecting surface is obtained by shifting the three-layer terraced stepped portion that irradiates the same pixel with the stripe pitch of the sub-pixel width, and converting the light into the parallel light by providing a regular focal length refracting surface on the exit surface of each light guide plate. Color display can be performed by stacking three layers of light guide plates having the same radius in each layer and entering parallel light into sub-pixels of each color. When a regular focal length refracting surface is provided on the exit surface of each light guide plate and converted into parallel light, parallel light can be incident on the sub-pixels of each color, and the curvature radius of the convex reflection surface is the same for each layer. For this reason, three layers of light guide plates of one type are stacked, so that the mold manufacturing cost is low, and since there is only one type, manufacturability is also improved.
Although the three-color light source, the terraced stepped portion are shifted by the stripe pitch of the sub-pixel width, and the light source uses a light-emitting diode of three colors and is provided at the focal point of the off-axis parabolic mirror, the same as described above. Since the distance to the liquid crystal surface is different for each layer, FIG. 6 shows a perspective view when a refracting surface with a normal focal length is provided on the light exit surface side of the light guide plate, and three layers of the terraced light guide plate having the same structure are used.

放物面鏡は平行光を生成出来ることから点光源を焦点に設けて利用されるが、光源が平行光の出射経路の中にあると光源が平行光を遮るだけでなく反射平行光に直接光が加わり不均一になる。図1、図4などのように平行光の経路からオフセットした位置に焦点を持つ軸外放物凹面鏡あるいは軸外放物面近似凹球面鏡の焦点に光源を設けることにより、光源によって平行光を妨げられることなく導光板を伝播することが出来る。
導光板の厚さ方向、幅方向ともに放物面の焦点に発光ダイオードを設け、液晶ストライプの配列順に複数色の発光ダイオードを交互に配置することにより複数色の平行光を供給することが出来る。
Parabolic mirrors can generate collimated light and are used with a point light source at the focal point, but if the light source is in the parallel light emission path, the light source not only blocks the collimated light but also directly reflects the reflected parallel light. Adds light and makes it non-uniform. By providing a light source at the focal point of an off-axis parabolic concave mirror or an off-axis parabolic approximate concave spherical mirror having a focal point at a position offset from the path of parallel light as shown in FIGS. The light guide plate can be propagated without being transmitted.
By providing a light emitting diode at the focal point of the paraboloid in both the thickness direction and the width direction of the light guide plate and alternately arranging the light emitting diodes of a plurality of colors in the arrangement order of the liquid crystal stripes, parallel light of a plurality of colors can be supplied.

放物面鏡は光束密度が光源と反射面上の点との距離の2乗に反比例するため、反射光の光束分布は光軸から遠ざかるほど低下する。

数4に示す放物線上の点(x,y)と焦点(p,0)間の距離をhとすると、

光束密度は光源と反射面上の点との距離の2乗に反比例するため、光束密度Iをyの関数で表すと、

pを1としてyを0から4の範囲で図示すると、図7のように光軸から離れるほど光束密度が減少する。
総光束は、yを0から4の範囲で積分すると、

積分の曲線を図8に示す。
導光板では放物面鏡の光軸に近い範囲を利用し、導光板反射面積を逆関数にして補正すると厚さ増加を抑制して光束密度を均一に出来る。x座標の焦点p、y座標の1.41pまでの放物面鏡における段差の位置関数曲線を図9、導光板断面の包絡線を図10に示す。
In the parabolic mirror, the luminous flux density is inversely proportional to the square of the distance between the light source and the point on the reflecting surface, so that the luminous flux distribution of the reflected light decreases as the distance from the optical axis increases.

When the distance between the point (x, y) and the focal point (p, 0) on the parabola shown in Equation 4 is h,

Since the luminous flux density is inversely proportional to the square of the distance between the light source and the point on the reflecting surface, the luminous flux density I is expressed as a function of y.

If p is 1 and y is illustrated in the range of 0 to 4, the light flux density decreases as the distance from the optical axis increases as shown in FIG.
The total luminous flux is obtained by integrating y in the range from 0 to 4.

The integration curve is shown in FIG.
If the light guide plate uses a range close to the optical axis of the parabolic mirror and corrects the reflection area of the light guide plate as an inverse function, the increase in thickness can be suppressed and the light flux density can be made uniform. FIG. 9 shows the position function curve of the step in the parabolic mirror up to the focal point p of the x coordinate and 1.41 p of the y coordinate, and FIG. 10 shows the envelope of the cross section of the light guide plate.

放物面鏡は平行光を生成できるが、光束密度特性は光軸から遠ざかるほど光束が低下する。放物面鏡の開口端における光束密度を均一にするには光軸付近に集中する光束を周辺側に拡散し、開口端で平行光に戻す必要がある。図11はその原理を示す図であり、θ1が平行光より光束を拡大する角度、θmが反射鏡の傾斜角である。光束密度が均一になる状態を光線軌跡の解析結果として図16〜18に示す。
放物面鏡開口端における光束を積分して総光束を求め、開口端で均等になる値を反射鏡上に求めてその座標と結んだ線が均一化するための拡散光線軌跡である。
この総光束を開口端で光軸垂直方向に均一になるよう等分する。総光束を等分した光束が反射鏡上のy座標は光束密度分布から求められ、x座標も求められる。この点と開口端の点を結べば拡散角度を求めることが出来る。
図11に放物面鏡9の平行光出射を示すが、同様に、反射鏡の傾斜を増分する角度は平行光からの増分する拡散角の半分である。反射鏡の傾斜を求めるには放物面鏡9の接線の傾斜mと法線の傾斜−1/mを求める必要がある。
放物線上の点(x0、y0)の傾斜はxで微分して、

接線の方程式よりmは

である。法線は接線に直交するので

である。
放物線の包絡線を維持したまま反射鏡の傾斜を増大するのは微細な急傾斜鏡面と緩傾斜面をもって繋げることになる。放物面鏡の鏡面を分割し、均一にするための平行光からの拡散角度の半分を放物線の接線傾斜より増大することにより反射鏡開口端において均一な光束密度で拡散することが出来る。
凹面鏡の鏡面を分割して放物線の接線傾斜より増大する急傾斜鏡面と、緩傾斜面を焦点方向に対向する面で構成する。放物線の接線傾斜より増大する面の反射光は凹面鏡開口端において均一な光束密度となるように、凹面鏡の焦点に設けた光源からの光を平行光より光束拡大し、前記開口端に更に正焦点距離屈折面を設けることにより、光束密度の均一な平行光に変換することが出来る。焦点方向に対向する鏡面の反射光は焦点に戻った光を再び凹面鏡に照射することにより最終的には放物線の接線傾斜より増大する急傾斜面の反射光として出射される。
Although the parabolic mirror can generate parallel light, the light flux density characteristic decreases as the distance from the optical axis increases. In order to make the light beam density uniform at the opening end of the parabolic mirror, it is necessary to diffuse the light beam concentrated near the optical axis to the peripheral side and return it to parallel light at the opening end. FIG. 11 is a diagram showing the principle, wherein θ 1 is an angle at which the light beam is expanded from parallel light, and θ m is an inclination angle of the reflecting mirror. A state where the light flux density is uniform is shown in FIGS.
This is a diffused ray trajectory for integrating the light flux at the opening end of the parabolic mirror to obtain the total light flux, obtaining a value that is uniform at the opening end on the reflecting mirror, and making the line connected to the coordinates uniform.
The total luminous flux is equally divided at the opening end so as to be uniform in the direction perpendicular to the optical axis. The y coordinate on the reflecting mirror of the light beam obtained by equally dividing the total light beam is obtained from the light beam density distribution, and the x coordinate is also obtained. The diffusion angle can be obtained by connecting this point and the point of the opening end.
FIG. 11 shows the parallel light emission of the parabolic mirror 9. Similarly, the angle at which the tilt of the reflecting mirror is incremented is half of the incremental diffusion angle from the parallel light. In order to obtain the inclination of the reflecting mirror, it is necessary to obtain the tangential inclination m and the normal inclination-1 / m of the parabolic mirror 9.
The slope of the parabola point (x 0 , y 0 ) is differentiated by x,

From the tangent equation, m is

It is. Because the normal is perpendicular to the tangent

It is.
Increasing the tilt of the reflecting mirror while maintaining the parabolic envelope is achieved by connecting the fine steep mirror surface and the gentle tilt surface. By dividing the mirror surface of the parabolic mirror and making the half of the diffusion angle from the parallel light to be uniform more than the tangential slope of the parabola, it is possible to diffuse with a uniform light flux density at the opening end of the reflecting mirror.
The mirror surface of the concave mirror is divided to form a steeply inclined mirror surface that is larger than the tangential slope of the parabola, and a gently inclined surface that is a surface facing the focal direction. The reflected light from the surface that increases from the tangential slope of the parabola has a uniform light flux density at the opening end of the concave mirror, and the light from the light source provided at the focal point of the concave mirror is expanded from the parallel light. By providing the distance refracting surface, it can be converted into parallel light having a uniform light flux density. The reflected light of the mirror surface facing the focal direction is emitted as reflected light of a steeply inclined surface that increases more than the tangential inclination of the parabola by irradiating the concave mirror with the light returning to the focal point again.

鏡面の傾斜を緩急に分けて微細化するのは成型・蒸着による製造は可能だが研磨が困難である。このため、傾斜を増大して連続曲線にする方法を以下に示す。連続化すると座標が後方に移動するので光束密度分布、積分曲線を再度計算しなければならないが、これを繰り返し計算することにより誤差を極めて小さく収めることが出来る。
反射鏡上のy座標の点において光束が拡大する分布状態を図13に、光束密度分布を破線で、光束密度の積分曲線を実線で図14に示す。
以上の方法で求めた曲線は

である。aは反射鏡の軸方向長さ、正焦点距離屈折面の傾斜などの影響によって幅を持っている。x<2の浅い反射鏡の場合、第2項の寄与が小さく、第2項による補正は不要だが、xが長くなるに従ってb,cを調整することにより均一性が良くなる。xの長い、つまり口径yの大きな反射鏡は図7のように光軸から離れるほど光束密度が減少するのでaのように顕著ではない。
光束密度均一化反射鏡のa=5.8,b=2.5,c=2,p=1における曲線を放物線と比較した図を図15に示す。
この拡散光を正焦点距離屈折面に入射すると平行光に戻すことが出来、これによって光束密度の均一な平行光を得ることが出来る。平行光に戻すための屈折面の角度を図12に示す。
正焦点距離屈折面で光軸に平行にするための界面の傾斜θ3

である。各拡散角度についてθ3を求め、連続曲線にすると屈折面曲線、レンズ曲線を求めることが出来る。導光板などの透光物質に入射するとき、正焦点距離屈折面を1枚で平行光に変換する解析結果の曲線を図16に示す。平行光だけでなく屈折面の曲線によって光束密度の均一な拡散光、収束光への変換も可能である。
光束密度均一化反射鏡による拡散光を空気中に照射する場合は屈折面が複数になり、平凸レンズで構成した例を図17に示す。
平凸レンズの平面で変換された屈折光出射角θ2

屈折面で光軸に平行にするための界面の傾斜θ3は、

屈折率1.55の平凸レンズよりレンズ厚を薄くするフレネルレンズの例を図18に示す。
正焦点距離屈折面を持つ導光板に入射すると棚田状導光板の段差は一定になり、包絡線は直線になるため図9、図10の補償方法より薄型化が可能である。
It is possible to manufacture by mold / vapor deposition, but it is difficult to polish it. For this reason, a method for increasing the slope to form a continuous curve is shown below. If it is continuous, the coordinates move backward, so the light flux density distribution and integral curve must be calculated again. By repeating this calculation, the error can be kept extremely small.
FIG. 13 shows a distribution state in which a light beam expands at a point of y-coordinate on the reflecting mirror, FIG. 14 shows a light beam density distribution by a broken line, and an integral curve of the light beam density by a solid line.
The curve obtained by the above method is

It is. a has a width due to the influence of the axial length of the reflecting mirror, the inclination of the refracting surface of the normal focal length, and the like. In the case of a shallow reflector of x <2, the contribution of the second term is small and correction by the second term is unnecessary, but uniformity is improved by adjusting b and c as x becomes longer. A reflector having a long x, that is, a large aperture y is not as noticeable as a because the light flux density decreases with increasing distance from the optical axis as shown in FIG.
FIG. 15 shows a comparison of the curve at a = 5.8, b = 2.5, c = 2, and p = 1 with the parabola of the light flux density uniformizing mirror.
When this diffused light is incident on the positive focal length refracting surface, it can be returned to parallel light, thereby obtaining parallel light with uniform light flux density. The angle of the refracting surface for returning to parallel light is shown in FIG.
The inclination θ 3 of the interface to be parallel to the optical axis at the positive focal length refractive surface is

It is. If θ 3 is obtained for each diffusion angle and a continuous curve is obtained, a refractive surface curve and a lens curve can be obtained. FIG. 16 shows a curve of an analysis result obtained by converting one regular focal length refracting surface into parallel light when entering a translucent material such as a light guide plate. Not only parallel light but also a refracting surface curve can be converted into diffused light having a uniform light flux density and convergent light.
FIG. 17 shows an example of a plano-convex lens having a plurality of refracting surfaces in the case of irradiating diffused light from the light beam density uniformizing mirror into the air.
Refracted light exit angle θ2 converted at the plane of the plano-convex lens

The inclination θ 3 of the interface for making the refractive surface parallel to the optical axis is

An example of a Fresnel lens in which the lens thickness is made thinner than that of a plano-convex lens having a refractive index of 1.55 is shown in FIG.
When incident on a light guide plate having a regular focal length refracting surface, the steps of the terraced light guide plate become constant and the envelope becomes a straight line, so that the thickness can be made thinner than the compensation methods of FIGS.

光束密度を均一化する反射鏡であっても直接光が重畳し、直接光は距離の2乗に反比例するので照射面までの距離が近いほど不均一になり、光軸付近に光束が集中しやすい。このため図19のように、光源の前方に開口付き遮光体を設けて直接光を制限することにより光源前方において凹面鏡反射光と光源からの直接光が重畳することによる光束集中を緩和することが出来る。遮光体に設けた開口孔の寸法、密度を凹面鏡反射光の光束密度に合わせて設定することにより光束を均一化することが出来る。光源の前方の開口付き遮光体を凸面鏡に代えて、凸面鏡で凹面鏡に反射して効率を高めることが出来る。更に、凸面鏡に設けた開口部面積で透過光量を設定するときの開口部を図20のように凹レンズにすることにより拡散状態を制御することが出来る。   Even with a mirror that equalizes the light flux density, direct light is superimposed, and the direct light is inversely proportional to the square of the distance, so the closer the distance to the irradiation surface, the more uneven the light becomes, and the light flux concentrates near the optical axis. Cheap. For this reason, as shown in FIG. 19, by providing a light shield with an opening in front of the light source to limit the direct light, it is possible to alleviate the light flux concentration caused by superimposing the concave mirror reflected light and the direct light from the light source in front of the light source. I can do it. By setting the size and density of the aperture hole provided in the light shielding body in accordance with the light flux density of the concave mirror reflected light, the light flux can be made uniform. The light shielding body with an opening in front of the light source can be replaced with a convex mirror and reflected by the convex mirror to the concave mirror to increase efficiency. Furthermore, the diffusion state can be controlled by using a concave lens as shown in FIG. 20 for the aperture when the amount of transmitted light is set with the aperture area provided in the convex mirror.

図21〜23は棚田状凸反射面を2方向に持つ構造にして各色を光源1個で供給する構造である。液晶表示装置の表示面をxy平面、紙面横方向をx軸としたとき、導光板側面からy軸方向に入射する平行光を、yz平面に対して棚田状に傾斜を持たせた第1の微小傾斜反射面でx軸方向に変換する。棚田状に分散配置した微小段差を持つ傾斜反射面は液晶パネル側の曲率半径が長く、反対側の短い凸反射面にすると第2の微小傾斜反射面の位置によらずに一定のy方向長さに光束を拡大することが出来る。導光板内をx方向に変換された光束を、棚田状に分散配置した第2の微小傾斜反射面に照射すると凸円筒全反射面で略鉛直方向にある液晶パネルに光束を拡大して反射する。導光板を3層用い、第2の棚田状段差部をサブ画素幅のストライプピッチでずらし、3色を3個の光源から照射することによりカラー表示することが出来る。この凸円筒反射面は入射側の曲率半径を長く、遠方側を短くすることにより液晶パネルに入射する光束密度を均一にすることが出来る。導光板1層と発光素子1個の構成では液晶パネルにカラーフィルタを必要とするが、導光板を3層と3色の発光素子の場合は液晶パネルにカラーフィルタを用いずともカラー表示が可能である。凸面鏡で光束を拡大するため拡散シートは不要であり、効率良く正面輝度を高められる。   21 to 23 have a structure having a terraced convex reflection surface in two directions and supply each color with a single light source. When the display surface of the liquid crystal display device is the xy plane and the horizontal direction of the paper is the x axis, the parallel light incident in the y axis direction from the side surface of the light guide plate is inclined in a terrace shape with respect to the yz plane. Conversion is made in the x-axis direction with a minute inclined reflecting surface. The slant reflection surface with minute steps distributed in a terraced shape has a long radius of curvature on the liquid crystal panel side, and if it is a short convex reflection surface on the opposite side, it has a constant y-direction length regardless of the position of the second minute slant reflection surface. In addition, the luminous flux can be enlarged. When the light beam converted in the x direction in the light guide plate is irradiated onto the second minute inclined reflective surface dispersed and arranged in a terraced shape, the light beam is magnified and reflected by the convex cylindrical total reflection surface to the liquid crystal panel in the substantially vertical direction. . Color display can be performed by using three layers of light guide plates, shifting the second terraced stepped portion by the stripe pitch of the sub-pixel width, and irradiating three colors from three light sources. This convex cylindrical reflecting surface can make the light flux incident on the liquid crystal panel uniform by increasing the radius of curvature on the incident side and shortening the far side. The structure of one light guide plate and one light emitting element requires a color filter on the liquid crystal panel, but in the case of light emitting elements with three layers of light guide plates and three colors, color display is possible without using a color filter on the liquid crystal panel. It is. Since the luminous flux is expanded by the convex mirror, a diffusion sheet is unnecessary, and the front luminance can be increased efficiently.

第1、第2の棚田状反射面を持つ導光板を3層用い、第2の棚田状段差部をサブ画素幅のストライプピッチでずらすことにより3個の光源で実現することが出来る。3層の導光板は夫々別色の光源を有し、平行光変換手段により平行光を供給している。図21は3層を同一導光板にしたときの状態である。液晶面までの距離依存性が出ないように出射面側に正焦点距離屈折面を設けている。
第1の凸反射面は前項同様に、液晶面側の曲率半径が長く、底面側を短くして第2の棚田状導光板の上段と下段の差を緩和している。液晶表示装置の表示面をxy平面としたとき、バックライト導光素子側面からy軸方向に入射する平行光線を、yz平面上に棚田状に段差を持たせた第1の棚田状凸反射面でx軸方向に光束を拡げて方向変換し、x方向に変換されて光束拡大する光線は第2棚田状導光板において下段側ほど光束拡大率が高い入射光であり、凸反射面を円筒状にすると液晶面において下段ほど拡大される。円筒でなく、軸方向に負焦点距離反射面とする補正することで位置に依存せずに液晶画素に入射出来る。
It can be realized with three light sources by using three layers of light guide plates having first and second terraced reflection surfaces and shifting the second terraced stepped portion with a stripe pitch of the sub-pixel width. The three-layer light guide plate has light sources of different colors, and supplies parallel light by parallel light conversion means. FIG. 21 shows a state where three layers are made the same light guide plate. A positive focal length refracting surface is provided on the exit surface side so that the distance dependency to the liquid crystal surface does not occur.
As in the previous section, the first convex reflection surface has a long radius of curvature on the liquid crystal surface side and a short bottom surface side to alleviate the difference between the upper and lower stages of the second terraced light guide plate. When the display surface of the liquid crystal display device is the xy plane, the first terraced convex reflection surface in which parallel light incident in the y-axis direction from the side surface of the backlight light guide element is provided with a stepped shape on the yz plane. In the second terraced light guide plate, the light beam that expands the light beam in the x-axis direction and changes its direction is incident light having a higher light beam expansion rate toward the lower side in the second terraced light guide plate, and the convex reflection surface is cylindrical. In this case, the lower part of the liquid crystal surface is enlarged. By correcting the negative focal length reflecting surface in the axial direction instead of the cylinder, the light can enter the liquid crystal pixel without depending on the position.

棒状の導光体内部を長軸方向に伝播する平行光を、棚田状に配置した円筒状凸反射面で光束を拡大して出射面側で定ピッチとなるように反射し、更に前記凸反射面の焦点と焦点位置が共通な正焦点距離屈折面で平行光に変換する要素を出射面に沿って配置した棒状の構造とすることにより線光源として出射して導光板に入射する。円筒状の正焦点距離屈折面により平行光を伝播して円筒状凸反射面に照射することが出来る。このため1枚の導光板に第1、第2の棚田状反射面を有する構造ではなく、図22のように2種類を組み合わせた構造になる。棒状導光体の凸反射面、導光板の凸反射面とも円筒状のため前項に比べて金型製作が容易になる。   The parallel light propagating in the long axis direction inside the rod-shaped light guide is reflected so that the luminous flux is enlarged by a cylindrical convex reflecting surface arranged in a terraced shape so as to have a constant pitch on the exit surface side, and the convex reflection is further performed. By using a rod-like structure in which elements that convert to parallel light on a positive focal length refracting surface having the same focal point and focal position are arranged along the exit surface, the light is emitted as a line light source and incident on the light guide plate. Parallel light can propagate through the cylindrical regular focal length refracting surface to irradiate the cylindrical convex reflecting surface. For this reason, it is not a structure having the first and second terraced reflection surfaces on one light guide plate, but a structure in which two types are combined as shown in FIG. Since both the convex reflection surface of the rod-shaped light guide and the convex reflection surface of the light guide plate are cylindrical, it is easier to manufacture a mold than the previous item.

3色の光を色別に3枚の液晶表示原稿素子に照射し、3層の導光板内に分散配置された反射面を3色でずらして配置し、反射面で画素幅に光束拡大して透過型スクリーンに3色を混合し、表示面で合成することによりカラー表示することが出来る。液晶プロジェクターは3色を合成してから投影レンズに入射しているが、3層の反射面で拡大して投影するため、クロスダイクロイックプリズムを用いることなく3色光をスクリーン上で混色合成することが出来、構造が簡単で低価格である。   The three liquid crystal display original elements are irradiated with three colors of light according to colors, the reflecting surfaces dispersedly arranged in the three-layer light guide plate are shifted in three colors, and the luminous flux is expanded to the pixel width on the reflecting surface. Color display is possible by mixing three colors on a transmissive screen and combining them on the display surface. The liquid crystal projector combines the three colors and then enters the projection lens. However, since the liquid crystal projector magnifies and projects the light on the three-layer reflecting surface, the three-color light can be mixed and synthesized on the screen without using a cross dichroic prism. Made, simple structure and low price.

xy平面上に棚田状に段差を持たせた概略楔形導光板の入射面に表示原稿素子を設け、棚田状反射面に照射すると、この反射光を凸反射面における光束拡大機能によりxy平面にある表示面に画像を拡大して反射され、小さな液晶表示原稿素子の画像をスクリーンに拡大表示することが出来る。
棚田状導光板の反射面で画像拡大するので入射面の液晶表示素子は細長い形状である。これを段丘傾斜方向のみに画像拡大する場合は厚さ方向が圧縮され扁平化した画像の必要がある。
When a display original document element is provided on the entrance surface of a substantially wedge-shaped light guide plate having a terrace-like step on the xy plane, and the terraced reflection surface is irradiated, the reflected light is in the xy plane by the light beam expanding function on the convex reflection surface. The image is magnified and reflected on the display surface, and the image of the small liquid crystal display original element can be magnified and displayed on the screen.
Since the image is magnified on the reflecting surface of the terraced light guide plate, the liquid crystal display element on the incident surface has an elongated shape. In the case of enlarging the image only in the terrace inclination direction, the image needs to be flattened by compressing the thickness direction.

段丘方向の段差のピッチは画素幅に限定されるわけではなく、複数画素を1反射面で投影し、3色光をスクリーン上で合成することでもカラー表示が可能である。これにより、段差のピッチと反射面寸法を拡大し、段数を削減することが可能になる。
1層目を赤R、2層目を緑G、3層目を青Bとし、12画素分を1段目の凸反射面で反射する状態を模式図を示す。棚田の段丘方向の12画素を下側からA,B,C...Lとする。2段目以降は省略する。
1層目の凸反射面でA,B,C...Lの赤の画素を定ピッチでスクリーンに照射し、2層目で同じ位置に緑の画素を、3層目で同じ位置に青の画素を照射すると、スクリーン上のAの位置にAr、Ag、Abが照射され、スクリーン上で混色される。同様に、スクリーン上のB位置にBr、Bg、Bbが照射され、スクリーン上で混色される。以下は全て同様である。1段で制限無く多数画素に分配出来るわけではなく、図2のように凸面の前面側に比べて後面側では広い面積に照射することになり、後面側はスクリーン上の単位面積あたりの光量が低下する。1段あたりの多数画素に分配数は輝度の非線形性が目立たない範囲で決める必要がある。
The pitch of the steps in the terrace direction is not limited to the pixel width, and color display is possible by projecting a plurality of pixels on one reflecting surface and synthesizing three color lights on the screen. Thereby, it becomes possible to enlarge the pitch of a level | step difference and the reflective surface dimension, and to reduce the number of steps.
The schematic diagram shows a state in which the first layer is red R, the second layer is green G, the third layer is blue B, and 12 pixels are reflected by the first-stage convex reflection surface. The 12 pixels in the terraced terrace direction are A, B, C. . . Let L be. The second and subsequent steps are omitted.
A, B, C.I. . . When a red pixel of L is irradiated on the screen at a constant pitch, a green pixel is irradiated at the same position in the second layer, and a blue pixel is irradiated at the same position in the third layer, Ar and Ag are positioned at position A on the screen. , Ab is irradiated and mixed on the screen. Similarly, Br, Bg, and Bb are irradiated to the B position on the screen, and the colors are mixed on the screen. The following is all the same. It is not possible to distribute to a large number of pixels without limitation in one stage. As shown in FIG. 2, the rear surface side irradiates a larger area than the convex front surface side, and the rear surface side has a light quantity per unit area on the screen. descend. It is necessary to determine the number of distributions to a large number of pixels per stage within a range where luminance nonlinearity is not noticeable.

xz平面上に設けた表示原稿素子に対してy軸方向に透過する光を、軸方向がz軸の凸反射面を投影光に平行な平面を交互に積層した第1の棚田状構造の反射面を、yz平面に対してx方向に傾斜して設けている。これにより、反射方向の中心をx軸方向に変換して光束を拡大して反射する。xy平面に対してz方向に傾斜して設けた第2の棚田状構造の反射鏡の円筒凸面によってxy平面の鉛直方向にあるスクリーンに投影する。この反射光をxy平面にある表示面に画像を拡大して反射する導光板を3層用い、第2の棚田状段差部をサブ画素幅のストライプピッチでずらし、3個の光源で表示素子画像をスクリーンに拡大表示することによりxz平面上に設けた投影表示素子よりも拡大表示することが出来る。   Reflection of light transmitted through in the y-axis direction with respect to the display original element provided on the xz plane, reflected by the first terraced structure in which the planes parallel to the projection light are alternately laminated on the z-axis convex reflection surface The surface is inclined with respect to the yz plane in the x direction. As a result, the center of the reflection direction is converted into the x-axis direction, and the light flux is enlarged and reflected. The projection is projected onto a screen in the vertical direction of the xy plane by the cylindrical convex surface of the second terraced reflector having an inclination in the z direction with respect to the xy plane. Three layers of light guide plates that reflect the reflected light on the display surface in the xy plane by enlarging the image are used, and the second terraced stepped portion is shifted by the stripe pitch of the sub-pixel width to display the display element image with three light sources. Can be displayed on the screen in an enlarged manner as compared with the projection display element provided on the xz plane.

導光板の透明物質としてポリメチルメタクリル酸樹脂、脂環式アクリル樹脂、環状オレフィン樹脂、ポリカーボネート、空気などが適している。スクリーンを用いて大画面表示の場合は透光物質を高分子材料にすると重量、価格、成型歪などに影響する。反射面に蒸着膜などの鏡面を形成するのは、3層の導光板を透過させるため凸反射面に限定する必要があり、マスキング、エッチング工程などが必要になる。
透明物質として空気を用い、凸反射面を形成するために透光物質で凸反射面の入射側を平行光に対して垂直な面として平行光を全反射凸反射面に入射し、その反射光を出射側に光束を拡大する光線に対して略垂直の面として透光物質で構成すれば、鏡面の代わりに全反射を利用することも出来る。出射側は光束を拡大するので平面の場合は略垂直の出射面であり、これを棚田状全反射面板と呼ぶことにする。この構成により、透光層の大部分は空気であり、全反射面を構成するための透明高分子層なので軽量化とコスト削減を実現することが出来る。棚田状全反射面板を非常に薄くすると剛性が低下して光学特性を損なうことのないように支持する必要がある。図27、図28ではフレームを兼ねた支持基板21を背面に設けた例を示しているが、棚田状全反射面板39自体の厚さを厚くして剛性を高めても良い。
As the transparent material for the light guide plate, polymethyl methacrylate resin, alicyclic acrylic resin, cyclic olefin resin, polycarbonate, air, and the like are suitable. In the case of a large screen display using a screen, if the translucent material is a polymer material, the weight, price, molding distortion, etc. are affected. The formation of a mirror surface such as a vapor deposition film on the reflection surface is required to be limited to the convex reflection surface in order to transmit the three-layer light guide plate, and masking and etching processes are required.
Air is used as a transparent material, and a parallel light is incident on the total reflection convex reflection surface by using a translucent material with the incident side of the convex reflection surface perpendicular to the parallel light to form a convex reflection surface. If it is made of a translucent material as a surface substantially perpendicular to the light beam that expands the light beam on the exit side, total reflection can be used instead of the mirror surface. On the exit side, the luminous flux is enlarged, so in the case of a flat surface, it is a substantially vertical exit surface, which is referred to as a terraced total reflection surface plate. With this configuration, most of the light-transmitting layer is air, and since it is a transparent polymer layer for forming a total reflection surface, weight reduction and cost reduction can be realized. When the terraced total reflection face plate is made very thin, it is necessary to support it so that the rigidity is not lowered and the optical characteristics are not impaired. 27 and 28 show an example in which the support substrate 21 that also serves as a frame is provided on the back surface, but the thickness of the terraced total reflection surface plate 39 itself may be increased to increase the rigidity.

棚田状導光板は概略楔形のため3層の導光板の配置方向を揃えると図5のように厚い部分を積み重ねた構造になる。概略楔形導光板の厚い部分を交互に配置すると図29のようになり、全体の導光板厚を約2/3に薄くすることが出来る。交互配置によって導光板の剛性が高まるので、単層厚を薄くして3層構造による厚さ増大を抑制することが可能である。
透明物質として空気層と棚田状全反射面板を用いたリアプロジェクタの例を図30に示す。棚田状全反射面板を楔形に支持する機構は図では省略している。
横1000mm、縦560mmの画面寸法で、奥行は拡大率を50倍として被写表示素子の短辺寸法は11.2mmになる。これを3層用い、他にスクリーンまでの空間約30mm、筐体の厚さを加えて奥行約80mmでリアプロジェクタを構成することが出来る。
Since the terraced light guide plate is generally wedge-shaped, when the arrangement direction of the three layers of light guide plates is aligned, a thick portion is stacked as shown in FIG. When the thick portions of the substantially wedge-shaped light guide plate are alternately arranged, the result is as shown in FIG. 29, and the overall light guide plate thickness can be reduced to about 2/3. Since the rigidity of the light guide plate is increased by the alternate arrangement, it is possible to reduce the single-layer thickness and suppress the increase in thickness due to the three-layer structure.
FIG. 30 shows an example of a rear projector using an air layer and a terraced total reflection face plate as a transparent material. The mechanism for supporting the terraced total reflection face plate in a wedge shape is omitted in the figure.
The screen dimensions are 1000 mm in width and 560 mm in length, the depth is 50 times the magnification, and the short side dimension of the display device is 11.2 mm. The rear projector can be configured with a depth of about 80 mm by using three layers and adding a space of about 30 mm to the screen and the thickness of the casing.

直下照明型液晶表示装置は薄型化すると、光束が光源からの距離の2乗に反比例するために管映りが発生し易い。直下から入射した光を傾斜した反射面によって平面方向に方向変換し、平面方向に伝播する光を傾斜反射面によって液晶パネルに反射することにより均一な照明を得ることが出来る。進行方向を直角に変換するには反射面の傾斜は45°のため導光板厚は凹面鏡22の幅が必要になるが、図32のように傾斜面を棚田状に分散配置して水平面を導入することにより凹面鏡幅より薄い導光板にも適用することが出来る。水平面を透明にすると上部へ透過損失になるので、図33のように水平面を反射鏡にして光源に戻し、光源前方の凹面鏡28の反射光を再利用することにより、水平面が透明な場合の上部への損失を防止することが出来る。
光源に戻す反射鏡は蒸着などにより形成されるため工程の追加が必要になるが、図34のように再帰反射素子を形成すると樹脂成型時に形成できるので低価格化可能である。再帰反射素子はコーナーキューブまたは直角プリズムがあるが、傾斜反射面の延長上なので直角プリズムが容易である。
When the direct-lighting type liquid crystal display device is thinned, the light flux is inversely proportional to the square of the distance from the light source, so that tube reflection is likely to occur. Uniform illumination can be obtained by changing the direction of light incident from directly below in the plane direction by the inclined reflecting surface and reflecting light propagating in the plane direction to the liquid crystal panel by the inclined reflecting surface. In order to convert the traveling direction to a right angle, the inclination of the reflection surface is 45 °, so the thickness of the light guide plate needs to be the width of the concave mirror 22. However, as shown in FIG. By doing so, it can be applied to a light guide plate thinner than the concave mirror width. If the horizontal plane is transparent, transmission loss occurs to the upper part. Therefore, as shown in FIG. 33, the horizontal plane is reflected to the light source, and the reflected light from the concave mirror 28 in front of the light source is reused. Loss can be prevented.
Since the reflecting mirror to be returned to the light source is formed by vapor deposition or the like, an additional process is required. However, if a retroreflective element is formed as shown in FIG. 34, it can be formed at the time of resin molding, so that the cost can be reduced. The retroreflective element includes a corner cube or a right-angle prism, but a right-angle prism is easy because it is an extension of the inclined reflection surface.

直下照明型液晶表示装置において、直下から導光板に入射した光を傾斜した反射面によって平面方向に方向変換して反射する場合、反射面上部は照明されないので光源を端部に設けた1方向の伝播になる。光源を端部以外に設け、対向する2方向に反射するには、反射面で囲まれた三角柱部分の液晶画素に照明する必要がある。図33、図34のように水平方向への反射面29を棚田状に分散した場合は、上部への開口率の設定で三角柱部分とそれ以外の導光板面の輝度を一致させることが出来る。開口率が小さい場合は開口部を負焦点距離屈折面にすることにより三角柱上部の液晶に光束を拡大することが出来る。水平方向に変換する45°の傾斜反射面、光束を拡大する凹面、光源方向に反射する反射鏡から成り立っている。   In the direct illumination type liquid crystal display device, when the light incident on the light guide plate from directly below is redirected and reflected in the plane direction by the inclined reflective surface, the upper portion of the reflective surface is not illuminated, so the light source is provided in one direction at the end. Propagation. In order to provide a light source other than the end and reflect the light in two opposing directions, it is necessary to illuminate the liquid crystal pixels in the triangular prism portion surrounded by the reflecting surface. When the horizontal reflecting surfaces 29 are dispersed in a terraced shape as shown in FIGS. 33 and 34, the luminance of the triangular prism portion and the other light guide plate surfaces can be matched by setting the aperture ratio to the upper part. When the aperture ratio is small, the light flux can be expanded to the liquid crystal above the triangular prism by making the aperture a negative focal length refracting surface. It consists of a 45 ° inclined reflecting surface that converts in the horizontal direction, a concave surface that expands the luminous flux, and a reflecting mirror that reflects in the light source direction.

光源を端部以外に設け、対向する2方向に反射するには、図36のように反射面で囲まれた三角柱部分の液晶画素に照明する必要がある。3層の導光板では光源部が障害になるので三角柱間で別色光を授受する必要がある。図38は青色用導光板1B内の三角柱で導光板平面方向、直上方向、及び隣接三角柱方向の3方向に分割している。これらを図37のAに示す。
緑色用導光板1G内の三角柱も導光板平面方向、直上方向、及び隣接三角柱方向の3方向に分割するが、青色三角柱からの青色光を傾斜反射面30の臨界角以内で入射している。青色光は緑色光三角柱上部を照射するだけでなく、隣接する赤色光三角柱に伝播する必要がある。緑色三角柱と導光板1Rとの界面の状態を図37のB1に示す。B2は傾斜反射面を臨界角以内の光で透過する状態を示している。
赤色光三角柱は全反射面を形成するために2層になっており、図37のCに示している。
In order to provide a light source other than the end and reflect the light in two opposing directions, it is necessary to illuminate the liquid crystal pixels in the triangular prism portion surrounded by the reflecting surface as shown in FIG. In the three-layer light guide plate, since the light source unit becomes an obstacle, it is necessary to exchange different color light between the triangular prisms. FIG. 38 shows a triangular prism in the blue light guide plate 1B, which is divided into three directions, that is, a light guide plate plane direction, a direct upward direction, and an adjacent triangular prism direction. These are shown in FIG.
The triangular prism in the green light guide plate 1G is also divided into three directions of the light guide plate plane direction, the direct upper direction, and the adjacent triangular prism direction, and blue light from the blue triangular prism is incident within the critical angle of the inclined reflecting surface 30. The blue light not only irradiates the upper part of the green light triangular prism but also needs to propagate to the adjacent red light triangular prism. The state of the interface between the green triangular prism and the light guide plate 1R is shown in B1 of FIG. B2 shows a state in which the inclined reflecting surface is transmitted with light within a critical angle.
The red light triangular prism has two layers to form a total reflection surface, and is shown in FIG.

本発明は平行光を棚田状導光板で方向変換する構成を3層用いてサブ画素幅をずらして液晶層に照射するのでカラーフィルタによる損失がなく、液晶装置としての透過効率を3倍に向上出来る。平行光変換素子による光束密度分布を棚田状導光板の段差設定で補償するために輝度の均一な照明が可能である。
棚田状導光板は平行光を目的方向に光束を拡大して全反射するため散乱方式に比べて損失が少なく、設計効率の向上、部材コストの削減が可能である。
液晶プロジェクタでカラー表示する場合はクロスダイクロイックプリズムで混色されるために構造が複雑で高価だが、スクリーン上で混色されるため構造が簡単で低価格である。
In the present invention, a configuration in which parallel light is redirected by a terraced light guide plate is used to irradiate the liquid crystal layer by shifting the sub-pixel width, so there is no loss due to the color filter, and the transmission efficiency as the liquid crystal device is tripled. I can do it. Illumination with uniform brightness is possible in order to compensate the light flux density distribution by the parallel light conversion element by setting the steps of the terraced light guide plate.
The terraced light guide plate expands the luminous flux in the target direction and totally reflects the parallel light. Therefore, the terraced light guide plate has less loss than the scattering method, and can improve the design efficiency and reduce the member cost.
When color display is performed with a liquid crystal projector, the structure is complicated and expensive because it is mixed with a cross dichroic prism, but the structure is simple and inexpensive because it is mixed on the screen.

本発明の実施の形態を対角510mm(20.1型)、XGA( 1024×768)、サイドライトの例を図5または図6に示す。
画面寸法は横408mm、縦306mm、画素ピッチ399μm、サブ画素ピッチ133μmである。
光源からの光を平行光に変換して供給し、棚田状断面の導光板に傾斜した凸反射面を設けたものである。
液晶側に対向する反射面側は円筒凸反射面384個を均等ピッチで配置した棚田状構造のものである。導光板の棚田状段差が画素寸法より小さいために画素寸法に拡大するための凸反射面は、光源からの平行光線をほぼ鉛直方向にある液晶の画素に向けて反射するもので、この凸反射面は全反射臨界角以上に傾斜することにより反射層を形成する必要がなく製造費用削減が可能である。放物面鏡の光束密度は光軸からの距離依存性があるため光軸から遠い導光板底面側の段差を大きくして輝度を均一化している。
光源として発光ダイオードを各色とも64個を棚田状導光板光源部の軸外焦点に配置する。発光ダイオードは図4のように放物面鏡9の反射光を遮らない位置にオフセットしている。この実施例では光度250mcdの発光ダイオード各色64個を両サイドに配置することにより、光透過率40%のとき輝度307cd/m2 が得られる。
FIG. 5 or FIG. 6 shows an example of the embodiment of the present invention as a diagonal 510 mm (20.1 type), XGA (1024 × 768), and sidelight.
The screen dimensions are 408 mm wide, 306 mm long, pixel pitch 399 μm, and sub-pixel pitch 133 μm.
Light from a light source is converted into parallel light and supplied, and an inclined convex reflection surface is provided on a light guide plate having a terraced cross section.
The reflective surface side facing the liquid crystal side has a terraced structure in which 384 cylindrical convex reflective surfaces are arranged at an equal pitch. Since the terraced step of the light guide plate is smaller than the pixel size, the convex reflection surface for enlarging the pixel size reflects parallel light rays from the light source toward the liquid crystal pixels in the vertical direction. By inclining the surface beyond the total reflection critical angle, it is not necessary to form a reflective layer, and manufacturing costs can be reduced. Since the light beam density of the parabolic mirror has a distance dependency from the optical axis, the step on the bottom surface side of the light guide plate far from the optical axis is increased to make the luminance uniform.
As the light source, 64 light emitting diodes for each color are arranged at the off-axis focal point of the terraced light guide plate light source section. The light emitting diode is offset to a position where the reflected light of the parabolic mirror 9 is not blocked as shown in FIG. In this embodiment, by arranging 64 light emitting diodes each having a luminous intensity of 250 mcd on both sides, a luminance of 307 cd / m 2 can be obtained at a light transmittance of 40%.

図21のように光源部を導光板と一体成型し、放物面鏡の軸外焦点に白色発光ダイオードを設け、平行光を供給するものである。平行光は導光板側面から紙面奥行方向に伝播し、第1の棚田状凸反射面により光束を拡げて第2の棚田状反射面方向に反射する。第2の棚田状反射面までの距離が上段と下段で異なるために、第1の凸反射面は下段側ほど曲率半径を小さくして拡大角度を拡げている。凸反射面は入射光に対して臨界角以上に設定して全反射を利用している。
第2の凸反射面は円筒状反射面で、下段と上段で液晶パネルまでの距離が異なるため、上段ほど曲率半径を小さくしている。この方式は凸反射面で光束を拡大するため拡散シートは不要である。出射光が指向性の狭い光束拡大光のためプリズムシートは不要である。全反射を利用するため反射シートも不要である。
As shown in FIG. 21, the light source is integrally formed with the light guide plate, a white light emitting diode is provided at the off-axis focal point of the parabolic mirror, and parallel light is supplied. The parallel light propagates from the side surface of the light guide plate in the depth direction of the paper, and is reflected in the direction of the second terraced reflection surface by spreading the light flux by the first terraced convex reflection surface. Since the distance to the second terraced reflecting surface is different between the upper and lower stages, the first convex reflecting surface has a smaller radius of curvature toward the lower stage and an enlarged angle. The convex reflection surface is set to a critical angle or more with respect to incident light and uses total reflection.
The second convex reflecting surface is a cylindrical reflecting surface, and the distance to the liquid crystal panel is different between the lower stage and the upper stage, so that the curvature radius is made smaller toward the upper stage. Since this method expands the light flux on the convex reflecting surface, a diffusion sheet is unnecessary. A prism sheet is unnecessary because the emitted light has a narrow beam directivity. Since total reflection is used, a reflection sheet is also unnecessary.

概略楔形導光板の厚い部分を交互に配置して、3層の導光板の配置方向を揃えた場合の全体の導光板厚を約2/3に薄くする例を図30に示す。棚田状導光板は概略楔形のため3層の導光板の配置方向を揃えると図5のように厚い部分を積み重ねた構造になるが、図29のように概略楔形導光板の厚い部分を交互に配置すると、図5に比べて全体の導光板厚を約2/3に薄くすることが出来る。導光板の単層の厚さは図10に示すように4.2mmのため8.4mmになる。光学特性は実施例1と同様である。   FIG. 30 shows an example in which the thick light guide plate thickness is reduced to about 2/3 when the thick portions of the substantially wedge-shaped light guide plate are alternately arranged to align the arrangement direction of the three layers of the light guide plate. Since the terraced light guide plate is generally wedge-shaped, when the arrangement directions of the three layers of light guide plates are aligned, the thick portions are stacked as shown in FIG. 5, but the thick portions of the wedge-shaped light guide plates are alternately arranged as shown in FIG. When arranged, the overall light guide plate thickness can be reduced to about 2/3 as compared with FIG. As shown in FIG. 10, the thickness of the single layer of the light guide plate is 4.2 mm and thus becomes 8.4 mm. The optical characteristics are the same as in Example 1.

導光板入射面に厚さ方向が圧縮され扁平化した画像を持つ細長い形状の液晶表示素子を配置し、導光板内に分散配置される反射面における光束拡大機能によって細長い形状の液晶表示素子から大画面に拡大する液晶表示装置の例を以下に示す。対角510mm(20.1型)、XGA(1024×768)で画面寸法は横408mm、縦306mm、画素ピッチ399μmである。縦方向に50倍の拡大率では液晶表示素子の画素寸法は縦8μmになり、横は表示寸法と同じ399μmである。入射面の液晶表示素子は細長い形状で、導光板厚は単層で6mmのため3層を交互配置方向に積層すると導光板厚は12mmになる。   An elongated liquid crystal display element having a flattened image whose thickness direction is compressed is arranged on the light guide plate entrance surface, and is enlarged from the elongated liquid crystal display element by the light beam expansion function on the reflection surface dispersedly arranged in the light guide plate. An example of a liquid crystal display device that is enlarged on the screen is shown below. With a diagonal size of 510 mm (20.1 type) and XGA (1024 × 768), the screen dimensions are 408 mm wide, 306 mm long, and a pixel pitch of 399 μm. When the enlargement factor is 50 times in the vertical direction, the pixel size of the liquid crystal display element is 8 μm in length, and the width is 399 μm, which is the same as the display size. Since the liquid crystal display element on the incident surface has an elongated shape and the light guide plate thickness is a single layer of 6 mm, the thickness of the light guide plate becomes 12 mm when three layers are laminated in the alternately arranged direction.

透明物質として空気層と棚田状全反射面板を用いたリアプロジェクタの例を図30に示す。棚田状全反射面板を楔形に支持する機構は図では省略している。
横1000mm、縦560mmの画面寸法で、奥行は拡大率を50倍として被写表示素子の短辺寸法は11.2mmになる。これを3層用い、他にスクリーンまでの空間約30mm、筐体の厚さを加えて奥行約80mmでリアプロジェクタを構成することが出来る。
透明物質として空気を用い、凸反射面を形成するために透光物質で凸反射面の入射側を平行光に対して垂直な面として平行光を全反射凸反射面に入射し、その反射光を出射側に光束を拡大する光線に対して略垂直の面として透光物質で構成している。この構成により、透光層の大部分は空気であり、全反射面を構成するための透明高分子層なので軽量化とコスト削減を実現することが出来る。棚田状全反射面板を非常に薄くすると剛性が低下して光学特性を損なうことのないように支持する必要があり、フレームを兼ねた支持基板21を背面に設けた例を示している。
FIG. 30 shows an example of a rear projector using an air layer and a terraced total reflection face plate as a transparent material. The mechanism for supporting the terraced total reflection face plate in a wedge shape is omitted in the figure.
The screen dimensions are 1000 mm in width and 560 mm in length, the depth is 50 times the magnification, and the short side dimension of the display device is 11.2 mm. The rear projector can be configured with a depth of about 80 mm by using three layers and adding a space of about 30 mm to the screen and the thickness of the casing.
Air is used as a transparent material, and a parallel light is incident on the total reflection convex reflection surface by using a translucent material with the incident side of the convex reflection surface perpendicular to the parallel light to form a convex reflection surface. Is made of a translucent material as a surface substantially perpendicular to the light beam that expands the light flux on the emission side. With this configuration, most of the light-transmitting layer is air, and since it is a transparent polymer layer for forming a total reflection surface, weight reduction and cost reduction can be realized. In this example, the plate-like total reflection face plate is required to be supported so as not to deteriorate the rigidity and impair the optical characteristics when it is made very thin.

3色の冷陰極管を使用して直下から入射した光を傾斜した反射面によって平面方向に方向変換し、平面方向に伝播する光を傾斜反射面によって液晶パネルに反射する例を図35を用いて以下に示す。光源部は光束密度を均一な平行光に変換する凹面鏡を使用し、直下方向から導光板平面方向に変換する傾斜面を棚田状に分散配置して水平面部を再帰反射素子により凹面鏡の開口幅より薄くすることが出来る。傾斜反射面以外に照射される光は再帰反射素子により光源に戻し、光束密度均一化反射鏡における光源前方の凹面鏡28の反射光を再利用することにより最終的には導光板の平面方向に出射出来る。傾斜反射面に分散配置された水平面部分は図34のように再帰反射素子を形成すると樹脂成型時に形成できるので低価格化可能である。再帰反射素子は傾斜反射面の延長上なので直角プリズムにして光源に戻し、再反射して導光板の平面方向に出射している。   FIG. 35 shows an example in which three-color cold-cathode tubes are used to change the direction of light incident from directly below in the plane direction by an inclined reflecting surface and reflect the light propagating in the plane direction to the liquid crystal panel by the inclined reflecting surface. Is shown below. The light source unit uses a concave mirror that converts the light flux density into uniform parallel light, and the inclined surface that converts from the direct downward direction to the light guide plate plane direction is distributed in a terraced manner, and the horizontal plane part is retroreflected from the opening width of the concave mirror. Can be thinned. The light irradiated to other than the inclined reflecting surface is returned to the light source by the retroreflective element, and is finally emitted in the plane direction of the light guide plate by reusing the reflected light of the concave mirror 28 in front of the light source in the light flux density uniform reflecting mirror. I can do it. Since the horizontal plane portions dispersedly arranged on the inclined reflecting surface can be formed at the time of resin molding when a retroreflective element is formed as shown in FIG. 34, the cost can be reduced. Since the retroreflective element is an extension of the inclined reflective surface, it is converted into a right-angle prism, returned to the light source, re-reflected and emitted in the plane direction of the light guide plate.

説明の都合上、細部は拡大して表示するため、必ずしも相似関係にはなっていない。
軸対称の特性図は正の範囲のみで表示している。
軸外放物面鏡によって平行光に変換し、平行光を棚田状導光板の傾斜した凸反射面により光束を拡大して全反射し、サブ画素幅に照射する状態を示す。 平行光を棚田状導光板の傾斜した凸反射面により光束を拡大して全反射する状態を示す。 凸反射面により光束を拡大してサブ画素幅に照射する角度と寸法の関係を示す。 棚田状導光板を3層用い、3色の平行光をサブ画素幅ずらして液晶層に照射する状態を示す。 幅と深さ方向ともに放物面鏡を3層の導光板に配置する状態の斜視図を示す。 導光板の各層の出射部に正焦点距離屈折面を配置して平行光をサブ画素に照射する状態を示す。 放物面鏡の光束密度分布をyが正の範囲で示す。 放物面鏡の光束密度を積分した分布をyが正の範囲で示す。 放物面鏡による平行光の光束密度を均一化するための導光板の段差分布を示す。 光束密度を均一化するための導光板の厚さ分布を示す。 放物面鏡の光束密度を均一化するための傾斜反射光および反射面の傾きを示す。 放物面鏡の光束密度を均一化するための傾斜反射光を屈折面で平行光に変換する角度状態を示す。 光束密度を均一化するための傾斜反射光の傾斜分布を示す。 光束密度均一化反射鏡による光束密度分布、及び光束密度の積分を示す。 光束密度均一化反射鏡、放物面鏡の曲線をyが正の範囲で示す。 光束密度均一化反射鏡と正屈折率面による光束密度の均一な平行光を示す。 光束密度均一化反射鏡と平凸レンズによる光束密度の均一な平行光を示す。 光束密度均一化反射鏡とフレネルレンズによる光束密度の均一な平行光を示す。 光源前方の直接光を凹面鏡で反射して光束密度均一化凹面鏡として反射し、前方凹面鏡開口部による透過光を照射する状態を示す。 前方凹面鏡開口部による透過光をレンズによって拡散照射する状態を示す。 各層を1個の光源で照明し、第1の棚田状反射面で奥行方向の光線を第2の棚田状反射面方向に変換し、第2の棚田状反射面で液晶パネルに照射する構成を示す。 奥行方向の光線を第1の棚田状反射面で変換した光束拡大光を正焦点距離屈折面で平行光に変換して第2の棚田状反射面方向に伝播させる構成を示す。 各層を1個の光源で照明し、各層の導光板形状を概略楔形の構成を示す。 導光板の入射部に細長い液晶表示素子を設け、平行光を照射して導光板で拡大表示する状態を示す。 平行光を投射原稿素子に照射し、第1の棚田状反射面で奥行方向の光線を第2の棚田状反射面方向に変換し、第2の棚田状反射面で複数画素をスクリーンに照射し、混色する液晶表示装置を示す。 奥行方向の光線を第1の棚田状反射面で変換した光束拡大光を第2の棚田状反射面の奥行方向を凹面上にして反射光の光束拡大を抑制する状態を示す。 透光層を空気にしてリアプロジェクタを構成し、奥行方向光線を変換する第1の棚田状反射面を板状体で形成した状態を示す平面図。 透光層の大部分を空気にして第2の棚田状反射面を板状体で形成した3層の棚田状反射面によるリアプロジェクタを示す側面図。 各層が概略楔形の導光板形状を交互配置して薄型化する構成を示す。 透光層の大部分を空気にして第2の棚田状反射面を板状体で形成し、3層の棚田状反射面を厚い部分が交差するように配置したリアプロジェクタを示す側面図。 棚田状導光板を3層用い、3色の冷陰極管によるサイドライト構成を示す。 直下型バックライトによる光束密度の均一な平行光を傾斜した反射面で導光板に平行方向に変換する状態を示す。 傾斜面を棚田状に分散配置し、水平面を反射鏡にして光源に戻して再反射により、水平面上部への損失を防止する状態を示す。 光源に戻す部分を再帰反射素子して光源に戻す状態を示す。 棚田状導光板を3層用い、3色の冷陰極管を端部に配置する直下型バックライトの構成を示す。 水平方向への反射面を棚田状に分散し、上部への開口率の設定で三角柱部分とそれ以外の導光板面の輝度を一致させる原理を1層の導光板で示す。 棚田状導光板を3層用い、3色の冷陰極管による直下型バックライトの三角柱部分に配光するための最下層の三角柱から上層三角柱に伝播する原理を示す。 棚田状導光板を3層用い、3色の冷陰極管による直下型バックライトの三角柱部分に配光するための構成を示す。 乱反射ドットによる従来の導光板の構成を示す。 冷陰極管からの拡散光を傾斜した反射面で反射する従来の導光板の構成を示す。 光源近傍の傾斜を負にし、遠方の段差を拡大した従来の導光板の構成を示す。 直下型バックライトの波型反射鏡による従来の反射鏡の構造を示す。 従来の携帯機器用サイドライトの構造と光線むらを示す。 従来のリアプロジェクタの構造を示す。 ストライプ幅で遮光層を持つ導光体を積層し、カラーフィルタを使用しない従来の導光板の構造を示す。
For convenience of explanation, details are displayed in an enlarged manner, so that they are not necessarily similar.
The axisymmetric characteristic diagram is shown only in the positive range.
The figure shows a state in which the parallel light is converted into parallel light by an off-axis parabolic mirror, the light beam is magnified and totally reflected by the inclined convex reflection surface of the terraced light guide plate, and irradiated to the sub-pixel width. A state in which parallel light is totally reflected by enlarging a light beam by an inclined convex reflection surface of a terraced light guide plate is shown. The relationship between the angle and dimension at which the luminous flux is enlarged by the convex reflecting surface and irradiated to the sub-pixel width is shown. 3 shows a state in which three layers of terraced light guide plates are used to irradiate the liquid crystal layer with three colors of parallel light shifted by sub-pixel widths. The perspective view of the state which has arrange | positioned the parabolic mirror to a three-layer light-guide plate in the width direction and the depth direction is shown. A state in which a regular focal length refracting surface is arranged at the emission part of each layer of the light guide plate to irradiate the sub-pixels with parallel light is shown. The luminous flux density distribution of the parabolic mirror is shown in a range where y is positive. A distribution obtained by integrating the beam density of the parabolic mirror is shown in a range where y is positive. The step distribution of the light-guide plate for equalizing the light flux density of the parallel light by a parabolic mirror is shown. The thickness distribution of the light-guide plate for equalizing a light beam density is shown. The tilted reflected light and the tilt of the reflecting surface for making the light beam density of the parabolic mirror uniform are shown. An angle state in which inclined reflected light for making the light beam density of the parabolic mirror uniform is converted into parallel light on the refracting surface is shown. The inclination distribution of the inclined reflected light for making the light beam density uniform is shown. The light beam density distribution by the light beam density uniformizing mirror and the integration of the light beam density are shown. The curves of the beam density uniformizing mirror and the parabolic mirror are shown in a range where y is positive. FIG. 5 shows parallel light having a uniform light flux density by a reflecting mirror and a positive refractive index surface. FIG. This shows parallel light having a uniform light flux density by a reflecting mirror and a plano-convex lens. Illustrated is a parallel light having a uniform light beam density by a reflector and a Fresnel lens. The direct light in front of the light source is reflected by a concave mirror and reflected as a light beam density uniform concave mirror, and the transmitted light from the front concave mirror opening is irradiated. The state which diffuses and irradiates the transmitted light by a front concave mirror opening part with a lens is shown. Each layer is illuminated with one light source, a light beam in the depth direction is converted to the second terraced reflection surface direction by the first terraced reflection surface, and the liquid crystal panel is irradiated by the second terraced reflection surface. Show. A configuration in which a light beam expanding light obtained by converting a light beam in the depth direction on a first terraced reflection surface is converted into parallel light on a regular focal length refracting surface and propagated in a second terraced reflection surface direction is shown. Each layer is illuminated with one light source, and the light guide plate shape of each layer is a substantially wedge-shaped configuration. A state in which an elongated liquid crystal display element is provided at an incident portion of a light guide plate, and parallel light is irradiated to perform enlarged display on the light guide plate is shown. The projection original element is irradiated with parallel light, the light beam in the depth direction is converted into the second terraced reflection surface direction by the first terraced reflection surface, and the screen is irradiated with a plurality of pixels by the second terraced reflection surface. 1 shows a liquid crystal display device that mixes colors. The state where the light beam expansion light obtained by converting the light beam in the depth direction on the first terraced reflection surface is set to the concave surface on the depth direction of the second rice terrace reflection surface to suppress the light beam expansion of the reflected light. The top view which shows the state which comprised the rear projector by making a translucent layer into air, and formed the 1st terraced-like reflective surface which converts a depth direction light ray with a plate-shaped object. The side view which shows the rear projector by the three-layered terraced-like reflective surface which formed the 2nd terraced-like reflective surface with the plate-shaped body by making most of a translucent layer into air. Each layer is configured to be thinned by alternately arranging substantially wedge-shaped light guide plate shapes. The side view which shows the rear projector which has arrange | positioned so that a thick part may cross | intersect the 3rd terraced-like reflective surface which forms the 2nd terraced-like reflective surface with a plate-shaped body by making most of a translucent layer into air. A side light configuration using three layers of terraced light guide plates and three-color cold cathode tubes is shown. A state in which parallel light having a uniform light beam density by a direct type backlight is converted into a light guide plate in a parallel direction by an inclined reflecting surface is shown. A state in which inclined surfaces are distributed in a terraced shape, the horizontal surface is made a reflecting mirror, returned to the light source, and re-reflected to prevent loss to the top of the horizontal surface is shown. The state which returns the part returned to a light source to a light source by retroreflective element is shown. The structure of a direct type backlight in which three layers of terraced light guide plates are used and three color cold-cathode tubes are arranged at the ends is shown. The principle that the reflective surfaces in the horizontal direction are dispersed in a terraced shape and the luminance of the triangular prism portion and the other light guide plate surfaces are matched by setting the aperture ratio to the top is shown by a single light guide plate. The principle of propagation from the lowermost triangular prism to the upper triangular prism for distributing light to the triangular prism portion of the direct type backlight using three-color cold cathode tubes using three layers of terraced light guide plates is shown. A configuration for distributing light to a triangular prism portion of a direct type backlight using three-color cold-cathode tubes using a terraced light guide plate is shown. The structure of the conventional light-guide plate by an irregular reflection dot is shown. The structure of the conventional light-guide plate which reflects the diffused light from a cold cathode tube with the inclined reflective surface is shown. The structure of the conventional light-guide plate which made the inclination of the vicinity of a light source negative and expanded the far level | step difference is shown. A structure of a conventional reflecting mirror using a wave type reflecting mirror of a direct type backlight is shown. The structure and light beam unevenness of a conventional side light for portable devices are shown. The structure of the conventional rear projector is shown. A structure of a conventional light guide plate in which light guides having a light shielding layer with a stripe width are stacked and a color filter is not used is shown.

符号の説明Explanation of symbols

形状が異なっても同一の機能には同一の番号を付与している。
1:棚田状導光板 2:サブ画素
3:空隙 5:凸反射面
7:点光源 8:線光源
9:放物面鏡 11:凹レンズ
12:偏光板 13:透明基板
14:液晶層 15:平行光
20:配線基板 22:光束均一化凹面鏡
23:正焦点距離屈折面 24:凸面鏡
25:スリット 27:棒状導光体
28:凹面鏡 29:反射面
30:三角柱 31:反射鏡
33:全反射光 34:再帰反射素子
36:負焦点距離屈折面 37:低屈折率層
39:透光物質 40:焦点
43:液晶パネル 51:スクリーン
52:投射原稿 56:投射装置
58:拡散材層 60:拡散材
61:プリズム 62:乱反射ドット層
66:遮光体
Even if the shapes are different, the same function is given the same number.
1: terraced light guide plate 2: sub-pixel 3: gap 5: convex reflecting surface 7: point light source 8: linear light source 9: parabolic mirror 11: concave lens 12: polarizing plate 13: transparent substrate 14: liquid crystal layer 15: parallel Light 20: Wiring board 22: Light flux uniforming concave mirror 23: Regular focal length refracting surface 24: Convex mirror 25: Slit 27: Rod-shaped light guide 28: Concave mirror 29: Reflecting surface 30: Triangular prism 31: Reflecting mirror 33: Total reflection light 34 : Retroreflective element 36: Negative focal length refracting surface 37: Low refractive index layer 39: Translucent material 40: Focus 43: Liquid crystal panel 51: Screen 52: Projection original 56: Projection device 58: Diffusing material layer 60: Diffusing material 61 : Prism 62: Diffuse reflection dot layer 66: Shading body

Claims (17)

被照射寸法W、被照射面までの距離t、凸反射面の傾斜幅dに応じて曲率半径rが
r=2・t・d/(W−d/√2)
で設定される凸反射面を導光板の底面に画素ピッチで棚田状に分散して設け、
光源からの光平行光変換手段によ平行光に変換されて導光板内を伝播する平行光を前記凸反射面に臨界角以上で入射し
全反射あるいは鏡面反射することにより光束を拡げて被照射面に反射する導光板を構成要素とし、
3色の光源と前記導光板を3層用いて各導光板に色別光を入射し、導光板の傾斜した反射面の段差部をサブ画素幅づつ3層でずらして配置することにより、上層側に配置された導光板の凸反射面のピッチ間を下層側に配置された導光板の凸反射面による反射光が透過し、
3色の光源からの光を表示面の3つのサブ画素からなる同一画素に照射してカラー表示することを特徴とする液晶表示装置。
The radius of curvature r depends on the irradiated dimension W, the distance t to the irradiated surface, and the inclination width d of the convex reflecting surface.
r = 2 · t · d / (W−d / √2)
The convex reflection surface set in is distributed in a terraced pattern at the pixel pitch on the bottom surface of the light guide plate,
Incident at the critical angle or more parallel light which light from the light source propagates by Ri are converted light guide plate to the parallel light into a parallel light conversion means to the convex reflective surface,
A light guide plate that expands the light flux by total reflection or specular reflection and reflects it to the irradiated surface is a component,
By using three layers of light sources and three layers of light guide plates, color-specific light is incident on each light guide plate, and the stepped portion of the inclined convex reflection surface of the light guide plate is shifted by three layers for each sub-pixel width , The reflected light from the convex reflection surface of the light guide plate arranged on the lower layer side is transmitted between the pitches of the convex reflection surfaces of the light guide plate arranged on the upper layer side,
A liquid crystal display device that performs color display by irradiating light from three color light sources to the same pixel composed of three sub-pixels on a display surface.
導光板の出射面に正焦点距離屈折面を画素ピッチで分散して設け
導光板の底面に凸反射面を画素ピッチで棚田状に分散配置し、
凸反射面の曲率半径rをサブ画素幅W、凸反射面から導光板出射面までの厚さt、凸反射面幅dに応じて
r=2・t・d/(W−d/√2)
で設定し、
曲率半径の分布を各層とも同一に設定して同一形状の導光板を3層積み重ね、
前記凸反射面に臨界角以上で入射して光束を拡げて反射する光を出射面に設けた正焦点距離屈折面で平行光に変換し、
上層側に配置された導光板の凸反射面のピッチ間を下層側に配置された導光板の凸反射面による反射光が透過し、
3つのサブ画素からなる同一画素に各色の平行光を入射しカラー表示することを特徴とする請求項1に記載の液晶表示装置。
A regular focal length refracting surface is provided dispersed at a pixel pitch on the exit surface of the light guide plate ,
The convex reflection surface is distributed and arranged in a terraced pattern at the pixel pitch on the bottom surface of the light guide plate ,
The radius of curvature r of the convex reflecting surface depends on the sub-pixel width W, the thickness t from the convex reflecting surface to the light guide plate exit surface, and the convex reflecting surface width d.
r = 2 · t · d / (W−d / √2)
Set with
3-layer stacked light guide plate having the same shape the distribution of curvature radius set to the same each layer,
The light that is incident on the convex reflection surface at a critical angle or more and spreads and reflects the light is converted into parallel light by a regular focal length refracting surface provided on the output surface,
The reflected light from the convex reflection surface of the light guide plate arranged on the lower layer side is transmitted between the pitches of the convex reflection surfaces of the light guide plate arranged on the upper layer side,
The same pixel of three sub-pixels by the incident parallel light of each color liquid crystal display device according to claim 1, characterized in that the color display.
液晶表示装置の表示面をxy平面としたとき、
第1の棚田状凸反射面は概略楔形の棚田状導光板の最も厚く、表示面に直交するyz平面上に設けられ、
棚田状に段差を持たせて分散配置した凸反射面を液晶パネル側の曲率半径を長く、反対側を短く構成し、
第2の棚田状凸反射面は液晶表示面下部の棚田状導光板の最も厚いxy平面を基準に設けられ、
棚田状に段差を持たせて分散配置した凸反射面を被照射寸法と被照射面までの距離に応じた曲率で構成し、
棚田状導光板の最も厚いyz平面のy軸方向に平行に側面から入射する平行光線を第1の棚田状凸反射面でx軸方向に光束を拡げて方向変換し、
x方向に変換されて光束拡大する光線を第2の凸反射面に照射して略鉛直方向にある液晶パネルに光束を拡大して反射し、前記導光板を3層用いて各導光板に色別光を入射し、第2の棚田状凸反射面の段差部をサブ画素幅のストライプピッチでずらして配置することにより、3層の導光板の上層側にある導光板の凸反射面のピッチ間を下層側に配置された導光板の凸反射面による反射光が透過し、3色で3個の光源からの光を表示面の同一画素に照射してカラー表示することを特徴とする請求項1に記載の液晶表示装置。
When the display surface of the liquid crystal display device is the xy plane,
The first terraced convex reflection surface is the thickest of the substantially wedge-shaped terraced light guide plates, and is provided on the yz plane orthogonal to the display surface.
Convex reflecting surface distributed in a terraced shape with a step is configured with a long curvature radius on the liquid crystal panel side and a short side on the opposite side,
The second terraced convex reflection surface is provided on the basis of the thickest xy plane of the terraced light guide plate below the liquid crystal display surface,
Construct a convex reflection surface distributed in a terraced shape with steps and a curvature according to the irradiated dimension and the distance to the irradiated surface,
The parallel light incident from the side surface parallel to the y-axis direction of the thickest yz plane of the terraced light guide plate is redirected by expanding the light beam in the x-axis direction on the first terraced convex reflection surface,
The second convex reflecting surface is irradiated with a light beam that is converted into the x direction and expands the light beam, and the light beam is expanded and reflected on a liquid crystal panel in a substantially vertical direction, and each light guide plate is colored using three layers of the light guide plate. enters another light, by the stepped portion of the second terraced fields convex reflecting surface is arranged shifted in the stripe pitch of the sub-pixel width, the convex reflecting surface of the light guide plate on the upper side of the light guide plate 3 layers Light reflected by the convex reflection surface of the light guide plate arranged on the lower layer side is transmitted between the pitches, and the color display is performed by irradiating light from three light sources to the same pixel on the display surface in three colors. The liquid crystal display device according to claim 1.
液晶表示装置の表示面をxy平面としたとき、
第1の棚田状凸反射面は棚田状導光板の最も厚く、表示面に直交するyz平面上に設けられ、
棚田状に段差を持たせて分散配置した凸反射面を液晶パネル側の曲率半径を長く、反対側を短く構成し、
第2の棚田状凸反射面は液晶表示面下部の棚田状導光板の最も厚いxy平面を基準に設けられ、
棚田状に段差を持たせて分散配置した凸反射面を被照射寸法と被照射面までの距離に応じた曲率を持ち、
凸反射面を軸方向に負焦点距離反射面として構成し、
棚田状導光板の最も厚いyz平面のy軸方向に平行に側面から入射する平行光線を第1の棚田状凸反射面でx軸方向に光束を拡げて方向変換する光線は液晶パネルに遠い側ほど光束拡大率が高いため、
第2の棚田状凸反射面を軸方向に負焦点距離反射面を形成することによって第2の棚田状凸反射面のx座標によらずに光束拡大率を液晶画素幅に制御して入射することを特徴とする請求項1に記載の液晶表示装置。
When the display surface of the liquid crystal display device is the xy plane,
The first terraced convex reflection surface is the thickest of the terraced light guide plates, and is provided on the yz plane orthogonal to the display surface.
Convex reflecting surface distributed in a terraced shape with a step is configured with a long curvature radius on the liquid crystal panel side and a short side on the opposite side,
The second terraced convex reflection surface is provided on the basis of the thickest xy plane of the terraced light guide plate below the liquid crystal display surface,
The convex reflection surface distributed in a terraced shape with steps is distributed according to the irradiated dimension and the distance to the irradiated surface,
Construct the convex reflective surface as a negative focal length reflective surface in the axial direction,
The light beam that changes the direction of the parallel light beam incident from the side surface parallel to the y-axis direction of the thickest yz plane of the terraced light guide plate in the x-axis direction on the first terraced convex reflection surface is farther from the liquid crystal panel. As the luminous flux expansion rate is higher,
By forming a negative focal length reflecting surface in the axial direction on the second terraced convex reflecting surface, the light beam expansion rate is controlled to the liquid crystal pixel width regardless of the x coordinate of the second terraced convex reflecting surface. The liquid crystal display device according to claim 1.
棒状の導光体内部を長軸方向に伝播する平行光を棚田状に分散配置した凸反射面で光束を拡大して、出射面側で定ピッチとなるように導光棒状体の側面に反射し、更に前記凸反射面と焦点位置が共通な正焦点距離屈折面で平行光に変換する要素を出射面に沿って配置し、棒状体の側面より平行光を出射して導光板に入射することを特徴とする請求項1に記載の液晶表示装置。   The parallel light propagating in the long axis direction inside the rod-shaped light guide is expanded by a convex reflecting surface in which the parallel light is distributed in a terraced shape, and reflected to the side surface of the light guiding rod so as to have a constant pitch on the exit surface side. Furthermore, an element for converting into parallel light at the positive focal length refracting surface having the same focal position as that of the convex reflecting surface is arranged along the emitting surface, and the parallel light is emitted from the side surface of the rod-shaped body and incident on the light guide plate. The liquid crystal display device according to claim 1. 3色の光を色別に3枚の液晶表示原稿素子に照射し、3層の導光板内に分散配置された反射面を3色でずらして配置することにより、傾斜した反射面で進行方向を阻害されることなく画素幅に光束拡大してスクリーンで3色を合成することによりカラー表示することを特徴とする請求項1に記載の液晶表示装置。   By illuminating the three liquid crystal display original elements with three colors of light for each color and disposing the reflecting surfaces dispersedly arranged in the three-layer light guide plate in three colors, the traveling direction is changed by the inclined reflecting surfaces. 2. The liquid crystal display device according to claim 1, wherein the liquid crystal display device performs color display by expanding the luminous flux to the pixel width without being obstructed and combining the three colors on the screen. xy平面上に棚田状に反射面を分散配置させた概略楔形導光板の入射面に表示原稿素子を設け、表示原稿素子投影光を棚田状反射面に照射し、この反射光をxy平面にある表示面に画像を拡大して反射することにより表示素子画像をスクリーンに拡大表示することを特徴とする請求項1に記載の液晶表示装置。   A display document element is provided on the entrance surface of a substantially wedge-shaped light guide plate in which reflection surfaces are distributed in a terraced manner on the xy plane, and the display document element projection light is applied to the terraced reflection surface, and this reflected light is on the xy plane. The liquid crystal display device according to claim 1, wherein the display element image is enlarged and displayed on the screen by enlarging and reflecting the image on the display surface. 導光板入射面に垂直方向が圧縮され扁平化した画像を持つ細長い形状の液晶表示素子を配置し、導光板内に分散配置される反射面における光束拡大機能によって細長い形状の液晶表示素子から画面寸法に拡大することを特徴とする請求項1に記載の液晶表示装置。   An elongated liquid crystal display element with a flattened image compressed in the vertical direction on the light guide plate entrance surface is placed, and the screen dimensions from the elongated liquid crystal display element by the light beam expansion function on the reflective surface distributed in the light guide plate The liquid crystal display device according to claim 1, wherein the liquid crystal display device is enlarged. 棚田状反射面の1反射面あたりで複数画素を投影することにより棚田状に分散配置される段数を削減して反射面寸法を拡大することにより金型製作を容易にすることを特徴とする請求項1に記載の液晶表示装置。   A plurality of pixels are projected per one reflecting surface of the terraced reflecting surface to reduce the number of steps distributed and arranged in a terraced shape, thereby facilitating mold manufacture by enlarging the reflecting surface dimension. Item 2. A liquid crystal display device according to item 1. 表示面をxy平面、表示透過光方向をz軸とし、投影表示素子をxz平面に設けてy軸方向に平行光を照射する配置において、yz平面上に棚田状に段差を持たせた第1の棚田状凸反射鏡でx軸方向に画像を拡大しつつ方向変換し、xy平面上に棚田状に段差を持たせた第2の棚田状凸反射面に照射し、この反射光をxy平面にある表示面に画像を拡大して反射する導光板を3層用い、第2の棚田状段差部をサブ画素幅のストライプピッチでずらすことにより3個の光源で表示素子画像をスクリーンに拡大してカラー表示することを特徴とする請求項1に記載の液晶表示装置。   In the arrangement in which the display surface is the xy plane, the display transmitted light direction is the z axis, the projection display element is provided on the xz plane and the parallel light is irradiated in the y axis direction, a first step having a terraced shape on the yz plane is provided. The terraced convex reflector mirrors the image in the x-axis direction while changing the direction, and irradiates the second terraced convex reflecting surface having a terraced step on the xy plane. The display element image is enlarged on the screen with three light sources by using three layers of light guide plates for reflecting and enlarging the image on the display surface, and shifting the second terraced stepped portion with a stripe pitch of the sub-pixel width. The liquid crystal display device according to claim 1, wherein color display is performed. 透明物質として空気を用い、全反射面を形成するために用いる透明高分子材における棚田状反射面の入射側を平行光に対して垂直な面として平行光を全反射面に入射し、出射側の面を光束を拡大する反射光線に対して略垂直の面として透光物質で構成することを特徴とする請求項1に記載の液晶表示装置。   Air is used as the transparent material, and the incident side of the terraced reflection surface in the transparent polymer material used to form the total reflection surface is a plane perpendicular to the parallel light, and the parallel light is incident on the total reflection surface, and the emission side. The liquid crystal display device according to claim 1, wherein the surface is made of a translucent material as a surface substantially perpendicular to a reflected light beam for expanding a light beam. 概略楔形導光板の厚い部分を交互に積み重ねて配置することにより全体の導光板厚を薄くしたことを特徴とする請求項1に記載の液晶表示装置。   2. The liquid crystal display device according to claim 1, wherein the thickness of the entire light guide plate is reduced by alternately stacking thick portions of the substantially wedge-shaped light guide plate. 線光源光を平行光変換し、導光板直下から入射した平行光を傾斜した反射面によって平面方向に変換して反射する直下照明型液晶表示装置において、45°の傾斜反射面を棚田状に分割して水平部を挿入することにより、光源の出射幅よりも導光板厚さを薄くすることを特徴とする請求項1に記載の液晶表示装置。   In a direct-illumination type liquid crystal display device that converts linear light source light into parallel light and converts parallel light incident from directly under the light guide plate into a plane direction by an inclined reflective surface and reflects it, the 45 ° inclined reflective surface is divided into a terraced shape. The liquid crystal display device according to claim 1, wherein the light guide plate thickness is made thinner than the emission width of the light source by inserting the horizontal portion. 導光板の直下方向に設けられた光源の開口幅が導光板厚よりも広く、前記光源からの光を45°の傾斜反射面で導光板の平面方向に反射する導光板において、傾斜反射部の幅を導光板厚より広くするために分散して挿入した平坦部分を反射鏡または再帰反射素子で形成して光源に戻し、再び平行光として傾斜反射面に照射することを特徴とする請求項1に記載の液晶表示装置。 In the light guide plate in which the opening width of the light source provided directly below the light guide plate is wider than the thickness of the light guide plate and the light from the light source is reflected in the plane direction of the light guide plate by the 45 ° inclined reflection surface, 2. A flat portion dispersed and inserted in order to make the width wider than the thickness of the light guide plate is formed by a reflecting mirror or a retroreflective element , returned to the light source, and again irradiated to the inclined reflecting surface as parallel light. A liquid crystal display device according to 1. 直下照明型液晶表示装置の導光板に三角柱状の傾斜反射面を設け、傾斜した反射面と水平面における透過開口部の面積比を前記三角柱状の傾斜反射面上部の面積と三角柱状の傾斜反射面のない部分の導光板面積の比で設定し、導光板の平面方向に反射する成分と傾斜面の直上部に透過する成分を制御することにより、直下照明型液晶表示装置の三角柱状に形成された傾斜反射面上部とそれ以外の導光板面の輝度を一致させることを特徴とする請求項1に記載の液晶表示装置。 The light guide plate of the direct illumination type liquid crystal display device is provided with a triangular prism-shaped inclined reflecting surface, and the area ratio of the inclined reflecting surface to the transmission opening in the horizontal plane is determined by comparing the area above the triangular prism-shaped inclined reflecting surface and the triangular prism-shaped inclined reflecting surface. It is set by the ratio of the light guide plate area of the part where there is no light, and by controlling the component reflected in the plane direction of the light guide plate and the component transmitted directly above the inclined surface, it is formed into a triangular prism shape of the direct illumination type liquid crystal display device The liquid crystal display device according to claim 1, wherein the brightness of the upper portion of the inclined reflection surface is matched with that of the other light guide plate surface . 直下照明の3色の光源からの平行光を三角柱状の傾斜反射面で平面方向に反射し、傾斜反射面に設けた透過部により三角柱上部及び隣接する三角柱への入射は臨界角以内にすることにより隣接する三角柱の上部をも照明することを特徴とする請求項1に記載の液晶表示装置。 Parallel light from the three-color light sources of direct illumination is reflected in the plane direction by the triangular prismatic inclined reflecting surface, and the incident on the upper part of the triangular prism and the adjacent triangular prism is within the critical angle by the transmission part provided on the inclined reflecting surface. The liquid crystal display device according to claim 1, wherein the upper part of the adjacent triangular prism is also illuminated by. 凹面鏡開口端において均一な光束密度となるように凹面鏡の鏡面を放物線の接線傾斜より増大して光源からの光を平行光より光束拡大する凹面鏡において、鏡面を分割して放物線の接線傾斜より増大する急傾斜鏡面と、焦点方向に対向する緩傾斜面で構成し、焦点方向に対向する鏡面の反射光は焦点に戻った光を再び凹面鏡に照射して放物線の接線傾斜より増大する急傾斜面の反射光として出射することを特徴とする請求項1に記載の液晶表示装置。
In a concave mirror that expands the light from the light source from the parallel beam by collimating the parabolic surface so that the light flux density is uniform at the opening of the concave mirror, the mirror surface is divided and increased from the parabolic tangential gradient. It consists of a steeply inclined mirror surface and a gently inclined surface facing the focal direction. The liquid crystal display device according to claim 1, wherein the liquid crystal display device emits the light as reflected light.
JP2008178344A 2008-07-08 2008-07-08 Liquid crystal display device and lighting device Expired - Fee Related JP4356095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178344A JP4356095B1 (en) 2008-07-08 2008-07-08 Liquid crystal display device and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178344A JP4356095B1 (en) 2008-07-08 2008-07-08 Liquid crystal display device and lighting device

Publications (2)

Publication Number Publication Date
JP4356095B1 true JP4356095B1 (en) 2009-11-04
JP2010020941A JP2010020941A (en) 2010-01-28

Family

ID=41393460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178344A Expired - Fee Related JP4356095B1 (en) 2008-07-08 2008-07-08 Liquid crystal display device and lighting device

Country Status (1)

Country Link
JP (1) JP4356095B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415119A (en) * 2018-05-11 2018-08-17 深圳市帝显电子有限公司 A kind of backlight module and display equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084343A (en) * 2010-02-12 2013-05-09 Sharp Corp Backlight device, liquid crystal display and television receiver
CN108302381B (en) * 2017-01-13 2020-02-18 矽创电子股份有限公司 Backlight device
JP7049094B2 (en) * 2017-10-27 2022-04-06 株式会社ヴィーネックス Line light source and optical line sensor unit equipped with this
JP7390546B2 (en) * 2019-08-08 2023-12-04 パナソニックIpマネジメント株式会社 Optical systems, lighting systems, display systems and moving objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415119A (en) * 2018-05-11 2018-08-17 深圳市帝显电子有限公司 A kind of backlight module and display equipment

Also Published As

Publication number Publication date
JP2010020941A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4114173B1 (en) Display device and lighting device
US8998474B2 (en) Surface light source device and liquid crystal display apparatus
TWI474082B (en) Backlight device and liquid crystal display device
KR100787329B1 (en) Light emission source and light emission method using light emission source
US9103950B2 (en) Surface light source device and liquid crystal display device
US20070110386A1 (en) Device having combined diffusing, collimating, and color mixing light control function
JP2006031941A (en) Planar light source unit
JP2009031792A (en) Collimating light guide plate, diffusion unit, and display device using it
US20120176423A1 (en) Display device and light source device
JP5323274B2 (en) Surface light source device and liquid crystal display device
US20150160394A1 (en) Planar light source device and liquid crystal display device
KR20100044826A (en) Photoluminescent light source
RU2521087C2 (en) Illumination system and liquid crystal display device using said system
TW201222098A (en) Surface light source and LCD
JP4779893B2 (en) Surface light source device and transmissive display device
JP4356095B1 (en) Liquid crystal display device and lighting device
EP1793263A1 (en) Light intensity and/or colour distribution correcting element for an illumination system whose function is correlated to the incident light distribution
US7233440B2 (en) Image display screen having wide vertical and horizontal viewing angles and projection television including the same
KR101101792B1 (en) Liquid crystal display device and lighting display device
TWI323818B (en) Liquid crystal display lighting apparatus
JP5669210B2 (en) Display device
JP2017098084A (en) Lighting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees