JP4789026B1 - Mixed color lighting device - Google Patents

Mixed color lighting device Download PDF

Info

Publication number
JP4789026B1
JP4789026B1 JP2011104970A JP2011104970A JP4789026B1 JP 4789026 B1 JP4789026 B1 JP 4789026B1 JP 2011104970 A JP2011104970 A JP 2011104970A JP 2011104970 A JP2011104970 A JP 2011104970A JP 4789026 B1 JP4789026 B1 JP 4789026B1
Authority
JP
Japan
Prior art keywords
total reflection
light
triangular prism
color
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011104970A
Other languages
Japanese (ja)
Other versions
JP2012238406A (en
Inventor
鈴木優一
Original Assignee
鈴木 優一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木 優一 filed Critical 鈴木 優一
Priority to JP2011104970A priority Critical patent/JP4789026B1/en
Application granted granted Critical
Publication of JP4789026B1 publication Critical patent/JP4789026B1/en
Publication of JP2012238406A publication Critical patent/JP2012238406A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】複数方向に設けた光源光を高効率に混合し、放射角を制御して演色性の優れた照明装置を実現する。
【解決手段】45°の傾斜反射面を鉛直面に対称に配置した低屈折率物質による直角三角柱を高屈折率物質の内部に設け、基準面に平行で対称方向から入射する光を照射すると鉛直方向に全反射する。
全反射三角柱を全反射面の高さh、全反射面の基準面方向の幅dで細分して他の全反射三角柱からの光の障害とならないようにずらした構造で階段状に分散配置する。基準面に平行で対称方向から入射する光は全反射三角柱の高さhで細分された後に、双方の入射光は櫛歯状の配列で基準面方向の幅dだけずれて交互に配列して鉛直方向に全反射する。
階段状に列をなして配置した全反射三角柱の間を、別の列をなして配列された全反射三角柱による反射光を通過させることにより4方向以上の光を混色する。
【選択図】 図5
An illumination device having excellent color rendering properties is realized by mixing light sources provided in a plurality of directions with high efficiency and controlling a radiation angle.
A right triangular prism made of a low-refractive-index material having a 45 ° inclined reflecting surface symmetrically arranged on a vertical surface is provided inside the high-refractive-index material, and is irradiated vertically with light incident in a symmetric direction parallel to the reference surface. Total reflection in the direction.
The total reflection triangular prisms are subdivided by the height h of the total reflection surface and the width d of the total reflection surface in the reference plane direction, and are dispersed and arranged in a staircase pattern so as not to interfere with light from other total reflection triangular columns. . The light incident on the reference plane in parallel from the symmetric direction is subdivided by the height h of the total reflection triangular prism, and then both incident lights are alternately arranged in a comb-like arrangement shifted by the width d in the reference plane direction. Total reflection in the vertical direction.
Light in four or more directions is mixed by allowing the reflected light from the total reflection triangular prisms arranged in a separate row to pass between the total reflection triangular prisms arranged in rows in a staircase pattern.
[Selection] Figure 5

Description

本発明は低屈折率物質の三角柱を高屈折率物質内に分散配置して全反射面を構成し、複数方向からの入射光を混色する照明装置に関するものである。   The present invention relates to an illuminating device in which triangular prisms of a low refractive index material are dispersedly arranged in a high refractive index material to form a total reflection surface, and incident light from a plurality of directions is mixed.

発光ダイオードは小型で高効率などの特徴から液晶表示装置のバックライト、LED電球などの一般照明に使用されている。3原色光の混色として液晶プロジェクターなどに採用されているクロスダイクロイックプリズムは高価なため一般的でないので同一パッケージ内などで混色するか、青色発光ダイオードの青色光を蛍光体に照射して補色による蛍光白色発光ダイオードが用いられている。 Light emitting diodes are used for general lighting such as backlights of liquid crystal display devices and LED bulbs because of their small size and high efficiency. Cross dichroic prisms that are used in liquid crystal projectors as a mixture of the three primary colors are expensive and are not common, so they are mixed in the same package, or the blue light emitted from the blue light-emitting diodes is applied to the phosphor to obtain the complementary fluorescence. White light emitting diodes are used.

白色発光ダイオードを用いてカラーフィルタで3色に分解するのはカラーフィルタで吸収されて効率が低下するのでカラーフィルタを使用せずに3原色発光素子を用いて加法混色する方法が多数提案されている。
導光板に45°の溝を画素数設け、側面から入射した光を溝の界面で液晶パネル方向に全反射する導光板を3層重ね、楔形の導光板の厚い部分を交互に配置する提案がある(特許文献1、図20)。液晶パネルの3辺に3色の光源を設置し、導光板に四角錐をマトリックス状に設けて四角錐の傾斜面で反射して液晶パネルの所定の画素に照射する液晶表示装置が提案されている(特許文献2、図21)。
画素寸法の45°の全反射面を導光板底面に設けて3枚重ね、マトリックス状に配置することによって4方からの光を垂直上方に出射する発光表示装置が提案されている(特許文献3)。この提案は特許文献1の45°の全反射面を用い、特許文献2の四角錐によるマトリックス表示と同様な動作と考えられる。
Using a white light-emitting diode to separate the three colors with a color filter is absorbed by the color filter and the efficiency is reduced. Therefore, a number of additive color mixing methods using three primary color light-emitting elements without using a color filter have been proposed. Yes.
There is a proposal in which 45-degree grooves are provided in the light guide plate for the number of pixels, three layers of light guide plates that totally reflect light incident from the side face toward the liquid crystal panel at the groove interface, and thick portions of the wedge-shaped light guide plate are alternately arranged. (Patent Document 1, FIG. 20). There has been proposed a liquid crystal display device in which light sources of three colors are installed on three sides of a liquid crystal panel, a quadrangular pyramid is provided in a matrix shape on a light guide plate, and the light is reflected on an inclined surface of the quadrangular pyramid to irradiate predetermined pixels of the liquid crystal panel. (Patent Document 2, FIG. 21).
There has been proposed a light-emitting display device that emits light from four directions vertically upward by providing three total reflection surfaces with a pixel size of 45 ° on the bottom surface of the light guide plate and arranging them in a matrix (Patent Document 3). ). This proposal uses the 45 ° total reflection surface of Patent Document 1 and is considered to be the same operation as the matrix display by the quadrangular pyramid of Patent Document 2.

直角プリズムを並べたシートの平面側に4方向からの光を入射し、バンドパスミラーを用いて出射する構造の混色装置が提案されている(特許文献4、図22)。一方のプリズム面の入射光は屈折光を同一方向に混色して出射するが、もう一方のプリズム面の入射光は臨界角以上になって全反射して対向する光源に入射するのでバンドパスミラーを用いて全反射光を活用する構成である。 There has been proposed a color mixing device having a structure in which light from four directions is incident on a plane side of a sheet on which right-angle prisms are arranged and is emitted using a bandpass mirror (Patent Document 4, FIG. 22). The incident light on one prism surface is refracted light mixed in the same direction and emitted, but the incident light on the other prism surface exceeds the critical angle and is totally reflected and incident on the opposite light source. It is the structure which utilizes total reflection light using.

蛍光白色発光ダイオードは青色発光ダイオードの青色光を黄色蛍光体に照射して補色により白色に認識される発光ダイオードである。3原色発光素子を反射鏡内部に設ける混色に比べて色むらが出にくいので携帯電話などの液晶表示装置のバックライト、LED電球などとして利用されている。蛍光白色発光ダイオードのスペクトルは先鋭な青色となだらかな黄色域の2つのピークから成っている。このため、Ca1−xAlSiN:Eu2+などの赤色域蛍光体を混合して演色性を改善する提案などがある(特許文献5)。 The fluorescent white light emitting diode is a light emitting diode that is recognized as white by a complementary color by irradiating the yellow phosphor with the blue light of the blue light emitting diode. Compared with the mixed color in which the three primary color light emitting elements are provided inside the reflecting mirror, color unevenness is less likely to occur, and therefore, it is used as a backlight of a liquid crystal display device such as a mobile phone, an LED bulb, and the like. The spectrum of the fluorescent white light-emitting diode consists of two peaks of sharp blue and gentle yellow region. For this reason, there is a proposal for improving color rendering properties by mixing red-range phosphors such as Ca 1-x AlSiN 3 : Eu 2+ (Patent Document 5).

水平面上に短冊状反射面の長軸方向を光源からの平行光の進行方向に直交するように配置し、短冊状反射面の短軸方向を交互に±30°の傾斜を持たせて三角波状に並べ、斜め上方30°の方向に平行光光源を対称位置に設けた構造が提案されている(特許文献6)。夫々の平行光光源と三角波状格子の対をなす反射面が平行になっているので対をなす平行光光源側に配置された反射面には入射出来ず、水平面から30°上方の平行光光源双方からの平行光は三角波状反射鏡の光源方向反射面に沿って入射し、双方から入射した光はいずれも鉛直上方に反射する。 The long axis direction of the strip-shaped reflecting surface is arranged on the horizontal plane so as to be orthogonal to the traveling direction of the parallel light from the light source, and the short axis direction of the strip-shaped reflecting surface is alternately inclined by ± 30 ° to form a triangular wave shape. And a structure in which a parallel light source is provided at a symmetrical position in an obliquely upward 30 ° direction has been proposed (Patent Document 6). Since the reflecting surfaces forming the pair of each parallel light source and the triangular wave lattice are parallel, they cannot enter the reflecting surface arranged on the side of the parallel light source forming the pair, and the parallel light source 30 ° above the horizontal plane. Parallel light from both sides is incident along the light source direction reflecting surface of the triangular wave reflector, and any light incident from both sides is reflected vertically upward.

特許文献6には屈折格子による混色装置も提案されている。構成物質の屈折率n2、周囲媒体の屈折率n1とし、屈折格子構成物質内から傾斜面に角度αで入射した光が角度βで屈折するとき、V字溝の傾斜面角度は中心線に対してγとして対向する屈折面に平行に入射するので右側光源光は右側傾斜面にしか入射せず、傾斜面と入射光は対称なので左側光源光も同様である。V字溝の傾斜面角度γをβとαの差で設定することにより双方の屈折光は中心線に平行に出射する。屈折格子と前項の反射格子を組み合わせて4方向の混色装置が示されている(図23)。 Patent Document 6 also proposes a color mixing device using a refractive grating. When the refractive index n2 of the constituent material and the refractive index n1 of the surrounding medium are set, and the light incident on the inclined surface from the refractive grating constituent material at an angle α is refracted at an angle β, the inclined surface angle of the V-shaped groove is relative to the center line. Therefore, the right side light source light is incident only on the right inclined surface, and the inclined surface and the incident light are symmetrical. By setting the inclined surface angle γ of the V-shaped groove by the difference between β and α, both refracted lights are emitted parallel to the center line. A four-way color mixing device is shown by combining the refraction grating and the reflection grating in the previous section (FIG. 23).

特許3131034号公報Japanese Patent No. 3131034 特開2006−323221号公報JP 2006-323221 A 特開2007−264148号公報JP 2007-264148 A 特開2008−218154号公報JP 2008-218154 A 特許4045298号公報Japanese Patent No. 4405298 特許4399678号公報Japanese Patent No. 4399678

特許文献1の導光板に45°の溝を画素数設け、溝の界面で液晶パネル方向に全反射する導光板を3層重ねた提案は45°の全反射面でサブ画素を構成するため、導光板1枚の厚さは表示面長さの1/3が必要である。これを3枚積層するので楔形の交互配置を行なっても非常に厚く、重い表示装置になる。このため材料費が著しく増大する問題がある。特許文献3の表示装置も45°の全反射面なので平坦部を間に設けてはいるが特許文献1以上に厚く、重くなる。薄型化のための平坦部があるので輝度むらを生じる問題もある。このように45°の全反射面を単純に積層しただけでは厚さ・質量・コストなどの点で実用的でない問題がある。 The proposal in which a 45 ° groove is provided in the light guide plate of Patent Document 1 and three layers of light guide plates that totally reflect in the direction of the liquid crystal panel at the interface of the groove constitute a subpixel with a 45 ° total reflection surface. The thickness of one light guide plate needs to be 1/3 of the display surface length. Since three of these are stacked, even if wedge-shaped alternating arrangement is performed, a very thick and heavy display device is obtained. For this reason, there is a problem that the material cost is remarkably increased. Since the display device of Patent Document 3 is also a 45 ° total reflection surface, a flat portion is provided in between, but it is thicker and heavier than Patent Document 1. Since there is a flat portion for thinning, there is also a problem that uneven brightness occurs. Thus, simply laminating a 45 ° total reflection surface has a problem that is not practical in terms of thickness, mass, cost, and the like.

導光板の底面に四角錐反射体を多数設け、3方向からの3原色光を画素に反射して混色する特許文献3の提案は、手前の四角錐に遮られて逆V型の反射光しか得られない。四角錐に斜めの平行光を照射すると側面にも当たるので図21に示したように斜めに反射して散乱光になり他の画素に入射すると不鮮明になる。   The proposal of Patent Document 3 in which a large number of quadrangular pyramid reflectors are provided on the bottom surface of the light guide plate, and the three primary colors from three directions are reflected on the pixels and mixed, is only reflected by the inverted V-shaped reflected light by the front pyramid. I can't get it. When oblique parallel light is irradiated onto the quadrangular pyramid, it also hits the side surface, so that it is reflected obliquely to become scattered light as shown in FIG. 21 and becomes blurred when incident on other pixels.

青色発光ダイオードの青色光を黄色蛍光体に照射した補色による白色発光ダイオードは尖鋭なスペクトルの青色光となだらかな黄色光のスペクトルのため赤色域と青緑色域が不足し、平均演色評価数が70前後の演色性が低い照明である。
蛍光体の配合比率を増大するに従って青色光のピークが低下して蛍光が増大するが、別の黄色蛍光体に当たると蛍光体が有色不透明で蛍光波長に対しては蛍光変換率が低いために吸収され、効率が低下する問題がある。
A white light-emitting diode with a complementary color obtained by irradiating a yellow phosphor with blue light from a blue light-emitting diode has a sharp spectrum of blue light and a gentle yellow light spectrum. The lighting is low in color rendering before and after.
As the compounding ratio of the phosphor is increased, the blue light peak decreases and the fluorescence increases. However, when it hits another yellow phosphor, the phosphor is colored and opaque and absorbs because the fluorescence conversion rate is low for the fluorescence wavelength. There is a problem that the efficiency is lowered.

演色性を改善するには赤色など長波長蛍光体の量を増やす必要がある。赤色域は比視感度が低いので蛍光体を多量に混合する必要があるが、長波長蛍光体から発せられた光は短波長蛍光体では吸収だけで蛍光変換されず、黄色蛍光が黄色蛍光体に当たる確率と赤色蛍光が赤色蛍光体に当たる確率も増大して効率が低下する問題がある。 In order to improve the color rendering, it is necessary to increase the amount of long wavelength phosphor such as red. In the red region, the relative luminous sensitivity is low, so it is necessary to mix a large amount of phosphor. However, the light emitted from the long wavelength phosphor is not absorbed and converted by the short wavelength phosphor, and the yellow fluorescence is converted into the yellow phosphor. And the probability that the red fluorescence hits the red phosphor also increases and the efficiency is lowered.

直角プリズムの一方の傾斜屈折面で屈折して鉛直方向に出射する特許文献4の提案は一方の屈折面への入射角が臨界角以上のため全反射して対向する光源側に入射する比率が半分を占めている。対向する光源側に入射する全反射光の損失を回避するためにバンドパスミラーで再反射して利用するが、複雑で高価である。 In the proposal of Patent Document 4 in which light is refracted by one inclined refracting surface of a right-angle prism and is emitted in the vertical direction, since the incident angle to one refracting surface is greater than the critical angle, the ratio of total reflection and incidence on the opposite light source side is Occupies half. In order to avoid the loss of the totally reflected light incident on the opposite light source side, it is re-reflected by a band pass mirror and used, but it is complicated and expensive.

特許文献6の反射格子と屈折格子は2方向からの平行光を混色して平行光として出射する。4方向以上の光を混合するときは2色づつ混合する屈折格子あるいは反射格子2枚と4色を混合する屈折格子1枚の計3枚で三角形に組み合わせるので厚い構造が必要である。
The reflection grating and the refraction grating in Patent Document 6 mix parallel light from two directions and emit it as parallel light. When light in four directions or more is mixed, a thick structure is necessary because a total of three refracting gratings that mix two colors or two reflecting gratings and one refracting grating that mixes four colors are combined into a triangle.

基準面に対して45°の傾斜反射面に基準面に平行な入射光を照射すると基準面に対して鉛直方向に反射するので、45°の傾斜反射面を基準面の鉛直方向に対して対称に設ければ、基準面に平行で対称方向から入射する光は双方とも鉛直方向に反射する。傾斜45°の三角柱状の低屈折率物質空間を高屈折率物質の内部に設ければ全反射を利用することが出来る。45°の傾斜反射面を鉛直面に対称に配置すると直角三角柱になるので、これを全反射三角柱1と呼ぶことにする。
全反射三角柱を全反射面の高さh、全反射面の基準面方向の幅dで細分して他の全反射三角柱からの光の障害とならないようにずらした構造で階段状に分散配置する。基準面に平行で対称方向から入射する光は全反射三角柱の高さhで細分された後に、双方の入射光は櫛歯状の配列で基準面方向の幅dだけずれて鉛直方向に全反射する。このため、対称方向から入射した光は全反射面の基準面方向の幅dで交互に配列して同一方向に出射する。この構造と作用を表した状態を図1、図3に示す。45°傾斜面なのでhとdは同一値である。
高屈折率物質の屈折率n1と低屈折率物質の屈折率n2界面の臨界角θcは数1で示される。

低屈折率物質として屈折率がほぼ1の空気とし、高屈折率物質の屈折率は1.41以上のときに臨界角は45°以下の全反射条件を満たすことが出来る。ポリメチルメタクリレート、シクロオレフィン樹脂、ポリカーボネート、共重合ポリエステルの屈折率n、臨界角θcの例を表1に示す。
When incident light parallel to the reference surface is irradiated onto the 45 ° inclined reflection surface with respect to the reference surface, the light is reflected in the vertical direction with respect to the reference surface, so the 45 ° inclined reflection surface is symmetric with respect to the vertical direction of the reference surface. In this case, both light beams that are parallel to the reference plane and incident from a symmetric direction are reflected in the vertical direction. If a low-refractive-index material space having a triangular prism shape with an inclination of 45 ° is provided inside the high-refractive-index material, total reflection can be used. If the inclined reflection surface of 45 ° is arranged symmetrically with respect to the vertical plane, a right-angled triangular prism is formed, and this will be referred to as a total reflection triangular prism 1.
The total reflection triangular prisms are subdivided by the height h of the total reflection surface and the width d of the total reflection surface in the reference plane direction, and are dispersed and arranged in a staircase pattern so as not to interfere with light from other total reflection triangular columns. . Light incident in a symmetric direction parallel to the reference plane is subdivided by the height h of the total reflection triangular prism, and then both incident lights are shifted by a width d in the reference plane direction in a comb-like arrangement and totally reflected in the vertical direction. To do. For this reason, the light incident from the symmetric direction is alternately arranged with the width d in the reference plane direction of the total reflection surface and is emitted in the same direction. FIGS. 1 and 3 show the state of this structure and action. Since it is a 45 ° inclined surface, h and d have the same value.
The critical angle θc at the interface between the refractive index n1 of the high refractive index material and the refractive index n2 of the low refractive index material is expressed by Equation 1.

When the refractive index of air is a refractive index of about 1 as a low refractive index material and the refractive index of the high refractive index material is 1.41 or more, the critical angle can satisfy the total reflection condition of 45 ° or less. Table 1 shows examples of the refractive index n and the critical angle θc of polymethyl methacrylate, cycloolefin resin, polycarbonate, and copolyester.

全反射面の基準面方向の幅dを視覚的に認識出来ない幅以下にすれば併置加法混色される。特許文献1、3などは1方向入射成分の導光板を単純に積層しているので3色表示では3層になるが、本願発明は対称方向の入射光を1つの全反射三角柱で2色を混合出来るので2倍の密度で混色することが出来る。 If the width d in the reference plane direction of the total reflection surface is set to be equal to or less than a width that cannot be visually recognized, the additive color mixture is performed. In Patent Documents 1 and 3 and the like, a light guide plate having a unidirectionally incident component is simply laminated, so three layers are displayed in three colors. In the present invention, incident light in a symmetric direction is divided into two colors by one total reflection triangular prism. Since they can be mixed, they can be mixed at twice the density.

図2は全反射面を構成する三角柱を基準面方向に1個おきに配置し、下側三角柱の列からの反射光を上側三角柱の列の間を通過させることによって4方向の光を混合する状態を示した断面図である。三角柱の列とは対称方向からの入射光を対にした三角柱が斜上する配置である。4色混合における三角柱の列は図2のように2列あるが、三角柱の列数は混色数の半分なので例えば6色混合の場合は3列、8色混合の場合は4列である。 In FIG. 2, every other triangular prism constituting the total reflection surface is arranged in the reference plane direction, and light in four directions is mixed by allowing the reflected light from the lower triangular column to pass between the upper triangular columns. It is sectional drawing which showed the state. The triangular prism row is an arrangement in which triangular prisms paired with incident light from symmetrical directions are inclined up. As shown in FIG. 2, there are two rows of triangular prisms in the four-color mixing. However, since the number of triangular prisms is half of the number of mixed colors, for example, there are three rows for six-color mixing and four rows for eight-color mixing.

三角柱状の低屈折率物質空間を高屈折率物質の内部に設けるには、三角柱状の低屈折率物質空間を設けた2枚の高屈折率物質を組み合わせることで実現出来る。三角柱の位置を階段状に差を持たせて配置しているので三角柱の列に沿った接合面を設ける必要がある。
図3は全反射三角柱の列を3段重ねて6色を混色する場合の断面図で、全反射面以外では入射光あるいは反射光に対して垂直の界面にした構造である。接合した界面に空気層が入っても全反射が生じないので組み立てが容易になる。垂直の界面なので図3のように凹凸の大きな形状である。垂直の界面に空気層が入っても全反射は生じないが、約4%の界面反射が生じるので接合剤を介在させることにより透過率を高めることが出来る。
Providing a triangular prism-shaped low refractive index material space inside a high refractive index material can be realized by combining two high refractive index materials provided with a triangular prism-shaped low refractive index material space. Since the positions of the triangular prisms are arranged in a step-like manner, it is necessary to provide a joint surface along the row of triangular prisms.
FIG. 3 is a cross-sectional view in the case where six rows of total reflection triangular prisms are stacked to mix six colors, and has a structure in which an interface perpendicular to incident light or reflected light is used except for the total reflection surface. Even if an air layer enters the joined interface, total reflection does not occur, and assembly is facilitated. Since it is a vertical interface, it has a large unevenness as shown in FIG. Even if an air layer enters the vertical interface, total reflection does not occur, but interface reflection of about 4% occurs. Therefore, the transmittance can be increased by interposing a bonding agent.

界面を入出射光に垂直にした場合は図3のように凹凸が大きいので界面の形状を単純化した形状を図5に示す。図5の界面の一方は緩傾斜面と平面の繰り返し構造で、他方の界面は直角三角柱状の空間を設けた構造である。図5は6色を混合する場合だが、同様な構造で4色、8色などの混色することが出来る。この形状では界面に空気層が入ると逆方向に全反射するので接合剤層を界面に介在させる必要がある。光学用の接合剤としてバルサム樅樹脂、エポキシ接着剤、アクリル接着剤、紫外線硬化樹脂などが使用されている。接合剤を一方の透明物質の面に塗布した後に他方の透明物質側を貼り合わせて形成することが出来る。この構造は図3の凹凸の多い界面に比べ、一方の面が緩傾斜面と平面の繰り返し構造なので塗布や貼り合わせの工程が容易である。一方の界面を平坦にすると塗布や貼り合わせの工程が更に容易になるが、三角柱の基準面側が傾斜するので反対方向に全反射する光量損失を生じる。 When the interface is perpendicular to the incident / exit light, since the irregularities are large as shown in FIG. 3, a simplified shape of the interface is shown in FIG. One of the interfaces in FIG. 5 has a repetitive structure of a gently inclined surface and a plane, and the other interface has a structure in which a right triangular prism-like space is provided. Although FIG. 5 shows a case where six colors are mixed, four or eight colors can be mixed with the same structure. In this shape, when an air layer enters the interface, it is totally reflected in the opposite direction, so it is necessary to interpose a bonding agent layer at the interface. As an optical bonding agent, a balsam resin, an epoxy adhesive, an acrylic adhesive, an ultraviolet curable resin, or the like is used. After the bonding agent is applied to the surface of one transparent material, the other transparent material side can be bonded together. Compared with the interface with many irregularities in FIG. 3, this structure is a structure in which one surface is a repetitively inclined surface and a flat surface, so that the coating and bonding processes are easy. If one of the interfaces is flattened, the coating and bonding steps are further facilitated, but the reference plane side of the triangular prism is inclined, so that a light quantity loss that totally reflects in the opposite direction occurs.

発光素子チップを放物面鏡の焦点に設けると、発光素子チップ寸法の半径rと放物面鏡の焦点距離pの比で平行光との誤差を生じる状態を図6に示す。この誤差角度をεとすると数2で表される。

焦点距離pを10mm、半径rを0.2mmとすると最大1.1°の誤差角度である。
全反射三角柱の傾斜は厳密な45°だけでなく、実際には公差を持った範囲の傾斜角度である。この誤差角度をζとすると出射方向の誤差はεの誤差と加算されたものになる。
平行光として出射する装置の場合はεとζを小さく抑える必要があるが、一般照明装置では放射角度が大きいので放射角度に比べてεとζが小さければ影響を抑えることが出来る。
FIG. 6 shows a state in which when the light emitting element chip is provided at the focal point of the parabolic mirror, an error between the parallel light is caused by the ratio of the radius r of the light emitting element chip dimension and the focal length p of the parabolic mirror. When this error angle is ε, it is expressed by Equation 2.

When the focal length p is 10 mm and the radius r is 0.2 mm, the error angle is 1.1 ° at maximum.
The inclination of the total reflection triangular prism is not only a strict 45 °, but is actually an inclination angle in a range having a tolerance. When this error angle is ζ, the error in the emission direction is added to the error of ε.
In the case of a device that emits light as parallel light, ε and ζ need to be kept small. However, since a radiation angle is large in a general lighting device, the influence can be restrained if ε and ζ are smaller than the radiation angle.

照明装置は被照射物の混色状態で演色性が評価される。完全な平行光のまま被照射物に照射されるとストライプ模様が発生するので光路差を視覚的に認識できない寸法で構成する必要がある。屋内用と屋外用では目から表示面までの距離が異なるため視覚的に認識できない寸法は大幅に異なるが、数十cmから見る液晶ディスプレイでは約100μmである。これらのarctanで角度換算すると約0.01°である。平行光として利用する場合は目から屈折格子までの距離Lが長い場合の屈折格子ピッチPの目安は数3で示される。
The lighting device is evaluated for color rendering in a mixed color state of an object to be irradiated. When the irradiated object is irradiated with completely parallel light, a stripe pattern is generated, so that it is necessary to configure the optical path difference so that the optical path difference cannot be visually recognized. Since the distance from the eyes to the display surface is different for indoor use and outdoor use, the dimension that cannot be visually recognized is greatly different, but for a liquid crystal display viewed from several tens of centimeters, it is about 100 μm. When these arctans are converted into angles, the angle is about 0.01 °. In the case of using as parallel light, the standard of the refractive grating pitch P when the distance L from the eye to the refractive grating is long is expressed by Equation 3.

一般照明では放射角を広げて照射されるので、図7は出射面にマイクロレンズアレイを設けて放射角を広げる作用を示している。図7では平行光よりも放射角を拡げるための凹レンズアレイを設けている。凸レンズは焦点を通過した後に拡散するので凸レンズも可能である。
各色光とも同一方向に同一放射角で放射されれば方向によらず混色比率は一定である。マイクロレンズを構成する単体レンズの放射角θは単体球面レンズにおける光線高eと焦点距離fにより数4で示され、マイクロレンズ境界部分で放射角が最大になる。

混合した平行光の放射方向が異なると一方だけの成分になって色斑を生じるので屈折格子ピッチより凹レンズピッチを狭くし、混合した平行光の放射角と方向を揃えて均一な混色光を照射することが出来る。
マイクロレンズアレイからの拡散光が重畳するとストライプは緩和されて認識出来なくなる。このため、平行光で出射する場合に比べて全反射面の基準面方向の幅dを認識出来ない寸法を大きくすることが出来る。
In general illumination, irradiation is performed with a wider radiation angle, and FIG. 7 shows the action of providing a microlens array on the exit surface to widen the radiation angle. In FIG. 7, a concave lens array is provided for expanding the radiation angle as compared with parallel light. A convex lens is also possible because it diffuses after passing through the focal point.
If each color light is emitted in the same direction and with the same emission angle, the color mixture ratio is constant regardless of the direction. The radiation angle θ of the single lens constituting the microlens is expressed by Equation 4 by the ray height e and the focal length f in the single spherical lens, and the radiation angle becomes maximum at the boundary portion of the microlens.

If the mixed parallel light emission direction is different, only one component will be formed and color spots will occur, so the concave lens pitch is made narrower than the refractive grating pitch, and the mixed parallel light emission angle and direction are aligned to irradiate uniform color mixing light I can do it.
When the diffused light from the microlens array is superimposed, the stripe is relaxed and cannot be recognized. For this reason, compared with the case where it radiate | emits with a parallel light, the dimension which cannot recognize the width | variety d of the reference surface direction of a total reflection surface can be enlarged.

演色評価数は標準光と15色の色票の反射光との色差からCIE1964等色関数により計算される。このため、色票を用いた実測によらなくとも光源のスペクトル特性により計算することが出来る。本発明の混色によるスペクトル特性を図8〜図11に示す。図中の個別発光素子のスペクトル特性を破線、混色による合成スペクトルを太実線、6504Kの標準光を細実線で示す。光源の演色性は色温度6504Kなどの標準光との色差から計算され、5000K以下の光源では黒体放射との色差から計算される。 The color rendering index is calculated by the CIE 1964 color matching function from the color difference between the standard light and the reflected light of the 15 color charts. For this reason, it is possible to calculate from the spectral characteristics of the light source without using actual measurement using a color chart. The spectral characteristics due to the color mixture of the present invention are shown in FIGS. In the figure, the spectral characteristics of the individual light emitting elements are indicated by a broken line, the combined spectrum by color mixture is indicated by a thick solid line, and the standard light of 6504K is indicated by a thin solid line. The color rendering property of the light source is calculated from the color difference from standard light such as a color temperature of 6504K, and is calculated from the color difference from black body radiation for a light source of 5000K or less.

混色による合成曲線の包絡線を標準光のスペクトル曲線に近似させれば色差を小さくなり、演色評価数を高めることが出来る。図8〜図10の4色、6色、8色の混合による光源の演色評価数を表2に示す。R1〜R15は各色票における演色評価数、RaはR1〜R8の平均演色評価数である。表中のYAGは青色LEDとYAG蛍光体による従来の蛍光白色LEDの演色評価数を比較したもので、図11の太破線のスペクトル特性で示したものである。表中の2PHOSは複数の蛍光白色LEDと全反射三角柱を用いて混色した図11のスペクトル特性の演色評価数である。
By approximating the envelope of the composite curve by color mixing to the spectrum curve of standard light, the color difference can be reduced and the color rendering index can be increased. Table 2 shows the color rendering index of the light source by mixing four colors, six colors, and eight colors in FIGS. R1 to R15 are the color rendering index for each color chart, and Ra is the average color rendering index for R1 to R8. YAG in the table is a comparison of the color rendering index of a conventional fluorescent white LED using a blue LED and a YAG phosphor, and is shown by the spectral characteristics of the thick broken line in FIG. 2PHOS in the table is the color rendering index of the spectral characteristics of FIG. 11 mixed using a plurality of fluorescent white LEDs and total reflection triangular prisms.

蛍光白色発光ダイオードにおいて、複数の蛍光体を多量に混合すると前記YAGの演色評価数よりも改善することが出来るが、複数の蛍光体を多量に混合すると変換された蛍光が他の蛍光体で吸収され易くなり効率が低下する。
波長特性の異なる複数の蛍光白色LEDと全反射三角柱を用いて混色することも出来る。蛍光体を混合して波長特性を広帯域に改善する場合と異なり、効率低下を伴わずに混色して広帯域化する。
In fluorescent white light-emitting diodes, mixing multiple phosphors in a large amount can improve the color rendering index of YAG. However, if multiple phosphors are mixed in a large amount, the converted fluorescence is absorbed by other phosphors. It becomes easy to be done and efficiency falls.
It is also possible to mix colors using a plurality of fluorescent white LEDs having different wavelength characteristics and total reflection triangular prisms. Unlike the case where the wavelength characteristics are improved in a wide band by mixing phosphors, the color is mixed and widened without a decrease in efficiency.

RGBの3色を混色するために45°全反射面の導光板を単純に3枚積層する方法は厚さ・質量・コストが著しく増大し、更に多数色の混色には実用的でない問題があるが、本願発明の全反射三角柱を分散配置すると容易かつ低コストで多数色の混色が可能である。
四角錐に斜めの平行光を照射する混色装置は側面にも当たって散乱光になり他の画素に入射すると不鮮明になるが、本願発明は全反射三角柱なので散乱光を生じることなく放射角を制御して高効率に混色可能である。
直角プリズムシートを用いた4方向光の混色装置はバンドパスミラーが必要になって複雑で高価だが、本願発明は全反射三角柱を分散配置した混色なのでこのような現象は発生せず、高効率で安価に混色可能である。
蛍光白色発光ダイオードの演色性を改善するには長波長蛍光体など蛍光体の量を増やす必要があり、変換した蛍光が赤色蛍光体に当たる確率も増大して効率が低下するが、本願発明は蛍光体の混合によらずに混色するので高効率である。
屈折格子あるいは反射格子は2色の混色のため4色以上を混合する場合、三角形に組み合わせるので厚い構造が必要だが、全反射三角柱による混色は全反射三角柱のピッチ間を複数の光が通過する構造なので多色混合が容易である。複数の光を容易に混色出来るため、演色性の良い連続スペクトルの白色光を出射出来る。
混色して同一方向に平行光として出射するので他の光学系と組み合わせて任意の放射角で出射出来る。
全反射を利用するため高効率に混色することが出来る。
In order to mix three colors of RGB, the method of simply stacking three light guide plates with 45 ° total reflection surfaces significantly increases the thickness, mass, and cost, and there is a problem that is impractical for color mixing of multiple colors. However, if the total reflection triangular prisms of the present invention are arranged in a distributed manner, it is possible to mix many colors easily and at low cost.
A color mixing device that emits oblique parallel light to a quadrangular pyramid hits the side surface and becomes scattered light and becomes unclear when incident on other pixels, but since the present invention is a total reflection triangular prism, the radiation angle is controlled without causing scattered light Thus, it is possible to mix colors with high efficiency.
A four-way color mixing device using a right-angle prism sheet requires a bandpass mirror and is complicated and expensive. However, since the present invention is a mixed color in which total reflection triangular prisms are arranged in a dispersed manner, such a phenomenon does not occur and is highly efficient. Color mixing is possible at low cost.
In order to improve the color rendering properties of fluorescent white light emitting diodes, it is necessary to increase the amount of phosphor such as a long wavelength phosphor. The probability that the converted fluorescence hits the red phosphor also increases and the efficiency decreases. It is highly efficient because it mixes colors regardless of body mixing.
The refraction grating or reflection grating is a mixture of two colors, so when mixing four or more colors, it is combined with a triangle so that a thick structure is necessary. However, the color mixture by the total reflection triangular prism is a structure in which multiple lights pass between the pitches of the total reflection triangular prism. So multi-color mixing is easy. Since a plurality of lights can be easily mixed, it is possible to emit continuous spectrum white light with good color rendering.
Since they are mixed and emitted as parallel light in the same direction, they can be emitted at any radiation angle in combination with other optical systems.
Since total reflection is used, it is possible to mix colors with high efficiency.

全反射三角柱により2方向の光を混合する構造の原理図Principle diagram of structure that mixes light in two directions by total reflection triangular prism 全反射三角柱により4方向の光を混合する構造の原理図Principle diagram of structure that mixes light in 4 directions by total reflection triangular prism 2方向の光を混合する全反射三角柱を界面に垂直な構造で結合する構造の断面図Sectional view of a structure that couples a total reflection triangular prism that mixes light in two directions with a structure perpendicular to the interface 6方向の光を混合する全反射三角柱を界面に垂直な構造で結合する構造の断面図Cross-sectional view of a structure in which total reflection triangular prisms that mix light in six directions are coupled in a structure perpendicular to the interface 緩傾斜面と平面から成る界面と、三角柱状構造を含む界面で接合した全反射三角柱の断面図Cross-sectional view of a total reflection triangular prism joined at an interface consisting of a gently inclined surface and a flat surface and an interface including a triangular prism structure 放物面鏡に設けた発光素子チップ寸法による平行光からの誤差角度Error angle from parallel light due to the size of the light emitting element chip provided on the parabolic mirror 凹レンズによる放射角と光線高と焦点距離の関係を示す図The figure which shows the relation of the radiation angle and the ray height with the concave lens and the focal length 全反射三角柱により4方向の光を混合したときのスペクトル特性図Spectral characteristic diagram when light in four directions is mixed by total reflection triangular prism 全反射三角柱により6方向の光を混合したときのスペクトル特性図Spectral characteristic diagram when light in 6 directions is mixed by total reflection triangular prism 全反射三角柱により8方向の光を混合したときのスペクトル特性図Spectral characteristics when mixing light in 8 directions by total reflection triangular prism 全反射三角柱により2種類の蛍光白色LEDの光を混合したときのスペクトル特性図Spectral characteristics when mixing two types of fluorescent white LED light with total reflection triangular prism 全反射三角柱を用い、放物面鏡による平行光光源部を有する構造の平面図Plan view of a structure with a parallel light source using a parabolic mirror using a total reflection triangular prism 図5の構造の全反射三角柱を用い、出射面に凹マイクロレンズアレイを設けた断面図Sectional view using a total reflection triangular prism having the structure of FIG. 5 and a concave microlens array on the exit surface 全反射三角柱により6方向の光を混色するLED電球の断面図Cross-sectional view of an LED bulb that mixes light in six directions with a total reflection triangular prism 出射面の凹マイクロレンズアレイの曲率を変えて配置した車両用前照灯の正面斜視図Front perspective view of a vehicle headlamp arranged by changing the curvature of the concave microlens array on the exit surface 図18の車両用前照灯による走行ビームとすれ違いビームの照射範囲Radiation range of traveling beam and passing beam by vehicle headlamp of FIG. 3枚の導光板に45°の全反射用溝を設けて積層した従来の液晶表示装置の断面図Sectional view of a conventional liquid crystal display device in which three light guide plates are laminated with 45 ° total reflection grooves 導光板に設けた四角錐の傾斜面によって3色光を所定の画素に照射する従来例Conventional example of irradiating a predetermined pixel with three-color light by an inclined surface of a quadrangular pyramid provided on a light guide plate 直角プリズムに4方向の光を入射し、バンドパスミラーを併用して混色する従来例A conventional example in which light in four directions is incident on a right-angle prism and mixed with a bandpass mirror. 反射・屈折格子による従来の4色混合装置の断面図Sectional view of a conventional four-color mixing device using a reflective / refractive grating

実施例1
6色を混合するスポットライトの実施例の平面図を図12に、断面図を図13に示す。一方の界面の形状を緩傾斜面と平面で交互に配置し、他方の界面は三角柱状の空間として三角柱状の低屈折率物質空間を高屈折率物質の内部に設けた図4あるいは図5の構造を用いることが出来る。図5の構造の場合は一方の透明物質の面に接合剤を塗布した後に他方の透明物質側を貼り合わせて形成するが、図4の場合は外部から固定すれば接合剤を使用しなくとも機能させることが出来る。
光源部は軸外放物面鏡の一方を放熱板にすれば放熱が良くなる利点があるが、回転放物面鏡の焦点に発光素子を設けることも出来る。
出射面にはスポットライトの放射角に合わせて凹マイクロレンズアレイを設けて拡散光を出射することが出来る。放射角を変更すればダウンライトにも応用出来、図12より上下方向に細長い形状にすれば線形照明に応用することも出来る。6色混合のとき、図9の破線のような特性の個別発光ダイオードを用いれば合成スペクトル特性は太実線のようになり、平均演色評価数は99が得られる。
Example 1
FIG. 12 is a plan view of an embodiment of a spotlight that mixes six colors, and FIG. 13 is a cross-sectional view thereof. 4 or FIG. 5 in which the shape of one interface is alternately arranged between a gently inclined surface and a plane, and the other interface has a triangular prism-like space and a triangular prism-like low-refractive-index material space provided inside the high-refractive-index material. A structure can be used. In the case of the structure of FIG. 5, the bonding material is applied to the surface of one transparent material and then the other transparent material is bonded to the surface. In the case of FIG. Can function.
The light source unit has an advantage that heat radiation is improved if one of the off-axis parabolic mirrors is used as a heat radiating plate, but a light emitting element can also be provided at the focal point of the rotating parabolic mirror.
A concave microlens array can be provided on the exit surface in accordance with the radiation angle of the spotlight to emit diffused light. If the radiation angle is changed, it can be applied to a downlight, and if it is elongated in the vertical direction from FIG. 12, it can also be applied to linear illumination. In the case of mixing six colors, if an individual light emitting diode having the characteristics shown by the broken line in FIG.

実施例2
6色を混合するLED電球の実施例の断面図を図14に示す。一方の界面の形状を緩傾斜面と平面で交互に配置し、他方の界面は三角柱状の空間として三角柱状の低屈折率物質空間を高屈折率物質の内部に設けた図4の構造である。一方の透明物質の面に接合剤を塗布した後に他方の透明物質側を貼り合わせて形成することが出来る。
光源部は軸外放物面鏡として軸外側を放熱板にすれば放熱面積を広くとれるので放熱が良い。一般のLED電球は中心付近に設けられるので熱抵抗を下げるために放熱フィンが大きくて重いが、この光源部は口金側の放熱板の最も広い部分かつ外周部に設けるので最良の放熱位置である。
出射面には放射角に合わせて凹マイクロレンズアレイを設けて拡散光を出射することが出来る。図17では側面にも放射するための凹マイクロレンズアレイを示しているが、放射角が狭い場合は側面放射用凹マイクロレンズアレイを設けずに全面を中心部の凹マイクロレンズアレイのみの構成にすることも出来る。凹マイクロレンズによる放射角は数3で設定することが出来る。
側面凹マイクロレンズで出射するために側面方向に変換するための全反射面を設けている。
6色混合のとき、図9の破線のような特性の個別発光ダイオードを用いれば合成スペクトル特性は太実線のようになり、平均演色評価数は99が得られる。
Example 2
A cross-sectional view of an embodiment of an LED bulb that mixes six colors is shown in FIG. FIG. 4 shows the structure of FIG. 4 in which the shape of one interface is alternately arranged between a gently inclined surface and a flat surface, and the other interface has a triangular prism-like low refractive index material space inside the high refractive index material. . It can be formed by applying a bonding agent to the surface of one transparent material and then bonding the other transparent material side together.
The light source part is an off-axis parabolic mirror, and if the outside of the shaft is a heat sink, the heat radiation area can be widened, so heat radiation is good. Since general LED bulbs are provided near the center, the heat radiation fins are large and heavy to reduce the thermal resistance, but this light source is the best heat radiation position because it is provided on the widest and outer periphery of the heat sink on the base side. .
The exit surface can be provided with a concave microlens array in accordance with the radiation angle to emit diffused light. FIG. 17 shows a concave microlens array for radiating also to the side surface. However, when the radiation angle is narrow, the entire surface is composed of only the concave microlens array in the center without providing the side surface concave microlens array. You can also The radiation angle by the concave microlens can be set by Equation 3.
A total reflection surface is provided for conversion to the side surface in order to emit light from the side concave microlens.
In the case of mixing six colors, if an individual light emitting diode having the characteristics shown by the broken line in FIG.

実施例3
4色を混合する車両用前照灯の実施例の斜視図を図15に示す。一方の界面の形状を緩傾斜面と平面で交互に配置し、他方の界面は三角柱状の空間として三角柱状の低屈折率物質空間を高屈折率物質の内部に設けた図5の構造などを採用することが出来る。一方の透明物質の面に接合剤を塗布した後に他方の透明物質側を貼り合わせて形成することが出来る。
光源部は軸外放物面鏡として軸外側を放熱板にすれば放熱面積を広くとれるので放熱が良く、信頼性を高めることが出来る。
出射面にはスポットライトの放射角に合わせて凹マイクロレンズアレイを設けて拡散光を出射することが出来る。車両用前照灯では走行ビーム照射範囲とすれ違いビーム照射範囲を切り替えて使用される。この実施例では上部を走行ビーム用、下部をすれ違いビーム用に設定した構造である。走行ビーム照射域は図16のように上向きに照射するが、上下方向よりも水平方向に拡げて照射するために水平方向の曲率半径が短く、上下方向の曲率半径が長い楕円凹マイクロレンズである。
すれ違いビーム照射域は走行ビームよりも下向に照射するが、約15°のカットオフラインで対向車への照射を避ける必要がある。走行車線前方を照射する領域、対向車線を照射する領域、対向車線側方を照射する領域の3つがあるので凹マイクロレンズの上下方向の曲率は3種類を設けている。図15の右半分は走行車線正面を照射するので上部を照射するように曲率半径を短くし、対向車線の側方を照射する図15の左側は曲率半径を長く設定する。対向車線照射域はカットオフラインに合わせて曲率半径を順次変えることにより設定する。
4色混合のとき、図8の破線のような特性の個別発光ダイオードを用いれば合成スペクトル特性は太実線のようになり、平均演色評価数は96が得られるので車両用前照灯として十分な演色性である。
Example 3
FIG. 15 shows a perspective view of an embodiment of a vehicle headlamp that mixes four colors. The structure of FIG. 5 in which the shape of one interface is alternately arranged with a gently inclined surface and a plane, and the other interface is a triangular prism-like space, and a triangular prism-like low-refractive-index material space is provided inside the high-refractive-index material. It can be adopted. It can be formed by applying a bonding agent to the surface of one transparent material and then bonding the other transparent material side together.
The light source part is an off-axis parabolic mirror, and if the outside of the shaft is a heat sink, the heat radiation area can be increased, so that heat radiation is good and the reliability can be improved.
A concave microlens array can be provided on the exit surface in accordance with the radiation angle of the spotlight to emit diffused light. The vehicle headlamp is used by switching between the traveling beam irradiation range and the passing beam irradiation range. In this embodiment, the upper part is set for the traveling beam and the lower part is set for the passing beam. The traveling beam irradiation area is an elliptical concave microlens that irradiates upward as shown in FIG. 16 but has a shorter radius of curvature in the horizontal direction and a longer radius of curvature in order to radiate and expand in the horizontal direction rather than the vertical direction. .
The low beam irradiation area irradiates below the traveling beam, but it is necessary to avoid irradiating oncoming vehicles with a cut-off line of about 15 °. Since there are three areas: a region that illuminates the front of the traveling lane, a region that illuminates the opposite lane, and a region that illuminates the side of the opposite lane, there are three types of curvature in the vertical direction of the concave microlens. The right half of FIG. 15 irradiates the front of the traveling lane, so the radius of curvature is shortened to irradiate the upper part, and the left side of FIG. The oncoming lane irradiation area is set by sequentially changing the radius of curvature according to the cut-off line.
In the case of four-color mixing, if the individual light emitting diodes having the characteristics shown by the broken line in FIG. 8 are used, the combined spectral characteristics will be like a thick solid line, and the average color rendering index will be 96, which is sufficient as a vehicle headlamp. It is color rendering.

実施例4
2種類の蛍光白色発光ダイオードの光を混合するLED電球の実施例を説明する。使用する全反射三角柱は2方向の混色なので図3に示したものである。この接合界面は45°の鋭角の部分があるので基準面方向の幅dを大きくとった方が成型し易い。2種類の蛍光白色発光ダイオードの色は類似しているので基準面方向の幅dは大きくても光源のストライプが目立たない。
LED電球としての断面図は図14に類似しているので省略するが、全反射三角柱と発光ダイオードを除き同様の構造である。出射面には放射角に合わせて凹マイクロレンズアレイを設けて拡散光を出射することが出来る。図17では側面にも放射するための凹マイクロレンズアレイを示しているが、放射角が狭い場合は側面放射用凹マイクロレンズアレイを設けずに全面を中心部の凹マイクロレンズアレイのみの構成にすることも出来る。凹マイクロレンズによる放射角は数3で設定することが出来る。
側面凹マイクロレンズで出射するために側面方向に変換するための全反射面を設けている。
図11の破線のような特性の蛍光白色発光ダイオードを用いれば合成スペクトル特性は太実線のようになり、平均演色評価数は97が得られる。
Example 4
An embodiment of an LED bulb that mixes the light of two types of fluorescent white light emitting diodes will be described. Since the total reflection triangular prism to be used is a mixed color in two directions, it is shown in FIG. Since this bonding interface has an acute angle portion of 45 °, it is easier to mold if the width d in the reference plane direction is large. Since the two types of fluorescent white light emitting diodes are similar in color, the stripe of the light source is not noticeable even if the width d in the reference plane direction is large.
A cross-sectional view of the LED bulb is similar to that of FIG. 14 and is omitted, but has the same structure except for the total reflection triangular prism and the light emitting diode. The exit surface can be provided with a concave microlens array in accordance with the radiation angle to emit diffused light. FIG. 17 shows a concave microlens array for radiating also to the side surface. However, when the radiation angle is narrow, the entire surface is composed of only the concave microlens array in the center without providing the side surface concave microlens array. You can also The radiation angle by the concave microlens can be set by Equation 3.
A total reflection surface is provided for conversion to the side surface in order to emit light from the side concave microlens.
If the fluorescent white light emitting diode having the characteristic as shown by the broken line in FIG. 11 is used, the combined spectral characteristic becomes a thick solid line, and the average color rendering index is 97.

1:全反射三角柱 2:全反射面
3:高屈折率物質 4:低屈折率物質
5:基準面 6:放物面鏡
7:接合面 8:発光素子
9:凹屈折面 10:凹面鏡
11:光源 12:入射光
13:拡散光 14:平行光
15:反射光 16:界面
17:放熱材 18:回路基板
19:カバー 20:走行ビーム照射域
21:すれ違いビーム照射域 22:カットオフライン
23:センターライン 24:道路境界線
25:全反射溝 26:導光板
27:四角錐 28:バンドパスミラー
29:屈折格子 30:反射格子
1: Total reflection triangular prism 2: Total reflection surface
3: High refractive index material 4: Low refractive index material
5: Reference plane 6: Parabolic mirror
7: Bonding surface 8: Light emitting element
9: concave refractive surface 10: concave mirror
11: Light source 12: Incident light 13: Diffused light 14: Parallel light
15: Reflected light 16: Interface
17: Heat dissipation material 18: Circuit board
19: Cover 20: Traveling beam irradiation area
21: Passing beam irradiation area 22: Cut-off line
23: Center line 24: Road boundary line 25: Total reflection groove 26: Light guide plate
27: Square pyramid 28: Band pass mirror 29: Refraction grating 30: Reflection grating

Claims (5)

基準面の鉛直方向に対称で45°傾斜面からなる一定寸法の低屈折率物質の三角柱を、
高屈折率物質の内部に他の全反射三角柱の光路とずらして階段状に分散して配置し、
基準面に平行で対称方向から入射する光を前記全反射三角柱に照射して双方とも鉛直方向に全反射し、
一定幅の光束を交互配列で出射することを特徴とする混色照明装置。
A triangular prism made of a low-refractive-index substance with a fixed dimension consisting of a 45 ° inclined surface symmetrical to the vertical direction of the reference plane,
Inside the high refractive index material, disperse and arrange in a staircase pattern shifted from the optical path of other total reflection triangular prisms,
The total reflection triangular prism is irradiated with light incident from a symmetric direction parallel to the reference plane, and both are totally reflected in the vertical direction.
A mixed color lighting device that emits light beams having a constant width in an alternating arrangement.
階段状に分散して列をなして配置した全反射三角柱の間を、
別の列をなして配置された全反射三角柱からの反射光を通過させることによって偶数方向の光を混合することを特徴とする請求項1に記載の混色照明装置。
Between the total reflection triangular prisms arranged in rows in a staircase pattern,
2. The mixed color lighting device according to claim 1, wherein light in an even direction is mixed by allowing reflected light from total reflection triangular prisms arranged in separate rows to pass therethrough. 3.
全反射三角柱の配列間を結ぶ界面形状の複数の高屈折率構造体で構成し、
前記複数の高屈折率構造体を接合することにより高屈折率物質の内部に低屈折率物質空間を構成することを特徴とする請求項1に記載の混色照明装置。
Consists of a plurality of high-refractive-index structures with an interface shape that connects between the arrays of total reflection triangular prisms,
2. The color mixing lighting device according to claim 1, wherein a low refractive index material space is formed inside the high refractive index material by joining the plurality of high refractive index structures.
全反射面三角柱からなる混色照明装置の出射面にマイクロレンズアレイを設けた構造により放射角を拡大して出射することを特徴とする請求項1に記載の混色照明装置 2. The mixed color illumination device according to claim 1, wherein a radiation angle is enlarged and emitted by a structure in which a microlens array is provided on an emission surface of the mixed color illumination device including a total reflection surface triangular prism. 全反射三角柱からなる混色照明装置の出射面にすれ違いビーム照射域のマイクロレンズアレイを設けた構造から成り、前記マイクロレンズの曲率半径を段階的に変化させてカットオフラインに一致させることを特徴とする請求項1に記載の混色照明装置
It has a structure in which a microlens array in a passing beam irradiation area is provided on the exit surface of a color mixing illumination device composed of a total reflection triangular prism, and the curvature radius of the microlens is changed stepwise to match the cut-off line. The color mixing lighting device according to claim 1.
JP2011104970A 2011-05-10 2011-05-10 Mixed color lighting device Expired - Fee Related JP4789026B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104970A JP4789026B1 (en) 2011-05-10 2011-05-10 Mixed color lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104970A JP4789026B1 (en) 2011-05-10 2011-05-10 Mixed color lighting device

Publications (2)

Publication Number Publication Date
JP4789026B1 true JP4789026B1 (en) 2011-10-05
JP2012238406A JP2012238406A (en) 2012-12-06

Family

ID=44881933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104970A Expired - Fee Related JP4789026B1 (en) 2011-05-10 2011-05-10 Mixed color lighting device

Country Status (1)

Country Link
JP (1) JP4789026B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094640A (en) * 2018-01-27 2019-08-06 深圳市绎立锐光科技开发有限公司 Light-source system and lighting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050776B2 (en) * 2014-03-25 2016-12-21 株式会社藤商事 Game machine
JP5792854B1 (en) * 2014-03-25 2015-10-14 株式会社藤商事 Game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288304A (en) * 1985-06-17 1986-12-18 株式会社日立製作所 Lighting apparatus
JPH06324330A (en) * 1993-04-05 1994-11-25 Yasuhiro Koike Light scattering and transmitting light source device
JP2000171798A (en) * 1998-12-08 2000-06-23 Toshiba Corp Back light device
JP2002196152A (en) * 2000-12-27 2002-07-10 Mitsubishi Rayon Co Ltd Light transmitting body for light source device, light source device and front light using the same
JP2003331626A (en) * 2002-03-08 2003-11-21 Seiko Epson Corp Light source convertor, point light source, color rendering property control method, its program and electric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288304A (en) * 1985-06-17 1986-12-18 株式会社日立製作所 Lighting apparatus
JPH06324330A (en) * 1993-04-05 1994-11-25 Yasuhiro Koike Light scattering and transmitting light source device
JP2000171798A (en) * 1998-12-08 2000-06-23 Toshiba Corp Back light device
JP2002196152A (en) * 2000-12-27 2002-07-10 Mitsubishi Rayon Co Ltd Light transmitting body for light source device, light source device and front light using the same
JP2003331626A (en) * 2002-03-08 2003-11-21 Seiko Epson Corp Light source convertor, point light source, color rendering property control method, its program and electric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094640A (en) * 2018-01-27 2019-08-06 深圳市绎立锐光科技开发有限公司 Light-source system and lighting device
CN110094640B (en) * 2018-01-27 2021-10-22 深圳市绎立锐光科技开发有限公司 Light source system and lighting device

Also Published As

Publication number Publication date
JP2012238406A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP1891476B1 (en) Light-emitting device with brightness enhancing layer
JP4399678B1 (en) Illumination device and display device
US8876325B2 (en) Reverse total internal reflection features in linear profile for lighting applications
US7780317B2 (en) LED illumination system
JP5341984B2 (en) Surface light source device and display device including the surface light source device
EP2789897A1 (en) Light source and illuminating device
JP2006521667A (en) Light projecting device and light projecting element
KR101040654B1 (en) Backlight unit and display device including the same
US8371706B2 (en) Light projection structure and lighting apparatus
EP3816724A1 (en) Light source device
US10416367B2 (en) Front light module and display module
JP2020510963A (en) Large area light source and large area lighting equipment
US20150340576A1 (en) Light-emitting device, illumination device and backlight for display device
KR20170004205A (en) Light guide plate and plane light source device having the same
KR20120127077A (en) Color converting device and method for manufacturing the same
JP4789026B1 (en) Mixed color lighting device
CN101639195A (en) Light-emitting diode light source device and liquid crystal projecting device using same
KR101208142B1 (en) Lighting device and display device
US7699502B2 (en) Optical member and lighting device having the same
JP4789027B1 (en) Mixed color lighting device
US20220082225A1 (en) Laser phosphor light source for intelligent headlights and spotlights
JP4681075B1 (en) Illumination device and display device
JP4681077B1 (en) Lighting device
JP4730860B1 (en) Lighting device
JP2013152811A (en) Lighting device, display device, and television receiving apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees