WO2018109978A1 - Planar light source device and display device - Google Patents

Planar light source device and display device Download PDF

Info

Publication number
WO2018109978A1
WO2018109978A1 PCT/JP2017/029372 JP2017029372W WO2018109978A1 WO 2018109978 A1 WO2018109978 A1 WO 2018109978A1 JP 2017029372 W JP2017029372 W JP 2017029372W WO 2018109978 A1 WO2018109978 A1 WO 2018109978A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
central axis
light flux
flux controlling
controlling member
Prior art date
Application number
PCT/JP2017/029372
Other languages
French (fr)
Japanese (ja)
Inventor
中村 真人
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017048871A external-priority patent/JP2018098162A/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US16/469,759 priority Critical patent/US10747055B2/en
Publication of WO2018109978A1 publication Critical patent/WO2018109978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a surface light source device having a light emitting device including a plurality of light emitting elements and a light flux controlling member, and a display device having the surface light source device.
  • HUD head-up display
  • a head-up display capable of directly displaying information such as a speed display on a screen (for example, a windshield of a car)
  • a screen for example, a windshield of a car
  • a lens light flux controlling member
  • a surface light source device using a plurality of light emitting elements (for example, LEDs) can be adopted as a light source.
  • luminance unevenness having a high luminance region and a low luminance region may occur on the emission surface of the surface light source device. Therefore, several means for eliminating such luminance unevenness have been proposed (for example, Patent Document 1).
  • FIG. 1A is a cross-sectional view illustrating a configuration of a surface light source device 10 described in Patent Document 1
  • FIG. 1B is a plan view illustrating an outline of a lens array 14 included in the surface light source device 10 described in Patent Document 1.
  • FIG. 1C is a graph showing the luminance distribution (relative luminance) of light emitted from the lens array 14 described in Patent Document 1
  • FIG. 1D does not have an uneven shape on the boundary line between two adjacent lenses. It is a graph which shows the luminance distribution (relative luminance) of the emitted light from a lens array.
  • the surface light source device 10 described in Patent Document 1 includes a plurality of LEDs 12 arranged on a substrate 11, a lens array 14, and a diffusion member 15. As shown in FIG. 1A, in the surface light source device 10, seven LEDs 12 are arranged in a line. As shown in FIG. 1B, in the lens array 14, seven lenses 13 are arranged in a line corresponding to the seven LEDs 12. An uneven portion 17 is formed on a boundary line 16 between two adjacent lenses 13 of the lens array 14. In the surface light source device 10 described in Patent Document 1, the emitted light from the LED 12 is focused by the lens 13 and the focused light is diffused by the diffusion member 15. At this time, the brightness of the light emitted from the lens array 14 is averaged by the uneven portion 17. As a result, in the surface light source device 10 described in Patent Document 1, the difference in luminance between the high luminance region and the low luminance region is smaller than in the case where the uneven shape is not formed (see FIG. 1D). (See FIG. 1C).
  • the surface light source device 10 described in Patent Document 1 has a problem that luminance unevenness cannot be sufficiently reduced.
  • a surface light source device includes a plurality of light emitting elements, a first light flux controlling member, a second light flux controlling member, and a third light flux controlling member, and controls light distribution of light emitted from the plurality of light emitting elements.
  • a surface light source device comprising: a light emitting device having a luminous flux control member; and a diffusing member that is disposed through the light emitting device and an air layer and is irradiated with light emitted from the light emitting device.
  • the one-beam control member intersects with the first central axis and a concave first incident surface disposed to face the plurality of light emitting elements so as to intersect with the first central axis of the first light-beam control member.
  • a third exit surface disposed on the opposite side of the third entrance surface, and the third entrance surface or the third exit surface has a third light flux controlling member.
  • a plurality of convex lens surfaces having a convex shape or a plurality of concave concave lens surfaces in a cross section including the third central axis are two-dimensionally arranged, and the focal length of the first light flux controlling member is f, and the first central axis And the distance from the optical axis of the light emitting element farthest from the first central axis, where d is the convex lens surface or concave shape in the cross section including the third central axis, which satisfies the following formula (1):
  • the width of the plurality of concave lens surfaces is w, and the convex lens surface or When the radius of curvature of the concave lens surface is R, and the intersection of the convex lens surface or the center line of the concave lens surface and the surface on the diffusion member side in the third light flux controlling member, and the distance of the diffusion member is t,
  • a surface light source device that satisfies the following expressions (2) and (3). -0.6 ⁇ d
  • the display device includes the surface light source device according to the present invention and a display member that is irradiated with light emitted from the surface light source device.
  • a surface light source device including a light emitting device with little luminance unevenness while using a plurality of light emitting elements, and a display device having the surface light source device.
  • FIGS. 1C and 1D are diagrams for explaining the configuration of the surface light source device described in Patent Document 1
  • FIGS. 1C and 1D are graphs for explaining the luminance distribution of light emitted from the lens array.
  • 2A is a cross-sectional view of the display device according to Embodiment 1 of the present invention
  • FIG. 2B is a diagram showing a display area of the display device shown in FIG. 2A.
  • 3A to 3D are diagrams showing the configuration of the first light flux controlling member.
  • 4A to 4D are diagrams showing the configuration of the second light flux controlling member.
  • 5A to 5D are diagrams showing the configuration of the third light flux controlling member.
  • 6A and 6B are sectional views of other third light flux controlling members.
  • FIG. 7 is a diagram illustrating an optical path of the display device.
  • 8A and 8B are diagrams for explaining the relationship between the light flux controlling member and the light emitting element.
  • 9A and 9B are diagrams for explaining the irradiation region.
  • 10A and 10B are diagrams for explaining the expression (2).
  • 11A and 11B are diagrams for explaining the expression (3).
  • FIG. 12 is a diagram for explaining the equations (4) and (5).
  • FIG. 13 is a diagram for explaining the equation (6).
  • 14A to 14D are diagrams for explaining bfl.
  • 15A to 15C are diagrams for explaining the expression (7).
  • 16A and 16B are diagrams for explaining the expression (8).
  • 17A to 17D are diagrams showing the configuration of the third light flux controlling member according to the second embodiment.
  • FIGS. 18A and 18B are diagrams illustrating a configuration of a display device according to Embodiment 2.
  • FIG. 19 is a schematic diagram illustrating the configuration of the display device used in the example.
  • FIG. 20 is a graph showing the relationship between w 2 / t and the uniformity U0 in the display device.
  • FIG. 21 is a graph showing the relationship between w / R and the uniformity ratio U5 / U0 in the display device.
  • FIG. 22A is a graph showing the relationship between (w ⁇ bfl) / t and uniformity U0 in another display device in which a convex lens surface or a concave lens surface is arranged on the third incident surface side, and FIG.
  • FIG. 23A is a graph showing the relationship between (w ⁇ bfl) / t and uniformity U0 in another display device in which a convex lens surface or a concave lens surface is arranged on the third exit surface side
  • FIG. It is a graph which shows the relationship between
  • the HUD has a display device, a projection lens for appropriately projecting light from the display device onto the screen, and a screen. Light emitted from the display device is irradiated onto the screen through a projection optical system including a projection lens.
  • FIG. 2A is a cross-sectional view of display device 100 according to Embodiment 1 of the present invention
  • FIG. 2B is a diagram showing display area 121 of display device 100 shown in FIG. 2A.
  • the first leg, the second leg, and the third leg are omitted.
  • the display device 100 includes a surface light source device 110 and a display member 120.
  • the surface light source device 110 is a light source of the display device 100.
  • the surface light source device 110 includes a light emitting device 130 and a diffusing member 140.
  • the light emitting device 130 includes a plurality of light emitting elements 112 and a light flux control member 113 including a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116, and is disposed on the substrate 111. Yes.
  • the substrate 111 supports the plurality of light emitting elements 112 and the light flux controlling member 113.
  • the type of the substrate 111 is not particularly limited.
  • a circuit substrate is preferably used from the viewpoint of supplying electricity to the light emitting element 112.
  • the substrate 111 is a glass composite substrate, a glass epoxy substrate, an Al substrate, or the like.
  • the plurality of light emitting elements 112 are light sources of the surface light source device 110 and are fixed on the substrate 111.
  • the light emitting element 112 is a light emitting diode (LED).
  • the colors of light emitted from the plurality of light emitting elements 112 may be the same or different from each other. In the present embodiment, the colors of light emitted from the plurality of light emitting elements 112 are all the same. Further, the color of light emitted from the light emitting element 112 is not particularly limited.
  • the types of colors of light emitted from the light emitting element 1122 include white, red, blue, green, and the like. In general, the light emitting element 112 emits light most strongly in the normal direction with respect to the light emitting surface of the light emitting element 112.
  • the number of the light emitting elements 112 can be appropriately changed according to the size of the display member 120, the distance between the substrate 111 and the display member 120, and the like. In the present embodiment, the number of light emitting elements 112 is three.
  • the arrangement of the plurality of light emitting elements 112 is not particularly limited.
  • the plurality of light emitting elements 112 may be arranged on a straight line, may be arranged at a position corresponding to a vertex of a polygon, or may be arranged in an annular shape. In the present embodiment, the plurality of light emitting elements 112 are arranged on a straight line.
  • the optical axis of the light emitting element 112 disposed in the center and the first central axis CA1 (second central axis CA2 and third central axis CA3) are arranged to coincide.
  • the “optical axis of the light emitting element 112” refers to the traveling direction of light at the center of the total luminous flux emitted three-dimensionally from the light emitting element 112.
  • the “optical axis of the plurality of light emitting elements 112” refers to the traveling direction of light at the center of the total luminous flux emitted three-dimensionally from the plurality of light emitting elements 112.
  • the interval between the adjacent light emitting elements 112 is not particularly limited.
  • the light flux controlling member 113 controls the light distribution of the light emitted from the light emitting element 112.
  • the light flux control member 113 includes a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116.
  • the first central axis CA1 of the first light flux control member 114, the second central axis CA2 of the second light flux control member 115, and the third central axis CA3 of the third light flux control member 116 may coincide with each other. , Do not have to match.
  • the first central axis CA1 of the first light flux controlling member 114, the second central axis CA2 of the second light flux controlling member 115, and the third central axis CA3 of the third light flux controlling member coincide with each other. Yes.
  • the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 are sequentially arranged from the light emitting element 112 side toward the diffusion member 140 side.
  • the first light flux controlling member 114 is disposed on the light emitting element 112 side
  • the second light flux controlling member 115 is disposed at a position (diffusing member 140 side) away from the first light flux controlling member 114 with respect to the light emitting element 112. Yes.
  • the third light flux controlling member 116 is disposed at a position (on the diffusing member 140 side) away from the second light flux controlling member 115 with respect to the light emitting element 112.
  • the first light flux controlling member 114 (the first incident surface 131 and the first light exiting surface 132 (see FIG.
  • the materials of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 may be the same or different.
  • Examples of the material of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 include light transmissivity such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP). Resins and light-transmitting glass are included.
  • the 1st light beam control member 114, the 2nd light beam control member 115, and the 3rd light beam control member 116 are manufactured by injection molding, for example. The configurations of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 will be described later.
  • the diffusing member 140 diffuses and transmits the light emitted from the surface light source device 110.
  • Examples of the diffusing member 140 include a transparent plate-like member that has been subjected to light diffusion treatment (for example, roughening treatment) and a transparent plate-like member that is mixed with scatterers such as beads.
  • the display member 120 is, for example, a liquid crystal panel.
  • the display member 120 has a display area 121 in which an image to be projected on the screen is displayed.
  • the display area 121 is uniformly irradiated with light controlled by the surface light source device 110.
  • the region represented by 0.8X ⁇ 0.8Y is defined as the display region 121 (see FIG. 2B).
  • the light distribution of the light emitted from the light emitting element 112 is controlled by the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116.
  • the light emitted from the third light flux controlling member 116 is transmitted while being diffused by the diffusing member 140 and illuminates the display member 120 uniformly.
  • the light flux control member 113 includes the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116.
  • FIG. 3 is a diagram illustrating a configuration of the first light flux controlling member 114.
  • 3A is a plan view of the first light flux controlling member 114
  • FIG. 3B is a bottom view
  • FIG. 3C is a side view
  • FIG. 3D is a sectional view taken along line AA shown in FIG. 3A. It is.
  • the first light flux controlling member 114 controls the light distribution of the light emitted from the light emitting element 112. As shown in FIGS. 3A to 3D, the first light flux controlling member 114 has a first incident surface 131 and a first emission surface 132. The first light flux controlling member 114 may be provided with a first flange 133. A first leg (not shown) for fixing the first light flux controlling member 114 to the substrate 111 may be provided on the back side of the first flange 133. The first light flux controlling member 114 is disposed to face the light emitting element 112.
  • the method for fixing the first light flux controlling member 114 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed. For example, the first light flux controlling member 114 and the substrate 111 can be fixed to each other by bonding the first leg to the substrate 111 with an adhesive.
  • the first incident surface 131 causes the light emitted from the light emitting element 112 to enter the first light flux controlling member 114 and refracts the incident light toward the first outgoing surface 132.
  • the first incident surface 131 is disposed so as to face the light emitting surface of the light emitting element 112 and intersect the first central axis CA1.
  • the shape of the 1st entrance plane 131 will not be specifically limited if the above-mentioned function can be exhibited.
  • the first incident surface 131 is the inner surface of the first recess 134 that is disposed to face the light emitting surface of the light emitting element 112.
  • the first incident surface 131 may be a spherical surface or an aspherical surface.
  • the first incident surface 131 has a negative power with respect to a part of the light emitted from the light emitting element 112. That is, the shape of the first incident surface 131 is a concave lens shape, and the first incident surface 131 is an aspherical surface.
  • the first emission surface 132 causes the light traveling inside the first light flux controlling member 114 to be emitted to the outside.
  • the first exit surface 132 is disposed on the opposite side of the first entrance surface 131 (on the second light flux controlling member 115 side).
  • the first emission surface 132 has an inner first emission surface 132a and an outer first emission surface 132b.
  • the inner first emission surface 132a is disposed so as to intersect with the first central axis CA1.
  • the shape of the inner first emission surface 132a is not particularly limited as long as light is emitted so as to be expanded with respect to the first central axis CA1. That is, the shape of the inner first exit surface 132a is formed in a concave shape when the light beam reaching the inner first exit surface 132a is further expanded with respect to the first central axis CA. In this case, the inner first emission surface 132a has a negative power with respect to the light reaching the inner first emission surface 132a.
  • it is formed into a shallow ridge.
  • the inner first emission surface 132a has a positive power with respect to the light reaching the inner first emission surface 132a.
  • the light emitted from the inner first emission surface 132a is controlled so as to be expanded with respect to the first central axis CA1.
  • the outer first emission surface 132b is disposed at a position away from the inner first emission surface 132a with respect to the first central axis CA1 so as to surround the inner first emission surface 132a.
  • the outer first exit surface 132b refracts (condenses) part of the light incident on the first incident surface 131 toward the first central axis CA1.
  • the outer first emission surface 132b has a positive power with respect to light emitted from the light emitting element 112 and having a large emission angle with respect to the first central axis CA1.
  • the shape of the outer first emission surface 132b is a convex lens shape, and the outer first emission surface 132b is an aspherical surface.
  • FIG. 4 is a diagram showing a configuration of the second light flux controlling member 115.
  • 4A is a plan view of the second light flux controlling member 115
  • FIG. 4B is a bottom view
  • FIG. 4C is a side view
  • FIG. 4D is a sectional view taken along line AA shown in FIG. 4A. It is.
  • the second light flux controlling member 115 controls the light emitted from the first light flux controlling member 114 to be substantially parallel light. As shown in FIGS. 4A to 4D, the second light flux controlling member 115 has a second incident surface 141 and a second emitting surface 142. The shape of the second light flux controlling member 115 is not particularly limited as long as the above function can be exhibited.
  • the second light flux controlling member 115 may have a convex lens surface on the second incident surface 141, and may have a convex lens surface on the second outgoing surface 142. From the viewpoint of miniaturization, the second light flux controlling member 115 may have a refractive Fresnel lens part or a reflective Fresnel lens part.
  • the second light flux controlling member 115 has a refractive Fresnel lens portion 145 on the second exit surface 142.
  • the second light flux controlling member 115 having the refractive Fresnel lens portion 145 can absorb an assembly error as compared with the second light flux controlling member 115 having the reflective Fresnel lens portion.
  • the second light flux controlling member 115 may be provided with a second flange 143. Further, on the back side of the second flange 143, a second leg (not shown) for fixing the second light flux controlling member 115 to the substrate 111 may be provided.
  • the method for fixing the second light flux controlling member 115 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed.
  • the second light flux controlling member 115 and the substrate 111 can be fixed to each other by bonding the second leg portion to the substrate 111 with an adhesive.
  • the second incident surface 141 causes the light emitted from the first light flux controlling member 114 to enter the second light flux controlling member 115 and refract it toward the Fresnel lens portion 145.
  • the shape of the 2nd entrance plane 141 will not be specifically limited if the above-mentioned function can be exhibited.
  • second incident surface 141 is a flat surface.
  • the second emission surface 142 emits the light traveling inside the second light flux controlling member 115 to the outside and refracts the light so as to be substantially parallel to the second central axis CA2.
  • the second exit surface 142 has a Fresnel lens portion 145.
  • the Fresnel lens portion 145 has a plurality of convex portions 146 arranged concentrically and having a circular shape in plan view.
  • Each of the plurality of convex portions 146 has a refracting surface 147 that refracts incident light and a connection surface 148 that connects adjacent refracting surfaces 147.
  • the refracting surface 147 is disposed on the outer side
  • the connecting surface 148 is disposed on the inner side (second central axis CA2 side).
  • the plurality of refracting surfaces 147 are arranged so that the first central axis CA1 (second central axis CA2) of the first light flux controlling member 114 (second light flux controlling member 115) and the optical axis OA coincide with each other. It is designed so that the light emitted from 112 becomes parallel light.
  • FIG. 5 is a diagram showing a configuration of the third light flux controlling member 116.
  • 5A is a plan view of the third light flux controlling member 116
  • FIG. 5B is a bottom view
  • FIG. 5C is a side view
  • FIG. 5D is a sectional view taken along line AA shown in FIG. 5A.
  • 6A and 6B are sectional views showing another third light flux controlling member 116.
  • FIG. 5A is a plan view of the third light flux controlling member 116
  • FIG. 5B is a bottom view
  • FIG. 5C is a side view
  • FIG. 5D is a sectional view taken along line AA shown in FIG. 5A.
  • 6A and 6B are sectional views showing another third light flux controlling member 116.
  • FIG. 5A is a plan view of the third light flux controlling member 116
  • FIG. 5B is a bottom view
  • FIG. 5C is a side view
  • FIG. 5D is a sectional view taken along line AA shown in
  • the third light flux controlling member 116 emits the light emitted from the second light flux controlling member 116 toward the diffusing member 140 while controlling so that luminance unevenness does not occur.
  • the third light flux controlling member 116 has a third entrance surface 151 and a third exit surface 152.
  • the third light flux controlling member 116 may have a third flange 154.
  • the third incident surface 151 allows the light emitted from the second light flux controlling member 115 to enter.
  • the shape of the third entrance surface 151 is a plane.
  • the third exit surface 152 is disposed on the opposite side of the third entrance surface 151 and emits the light traveling inside the third light flux controlling member 116 toward the diffusing member 140.
  • the third emission surface 152 includes a plurality of convex lens surfaces 153 or a plurality of concave lens surfaces having a convex cross-sectional shape including the third central axis CA3.
  • the “third central axis CA3” means a central portion of the third emission surface 152 when the third light flux controlling member 116 is viewed in plan.
  • a cross section including the third central axis CA3 means a cross section cut along a plane including the third central axis CA3 and a second direction described later. In the example shown in FIG.
  • the third light flux controlling member 116 has a convex lens surface 153 on the third exit surface 152, but is not limited thereto, and has a convex lens surface 153 on the third incident surface 151. Also good. Further, as shown in FIG. 6A, the third entrance surface 151 may have a concave lens surface 155, and as shown in FIG. 6B, the third exit surface 152 has a concave lens surface 155. Also good. In addition, when the convex lens surface 153 is arrange
  • the third light flux controlling member is highly accurate compared to the case where it is formed on one side, for example, adjustment is necessary to obtain it, or it is necessary to align the convex lens on one surface and the convex lens on the other surface. Difficulty in creating 116.
  • the convex lens surface 153 includes a ridge line extending linearly in a first direction perpendicular to the thickness direction of the third light flux controlling member 116, and in a second direction perpendicular to the thickness direction and the first direction. Only curved surface with curvature. That is, the convex lens surface 153 according to the present embodiment has a cylindrical structure. A plurality of convex lens surfaces 153 are arranged in the second direction without any gap.
  • the cross-sectional shape of the convex lens surface 153 including the third central axis CA3 may be an arc, a curve having a radius of curvature that increases with distance from the top, or a portion that intersects the third central axis CA3 is an arc. Thus, the curve may have a radius of curvature that increases with distance from the arc.
  • the thickness direction of the third light flux controlling member 116 is a direction along the third central axis CA3.
  • a third leg (not shown) for fixing the third light flux controlling member 116 to the substrate 111 may be provided.
  • a method for fixing the third light flux controlling member 116 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed.
  • the third light flux controlling member 116 and the substrate 111 can be fixed to each other by bonding the third leg portion to the substrate 111 with an adhesive.
  • the third light flux controlling member 116 may have a plurality of concave lens surfaces 155 on the third incident surface 151 or the third emitting surface 152.
  • the concave lens surface 155 includes a ridge line extending linearly in a first direction perpendicular to the thickness direction of the third light flux controlling member 116, and in a second direction perpendicular to the thickness direction and the first direction. Only curved surface with curvature. A plurality of concave lens surfaces 155 are arranged in the second direction without a gap.
  • the cross-sectional shape of the concave lens surface 155 including the third central axis CA3 may be an arc, a curve having a radius of curvature that increases with distance from the top, or a portion that intersects the third central axis CA3 is an arc.
  • the curve may have a radius of curvature that increases with distance from the arc.
  • the thickness direction of the third light flux controlling member 116 is a direction along the third central axis CA3.
  • FIG. 7 is a diagram showing an optical path of the display device 100. In FIG. 7, hatching is omitted to show the optical path.
  • the light emitted from each light emitting element 112 is controlled by the first light flux control member 114 so as to be mixed when it reaches the second light flux control member 115, and from the first emission surface 132. Emitted.
  • the light emitted from the first light flux control member 114 reaches the second light flux control member 115.
  • the light density of the light reaching the second light flux controlling member 115 is controlled to be low in the central part and high in the peripheral part.
  • the second incident surface 141 of the second light flux controlling member 115 has a low luminous intensity near the optical axis and a high luminous intensity at a large angle with respect to the optical axis.
  • the illuminance at the second light flux controlling member 115 is uniform from the vicinity of the optical axis to the peripheral portion.
  • the light reaching the second light flux controlling member 115 is controlled by the second light flux controlling member 115 so as to be substantially parallel light, and is emitted from the second light exit surface 142.
  • the light emitted from the second light flux control member 115 reaches the third light flux control member 116.
  • the light reaching the third light flux controlling member 116 is controlled by the third light flux controlling member 116 so that the luminance is uniform even when the display device 100 is viewed obliquely, and is emitted from the third light exit surface 152.
  • the light emitted from the third emission surface 152 illuminates the display member 120 so that the luminance is uniform even when the display device 100 is viewed obliquely.
  • the light emitted from the light emitting element 112 is controlled by the first light flux control member 114 and the second light flux control member 115 so as to be substantially parallel to the optical axis.
  • the light controlled by the first light flux control member 114 and the second light flux control member 115 is incident on the third light flux control member 116.
  • it is preferable that most of the light emitted from the first light flux controlling member 114 is incident on the second light flux controlling member 115. Therefore, the distance between the first light flux control member 114 and the second light flux control member 115 so that most of the light emitted from the first light flux control member 114 enters the second light flux control member 115. Is set.
  • the light emitting element 112 and the light flux controlling member 113 are arranged so as to satisfy the following expression (1). -0.6 ⁇ d / f ⁇ 0 (1)
  • d is a distance between the first central axis CA1 of the first light flux controlling member 114 and the optical axis OA in the light emitting element 112 farthest from the central axis CA1 of the first light flux controlling member 114 (hereinafter simply referred to as “distance”. d ”).
  • f is a focal length of the first light flux controlling member 114 (hereinafter also simply referred to as “focal length f”).
  • FIG. 8A is a diagram for explaining the focal length f of the first light flux controlling member 114
  • FIG. 8B is a diagram for explaining the relationship between the focal length f and the distance d.
  • 9A and 9B are diagrams for explaining the irradiation region S.
  • FIG. 9A is a diagram for explaining an irradiation region when the distance d is large
  • FIG. 9B is a diagram for explaining the irradiation region when the distance d is small.
  • the focal length f is defined as follows. As shown in FIG. 8A, for the focal length f of the first light flux controlling member 114, first, virtual incident light L1 parallel to the first central axis CA1 of the first light flux controlling member 114 is transmitted from the first incident surface 131 side. Assume that it is incident. Next, a virtual outgoing light L ⁇ b> 1 ′ from which the virtual incident light L ⁇ b> 1 is emitted from the first outgoing surface 132 is assumed.
  • the intersection point when the virtual incident light L1 extends in the incident direction and the virtual emitted light L1 'extends in the direction opposite to the emission direction is defined as a principal point A.
  • an intersection point between a virtual line obtained by further extending the virtual outgoing light L1 ′ emitted from the first outgoing surface 132 opposite to the outgoing direction and the first central axis CA1 of the first light flux controlling member 114 is defined as a focal point F.
  • the distance along the first central axis CA1 between the principal point A and the focal point F is the focal length f.
  • the focal length f is a negative value.
  • FIG. 8B here, three light emitting elements 112a, 112b, and 112c in which the distance between the centers of the optical axes is arranged in a line at a distance d and one first light flux controlling member 114 are arranged.
  • the optical axis OAb of the light emitting element 112b disposed at the center coincides with the first central axis CA1 of the first light flux controlling member 114. That is, the light emitting element 112 farthest from the first central axis CA1 of the first light flux controlling member 114 is the light emitting element 112a (light emitting element 112c).
  • the arrival points on the virtual irradiated surface Q (corresponding to the diffusing member 140 of the present embodiment) of the virtual emitted light emitted from each of the light emitting elements 112a, 112b, and 112c are defined as Pa, Pb, and Pc, respectively.
  • the irradiation areas S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other.
  • the area becomes smaller (see FIG. 9A).
  • the distance d is shortened, the area where the irradiation regions S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other increases (see FIG. 9B).
  • the distance d the area where the regions irradiated by the light emitting elements 112a, 112b, and 112c overlap can be adjusted.
  • the focal length f of the first light flux controlling member 114 when the focal length f of the first light flux controlling member 114 is shortened, the distance D between the reaching points in the virtual plane of the light beams emitted from the respective light emitting elements 112a, 112b, and 112c is lengthened.
  • the light emitted from the light emitting elements 112a, 112b, and 112c illuminates a predetermined area (irradiation area S) on the virtual plane, the irradiation areas S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other. The area becomes smaller (see FIG. 9A).
  • the focal length f increases, the area where the irradiation regions S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other increases (see FIG. 9B).
  • the focal length f the area where the regions irradiated by the light emitting elements 112a, 112b, and 112c overlap each other can be adjusted.
  • the distance d between the focal length f and the optical axis of the light emitting element 112 farthest from the first central axis CA1 of the first light flux controlling member 114 greatly affects the uniformity in the display member 120 described later. . More specifically, when d / f becomes ⁇ 0.6 or less due to an increase in d, the overlap between the irradiation regions S of the light emitted from the light emitting elements 112 is reduced. In particular, in the case of a rectangular screen, there is less overlap in the long (long side) direction than in the short (short side) direction, so that sufficient luminance cannot be secured at the end in the long direction. On the other hand, when attempting to make f brighter and brighten the periphery, the absolute value of d / f becomes even smaller, and the overlap between the irradiation areas S becomes smaller.
  • the positive power of the first light flux controlling member 114 becomes too strong, the light density at the center becomes higher than the light density at the periphery, and the brightness at the center increases. .
  • the light flux controlling member 113 and the diffusing member 140 are further arranged so as to satisfy the following expressions (2) and (3). 0 ⁇ w 2 /t ⁇ 0.85 (2) 0.4 ⁇ w / R ⁇ 1.4 (3)
  • w is the width of the convex lens surface 153 or the concave lens surface 155 in the cross section including the third central axis CA3.
  • R is the radius of curvature of the convex lens surface or concave lens surface 155.
  • t is the intersection of the center line of the convex lens surface 153 or the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusion member 140 side (the top of the convex lens surface 153 or the bottom of the concave lens surface 155) and the diffusion member 140. Distance.
  • FIG. 10A is a diagram illustrating a relationship between the third light flux controlling member 116 and the diffusing member 140 according to the present embodiment
  • FIG. 10B is a relationship between the third light flux controlling member 116 and the diffusing member 140 according to the comparative example.
  • FIG. 10A and 10B the third light flux controlling member 116 and the diffusing member 140 are not hatched to show the optical path.
  • the third light flux controlling member 116 having the convex lens surface 153 on the third exit surface 152 will be described as an example, but the third light flux controlling member 116 having the convex lens surface 153 on the third incident surface 151. It is the same.
  • w 2 / t is greater than 0 and less than 0.85
  • w 2 / t has a smaller value because luminance unevenness when the display device 100 is viewed in plan is reduced.
  • w is smaller than the processing limit of the convex lens surface 153 or t is too large. Therefore, w 2 / t is more preferably 0.0001 or more.
  • FIG. 10B illustrates the case where w increases.
  • FIG. 11A is a diagram illustrating the relationship between the width w of the third light flux controlling member 116 according to the comparative example and the radius of curvature R of the convex lens surface 153
  • FIG. 11B illustrates the third light flux controlling member 116 according to the comparative example. It is a figure which shows the relationship between the width w and the curvature radius R of the convex lens surface 153.
  • FIG. 11A and 11B, the third light flux controlling member 116 and the diffusing member 140 are not hatched to show the optical path.
  • FIG. 11A illustrates a case where w is reduced.
  • w / R is more than 0.4 and less than 1.4, luminance unevenness does not occur and the amount of light required for the display device 100 can be secured.
  • the focal length f of the first light flux control member 114, the first central axis CA1 and the first light flux of the first light flux control member 114 satisfies ⁇ 0.6 ⁇ d / f ⁇ 0.
  • the distance t between the intersection of the control member 116 and the surface on the diffusion member 140 side and the diffusion member 140 satisfies 0 ⁇ w 2 /t ⁇ 0.85 and 0.4 ⁇ w / R ⁇ 1.4.
  • the display member 120 is used even when a plurality of light emitting elements 112 are used. Can be illuminated uniformly.
  • the second light flux controlling member 115 includes the refractive type Fresnel lens portion 145, when the display device 100 is assembled, it is possible to absorb an assembly error.
  • the display device 100 is configured to further satisfy the following formulas (4) to (6) in addition to the above-described formulas (1) to (3), thereby further preventing luminance unevenness.
  • FIG. 12 is a diagram for explaining the equations (4) and (5).
  • FIG. 13 is a diagram for explaining the equation (6).
  • hatching of the substrate 111, the light emitting element 112, and the first light flux controlling member 114 is omitted to show the optical path.
  • hatching of the substrate 111, the light emitting element 112, the first light flux control member 114, and the second light flux control member 115 is omitted to show the optical path.
  • the light emitting device 130 (display device 100) includes the first light beam L1 emitted from the light emission center of the light emitting element 112 arranged so that the optical axis OA coincides with the first central axis CA1.
  • the emission angle is ⁇ 1 n
  • the first light beam L1 is controlled by the first light beam control member 114, and then is emitted from the first light beam control member 114, and the second light beam L2 is generated with respect to the first central axis CA1.
  • the angle is ⁇ 2 n
  • the light emitting device 130 further satisfies the following expression (4).
  • n represents the number of an arbitrary ray in a cross section including the first central axis CA and the second central axis CA2.
  • Equation (4) 0 ° ⁇ 1 n ⁇ 1 n + 1 ⁇ 60 °, and ⁇ 2 n is the angle of the light beam corresponding to ⁇ 1 n .
  • the display device 100 is configured so that ⁇ 2 n increases as ⁇ 1 n increases. Thereby, since the second light beam L2 generated by being emitted from the first emission surface 132 of the first light flux controlling member 114 does not overlap, continuous light can be incident on the second light flux controlling member 115.
  • the display device 100 further satisfies the following formula (5).
  • the light emitting device 130 (display device 100), .theta.1 n with increasing configured so that the ratio of the amount of increase in .theta.2 n to increasing .theta.1 n decreases.
  • the first central axis CA1 side is the central portion and the first flange 133 side is the peripheral portion
  • the second light ray L2 emitted from the peripheral portion of the first emission surface 132 is incident on the first emission surface 132.
  • the light beam is emitted so as to have a denser light density than the second light beam L2 emitted from the central portion.
  • the light density in the central part where the light beam with high intensity reaches is sparse, and the light density in the peripheral part where the light beam with low intensity reaches is dense. Thereby, the illuminance on the second incident surface 141 of the second light flux controlling member 115 becomes uniform.
  • the case where the light emitting element 112 arranged so as to coincide with the first central axis CA1 is shown, but the case where the light emitting element arranged so as to coincide with the first central axis CA1 does not exist.
  • the optical axis OA is the total light beam optical axis that is the center of all three-dimensional total light beams of the plurality of light emitting elements 112 mounted on the same substrate 111 surface, and the light emitting surface of the light emitting element 112 mounted on the same substrate 111 surface Considering the intersection of the extension line and the optical axis OA as a virtual emission point, the emission angle of the first light ray L1 emitted from the virtual emission point as ⁇ 1 n, and satisfying equations (4) and (5) Thus, the first light flux controlling member 114 is designed.
  • the second light beam L ⁇ b> 2 is controlled by the second light flux control member 115 and then emitted from the second light exit surface 142 of the second light flux control member 115.
  • the angle of the third light beam L3 generated with respect to the first central axis CA1 is ⁇ 3, it is preferable to satisfy the following expression (6). -6 ° ⁇ 3 ⁇ 10 ° (6)
  • ⁇ 3 is an angle of the third light beam L3 emitted from the second light beam control member 115 with respect to the first central axis CA.
  • ⁇ 3 is a minus “ ⁇ ” angle of the third light ray L3 traveling toward the first central axis CA1 with the angle of the light L0 traveling parallel to the first central axis CA1 being 0 °, with respect to the first central axis CA1.
  • the angle of the third light ray L3 with respect to the first central axis CA1 traveling away from the first central axis CA1 is a plus “+” value.
  • the third light beam L3 generated by being emitted from the second light flux controlling member 115 is emitted so as to be substantially parallel to the first central axis CA1.
  • ⁇ 3 is 10 ° or more
  • the degree of divergence increases, and the third light ray L3 travels so as to be significantly away from the first central axis CA1.
  • the 1st central axis CA1 side center part
  • the degree of light collection increases, and the third light ray L3 travels toward the first central axis CA1.
  • a region (peripheral portion) away from the first central axis CA1 becomes dark.
  • the display device 100 further satisfies the above-described expressions (4) to (6), luminance unevenness is suppressed.
  • the display device 100 is configured to further satisfy the following formulas (7) to (8) in addition to the above-described formulas (1) to (3), thereby further preventing luminance unevenness.
  • bfl is a distance between a predetermined point of the third light flux controlling member 116 and the focal point of the optical surface of the third light flux controlling member 116, and the focal point is located closer to the diffusing member 140 than the predetermined point.
  • the case is set to a positive value, and the case located on the second light flux controlling member 115 side is set to a negative value.
  • bfl is a positive value
  • bfl is a negative value
  • bfl is the length of the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side and the focal point of the convex lens surface 153. It is (a positive value).
  • bfl is the intersection of the center line of the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusing member 140 side, and the focal point of the concave lens surface 155. Is the length (negative value).
  • FIG. 14A is a diagram for explaining bfl when the convex lens surface 153 is disposed on the third exit surface 152
  • FIG. 14B illustrates bfl when the concave lens surface 155 is disposed on the third exit surface 152
  • FIG. 14C is a diagram for explaining bfl when the convex lens surface 153 is arranged on the third incident surface 151
  • FIG. 14D is a diagram illustrating the concave lens surface 155 on the third incident surface 151. It is a figure for demonstrating bfl when is arrange
  • bfl is a positive value.
  • P be the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side.
  • the intersection point P and the midpoint of the convex lens surface 153 are the same.
  • the length between the intersection P and the focal point F of the convex lens surface 153 is bfl.
  • bfl is a negative value.
  • P be the intersection of the center line of the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusing member 140 side.
  • the intersection point P and the midpoint of the concave lens surface 155 are the same.
  • the length between the intersection P and the focal point F of the concave lens surface 155 is bfl.
  • bfl is a positive value.
  • P be the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side.
  • the intersection point P and the midpoint of the concave lens surface 155 are the same.
  • the length between the intersection P and the focal point F of the convex lens surface 153 is bfl.
  • Expression (7) defines the conditions when the diffusing member 140 is viewed from the front. On the diffusing member 140, the light emitted from the third light flux controlling member 116 overlaps with each other, so that uneven brightness can be suppressed.
  • 15A is a schematic diagram showing the influence of the top of the convex lens surface 153 and the distance t of the diffusing member 140 on the optical path
  • FIG. 15B is a schematic diagram showing the influence of bfl on the optical path
  • FIG. In (7) it is a schematic diagram which shows the influence of the width w of the convex lens surface 153.
  • the third light flux control member 116 and the diffusion member 140 are arranged so that (w ⁇ bfl) / t is greater than ⁇ 15 and less than 3, the third light flux control member is disposed on the diffusion member 140. Since the light emitted from 116 overlaps, luminance unevenness can be suppressed. When w or bfl becomes large or t becomes small, and (w ⁇ bfl) / t becomes 3 or more, the light emitted from the third light flux controlling member 116 does not overlap, resulting in luminance unevenness. There is a fear. On the other hand, from the viewpoint of processing limit, it is difficult to set (w ⁇ bfl) / t to ⁇ 15 or less.
  • the value of t is so preferable that it is large. However, if the value of t is too large, the size of the surface light source device becomes large, which is not preferable.
  • the light flux controlling member 116 and the diffusing member 140 are arranged so as to satisfy the above formula (7) from the viewpoint of preventing luminance unevenness when the diffusing member 140 is viewed from the front. It is preferred that
  • Formula (8) prescribes
  • the light emitted from the third light flux controlling member 116 is preferably emitted at a predetermined angle with respect to the optical axis of the convex lens surface 153.
  • FIG. 16A is a schematic diagram showing the influence of w on the optical path in relation to equation (8)
  • FIG. 16B is a schematic diagram showing the influence of bfl on the optical path in relation to equation (8).
  • the third light flux control member 116 and the diffusion member 140 are arranged so that
  • the third light flux controlling member 116 and the diffusing member 140 satisfy the above formula (8) from the viewpoint of preventing luminance unevenness when the diffusing member 140 is viewed obliquely. It is preferable to arrange
  • the display device according to the second embodiment is different from the display device 100 according to the first embodiment only in the configuration of the third light flux controlling member 216. Therefore, in the second embodiment, only the configuration of the third light flux controlling member 216 will be described.
  • FIG. 17 is a diagram illustrating a configuration of the third light flux controlling member 216.
  • 17A is a plan view of the third light flux controlling member 216
  • FIG. 17B is a bottom view
  • FIG. 17C is a side view
  • FIG. 17D is a sectional view taken along line AA shown in FIG. 17A. It is.
  • the third light flux controlling member 216 has a third incident surface 151 and a third outgoing surface 252.
  • the third exit surface 252 includes a plurality of convex lens surfaces 253.
  • the plurality of convex lens surfaces 253 are arranged along a first direction and a second direction perpendicular to the first direction.
  • the convex lens surface 253 has a square shape in plan view, and both have the same size.
  • the convex lens surface 253 has a curvature in any cross section including the central axis CA of the convex lens surface 253.
  • the cross-sectional shape including the central axis CA of the convex lens surface 253 may be an arc, a curve having a radius of curvature that increases with distance from the top, or an arc that intersects the central axis CA. It may be a curve in which the radius of curvature increases with distance from.
  • the display device according to the second embodiment has the same effects as those of the display device 100 according to the first embodiment, and both the first direction and the second direction in which the convex lens surfaces 253 are arranged.
  • the viewing angle can be widened.
  • the third light flux controlling member 216 may have a third emission surface 252 including a plurality of concave lens surfaces. Also in this case, the plurality of concave lens surfaces are arranged in the first direction and the second direction. Further, the third light flux controlling member 216 may have a third incident surface 251 including a plurality of convex lens surfaces 253 or a plurality of concave lens surfaces.
  • FIG. 18 is a diagram illustrating a configuration of a display device 100 ′ according to a modification.
  • 18A is a plan view of the display device 100 ′
  • FIG. 18B is a cross-sectional view taken along line AA shown in FIG. 18A.
  • the display device 100 ′ includes a substrate 111 ′, a plurality of light emitting devices 130, a diffusion member 140 ′, (a surface light source device 110 ′), and a display member 120 ′.
  • a plurality of light emitting devices 130 are arranged on one substrate 111 ′.
  • six light emitting devices 130 are arranged in a matrix on one substrate 111 ′.
  • the diffusing member 140 ′ and the display member 120 ′ are formed, for example, in the same size as the substrate 111 ′ so that the light emitted from the six light emitting devices 130 reaches.
  • the surface light source device and the display device can be enlarged.
  • the display device 100 having one light emitting device 130, diffusion member 140 ′, and display member 120 ′ is arranged in the plane direction.
  • a plurality of the display devices may be arranged to enlarge the display device.
  • Example 1 In Example 1, in the display device 100 according to Embodiment 1, the width w of the cross section including the third central axis CA3 of the convex lens surface 153, the center line of the convex lens surface 153, and the diffusion member 140 in the third light flux controlling member 116. The relationship between the intersection with the side surface, the distance t from the diffusing member 140, the radius of curvature R of the convex lens surface 153, and the uniformity U0, U5 / U0 was examined.
  • FIG. 19 is a schematic diagram illustrating a configuration of the display device 100 used in the example.
  • the display device 100 includes a surface light source device 110 and a display member 120.
  • the surface light source device 110 includes a light emitting element 112 and a light flux controlling member 113.
  • the light flux control member 113 includes a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116.
  • a 10 mm
  • b 3 mm
  • c 1 mm
  • d 3 mm
  • e 25 mm
  • f 5 mm
  • g 3 mm
  • h 55.5 mm
  • i 16.2 mm.
  • the focal length f of the first light flux controlling member is 1 mm
  • the distance d between the first central axis and the optical axis of the light emitting element farthest from the first central axis is ⁇ 28.14 mm. . That is, d / f in the example is ⁇ 0.036.
  • the uniformity in the display area of each display device was obtained by simulation.
  • the uniformity in the display area 121 was calculated by the following formula (9).
  • Uniformity minimum brightness / maximum brightness (9)
  • Minimum luminance is the minimum luminance value in the display area
  • maximum luminance is the maximum luminance value in the display area.
  • Table 1 shows the parameters for 36 types of display devices that simulate the uniformity.
  • w is the width of the convex lens surface in the cross section including the third central axis
  • t is the intersection of the center line of the convex lens surface and the surface on the diffusing member side of the third light flux controlling member, and the diffusing member.
  • R is the radius of curvature of the convex lens surface
  • n is the refractive index
  • U0 is the uniformity when the display area is viewed from the front
  • U5 is inclined by 5 °. It is the degree of uniformity when viewed from the position.
  • the display device No. 1 to 36 satisfy the above formula (1).
  • FIG. 20 shows the relationship between “(the width w of the convex lens surface in the cross section including the third central axis) 2 / distance t between the top of the convex lens surface and the diffusing member 140” and the uniformity U0 in each display device.
  • FIG. 20 is a graph in which the results summarized in Table 1 are plotted.
  • the horizontal axis in FIG. 20 indicates “(the width w of the cross section including the third central axis CA3 of the convex lens surface 153) 2 / the distance t between the top of the convex lens surface 153 and the diffusing member 140”.
  • the uniformity U0 when the display device is viewed in plan (when viewed from the optical axis LA) is shown.
  • w / R is more than 0.4 and 1.4. It turns out that there is a need for less than.
  • the width w of the cross section including the third central axis of the convex lens surface and the curvature radius R of the convex lens surface are 0.4 ⁇ w / R ⁇ 1.4. It was found that the display area can be illuminated uniformly with small luminance unevenness if the above condition is satisfied. Although no particular results are shown, similar results were obtained with a display device having a third light flux controlling member including a concave lens surface.
  • the display device 100 having the third light flux controlling member 116 on which the plurality of concave lens surfaces 155 are arranged was examined.
  • the width w of the section including the third central axis of the concave lens surface, the distance t between the bottom of the concave lens surface and the diffusing member, the center line of the concave lens surface, and the third light flux control was examined.
  • the configuration of the display device is the same as that of the first embodiment.
  • Tables 2 to 5 show the parameters for 101 types of display devices that simulate the uniformity.
  • w is the width of the convex lens surface or concave lens surface in the cross section including the third central axis
  • bfl is the center line of the convex lens surface or concave lens surface and the surface on the diffusion member side in the third light flux controlling member.
  • t is the distance between the top of the convex lens surface or the bottom of the concave lens surface and the diffusion member
  • U0 is the distance when the display area is viewed from the front.
  • U5 is the degree of uniformity when the display area is viewed from a position tilted by 5 °.
  • Tables 2 and 3 show parameters in a display device in which a convex lens surface or a concave lens surface is arranged on the third entrance surface
  • Tables 4 and 5 show displays in which a convex lens surface or a concave lens surface is arranged on the third exit surface. The parameters in the device are shown.
  • a display device with a positive bfl value is a display device in which a convex lens surface is arranged on the third entrance surface
  • a display device with a negative bfl value has a concave lens surface on the third entrance surface. It is the arranged display device.
  • a display device having a positive bfl value is a display device in which a convex lens surface is disposed on the third exit surface, and a display device having a negative bfl value is a concave lens on the third exit surface.
  • FIG. 22A and 22B are graphs in which the results summarized in Tables 2 and 3 are plotted
  • FIGS. 23A and 23B are graphs in which the results summarized in Tables 4 and 5 are plotted.
  • FIG. 22A is a graph showing the relationship between (w ⁇ bfl) / t and the degree of uniformity U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third incident surface side
  • FIG. It is a graph which shows the relationship between
  • FIG. 22A is a graph showing the relationship between (w ⁇ bfl) / t and the degree of uniformity U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third incident surface side
  • FIG. 23A is a graph showing the relationship between (w ⁇ bfl) / t and the degree of uniformity U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third exit surface side
  • FIG. It is a graph which shows the relationship between
  • the horizontal axis of FIGS. 22A and 23A indicates (w ⁇ bfl) / t, and the vertical axis indicates the degree of uniformity U0.
  • the horizontal axis of FIG. 22B and FIG. 23B has shown
  • the uniformity ratio U5 / U0 which is an index when the diffusing member is viewed from an oblique direction, is 0.64, which does not satisfy the standard required for use in HUD.
  • the uniformity U0 which is an index when the diffusing member is viewed from the front, is 0.84, which satisfies the standard required for use in HUD.
  • the display device No. 85 the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed obliquely, is 0.76, but the uniformity U0, which is an index when the diffusing member is viewed from the front, is 0.47. It was.
  • the uniformity ratio U5 / U0 which is an index when the diffusing member is viewed from an oblique direction, is 0.76, which satisfies the standard required when used for HUD.
  • the uniformity U0 which is an index when the diffusing member is viewed from the front, is 0.47, which does not satisfy the standard required when used for HUD.
  • the display device No. In 136 and 137 neither the uniformity ratio U5 / U0, which is an index when the diffusion member is viewed from an oblique direction, nor the uniformity U0, which is an index when the diffusion member is viewed from the front, was satisfied.
  • the length bfl of the intersection of the center line of the convex lens surface or the concave lens surface and the surface on the diffusion member side of the third light flux controlling member and the focal point of the convex lens surface or the concave lens surface is ⁇ 15 ⁇ (w Xbfl) / t ⁇ 3 and the width w of the cross section including the third central axis of the convex lens surface or the concave lens surface, the center line of the convex lens surface or the concave lens surface, and the surface on the diffusion member side of the third light flux controlling member
  • a plurality of convex lens surfaces or a plurality of concave lens surfaces may be formed on both surfaces of the third entrance surface and the third exit surface.
  • the third entrance surface and the third exit surface When the lens power by both surfaces is positive, bfl is a positive value, and when the lens power is negative, bfl is a negative value, and the conditions required for the third light flux controlling member of the present invention (formulas (7) and (7)) It is formed so as to satisfy 8)).
  • the surface light source device according to the present invention is useful as a light source for a head-up display (HUD), for example.
  • the display device according to the present invention is useful as, for example, a head-up display (HUD).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A planar light source device has: a plurality of light emitting elements; a luminous flux control member including a first luminous flux control member which is a diffusing lens, a second luminous flux control member having a Fresnel structure, and a third luminous flux control member having a plurality of lens surfaces; and a diffusion member. When the focal distance of the first luminous flux control member is f, and the distance between a first central axis and an optical axis in the light emitting element separated farthest from the first central axis is d, the planar light source device satisfies –0.6 < d/f < 0. Also, when the width in the cross section including the central axis of the lens surface is w, the radius of curvature of the lens surface is R, and the distance between the diffusion member and the intersection point of the center line of the lens surface and the surface at the diffusion member side in the third luminous flux control member is t, the planar light source device satisfies 0 < w2/t < 0.85 and 0.4 < w/R < 1.4.

Description

面光源装置および表示装置Surface light source device and display device
 本発明は、複数の発光素子および光束制御部材を含む発光装置を有する面光源装置と、当該面光源装置を有する表示装置に関する。 The present invention relates to a surface light source device having a light emitting device including a plurality of light emitting elements and a light flux controlling member, and a display device having the surface light source device.
 近年、速度表示などの情報をスクリーン(例えば、車のフロントガラス)に直接表示することができるヘッドアップディスプレイ(Head-Up Display;以下単に「HUD」ともいう)が使用されている。HUDには、発光素子からの出射光が、レンズ(光束制御部材)で配光を制御された後、液晶パネルなどを介してスクリーンに投影されるものがある。この場合、ユーザーは、スクリーンからの反射光により投影された情報を認識できる。 In recent years, a head-up display (hereinafter also simply referred to as “HUD”) capable of directly displaying information such as a speed display on a screen (for example, a windshield of a car) has been used. In some HUDs, light emitted from a light emitting element is projected onto a screen via a liquid crystal panel or the like after light distribution is controlled by a lens (light flux controlling member). In this case, the user can recognize the information projected by the reflected light from the screen.
 HUDでは、複数の発光素子(例えば、LED)を使用した面光源装置が光源として採用されうる。しかし、複数の発光素子を使用した面光源装置では、面光源装置の出射面において輝度の高い領域と、輝度の低い領域とを有する輝度ムラが生じることがある。そこで、このような輝度ムラを解消する手段がいくつか提案されている(例えば、特許文献1)。 In HUD, a surface light source device using a plurality of light emitting elements (for example, LEDs) can be adopted as a light source. However, in a surface light source device using a plurality of light emitting elements, luminance unevenness having a high luminance region and a low luminance region may occur on the emission surface of the surface light source device. Therefore, several means for eliminating such luminance unevenness have been proposed (for example, Patent Document 1).
 図1Aは、特許文献1に記載の面光源装置10の構成を示す断面図であり、図1Bは、特許文献1に記載の面光源装置10に含まれるレンズアレイ14の概略を示す平面図であり、図1Cは、特許文献1に記載のレンズアレイ14からの出射光の輝度分布(相対輝度)を示すグラフであり、図1Dは、隣接する2つのレンズの境界線に凹凸形状を有しないレンズアレイからの出射光の輝度分布(相対輝度)を示すグラフである。 1A is a cross-sectional view illustrating a configuration of a surface light source device 10 described in Patent Document 1, and FIG. 1B is a plan view illustrating an outline of a lens array 14 included in the surface light source device 10 described in Patent Document 1. FIG. 1C is a graph showing the luminance distribution (relative luminance) of light emitted from the lens array 14 described in Patent Document 1, and FIG. 1D does not have an uneven shape on the boundary line between two adjacent lenses. It is a graph which shows the luminance distribution (relative luminance) of the emitted light from a lens array.
 特許文献1に記載の面光源装置10は、基板11上に配置された複数のLED12と、レンズアレイ14と、拡散部材15とを有する。図1Aに示されるように、面光源装置10では、7個のLED12が一列に配置されている。また、図1Bに示されるように、レンズアレイ14では、7個のLED12に対応して7個のレンズ13が一列に配置されている。レンズアレイ14の隣接する2つのレンズ13の境界線16上には、凹凸部17が形成されている。特許文献1に記載の面光源装置10は、LED12からの出射光をレンズ13でそれぞれ集束させ、集束させた光を拡散部材15で拡散させる。このとき、凹凸部17により、レンズアレイ14から出射される光の輝度が平均化される。その結果、特許文献1に記載の面光源装置10では、凹凸形状が形成されていない場合と比較して(図1D参照)、輝度が高い領域と輝度が低い領域とで輝度の差が小さくなる(図1C参照)。 The surface light source device 10 described in Patent Document 1 includes a plurality of LEDs 12 arranged on a substrate 11, a lens array 14, and a diffusion member 15. As shown in FIG. 1A, in the surface light source device 10, seven LEDs 12 are arranged in a line. As shown in FIG. 1B, in the lens array 14, seven lenses 13 are arranged in a line corresponding to the seven LEDs 12. An uneven portion 17 is formed on a boundary line 16 between two adjacent lenses 13 of the lens array 14. In the surface light source device 10 described in Patent Document 1, the emitted light from the LED 12 is focused by the lens 13 and the focused light is diffused by the diffusion member 15. At this time, the brightness of the light emitted from the lens array 14 is averaged by the uneven portion 17. As a result, in the surface light source device 10 described in Patent Document 1, the difference in luminance between the high luminance region and the low luminance region is smaller than in the case where the uneven shape is not formed (see FIG. 1D). (See FIG. 1C).
特開2011-76832号公報JP 2011-76832 A
 しかしながら、図1Cに示されるように、特許文献1に記載の面光源装置10では、十分に輝度ムラが低減されているとはいえないという問題があった。 However, as shown in FIG. 1C, the surface light source device 10 described in Patent Document 1 has a problem that luminance unevenness cannot be sufficiently reduced.
 そこで、本発明の目的は、複数の発光素子を使用しながらも、輝度ムラが小さい発光装置を含む面光源装置を提供することである。また、本発明は、当該面光源装置を有する表示装置を提供することも目的とする。 Therefore, an object of the present invention is to provide a surface light source device including a light emitting device with small luminance unevenness while using a plurality of light emitting elements. Another object of the present invention is to provide a display device having the surface light source device.
 本発明に係る面光源装置は、複数の発光素子と、第1光束制御部材、第2光束制御部材および第3光束制御部材を含み、前記複数の発光素子から出射された光の配光を制御する光束制御部材とを有する発光装置と、前記発光装置と空気層を介して配置され、前記発光装置から出射された光が照射される拡散部材とを有する、面光源装置であって、前記第1光束制御部材は、前記第1光束制御部材の第1中心軸と交わるように、前記複数の発光素子と対向して配置された凹状の第1入射面と、前記第1中心軸と交わるように配置された内側出射面と、前記内側出射面を取り囲むように配置され、前記第1中心軸を含む断面における形状が凸状の外側出射面とを有する、前記第1入射面の反対側に配置された第1出射面とを含み、前記第2光束制御部材は、前記第1光束制御部材から出射された光を前記第1中心軸に沿う方向に向かうように制御し、前記第3光束制御部材は、前記第2光束制御部材から出射された光を入射させる第3入射面と、前記第3入射面の反対側に配置された第3出射面とを有し、前記第3入射面または前記第3出射面には、前記第3光束制御部材の第3中心軸を含む断面における形状が凸条の複数の凸レンズ面または凹状の複数の凹レンズ面が二次元状に配列され、前記第1光束制御部材の焦点距離をfとし、前記第1中心軸と、前記第1中心軸から最も離れた前記発光素子における光軸との距離をdとしたとき、以下の式(1)を満たし、前記第3中心軸を含む断面における前記凸レンズ面または凹状の複数の凹レンズ面の幅をwとし、前記凸レンズ面または前記凹レンズ面の曲率半径をRとし、前記凸レンズ面または前記凹レンズ面の中心線と前記第3光束制御部材における前記拡散部材側の面との交点と、前記拡散部材の距離をtとしたとき、以下の式(2)および式(3)を満たす、面光源装置。
 -0.6<d/f<0   (1)
 0<w/t<0.85   (2)
 0.4<w/R<1.4   (3)
A surface light source device according to the present invention includes a plurality of light emitting elements, a first light flux controlling member, a second light flux controlling member, and a third light flux controlling member, and controls light distribution of light emitted from the plurality of light emitting elements. A surface light source device comprising: a light emitting device having a luminous flux control member; and a diffusing member that is disposed through the light emitting device and an air layer and is irradiated with light emitted from the light emitting device. The one-beam control member intersects with the first central axis and a concave first incident surface disposed to face the plurality of light emitting elements so as to intersect with the first central axis of the first light-beam control member. An inner exit surface disposed on the outer surface, and an outer exit surface that is disposed so as to surround the inner exit surface and has a convex shape in a cross section including the first central axis. A first light exit surface disposed, and the second light flux control. The member controls the light emitted from the first light flux controlling member to go in a direction along the first central axis, and the third light flux controlling member takes the light emitted from the second light flux controlling member. And a third exit surface disposed on the opposite side of the third entrance surface, and the third entrance surface or the third exit surface has a third light flux controlling member. A plurality of convex lens surfaces having a convex shape or a plurality of concave concave lens surfaces in a cross section including the third central axis are two-dimensionally arranged, and the focal length of the first light flux controlling member is f, and the first central axis And the distance from the optical axis of the light emitting element farthest from the first central axis, where d is the convex lens surface or concave shape in the cross section including the third central axis, which satisfies the following formula (1): The width of the plurality of concave lens surfaces is w, and the convex lens surface or When the radius of curvature of the concave lens surface is R, and the intersection of the convex lens surface or the center line of the concave lens surface and the surface on the diffusion member side in the third light flux controlling member, and the distance of the diffusion member is t, A surface light source device that satisfies the following expressions (2) and (3).
-0.6 <d / f <0 (1)
0 <w 2 /t<0.85 (2)
0.4 <w / R <1.4 (3)
 本発明に係る表示装置は、本発明に係る面光源装置と、前記面光源装置から出射された光を照射される表示部材と、を有する。 The display device according to the present invention includes the surface light source device according to the present invention and a display member that is irradiated with light emitted from the surface light source device.
 本発明によれば、複数の発光素子を使用しながらも、輝度ムラが少ない発光装置を含む面光源装置と、当該面光源装置を有する表示装置を提供できる。 According to the present invention, it is possible to provide a surface light source device including a light emitting device with little luminance unevenness while using a plurality of light emitting elements, and a display device having the surface light source device.
図1A、Bは、特許文献1に記載の面光源装置の構成を説明するための図であり、図1C、Dは、レンズアレイからの出射光の輝度分布を説明するためのグラフである。1A and 1B are diagrams for explaining the configuration of the surface light source device described in Patent Document 1, and FIGS. 1C and 1D are graphs for explaining the luminance distribution of light emitted from the lens array. 図2Aは、本発明の実施の形態1に係る表示装置の断面図であり、図2Bは、図2Aに示される表示装置の表示領域を示す図である。2A is a cross-sectional view of the display device according to Embodiment 1 of the present invention, and FIG. 2B is a diagram showing a display area of the display device shown in FIG. 2A. 図3A~Dは、第1光束制御部材の構成を示す図である。3A to 3D are diagrams showing the configuration of the first light flux controlling member. 図4A~Dは、第2光束制御部材の構成を示す図である。4A to 4D are diagrams showing the configuration of the second light flux controlling member. 図5A~Dは、第3光束制御部材の構成を示す図である。5A to 5D are diagrams showing the configuration of the third light flux controlling member. 図6A、Bは、他の第3光束制御部材の断面図である。6A and 6B are sectional views of other third light flux controlling members. 図7は、表示装置の光路を示す図である。FIG. 7 is a diagram illustrating an optical path of the display device. 図8A、Bは、光束制御部材と、発光素子との関係を説明するための図である。8A and 8B are diagrams for explaining the relationship between the light flux controlling member and the light emitting element. 図9A、Bは、照射領域を説明するための図である。9A and 9B are diagrams for explaining the irradiation region. 図10A、Bは、式(2)を説明するための図である。10A and 10B are diagrams for explaining the expression (2). 図11A、Bは、式(3)を説明するための図である。11A and 11B are diagrams for explaining the expression (3). 図12は、式(4)および式(5)を説明するための図である。FIG. 12 is a diagram for explaining the equations (4) and (5). 図13は、式(6)を説明するための図である。FIG. 13 is a diagram for explaining the equation (6). 図14A~Dは、bflを説明するための図である。14A to 14D are diagrams for explaining bfl. 図15A~Cは、式(7)を説明するための図である。15A to 15C are diagrams for explaining the expression (7). 図16A、Bは、式(8)を説明するための図である。16A and 16B are diagrams for explaining the expression (8). 図17A~Dは、実施の形態2に係る第3光束制御部材の構成を示す図である。17A to 17D are diagrams showing the configuration of the third light flux controlling member according to the second embodiment. 図18A、Bは、実施の形態2に係る表示装置の構成を示す図である。18A and 18B are diagrams illustrating a configuration of a display device according to Embodiment 2. 図19は、実施例で使用した表示装置の構成を示す模式図である。FIG. 19 is a schematic diagram illustrating the configuration of the display device used in the example. 図20は、表示装置におけるw/tと、均斉度U0との関係を示すグラフである。FIG. 20 is a graph showing the relationship between w 2 / t and the uniformity U0 in the display device. 図21は、表示装置におけるw/Rと、均斉度比U5/U0との関係を示すグラフである。FIG. 21 is a graph showing the relationship between w / R and the uniformity ratio U5 / U0 in the display device. 図22Aは、第3入射面側に凸レンズ面または凹レンズ面が配置された他の表示装置における(w×bfl)/tと、均斉度U0との関係を示すグラフ図であり、図22Bは、表示装置における|w/bfl|と、均斉度比U5/U0との関係を示すグラフである。FIG. 22A is a graph showing the relationship between (w × bfl) / t and uniformity U0 in another display device in which a convex lens surface or a concave lens surface is arranged on the third incident surface side, and FIG. It is a graph which shows the relationship between | w / bfl | in a display apparatus, and uniformity ratio U5 / U0. 図23Aは、第3出射面側に凸レンズ面または凹レンズ面が配置された他の表示装置における(w×bfl)/tと、均斉度U0との関係を示すグラフであり、図23Bは、表示装置における|w/bfl|と、均斉度比U5/U0との関係を示すグラフである。FIG. 23A is a graph showing the relationship between (w × bfl) / t and uniformity U0 in another display device in which a convex lens surface or a concave lens surface is arranged on the third exit surface side, and FIG. It is a graph which shows the relationship between | w / bfl | in an apparatus, and uniformity ratio U5 / U0.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。以下の説明では、HUDにおいて、スクリーンに情報を表示するために使用されうる表示装置について説明する。HUDは、表示装置と、表示装置からの光を適切にスクリーンに投影するための投影レンズと、スクリーンとを有する。表示装置からの出射光は、投影レンズなどを含む投影光学系を経てスクリーンに照射される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a display device that can be used to display information on a screen in a HUD will be described. The HUD has a display device, a projection lens for appropriately projecting light from the display device onto the screen, and a screen. Light emitted from the display device is irradiated onto the screen through a projection optical system including a projection lens.
 [実施の形態1]
 (面光源装置および表示装置の構成)
 図2Aは、本発明の実施の形態1に係る表示装置100の断面図であり、図2Bは、図2Aに示される表示装置100の表示領域121を示す図である。図2Aでは、第1脚部、第2脚部および第3脚部を省略している。
[Embodiment 1]
(Configuration of surface light source device and display device)
2A is a cross-sectional view of display device 100 according to Embodiment 1 of the present invention, and FIG. 2B is a diagram showing display area 121 of display device 100 shown in FIG. 2A. In FIG. 2A, the first leg, the second leg, and the third leg are omitted.
 図2A、Bに示されるように、実施の形態1に係る表示装置100は、面光源装置110と、表示部材120とを有する。 2A and 2B, the display device 100 according to Embodiment 1 includes a surface light source device 110 and a display member 120.
 面光源装置110は、表示装置100の光源である。面光源装置110は、発光装置130と、拡散部材140とを有する。発光装置130は、複数の発光素子112と、第1光束制御部材114、第2光束制御部材115および第3光束制御部材116を含む光束制御部材113とを有し、基板111上に配置されている。 The surface light source device 110 is a light source of the display device 100. The surface light source device 110 includes a light emitting device 130 and a diffusing member 140. The light emitting device 130 includes a plurality of light emitting elements 112 and a light flux control member 113 including a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116, and is disposed on the substrate 111. Yes.
 基板111は、複数の発光素子112と、光束制御部材113とを支持する。基板111の種類は、特に限定されない。基板111は、発光素子112に電気を供給する観点から、回路基板を用いることが好ましい。例えば、基板111は、ガラスコンポジット基板やガラスエポキシ基板、Al基板などである。 The substrate 111 supports the plurality of light emitting elements 112 and the light flux controlling member 113. The type of the substrate 111 is not particularly limited. As the substrate 111, a circuit substrate is preferably used from the viewpoint of supplying electricity to the light emitting element 112. For example, the substrate 111 is a glass composite substrate, a glass epoxy substrate, an Al substrate, or the like.
 複数の発光素子112は、面光源装置110の光源であり、基板111上に固定されている。例えば、発光素子112は、発光ダイオード(LED)である。複数の発光素子112から出射される光の色は、それぞれ同じであってもよいし、それぞれ異なっていてもよい。本実施の形態では、複数の発光素子112から出射される光の色は、全て同じである。また、発光素子112から出射される光の色は、特に限定されない。発光素子1122から出射される光の色の種類には、白、赤、青、緑などが含まれる。通常は、発光素子112は、発光素子112の発光面に対する法線方向に最も強く光を出射する。 The plurality of light emitting elements 112 are light sources of the surface light source device 110 and are fixed on the substrate 111. For example, the light emitting element 112 is a light emitting diode (LED). The colors of light emitted from the plurality of light emitting elements 112 may be the same or different from each other. In the present embodiment, the colors of light emitted from the plurality of light emitting elements 112 are all the same. Further, the color of light emitted from the light emitting element 112 is not particularly limited. The types of colors of light emitted from the light emitting element 1122 include white, red, blue, green, and the like. In general, the light emitting element 112 emits light most strongly in the normal direction with respect to the light emitting surface of the light emitting element 112.
 発光素子112の数は、表示部材120の大きさや、基板111と表示部材120との間の距離などに応じて適宜変更されうる。本実施の形態では、発光素子112の数は、3つである。複数の発光素子112の配置は、特に限定されない。複数の発光素子112は、直線上に配置されていてもよく、多角形の頂点に対応する位置に配置されていてもよく、円環状に配置されていてもよい。本実施の形態では、複数の発光素子112は、直線上に配置されている。 The number of the light emitting elements 112 can be appropriately changed according to the size of the display member 120, the distance between the substrate 111 and the display member 120, and the like. In the present embodiment, the number of light emitting elements 112 is three. The arrangement of the plurality of light emitting elements 112 is not particularly limited. The plurality of light emitting elements 112 may be arranged on a straight line, may be arranged at a position corresponding to a vertex of a polygon, or may be arranged in an annular shape. In the present embodiment, the plurality of light emitting elements 112 are arranged on a straight line.
 また、本実施の形態では、中央部に配置されている発光素子112の光軸と、第1中心軸CA1(第2中心軸CA2および第3中心軸CA3)とが一致するように配置されている。ここで、「発光素子112の光軸」とは、発光素子112から立体的に出射された全光束の中心における光の進行方向をいう。また、「複数の発光素子112の光軸」とは、複数の発光素子112から立体的に出射された全光束の中心における光の進行方向をいう。また、隣接する発光素子112間の間隔(隣接する発光素子112の光軸間距離)は、特に限定されない。 Further, in the present embodiment, the optical axis of the light emitting element 112 disposed in the center and the first central axis CA1 (second central axis CA2 and third central axis CA3) are arranged to coincide. Yes. Here, the “optical axis of the light emitting element 112” refers to the traveling direction of light at the center of the total luminous flux emitted three-dimensionally from the light emitting element 112. The “optical axis of the plurality of light emitting elements 112” refers to the traveling direction of light at the center of the total luminous flux emitted three-dimensionally from the plurality of light emitting elements 112. Further, the interval between the adjacent light emitting elements 112 (the distance between the optical axes of the adjacent light emitting elements 112) is not particularly limited.
 光束制御部材113は、発光素子112から出射された光の配光を制御する。光束制御部材113は、第1光束制御部材114、第2光束制御部材115および第3光束制御部材116を含む。第1光束制御部材114の第1中心軸CA1と、第2光束制御部材115の第2中心軸CA2と、第3光束制御部材116の第3中心軸CA3とはそれぞれ一致していてもよいし、一致していなくてもよい。本実施の形態では、第1光束制御部材114の第1中心軸CA1と、第2光束制御部材115の第2中心軸CA2と、第3光束制御部材の第3中心軸CA3とは一致している。 The light flux controlling member 113 controls the light distribution of the light emitted from the light emitting element 112. The light flux control member 113 includes a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116. The first central axis CA1 of the first light flux control member 114, the second central axis CA2 of the second light flux control member 115, and the third central axis CA3 of the third light flux control member 116 may coincide with each other. , Do not have to match. In the present embodiment, the first central axis CA1 of the first light flux controlling member 114, the second central axis CA2 of the second light flux controlling member 115, and the third central axis CA3 of the third light flux controlling member coincide with each other. Yes.
 第1光束制御部材114と、第2光束制御部材115と、第3光束制御部材116とは、発光素子112側から拡散部材140側に向かって順番に配置されている。第1光束制御部材114は発光素子112側に配置されており、第2光束制御部材115は発光素子112に対して第1光束制御部材114より離れた位置(拡散部材140側)に配置されている。さらに、第3光束制御部材116は、発光素子112に対して第2光束制御部材115より離れた位置(拡散部材140側)に配置されている。第1光束制御部材114(第1入射面131および第1出射面132(図3参照))は、第1中心軸CA1を回転軸とする回転対称であり、第2光束制御部材115(第2入射面141および第2出射面142(図4参照))は、第2中心軸CA2を回転軸とする回転対称である。 The first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 are sequentially arranged from the light emitting element 112 side toward the diffusion member 140 side. The first light flux controlling member 114 is disposed on the light emitting element 112 side, and the second light flux controlling member 115 is disposed at a position (diffusing member 140 side) away from the first light flux controlling member 114 with respect to the light emitting element 112. Yes. Further, the third light flux controlling member 116 is disposed at a position (on the diffusing member 140 side) away from the second light flux controlling member 115 with respect to the light emitting element 112. The first light flux controlling member 114 (the first incident surface 131 and the first light exiting surface 132 (see FIG. 3)) is rotationally symmetric with the first central axis CA1 as the rotation axis, and the second light flux controlling member 115 (second The incident surface 141 and the second exit surface 142 (see FIG. 4) are rotationally symmetric with the second central axis CA2 as the rotation axis.
 第1光束制御部材114、第2光束制御部材115および第3光束制御部材116の材料は、同じであってもよいし、異なっていてもよい。第1光束制御部材114、第2光束制御部材115および第3光束制御部材116の材料の例には、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂や、光透過性のガラスなどが含まれる。また、第1光束制御部材114、第2光束制御部材115および第3光束制御部材116は、例えば射出成形により製造される。第1光束制御部材114、第2光束制御部材115および第3光束制御部材116の構成については、後述する。 The materials of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 may be the same or different. Examples of the material of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 include light transmissivity such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP). Resins and light-transmitting glass are included. Moreover, the 1st light beam control member 114, the 2nd light beam control member 115, and the 3rd light beam control member 116 are manufactured by injection molding, for example. The configurations of the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116 will be described later.
 拡散部材140は、面光源装置110から出射された光を拡散させつつ、透過させる。拡散部材140の例には、光拡散処理(例えば、粗面化処理)が行われた透明な板状の部材、およびビーズなどの散乱子が配合された透明な板状の部材が含まれる。 The diffusing member 140 diffuses and transmits the light emitted from the surface light source device 110. Examples of the diffusing member 140 include a transparent plate-like member that has been subjected to light diffusion treatment (for example, roughening treatment) and a transparent plate-like member that is mixed with scatterers such as beads.
 表示部材120は、例えば液晶パネルである。表示部材120は、スクリーンに投影する画像が表示される表示領域121を有する。表示領域121には、面光源装置110によって制御された光が均一に照射される。なお、本実施の形態では、表示部材120の長辺をX、短辺をYで表した場合、0.8X×0.8Yで表される領域を表示領域121とした(図2B参照)。 The display member 120 is, for example, a liquid crystal panel. The display member 120 has a display area 121 in which an image to be projected on the screen is displayed. The display area 121 is uniformly irradiated with light controlled by the surface light source device 110. In the present embodiment, when the long side of the display member 120 is represented by X and the short side is represented by Y, the region represented by 0.8X × 0.8Y is defined as the display region 121 (see FIG. 2B).
 発光素子112から出射された光は、第1光束制御部材114、第2光束制御部材115および第3光束制御部材116によって配光が制御される。第3光束制御部材116から出射された光は、拡散部材140によって拡散されつつ透過され、表示部材120を均一に照らす。 The light distribution of the light emitted from the light emitting element 112 is controlled by the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116. The light emitted from the third light flux controlling member 116 is transmitted while being diffused by the diffusing member 140 and illuminates the display member 120 uniformly.
 (光束制御部材の構成)
 前述したように、光束制御部材113は、第1光束制御部材114と、第2光束制御部材115と、第3光束制御部材116とを有する。図3は、第1光束制御部材114の構成を示す図である。図3Aは、第1光束制御部材114の平面図であり、図3Bは、底面図であり、図3Cは、側面図であり、図3Dは、図3Aに示されるA-A線の断面図である。
(Configuration of luminous flux control member)
As described above, the light flux control member 113 includes the first light flux control member 114, the second light flux control member 115, and the third light flux control member 116. FIG. 3 is a diagram illustrating a configuration of the first light flux controlling member 114. 3A is a plan view of the first light flux controlling member 114, FIG. 3B is a bottom view, FIG. 3C is a side view, and FIG. 3D is a sectional view taken along line AA shown in FIG. 3A. It is.
 第1光束制御部材114は、発光素子112から出射された光の配光を制御する。図3A~Dに示されるように、第1光束制御部材114は、第1入射面131と、第1出射面132とを有する。なお、第1光束制御部材114には、第1フランジ133が設けられていてもよい。また、第1フランジ133の裏側には、第1光束制御部材114を基板111に固定するための第1脚部(図示省略)が設けられていてもよい。第1光束制御部材114は、発光素子112と対向して配置されている。第1光束制御部材114を基板111に固定する方法は、特に限定されず、接着固定、ネジ止め、ホルダーでの固定などが採用されうる。例えば、第1光束制御部材114および基板111は、第1脚部を接着剤により基板111に接着することで互いに固定されうる。 The first light flux controlling member 114 controls the light distribution of the light emitted from the light emitting element 112. As shown in FIGS. 3A to 3D, the first light flux controlling member 114 has a first incident surface 131 and a first emission surface 132. The first light flux controlling member 114 may be provided with a first flange 133. A first leg (not shown) for fixing the first light flux controlling member 114 to the substrate 111 may be provided on the back side of the first flange 133. The first light flux controlling member 114 is disposed to face the light emitting element 112. The method for fixing the first light flux controlling member 114 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed. For example, the first light flux controlling member 114 and the substrate 111 can be fixed to each other by bonding the first leg to the substrate 111 with an adhesive.
 第1入射面131は、発光素子112から出射された光を第1光束制御部材114の内部に入射させるとともに、入射した光を第1出射面132に向けて屈折させる。第1入射面131は、発光素子112の発光面と対向して第1中心軸CA1と交わるように配置されている。第1入射面131の形状は、前述の機能を発揮できれば、特に限定されない。本実施の形態では、第1入射面131は、発光素子112の発光面に対向して配置された第1凹部134の内面である。第1入射面131は、球面であってもよく、非球面であってもよい。本実施の形態では、第1入射面131は、発光素子112から出射された光のうち、一部の光に対して負のパワーを有する。すなわち、第1入射面131の形状は凹レンズ形状であり、第1入射面131は非球面である。 The first incident surface 131 causes the light emitted from the light emitting element 112 to enter the first light flux controlling member 114 and refracts the incident light toward the first outgoing surface 132. The first incident surface 131 is disposed so as to face the light emitting surface of the light emitting element 112 and intersect the first central axis CA1. The shape of the 1st entrance plane 131 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the first incident surface 131 is the inner surface of the first recess 134 that is disposed to face the light emitting surface of the light emitting element 112. The first incident surface 131 may be a spherical surface or an aspherical surface. In the present embodiment, the first incident surface 131 has a negative power with respect to a part of the light emitted from the light emitting element 112. That is, the shape of the first incident surface 131 is a concave lens shape, and the first incident surface 131 is an aspherical surface.
 第1出射面132は、第1光束制御部材114の内部を進行した光を外部に出射させる。第1出射面132は、第1入射面131の反対側(第2光束制御部材115側)に配置されている。第1出射面132は、内側第1出射面132aと、外側第1出射面132bとを有する。 The first emission surface 132 causes the light traveling inside the first light flux controlling member 114 to be emitted to the outside. The first exit surface 132 is disposed on the opposite side of the first entrance surface 131 (on the second light flux controlling member 115 side). The first emission surface 132 has an inner first emission surface 132a and an outer first emission surface 132b.
 内側第1出射面132aは、第1中心軸CA1と交わるように配置されている。内側第1出射面132aの形状は、第1中心軸CA1に対して拡げられるように光が出射されれば特に限定されない。すなわち、内側第1出射面132aの形状は、内側第1出射面132aに到達する光束を第1中心軸CAに対してさらに拡げる場合には、凹状に形成される。この場合、内側第1出射面132aは、内側第1出射面132aに到達した光に対して負のパワーを有する。一方、内側第1出射面132aに到達する光束を第1中心軸CAに対して拡がりすぎないようにする場合には、浅い凸条に形成される。この場合、内側第1出射面132aは、内側第1出射面132aに到達した光に対して正のパワーを有する。いずれの場合であっても、内側第1出射面132aから出射される光は、第1中心軸CA1に対して拡げられるように制御される。 The inner first emission surface 132a is disposed so as to intersect with the first central axis CA1. The shape of the inner first emission surface 132a is not particularly limited as long as light is emitted so as to be expanded with respect to the first central axis CA1. That is, the shape of the inner first exit surface 132a is formed in a concave shape when the light beam reaching the inner first exit surface 132a is further expanded with respect to the first central axis CA. In this case, the inner first emission surface 132a has a negative power with respect to the light reaching the inner first emission surface 132a. On the other hand, in order to prevent the light beam reaching the inner first emission surface 132a from spreading too much with respect to the first central axis CA, it is formed into a shallow ridge. In this case, the inner first emission surface 132a has a positive power with respect to the light reaching the inner first emission surface 132a. In any case, the light emitted from the inner first emission surface 132a is controlled so as to be expanded with respect to the first central axis CA1.
 外側第1出射面132bは、内側第1出射面132aを取り囲むように、第1中心軸CA1に対して内側第1出射面132aより離れた位置に配置されている。外側第1出射面132bは、第1入射面131で入射した光のうち、一部の光を第1中心軸CA1側に向けて屈折(集光)させる。言い換えると、外側第1出射面132bは、発光素子112から出射された光のうち、第1中心軸CA1に対する出射角度が大きい光に対して、正のパワーを有する。外側第1出射面132bの形状は凸レンズ形状であり、外側第1出射面132bは非球面である。 The outer first emission surface 132b is disposed at a position away from the inner first emission surface 132a with respect to the first central axis CA1 so as to surround the inner first emission surface 132a. The outer first exit surface 132b refracts (condenses) part of the light incident on the first incident surface 131 toward the first central axis CA1. In other words, the outer first emission surface 132b has a positive power with respect to light emitted from the light emitting element 112 and having a large emission angle with respect to the first central axis CA1. The shape of the outer first emission surface 132b is a convex lens shape, and the outer first emission surface 132b is an aspherical surface.
 図4は、第2光束制御部材115の構成を示す図である。図4Aは、第2光束制御部材115の平面図であり、図4Bは、底面図であり、図4Cは、側面図であり、図4Dは、図4Aに示されるA-A線の断面図である。 FIG. 4 is a diagram showing a configuration of the second light flux controlling member 115. 4A is a plan view of the second light flux controlling member 115, FIG. 4B is a bottom view, FIG. 4C is a side view, and FIG. 4D is a sectional view taken along line AA shown in FIG. 4A. It is.
 第2光束制御部材115は、第1光束制御部材114から出射された光を略平行光となるように制御する。図4A~Dに示されるように、第2光束制御部材115は、第2入射面141と、第2出射面142とを有する。第2光束制御部材115の形状は、前述の機能を発揮できれば特に限定されない。第2光束制御部材115は、第2入射面141に凸レンズ面を有していてもよいし、第2出射面142に凸レンズ面を有していてもよい。また、小型化する観点から、第2光束制御部材115は、屈折型のフレネルレンズ部を有していてもよいし、反射型のフレネルレンズ部を有していてもよい。本実施の形態では、第2光束制御部材115は、第2出射面142に屈折型のフレネルレンズ部145を有している。屈折型のフレネルレンズ部145を有する第2光束制御部材115は、反射型のフレネルレンズ部を有する第2光束制御部材115と比較して、組み立て誤差を吸収できる。なお、第2光束制御部材115には、第2フランジ143が設けられていてもよい。また、第2フランジ143の裏側には、第2光束制御部材115を基板111に固定するための第2脚部(図示省略)が設けられていてもよい。第2光束制御部材115を基板111に固定する方法は、特に限定されず、接着固定、ネジ止め、ホルダーでの固定などが採用されうる。例えば、第2光束制御部材115および基板111は、第2脚部を接着剤により基板111に接着することで互いに固定されうる。 The second light flux controlling member 115 controls the light emitted from the first light flux controlling member 114 to be substantially parallel light. As shown in FIGS. 4A to 4D, the second light flux controlling member 115 has a second incident surface 141 and a second emitting surface 142. The shape of the second light flux controlling member 115 is not particularly limited as long as the above function can be exhibited. The second light flux controlling member 115 may have a convex lens surface on the second incident surface 141, and may have a convex lens surface on the second outgoing surface 142. From the viewpoint of miniaturization, the second light flux controlling member 115 may have a refractive Fresnel lens part or a reflective Fresnel lens part. In the present embodiment, the second light flux controlling member 115 has a refractive Fresnel lens portion 145 on the second exit surface 142. The second light flux controlling member 115 having the refractive Fresnel lens portion 145 can absorb an assembly error as compared with the second light flux controlling member 115 having the reflective Fresnel lens portion. The second light flux controlling member 115 may be provided with a second flange 143. Further, on the back side of the second flange 143, a second leg (not shown) for fixing the second light flux controlling member 115 to the substrate 111 may be provided. The method for fixing the second light flux controlling member 115 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed. For example, the second light flux controlling member 115 and the substrate 111 can be fixed to each other by bonding the second leg portion to the substrate 111 with an adhesive.
 第2入射面141は、第1光束制御部材114から出射された光を第2光束制御部材115の内部に入射させるとともに、フレネルレンズ部145に向けて屈折させる。第2入射面141の形状は、前述の機能を発揮できれば、特に限定されない。本実施の形態では、第2入射面141は、平面である。 The second incident surface 141 causes the light emitted from the first light flux controlling member 114 to enter the second light flux controlling member 115 and refract it toward the Fresnel lens portion 145. The shape of the 2nd entrance plane 141 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, second incident surface 141 is a flat surface.
 第2出射面142は、第2光束制御部材115の内部を進行した光を外部に出射させるとともに、当該光を第2中心軸CA2に対して略平行光となるように屈折させる。第2出射面142は、フレネルレンズ部145を有する。フレネルレンズ部145は、同心に配置された平面視形状が円状の複数の凸部146を有する。 The second emission surface 142 emits the light traveling inside the second light flux controlling member 115 to the outside and refracts the light so as to be substantially parallel to the second central axis CA2. The second exit surface 142 has a Fresnel lens portion 145. The Fresnel lens portion 145 has a plurality of convex portions 146 arranged concentrically and having a circular shape in plan view.
 複数の凸部146は、それぞれ、入射した光を屈折させる屈折面147と、隣接する屈折面147を接続する接続面148と、を有する。凸部146において、屈折面147は、外側に配置されており、接続面148は、内側(第2中心軸CA2側)に配置されている。なお、複数の屈折面147は、第1光束制御部材114(第2光束制御部材115)の第1中心軸CA1(第2中心軸CA2)と光軸OAが一致するように配置された発光素子112から出射された光が平行光となるように設計されている。 Each of the plurality of convex portions 146 has a refracting surface 147 that refracts incident light and a connection surface 148 that connects adjacent refracting surfaces 147. In the convex portion 146, the refracting surface 147 is disposed on the outer side, and the connecting surface 148 is disposed on the inner side (second central axis CA2 side). The plurality of refracting surfaces 147 are arranged so that the first central axis CA1 (second central axis CA2) of the first light flux controlling member 114 (second light flux controlling member 115) and the optical axis OA coincide with each other. It is designed so that the light emitted from 112 becomes parallel light.
 図5は、第3光束制御部材116の構成を示す図である。図5Aは、第3光束制御部材116の平面図であり、図5Bは、底面図であり、図5Cは、側面図であり、図5Dは、図5Aに示されるA-A線の断面図である。図6Aおよび図6Bは、他の第3光束制御部材116を示す断面図である。 FIG. 5 is a diagram showing a configuration of the third light flux controlling member 116. 5A is a plan view of the third light flux controlling member 116, FIG. 5B is a bottom view, FIG. 5C is a side view, and FIG. 5D is a sectional view taken along line AA shown in FIG. 5A. It is. 6A and 6B are sectional views showing another third light flux controlling member 116. FIG.
 第3光束制御部材116は、第2光束制御部材116から出射された光を輝度ムラが生じないように制御して拡散部材140に向けて出射する。図5A~Dに示されるように、第3光束制御部材116は、第3入射面151と、第3出射面152とを有する。なお、第3光束制御部材116は、第3フランジ154を有していてもよい。第3入射面151は、第2光束制御部材115から出射された光を入射させる。図5に示される例では、第3入射面151の形状は、平面である。 The third light flux controlling member 116 emits the light emitted from the second light flux controlling member 116 toward the diffusing member 140 while controlling so that luminance unevenness does not occur. As shown in FIGS. 5A to 5D, the third light flux controlling member 116 has a third entrance surface 151 and a third exit surface 152. Note that the third light flux controlling member 116 may have a third flange 154. The third incident surface 151 allows the light emitted from the second light flux controlling member 115 to enter. In the example shown in FIG. 5, the shape of the third entrance surface 151 is a plane.
 第3出射面152は、第3入射面151の反対側に配置されており、第3光束制御部材116の内部を進行した光を拡散部材140に向けて出射させる。第3出射面152は、第3中心軸CA3を含む断面形状が凸状の複数の凸レンズ面153または複数の凹レンズ面を含む。ここで「第3中心軸CA3」とは、第3光束制御部材116を平面視した場合における、第3出射面152の中心部分を意味する。また、「第3中心軸CA3を含む断面」とは、第3中心軸CA3および後述の第2の方向を含む平面で切断した断面を意味する。図5に示される例では、第3光束制御部材116は、第3出射面152に凸レンズ面153を有しているが、それに限らず、第3入射面151に凸レンズ面153を有していてもよい。また、図6Aに示されるように、第3入射面151に凹レンズ面155を有していてもよいし、図6Bに示されるように、第3出射面152に凹レンズ面155を有していてもよい。なお、凸レンズ面153が第3入射面151および第3出射面152に配置された場合は、両面の凸レンズを経由した光の集光効果が、片側に凸レンズ面を形成した場合と同等の効果が得られるように調整が必要となったり、一方の面の凸レンズと他方の面の凸レンズとの位置合わせが必要となったりするなど、片側に形成する場合と比べて高精度な第3光束制御部材116を作成する上で難易度が高い。 The third exit surface 152 is disposed on the opposite side of the third entrance surface 151 and emits the light traveling inside the third light flux controlling member 116 toward the diffusing member 140. The third emission surface 152 includes a plurality of convex lens surfaces 153 or a plurality of concave lens surfaces having a convex cross-sectional shape including the third central axis CA3. Here, the “third central axis CA3” means a central portion of the third emission surface 152 when the third light flux controlling member 116 is viewed in plan. In addition, “a cross section including the third central axis CA3” means a cross section cut along a plane including the third central axis CA3 and a second direction described later. In the example shown in FIG. 5, the third light flux controlling member 116 has a convex lens surface 153 on the third exit surface 152, but is not limited thereto, and has a convex lens surface 153 on the third incident surface 151. Also good. Further, as shown in FIG. 6A, the third entrance surface 151 may have a concave lens surface 155, and as shown in FIG. 6B, the third exit surface 152 has a concave lens surface 155. Also good. In addition, when the convex lens surface 153 is arrange | positioned at the 3rd entrance surface 151 and the 3rd output surface 152, the condensing effect of the light which passed through the convex lens of both surfaces has an effect equivalent to the case where the convex lens surface is formed in one side. The third light flux controlling member is highly accurate compared to the case where it is formed on one side, for example, adjustment is necessary to obtain it, or it is necessary to align the convex lens on one surface and the convex lens on the other surface. Difficulty in creating 116.
 凸レンズ面153は、第3光束制御部材116の厚み方向に垂直である第1の方向に直線状に延在する稜線を含み、かつ厚み方向および第1の方向に垂直である第2の方向にのみ曲率を有する曲面である。すなわち、本実施の形態に係る凸レンズ面153は、シリンドリカルな構造を有する。また、凸レンズ面153は、第2の方向に隙間なく複数配置されている。第3中心軸CA3を含む凸レンズ面153の断面形状は、円弧であってもよいし、頂部から離れるにつれて曲率半径が大きくなる曲線であってもよいし、第3中心軸CA3と交わる部分が円弧で、円弧から離れるにつれて曲率半径が大きくなる曲線であってもよい。なお、第3光束制御部材116の厚み方向は、第3中心軸CA3に沿う方向である。 The convex lens surface 153 includes a ridge line extending linearly in a first direction perpendicular to the thickness direction of the third light flux controlling member 116, and in a second direction perpendicular to the thickness direction and the first direction. Only curved surface with curvature. That is, the convex lens surface 153 according to the present embodiment has a cylindrical structure. A plurality of convex lens surfaces 153 are arranged in the second direction without any gap. The cross-sectional shape of the convex lens surface 153 including the third central axis CA3 may be an arc, a curve having a radius of curvature that increases with distance from the top, or a portion that intersects the third central axis CA3 is an arc. Thus, the curve may have a radius of curvature that increases with distance from the arc. The thickness direction of the third light flux controlling member 116 is a direction along the third central axis CA3.
 また、第3フランジ154の裏側には、第3光束制御部材116を基板111に固定するための第3脚部(図示省略)が設けられていてもよい。第3光束制御部材116を基板111に固定する方法は、特に限定されず、接着固定、ネジ止め、ホルダーでの固定などが採用されうる。例えば、第3光束制御部材116および基板111は、第3脚部を接着剤により基板111に接着することで互いに固定されうる。 Further, on the back side of the third flange 154, a third leg (not shown) for fixing the third light flux controlling member 116 to the substrate 111 may be provided. A method for fixing the third light flux controlling member 116 to the substrate 111 is not particularly limited, and adhesive fixing, screwing, fixing with a holder, or the like may be employed. For example, the third light flux controlling member 116 and the substrate 111 can be fixed to each other by bonding the third leg portion to the substrate 111 with an adhesive.
 前述のとおり、図6A、Bに示されるように、第3光束制御部材116は、第3入射面151または第3出射面152に複数の凹レンズ面155を有していてもよい。凹レンズ面155は、第3光束制御部材116の厚み方向に垂直である第1の方向に直線状に延在する稜線を含み、かつ厚み方向および第1の方向に垂直である第2の方向にのみ曲率を有する曲面である。凹レンズ面155は、第2の方向に隙間なく複数配置される。第3中心軸CA3を含む凹レンズ面155の断面形状は、円弧であってもよいし、頂部から離れるにつれて曲率半径が大きくなる曲線であってもよいし、第3中心軸CA3と交わる部分が円弧で、円弧から離れるにつれて曲率半径が大きくなる曲線であってもよい。なお、第3光束制御部材116の厚み方向は、第3中心軸CA3に沿う方向である。 As described above, as shown in FIGS. 6A and 6B, the third light flux controlling member 116 may have a plurality of concave lens surfaces 155 on the third incident surface 151 or the third emitting surface 152. The concave lens surface 155 includes a ridge line extending linearly in a first direction perpendicular to the thickness direction of the third light flux controlling member 116, and in a second direction perpendicular to the thickness direction and the first direction. Only curved surface with curvature. A plurality of concave lens surfaces 155 are arranged in the second direction without a gap. The cross-sectional shape of the concave lens surface 155 including the third central axis CA3 may be an arc, a curve having a radius of curvature that increases with distance from the top, or a portion that intersects the third central axis CA3 is an arc. Thus, the curve may have a radius of curvature that increases with distance from the arc. The thickness direction of the third light flux controlling member 116 is a direction along the third central axis CA3.
 図7は、表示装置100の光路を示す図である。図7では、光路を示すため、ハッチングを省略している。図7に示されるように、各発光素子112から出射された光は、第2光束制御部材115へ到達した時点で混ざり合うように第1光束制御部材114で制御され、第1出射面132から出射される。第1光束制御部材114から出射された光は、第2光束制御部材115に到達する。このとき、第2光束制御部材115に到達した光の光線密度は、中央部では低く、周辺部では高くなるように制御される。言い換えると、第2光束制御部材115の第2入射面141では、光軸近傍の光度は低く、光軸に対して大きな角度の光度は高い。その結果、第2光束制御部材115における照度は光軸近傍から周辺部に至るまで均一になる。第2光束制御部材115に到達した光は、第2光束制御部材115により略平行光となるように制御され、第2出射面142から出射される。第2光束制御部材115から出射された光は、第3光束制御部材116に到達する。第3光束制御部材116に到達した光は、第3光束制御部材116により表示装置100を斜めから見た場合にも輝度が均一となるように制御され、第3出射面152から出射される。第3出射面152から出射された光は、表示装置100を斜めから見た場合にも輝度が均一となるように表示部材120を照らす。 FIG. 7 is a diagram showing an optical path of the display device 100. In FIG. 7, hatching is omitted to show the optical path. As shown in FIG. 7, the light emitted from each light emitting element 112 is controlled by the first light flux control member 114 so as to be mixed when it reaches the second light flux control member 115, and from the first emission surface 132. Emitted. The light emitted from the first light flux control member 114 reaches the second light flux control member 115. At this time, the light density of the light reaching the second light flux controlling member 115 is controlled to be low in the central part and high in the peripheral part. In other words, the second incident surface 141 of the second light flux controlling member 115 has a low luminous intensity near the optical axis and a high luminous intensity at a large angle with respect to the optical axis. As a result, the illuminance at the second light flux controlling member 115 is uniform from the vicinity of the optical axis to the peripheral portion. The light reaching the second light flux controlling member 115 is controlled by the second light flux controlling member 115 so as to be substantially parallel light, and is emitted from the second light exit surface 142. The light emitted from the second light flux control member 115 reaches the third light flux control member 116. The light reaching the third light flux controlling member 116 is controlled by the third light flux controlling member 116 so that the luminance is uniform even when the display device 100 is viewed obliquely, and is emitted from the third light exit surface 152. The light emitted from the third emission surface 152 illuminates the display member 120 so that the luminance is uniform even when the display device 100 is viewed obliquely.
 発光素子112から出射された光は、第1光束制御部材114および第2光束制御部材115によって、光軸と略平行となるように制御される。そして、第1光束制御部材114および第2光束制御部材115によって制御された光は、第3光束制御部材116に入射する。発光素子112から出射される光の利用効率を向上させる観点から、第1光束制御部材114から出射された光のうち、大部分の光は、第2光束制御部材115に入射することが好ましい。よって、第1光束制御部材114から出射された光のうち、大部分の光が第2光束制御部材115に入射するように、第1光束制御部材114と、第2光束制御部材115との間隔が設定されている。 The light emitted from the light emitting element 112 is controlled by the first light flux control member 114 and the second light flux control member 115 so as to be substantially parallel to the optical axis. The light controlled by the first light flux control member 114 and the second light flux control member 115 is incident on the third light flux control member 116. From the viewpoint of improving the utilization efficiency of the light emitted from the light emitting element 112, it is preferable that most of the light emitted from the first light flux controlling member 114 is incident on the second light flux controlling member 115. Therefore, the distance between the first light flux control member 114 and the second light flux control member 115 so that most of the light emitted from the first light flux control member 114 enters the second light flux control member 115. Is set.
 前述した表示装置100において、発光素子112と、光束制御部材113とは、以下の式(1)を満たすように配置される。
 -0.6<d/f<0   (1)
 ここで、dは、第1光束制御部材114の第1中心軸CA1と、第1光束制御部材114の中心軸CA1から最も離れた発光素子112における光軸OAとの距離(以下、単に「距離d」ともいう)である。また、fは、第1光束制御部材114の焦点距離(以下、単に「焦点距離f」ともいう)である。
In the display device 100 described above, the light emitting element 112 and the light flux controlling member 113 are arranged so as to satisfy the following expression (1).
-0.6 <d / f <0 (1)
Here, d is a distance between the first central axis CA1 of the first light flux controlling member 114 and the optical axis OA in the light emitting element 112 farthest from the central axis CA1 of the first light flux controlling member 114 (hereinafter simply referred to as “distance”. d ”). Further, f is a focal length of the first light flux controlling member 114 (hereinafter also simply referred to as “focal length f”).
 図8および図9を参照して、発光素子112と、光束制御部材113との関係について説明する。図8Aは、第1光束制御部材114の焦点距離fを説明するための図であり、図8Bは、焦点距離fと、距離dとの関係を説明するための図である。図9A、Bは、照射領域Sを説明するための図である。図9Aは、距離dが大きい場合の照射領域を説明するための図であり、図9Bは、距離dが小さい場合の照射領域を説明するための図である。 The relationship between the light emitting element 112 and the light flux controlling member 113 will be described with reference to FIGS. FIG. 8A is a diagram for explaining the focal length f of the first light flux controlling member 114, and FIG. 8B is a diagram for explaining the relationship between the focal length f and the distance d. 9A and 9B are diagrams for explaining the irradiation region S. FIG. FIG. 9A is a diagram for explaining an irradiation region when the distance d is large, and FIG. 9B is a diagram for explaining the irradiation region when the distance d is small.
 第1光束制御部材114は、レンズ全体として発光素子112から出射された光を拡げる方向に機能するため、以下のように焦点距離fが定義される。図8Aに示されるように、第1光束制御部材114の焦点距離fについては、まず、第1光束制御部材114の第1中心軸CA1と平行な仮想入射光L1を第1入射面131側から入射させると仮定する。次いで、仮想入射光L1が第1出射面132から出射する仮想出射光L1’を想定する。次いで、仮想入射光L1を入射方向に延在させるとともに、仮想出射光L1’を出射方向とは逆に延在させたときの交点を主点Aとする。次いで、第1出射面132から出射する仮想出射光L1’をさらに出射方向とは逆に延在させた仮想線と、第1光束制御部材114の第1中心軸CA1との交点を焦点Fとする。このとき主点Aと焦点Fとの第1中心軸CA1に沿う距離が焦点距離fとなる。なお、本実施の形態では、焦点距離fは、マイナスの値となる。 Since the first light flux controlling member 114 functions in the direction of expanding the light emitted from the light emitting element 112 as a whole lens, the focal length f is defined as follows. As shown in FIG. 8A, for the focal length f of the first light flux controlling member 114, first, virtual incident light L1 parallel to the first central axis CA1 of the first light flux controlling member 114 is transmitted from the first incident surface 131 side. Assume that it is incident. Next, a virtual outgoing light L <b> 1 ′ from which the virtual incident light L <b> 1 is emitted from the first outgoing surface 132 is assumed. Next, the intersection point when the virtual incident light L1 extends in the incident direction and the virtual emitted light L1 'extends in the direction opposite to the emission direction is defined as a principal point A. Next, an intersection point between a virtual line obtained by further extending the virtual outgoing light L1 ′ emitted from the first outgoing surface 132 opposite to the outgoing direction and the first central axis CA1 of the first light flux controlling member 114 is defined as a focal point F. To do. At this time, the distance along the first central axis CA1 between the principal point A and the focal point F is the focal length f. In the present embodiment, the focal length f is a negative value.
 次いで、焦点距離fと、距離dとの関係について説明する。図8Bに示されるように、ここでは、1列に光軸の中心間距離が距離dずつ離れて配列された3個の発光素子112a、112b、112cと、1個の第1光束制御部材114とを想定する。また、中心に配置された発光素子112bの光軸OAbは、第1光束制御部材114の第1中心軸CA1と一致しているとする。すなわち、第1光束制御部材114の第1中心軸CA1から最も離れた発光素子112は、発光素子112a(発光素子112c)である。さらに、各発光素子112a、112b、112cから出射された仮想出射光の仮想被照射面Q(本実施の形態の拡散部材140に相当する)における到達点をそれぞれPa、Pb、Pcとする。 Next, the relationship between the focal length f and the distance d will be described. As shown in FIG. 8B, here, three light emitting elements 112a, 112b, and 112c in which the distance between the centers of the optical axes is arranged in a line at a distance d and one first light flux controlling member 114 are arranged. Assuming that Further, it is assumed that the optical axis OAb of the light emitting element 112b disposed at the center coincides with the first central axis CA1 of the first light flux controlling member 114. That is, the light emitting element 112 farthest from the first central axis CA1 of the first light flux controlling member 114 is the light emitting element 112a (light emitting element 112c). Furthermore, the arrival points on the virtual irradiated surface Q (corresponding to the diffusing member 140 of the present embodiment) of the virtual emitted light emitted from each of the light emitting elements 112a, 112b, and 112c are defined as Pa, Pb, and Pc, respectively.
 図8Bに示されるように、第1光束制御部材114の第1中心軸CA1と、第1中心軸CA1から最も離れた発光素子112a(112c)における光軸OAとの距離(隣接する発光素子112の中心間距離)dが長くなると、各発光素子112a、112b、112cから出射された光線の仮想平面における到達点間の距離Dが長くなることが分かる。ここで、発光素子112a、112b、112cから出射された光は、仮想平面の所定の領域(照射領域S)を照らすため、各発光素子112a、112b、112cによって照射される照射領域S同士が重なる面積が小さくなる(図9A参照)。逆に、距離dが短くなると、各発光素子112a、112b、112cによって照射される照射領域S同士が重なる面積が大きくなる(図9B参照)。このように、距離dを調整することで、各発光素子112a、112b、112cによって照射される領域同士が重なる面積を調整できる。 As shown in FIG. 8B, the distance between the first central axis CA1 of the first light flux controlling member 114 and the optical axis OA in the light emitting element 112a (112c) farthest from the first central axis CA1 (adjacent light emitting elements 112). It can be seen that the distance D between the arrival points in the virtual plane of the light beams emitted from the light emitting elements 112a, 112b, and 112c becomes longer as the distance d between the centers of the light sources becomes longer. Here, since the light emitted from the light emitting elements 112a, 112b, and 112c illuminates a predetermined area (irradiation area S) on the virtual plane, the irradiation areas S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other. The area becomes smaller (see FIG. 9A). Conversely, when the distance d is shortened, the area where the irradiation regions S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other increases (see FIG. 9B). Thus, by adjusting the distance d, the area where the regions irradiated by the light emitting elements 112a, 112b, and 112c overlap can be adjusted.
 一方、図8Bに示されるように、第1光束制御部材114の焦点距離fが短くなると、各発光素子112a、112b、112cから出射された光線の仮想平面における到達点間の距離Dが長くなることが分かる。ここで、発光素子112a、112b、112cから出射された光は、仮想平面の所定の領域(照射領域S)を照らすため、各発光素子112a、112b、112cによって照射される照射領域S同士が重なる面積が小さくなる(図9A参照)。逆に、焦点距離fが長くなると、各発光素子112a、112b、112cによって照射される照射領域S同士が重なる面積が大きくなる(図9B参照)。このように、焦点距離fを調整することで、各発光素子112a、112b、112cによって照射される領域同士が重なる面積を調整できる。 On the other hand, as shown in FIG. 8B, when the focal length f of the first light flux controlling member 114 is shortened, the distance D between the reaching points in the virtual plane of the light beams emitted from the respective light emitting elements 112a, 112b, and 112c is lengthened. I understand that. Here, since the light emitted from the light emitting elements 112a, 112b, and 112c illuminates a predetermined area (irradiation area S) on the virtual plane, the irradiation areas S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other. The area becomes smaller (see FIG. 9A). Conversely, as the focal length f increases, the area where the irradiation regions S irradiated by the light emitting elements 112a, 112b, and 112c overlap each other increases (see FIG. 9B). Thus, by adjusting the focal length f, the area where the regions irradiated by the light emitting elements 112a, 112b, and 112c overlap each other can be adjusted.
 前述したように、焦点距離fと、第1光束制御部材114の第1中心軸CA1から最も離れた発光素子112の光軸との距離dは、後述する表示部材120における均斉度に大きく影響する。より具体的には、dが大きくなることによりd/fが-0.6以下となる場合には、前述の発光素子112からの出射光の照射領域S同士の重なりが小さくなる。特に長方形の画面の場合、短手(短辺)方向と比べて、長手(長辺)方向の重なりが少なくなるため長手方向の端部において輝度を十分に確保できない。一方、fを小さくして周辺を明るくしようとする場合には、d/fの絶対値がさらに小さくなるため、ますます照射領域S同士の重なりが小さくなってしまう。 As described above, the distance d between the focal length f and the optical axis of the light emitting element 112 farthest from the first central axis CA1 of the first light flux controlling member 114 greatly affects the uniformity in the display member 120 described later. . More specifically, when d / f becomes −0.6 or less due to an increase in d, the overlap between the irradiation regions S of the light emitted from the light emitting elements 112 is reduced. In particular, in the case of a rectangular screen, there is less overlap in the long (long side) direction than in the short (short side) direction, so that sufficient luminance cannot be secured at the end in the long direction. On the other hand, when attempting to make f brighter and brighten the periphery, the absolute value of d / f becomes even smaller, and the overlap between the irradiation areas S becomes smaller.
 d/fが0超の場合、第1光束制御部材114の正のパワーが強くなりすぎてしまい、中心部の光線密度が周辺部の光線密度より高くなり、中心部の輝度が上昇してしまう。 When d / f is greater than 0, the positive power of the first light flux controlling member 114 becomes too strong, the light density at the center becomes higher than the light density at the periphery, and the brightness at the center increases. .
 一方、d/fが-0.6<d/f<0を満たす場合には、発光素子112からの出射光の照射領域同士が適切に重なり合うため、輝度ムラが抑制される。 On the other hand, when d / f satisfies −0.6 <d / f <0, the irradiation areas of the light emitted from the light emitting elements 112 are appropriately overlapped, and thus uneven luminance is suppressed.
 前述した表示装置100において、光束制御部材113と、拡散部材140とは、さらに以下の式(2)および式(3)を満たすように配置される。
 0<w/t<0.85   (2)
 0.4<w/R<1.4   (3)
 ここで、wは、第3中心軸CA3を含む断面における凸レンズ面153または凹レンズ面155の幅である。Rは、凸レンズ面または凹レンズ面155の曲率半径である。tは、凸レンズ面153または凹レンズ面155の中心線と第3光束制御部材116における拡散部材140側の面との交点(凸レンズ面153の頂部または凹レンズ面155の谷底部)と拡散部材140との距離である。
In the display device 100 described above, the light flux controlling member 113 and the diffusing member 140 are further arranged so as to satisfy the following expressions (2) and (3).
0 <w 2 /t<0.85 (2)
0.4 <w / R <1.4 (3)
Here, w is the width of the convex lens surface 153 or the concave lens surface 155 in the cross section including the third central axis CA3. R is the radius of curvature of the convex lens surface or concave lens surface 155. t is the intersection of the center line of the convex lens surface 153 or the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusion member 140 side (the top of the convex lens surface 153 or the bottom of the concave lens surface 155) and the diffusion member 140. Distance.
 図10、11を参照して、第3光束制御部材116と、拡散部材140との関係について説明する。図10Aは、本実施の形態に係る第3光束制御部材116と拡散部材140との関係を示す図であり、図10Bは、比較例に係る第3光束制御部材116と拡散部材140との関係を示す図である。なお、図10A、Bでは、光路を示すため、第3光束制御部材116および拡散部材140のハッチングを省略している。また、ここでは、第3出射面152に凸レンズ面153を有する第3光束制御部材116を例に挙げて説明するが、第3入射面151に凸レンズ面153を有する第3光束制御部材116であっても同じである。また、第3入射面151または第3出射面152に凹レンズ面155を有する第3光束制御部材116であっても同じである。 10 and 11, the relationship between the third light flux controlling member 116 and the diffusing member 140 will be described. FIG. 10A is a diagram illustrating a relationship between the third light flux controlling member 116 and the diffusing member 140 according to the present embodiment, and FIG. 10B is a relationship between the third light flux controlling member 116 and the diffusing member 140 according to the comparative example. FIG. 10A and 10B, the third light flux controlling member 116 and the diffusing member 140 are not hatched to show the optical path. Here, the third light flux controlling member 116 having the convex lens surface 153 on the third exit surface 152 will be described as an example, but the third light flux controlling member 116 having the convex lens surface 153 on the third incident surface 151. It is the same. The same applies to the third light flux controlling member 116 having the concave lens surface 155 on the third incident surface 151 or the third emitting surface 152.
 図10Aに示されるように、w/tが0超であって、0.85未満となるように第3光束制御部材116および拡散部材140が配置された表示装置100では、拡散部材140上において、各凸レンズ面153から出射された光が重なり合うため、輝度ムラを抑制できる。また、w/tは、値が小さい方が表示装置100を平面視した場合の輝度ムラが少なくなるため好ましいが、wが凸レンズ面153の加工限界より小さくなったり、tが大きくなりすぎてしまったりするため、w/tは、0.0001以上であることがより好ましい。 As shown in FIG. 10A, in display device 100 in which third light flux controlling member 116 and diffusing member 140 are arranged so that w 2 / t is greater than 0 and less than 0.85, In FIG. 5, since the light emitted from the convex lens surfaces 153 overlaps, the luminance unevenness can be suppressed. Further, it is preferable that w 2 / t has a smaller value because luminance unevenness when the display device 100 is viewed in plan is reduced. However, w is smaller than the processing limit of the convex lens surface 153 or t is too large. Therefore, w 2 / t is more preferably 0.0001 or more.
 一方、wが大きくなるか、またはtが小さくなることにより、w/tが0.85を超えると、第3光束制御部材116から出射された光の拡散部材140上における重なりが少なくなる。これにより、表示装置100を平面視した場合に、輝度ムラが生じてしまう。なお、図10Bでは、wが大きくなった場合について図示している。 On the other hand, if w 2 / t exceeds 0.85 by increasing w or decreasing t, the overlap of light emitted from the third light flux controlling member 116 on the diffusing member 140 decreases. Thereby, when the display device 100 is viewed in plan, luminance unevenness occurs. Note that FIG. 10B illustrates the case where w increases.
 図11Aは、比較例に係る第3光束制御部材116の幅wと、凸レンズ面153の曲率半径Rとの関係を示す図であり、図11Bは、比較例に係る第3光束制御部材116の幅wと、凸レンズ面153の曲率半径Rとの関係を示す図である。なお、図11A、Bでは、光路を示すため、第3光束制御部材116および拡散部材140のハッチングを省略している。 FIG. 11A is a diagram illustrating the relationship between the width w of the third light flux controlling member 116 according to the comparative example and the radius of curvature R of the convex lens surface 153, and FIG. 11B illustrates the third light flux controlling member 116 according to the comparative example. It is a figure which shows the relationship between the width w and the curvature radius R of the convex lens surface 153. FIG. 11A and 11B, the third light flux controlling member 116 and the diffusing member 140 are not hatched to show the optical path.
 wが小さくなるか、またはRが大きくなることでw/Rが0.4以下になると、光線を屈折させるパワーが小さくなり、光軸OAに対して斜めに出射される光量が少なくなるため、表示装置100を斜めから見た場合に、端部が暗くなり、輝度ムラが生じてしまう。なお、図11Aでは、wが小さくなった場合について図示している。 When w becomes small or w / R becomes 0.4 or less because R becomes large, the power to refract the light becomes small, and the amount of light emitted obliquely with respect to the optical axis OA decreases. When the display device 100 is viewed from an oblique direction, the end portion becomes dark and uneven brightness occurs. Note that FIG. 11A illustrates a case where w is reduced.
 一方、wが大きくなるか、またはRが小さくなることでw/Rが1.4以上になると、光を屈折させるパワーが大きくなり、第3光束制御部材116から出射される光の光軸OAに対する角度が大きくなりすぎてしまう。これにより、表示装置100を斜めから見た場合における輝度ムラは改善されるが、表示装置100に要求される光量を確保することができなくなってしまう。 On the other hand, when w is increased or w / R is 1.4 or more because R is decreased, the power for refracting light is increased, and the optical axis OA of the light emitted from the third light flux controlling member 116 is increased. The angle with respect to becomes too large. As a result, luminance unevenness when the display device 100 is viewed obliquely is improved, but the amount of light required for the display device 100 cannot be secured.
 また、特に図示しないが、w/Rが0.4超であって1.4未満であれば、輝度ムラが生じることなく、かつ表示装置100に要求される光量を確保できる。 Although not particularly illustrated, if w / R is more than 0.4 and less than 1.4, luminance unevenness does not occur and the amount of light required for the display device 100 can be secured.
 (効果)
 以上のように、実施の形態1に係る面光源装置120を有する表示装置100では、第1光束制御部材114の焦点距離fと、第1光束制御部材114の第1中心軸CA1および第1光束制御部材114の第1中心軸CA1から最も離れた発光素子112における光軸OAとの距離dとは、-0.6<d/f<0を満たす。また、第3中心軸CA3を含む断面における凸レンズ面153または凹レンズ面155の幅wと、凸レンズ面153または凹レンズ面155の曲率半径Rと、凸レンズ面153または凹レンズ面155の中心線と第3光束制御部材116における拡散部材140側の面との交点と拡散部材140との距離tは、0<w/t<0.85および0.4<w/R<1.4を満たす。後述する実施例に示されるように、d/f、w/tおよびw/Rを所定の値の範囲内とすることで、複数の発光素子112を使用する場合であっても表示部材120を均一に照らすことができる。
(effect)
As described above, in the display device 100 having the surface light source device 120 according to the first embodiment, the focal length f of the first light flux control member 114, the first central axis CA1 and the first light flux of the first light flux control member 114. The distance d from the optical axis OA of the light emitting element 112 farthest from the first central axis CA1 of the control member 114 satisfies −0.6 <d / f <0. Further, the width w of the convex lens surface 153 or the concave lens surface 155 in the cross section including the third central axis CA3, the radius of curvature R of the convex lens surface 153 or the concave lens surface 155, the center line of the convex lens surface 153 or the concave lens surface 155, and the third light flux. The distance t between the intersection of the control member 116 and the surface on the diffusion member 140 side and the diffusion member 140 satisfies 0 <w 2 /t<0.85 and 0.4 <w / R <1.4. As shown in the examples described later, by setting d / f, w 2 / t, and w / R within predetermined ranges, the display member 120 is used even when a plurality of light emitting elements 112 are used. Can be illuminated uniformly.
 また、第2光束制御部材115は、屈折型のフレネルレンズ部145を有するため、表示装置100を組み付ける場合に、組み付け誤差を吸収することができる。 In addition, since the second light flux controlling member 115 includes the refractive type Fresnel lens portion 145, when the display device 100 is assembled, it is possible to absorb an assembly error.
 (好ましい変形例1)
 次いで、実施の形態1に係る表示装置100にいて、さらに輝度ムラが生じないための条件について説明する。前述したように、表示装置100において、発光素子112と、光束制御部材113とは、以下の式(1)~(3)を満たすように配置される。
 -0.6<d/f<0   (1)
 0<w/t<0.85   (2)
 0.4<w/R<1.4   (3)
(Preferred modification 1)
Next, conditions for preventing uneven luminance in the display device 100 according to Embodiment 1 will be described. As described above, in the display device 100, the light emitting element 112 and the light flux controlling member 113 are disposed so as to satisfy the following expressions (1) to (3).
-0.6 <d / f <0 (1)
0 <w 2 /t<0.85 (2)
0.4 <w / R <1.4 (3)
 表示装置100は、前述した式(1)~(3)に加え、以下の式(4)~式(6)をさらに満たすように構成されることで、さらに輝度ムラが生じないようにできる。 The display device 100 is configured to further satisfy the following formulas (4) to (6) in addition to the above-described formulas (1) to (3), thereby further preventing luminance unevenness.
 図12は、式(4)および式(5)を説明するための図である。図13は、式(6)を説明するための図である。なお、図12では、光路を示すため、基板111、発光素子112および第1光束制御部材114のハッチングを省略している。また、図13では、光路を示すため、基板111、発光素子112、第1光束制御部材114および第2光束制御部材115のハッチングを省略している。 FIG. 12 is a diagram for explaining the equations (4) and (5). FIG. 13 is a diagram for explaining the equation (6). In FIG. 12, hatching of the substrate 111, the light emitting element 112, and the first light flux controlling member 114 is omitted to show the optical path. In FIG. 13, hatching of the substrate 111, the light emitting element 112, the first light flux control member 114, and the second light flux control member 115 is omitted to show the optical path.
 図12に示されるように、発光装置130(表示装置100)は、光軸OAが第1中心軸CA1と一致するように配置された発光素子112の発光中心から出射された第1光線L1の出射角度をθ1とし、第1光線L1が第1光束制御部材114で制御された後、第1光束制御部材114から出射されることで生成される第2光線L2の第1中心軸CA1に対する角度をθ2とした場合、発光装置130は、以下の式(4)をさらに満たす。また、nは、第1中心軸CAおよび第2中心軸CA2と含む断面における任意の光線の番号を示す。 As shown in FIG. 12, the light emitting device 130 (display device 100) includes the first light beam L1 emitted from the light emission center of the light emitting element 112 arranged so that the optical axis OA coincides with the first central axis CA1. The emission angle is θ1 n , the first light beam L1 is controlled by the first light beam control member 114, and then is emitted from the first light beam control member 114, and the second light beam L2 is generated with respect to the first central axis CA1. When the angle is θ2 n , the light emitting device 130 further satisfies the following expression (4). Further, n represents the number of an arbitrary ray in a cross section including the first central axis CA and the second central axis CA2.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(4)において、0°<θ1<θ1n+1<60°、θ2はθ1に対応する光線の角度とする。 In equation (4), 0 ° <θ1 n <θ1 n + 1 <60 °, and θ2 n is the angle of the light beam corresponding to θ1 n .
 このように、表示装置100では、θ1の増加に伴って、θ2も増加するように構成される。これにより、第1光束制御部材114の第1出射面132から出射されることにより生成される第2光線L2が重ならないため、連続した光を第2光束制御部材115に入射させることができる。 As described above, the display device 100 is configured so that θ2 n increases as θ1 n increases. Thereby, since the second light beam L2 generated by being emitted from the first emission surface 132 of the first light flux controlling member 114 does not overlap, continuous light can be incident on the second light flux controlling member 115.
 また、表示装置100は、以下の式(5)をさらに満たす。 Further, the display device 100 further satisfies the following formula (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(5)において、0°<θ1n-1<θ1<θ1n+1<60°とする。 In Expression (5), 0 ° <θ1 n−1 <θ1 n <θ1 n + 1 <60 °.
 このように、発光装置130(表示装置100)は、θ1の増加に伴って、θ1の増加に対するθ2の増加量の比率が小さくなるように構成される。これは、第1中心軸CA1側を中央部とし、第1フランジ133側を周辺部とした場合、第1出射面132の周辺部から出射された第2光線L2は、第1出射面132の中央部から出射された第2光線L2と比較して、より光線密度が密となるように出射されることを意味している。したがって、強度の強い光線が到達する中央部の光線密度は疎となり、強度の弱い光線が到達する周辺部の光線密度は密となる。これにより、第2光束制御部材115の第2入射面141における照度が均一になる。本実施の形態では、第1中心軸CA1と一致するように配置された発光素子112が存在する場合について示したが、第1中心軸CA1と一致するように配置された発光素子が存在しない場合、同一基板111面に実装された複数の発光素子112すべての立体的な全光束の中心である全光束光軸を光軸OAとし、同一基板111面に実装された発光素子112の発光面の延長線と光軸OAとの交点を仮想出射点として、この仮想出射点から出射された第1光線L1の出射角度をθ1とし、式(4)および(5)を満たすように考慮することにより第1光束制御部材114が設計される。 Thus, the light emitting device 130 (display device 100), .theta.1 n with increasing configured so that the ratio of the amount of increase in .theta.2 n to increasing .theta.1 n decreases. This is because when the first central axis CA1 side is the central portion and the first flange 133 side is the peripheral portion, the second light ray L2 emitted from the peripheral portion of the first emission surface 132 is incident on the first emission surface 132. This means that the light beam is emitted so as to have a denser light density than the second light beam L2 emitted from the central portion. Therefore, the light density in the central part where the light beam with high intensity reaches is sparse, and the light density in the peripheral part where the light beam with low intensity reaches is dense. Thereby, the illuminance on the second incident surface 141 of the second light flux controlling member 115 becomes uniform. In the present embodiment, the case where the light emitting element 112 arranged so as to coincide with the first central axis CA1 is shown, but the case where the light emitting element arranged so as to coincide with the first central axis CA1 does not exist. The optical axis OA is the total light beam optical axis that is the center of all three-dimensional total light beams of the plurality of light emitting elements 112 mounted on the same substrate 111 surface, and the light emitting surface of the light emitting element 112 mounted on the same substrate 111 surface Considering the intersection of the extension line and the optical axis OA as a virtual emission point, the emission angle of the first light ray L1 emitted from the virtual emission point as θ1 n, and satisfying equations (4) and (5) Thus, the first light flux controlling member 114 is designed.
 図13に示されるように、発光装置130(表示装置100)は、第2光線L2が第2光束制御部材115で制御された後、第2光束制御部材115の第2出射面142から出射されることで生成される第3光線L3の第1中心軸CA1に対する角度をθ3とした場合、以下の式(6)を満たすことが好ましい。
 -6°<θ3<10°   (6)
As shown in FIG. 13, in the light emitting device 130 (display device 100), the second light beam L <b> 2 is controlled by the second light flux control member 115 and then emitted from the second light exit surface 142 of the second light flux control member 115. In the case where the angle of the third light beam L3 generated with respect to the first central axis CA1 is θ3, it is preferable to satisfy the following expression (6).
-6 ° <θ3 <10 ° (6)
 式(6)において、0°<θ1<40°、θ3は、に対応する光線が第2光束制御部材115から出射した第3光線L3の第1中心軸CAに対する角度とする。θ3は、第1中心軸CA1と平行に進行する光L0の角度を0°として、第1中心軸CA1に近づくように進行する第3光線L3の第1中心軸CA1に対する角度をマイナス「-」の値とし、第1中心軸CA1から離れるように進行する第1中心軸CA1に対する第3光線L3の角度をプラス「+」の値とする。 In Equation (6), 0 ° <θ1 <40 °, θ3 is an angle of the third light beam L3 emitted from the second light beam control member 115 with respect to the first central axis CA. θ3 is a minus “−” angle of the third light ray L3 traveling toward the first central axis CA1 with the angle of the light L0 traveling parallel to the first central axis CA1 being 0 °, with respect to the first central axis CA1. And the angle of the third light ray L3 with respect to the first central axis CA1 traveling away from the first central axis CA1 is a plus “+” value.
 このように、第2光束制御部材115から出射されることで生成される第3光線L3は、第1中心軸CA1と略平行となるように出射される。なお、θ3が10°以上の場合、発散度合いが大きくなり、第3光線L3が第1中心軸CA1から著しく離れるように進行してしまう。これにより、第1中心軸CA1側(中央部)が暗くなってしまう。一方、θ3が-6°未満の場合、集光度合いが大きくなり、第3光線L3が第1中心軸CA1に向かうように進行する。これにより、第1中心軸CA1から離れた領域(周辺部)が暗くなってしまう。 Thus, the third light beam L3 generated by being emitted from the second light flux controlling member 115 is emitted so as to be substantially parallel to the first central axis CA1. When θ3 is 10 ° or more, the degree of divergence increases, and the third light ray L3 travels so as to be significantly away from the first central axis CA1. Thereby, the 1st central axis CA1 side (center part) will become dark. On the other hand, when θ3 is less than −6 °, the degree of light collection increases, and the third light ray L3 travels toward the first central axis CA1. As a result, a region (peripheral portion) away from the first central axis CA1 becomes dark.
 以上のように、表示装置100は、前述の式(4)~式(6)をさらに満たすため、輝度ムラが抑制される。 As described above, since the display device 100 further satisfies the above-described expressions (4) to (6), luminance unevenness is suppressed.
 (好ましい変形例2)
 次いで、実施の形態1に係る表示装置100にいて、さらに輝度ムラが生じないための他の条件について説明する。前述したように、表示装置100において、発光素子112と、光束制御部材113とは、以下の式(1)~(3)を満たすように配置される。
 -0.6<d/f<0   (1)
 0<w/t<0.85   (2)
 0.4<w/R<1.4   (3)
(Preferred modification 2)
Next, in the display device 100 according to the first embodiment, another condition for preventing luminance unevenness from occurring will be described. As described above, in the display device 100, the light emitting element 112 and the light flux controlling member 113 are disposed so as to satisfy the following expressions (1) to (3).
-0.6 <d / f <0 (1)
0 <w 2 /t<0.85 (2)
0.4 <w / R <1.4 (3)
 表示装置100は、前述した式(1)~(3)に加え、以下の式(7)~式(8)をさらに満たすように構成されることで、さらに輝度ムラが生じないようにできる。 The display device 100 is configured to further satisfy the following formulas (7) to (8) in addition to the above-described formulas (1) to (3), thereby further preventing luminance unevenness.
 -15<w×bfl/t<3   (7)
 0.2<|w/bfl|<1.0   (8)
 ここで、bflは、第3光束制御部材116の所定の点と第3光束制御部材116の光学面の焦点との距離であり、前記焦点が前記所定の点よりも拡散部材140側に位置する場合をプラスの値とし、第2光束制御部材115側に位置する場合をマイナスの値とする。したがって、第3光束制御部材116が凸レンズ面153を有する場合は、bflはプラスの値であり、第3光束制御部材116が凹レンズ面155を有する場合は、bflはマイナスの値である。第3光束制御部材116が凸レンズ面153を有する場合、bflは、凸レンズ面153の中心線と第3光束制御部材116における拡散部材140側の面との交点と、凸レンズ面153の焦点との長さ(プラスの値)である。また、第3光束制御部材116が凹レンズ面155を有する場合、bflは、凹レンズ面155の中心線と第3光束制御部材116における拡散部材140側の面との交点と、凹レンズ面155の焦点との長さ(マイナスの値)である。
−15 <w × bfl / t <3 (7)
0.2 <| w / bfl | <1.0 (8)
Here, bfl is a distance between a predetermined point of the third light flux controlling member 116 and the focal point of the optical surface of the third light flux controlling member 116, and the focal point is located closer to the diffusing member 140 than the predetermined point. The case is set to a positive value, and the case located on the second light flux controlling member 115 side is set to a negative value. Accordingly, when the third light flux controlling member 116 has the convex lens surface 153, bfl is a positive value, and when the third light flux controlling member 116 has the concave lens surface 155, bfl is a negative value. When the third light flux controlling member 116 has the convex lens surface 153, bfl is the length of the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side and the focal point of the convex lens surface 153. It is (a positive value). When the third light flux controlling member 116 has the concave lens surface 155, bfl is the intersection of the center line of the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusing member 140 side, and the focal point of the concave lens surface 155. Is the length (negative value).
 図14を参照して、本変形例における第3光束制御部材116と、拡散部材140との関係について説明する。まず、式(7)および式(8)に記載したbflについて説明する。図14Aは、第3出射面152に凸レンズ面153が配置された場合のbflを説明するための図であり、図14Bは、第3出射面152に凹レンズ面155が配置された場合のbflを説明するための図であり、図14Cは、第3入射面151に凸レンズ面153が配置された場合のbflを説明するための図であり、図14Dは、第3入射面151に凹レンズ面155が配置された場合のbflを説明するための図である。なお、図14A~Dでは、1つの凸レンズ面153または1つの凹レンズ面155のみ示している。 Referring to FIG. 14, the relationship between the third light flux controlling member 116 and the diffusing member 140 in this modification will be described. First, bfl described in Equation (7) and Equation (8) will be described. FIG. 14A is a diagram for explaining bfl when the convex lens surface 153 is disposed on the third exit surface 152, and FIG. 14B illustrates bfl when the concave lens surface 155 is disposed on the third exit surface 152. FIG. 14C is a diagram for explaining bfl when the convex lens surface 153 is arranged on the third incident surface 151, and FIG. 14D is a diagram illustrating the concave lens surface 155 on the third incident surface 151. It is a figure for demonstrating bfl when is arrange | positioned. 14A to 14D, only one convex lens surface 153 or one concave lens surface 155 is shown.
 図14Aに示されるように、第3出射面152に凸レンズ面153が配置された場合、bflは、プラスの値である。この場合、凸レンズ面153の中心線と第3光束制御部材116における拡散部材140側の面との交点をPとする。本実施の形態では、交点Pと、凸レンズ面153の中点とは同じである。当該交点Pと、凸レンズ面153の焦点Fとの長さがbflである。 As shown in FIG. 14A, when the convex lens surface 153 is disposed on the third exit surface 152, bfl is a positive value. In this case, let P be the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side. In the present embodiment, the intersection point P and the midpoint of the convex lens surface 153 are the same. The length between the intersection P and the focal point F of the convex lens surface 153 is bfl.
 図14Bに示されるように、第3出射面152に凹レンズ面155が配置された場合、bflは、マイナスの値である。この場合、凹レンズ面155の中心線と第3光束制御部材116における拡散部材140側の面との交点をPとする。本実施の形態では、交点Pと、凹レンズ面155の中点とは同じである。当該交点Pと、凹レンズ面155の焦点Fとの長さがbflである。 As shown in FIG. 14B, when the concave lens surface 155 is disposed on the third exit surface 152, bfl is a negative value. In this case, let P be the intersection of the center line of the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusing member 140 side. In the present embodiment, the intersection point P and the midpoint of the concave lens surface 155 are the same. The length between the intersection P and the focal point F of the concave lens surface 155 is bfl.
 図14Cに示されるように、第3入射面151に凸レンズ面153が配置された場合、bflは、プラスの値である。この場合、凸レンズ面153の中心線と第3光束制御部材116における拡散部材140側の面との交点をPとする。本実施の形態では、交点Pと、凹レンズ面155の中点とは同じである。当該交点Pと、凸レンズ面153の焦点Fとの長さがbflである。 As shown in FIG. 14C, when the convex lens surface 153 is disposed on the third incident surface 151, bfl is a positive value. In this case, let P be the intersection of the center line of the convex lens surface 153 and the surface of the third light flux controlling member 116 on the diffusing member 140 side. In the present embodiment, the intersection point P and the midpoint of the concave lens surface 155 are the same. The length between the intersection P and the focal point F of the convex lens surface 153 is bfl.
 図14Dに示されるように、第3入射面151に凹レンズ面155が配置された場合、bflは、マイナスの値である。この場合、凹レンズ面155の中心線と第3光束制御部材116における拡散部材140側の面との交点をPとする。本実施の形態では、交点Pと、凹レンズ面155の中点とは同じである。当該交点Pと、凹レンズ面155の焦点Fとの長さがbflである。 As shown in FIG. 14D, when the concave lens surface 155 is disposed on the third incident surface 151, bfl is a negative value. In this case, let P be the intersection of the center line of the concave lens surface 155 and the surface of the third light flux controlling member 116 on the diffusing member 140 side. In the present embodiment, the intersection point P and the midpoint of the concave lens surface 155 are the same. The length between the intersection P and the focal point F of the concave lens surface 155 is bfl.
 次に、式(7)について説明する。式(7)は、拡散部材140を正面から見た場合における条件を規定している。拡散部材140上において、第3光束制御部材116から出射された光が互いに重なり合うことで、輝度ムラを抑制できる。図15Aは、光路に対する凸レンズ面153の頂部および拡散部材140の距離tの影響を示す模式的な図であり、図15Bは、光路に対するbflの影響を示す模式図であり、図15Cは、式(7)において、凸レンズ面153の幅wの影響を示す模式図である。 Next, equation (7) will be described. Expression (7) defines the conditions when the diffusing member 140 is viewed from the front. On the diffusing member 140, the light emitted from the third light flux controlling member 116 overlaps with each other, so that uneven brightness can be suppressed. 15A is a schematic diagram showing the influence of the top of the convex lens surface 153 and the distance t of the diffusing member 140 on the optical path, FIG. 15B is a schematic diagram showing the influence of bfl on the optical path, and FIG. In (7), it is a schematic diagram which shows the influence of the width w of the convex lens surface 153. FIG.
 (w×bfl)/tが-15超であって、3未満となるように第3光束制御部材116および拡散部材140が配置された表示装置では、拡散部材140上において、第3光束制御部材116から出射された光が重なり合うため、輝度ムラを抑制できる。wもしくはbflが大きくなるか、またはtが小さくなることにより、(w×bfl)/tが3以上となると、第3光束制御部材116から出射された光が重ならなくなるため、輝度ムラが生じるおそれがある。一方、加工限界の観点から、(w×bfl)/tは-15以下とすることが困難である。 In the display device in which the third light flux control member 116 and the diffusion member 140 are arranged so that (w × bfl) / t is greater than −15 and less than 3, the third light flux control member is disposed on the diffusion member 140. Since the light emitted from 116 overlaps, luminance unevenness can be suppressed. When w or bfl becomes large or t becomes small, and (w × bfl) / t becomes 3 or more, the light emitted from the third light flux controlling member 116 does not overlap, resulting in luminance unevenness. There is a fear. On the other hand, from the viewpoint of processing limit, it is difficult to set (w × bfl) / t to −15 or less.
 図15Aに示されるように、wと、bflとが一定の場合、tが大きいほど第3光束制御部材116から出射された光が重なり合うため、輝度ムラを抑制できる。なお、tの値は、大きいほど好ましい。ただし、tの値が大きすぎると、面光源装置の大きさが大きくなってしまうため好ましくない。 As shown in FIG. 15A, when w and bfl are constant, the light emitted from the third light flux controlling member 116 overlaps as t increases, so that the luminance unevenness can be suppressed. In addition, the value of t is so preferable that it is large. However, if the value of t is too large, the size of the surface light source device becomes large, which is not preferable.
 図15Bに示されるように、wとtとが一定の場合、bflが小さいほど第3光束制御部材116から出射された光が重なり合うため、輝度ムラを抑制できる。なお、bflがプラスの値である場合は、bflの値が小さくなるにつれて、光が発散するため、輝度ムラを抑制できる。一方、bflがマイナス値である場合は、bflの値が小さすぎると、光の重なりが小さくなり、光が光軸と略平行になってしまうため、輝度ムラが生じてしまうおそれがある。 As shown in FIG. 15B, when w and t are constant, the light emitted from the third light flux controlling member 116 overlaps as the bfl is smaller, so that uneven brightness can be suppressed. Note that when bfl is a positive value, the light diverges as the value of bfl decreases, so that uneven brightness can be suppressed. On the other hand, when bfl is a negative value, if the value of bfl is too small, the overlap of light becomes small and the light becomes substantially parallel to the optical axis, which may cause uneven brightness.
 図15Cに示されるように、bflとtとが一定の場合、wが小さいほど第3光束制御部材116から出射された光が重なり合うため、輝度ムラを抑制できる。 As shown in FIG. 15C, when bfl and t are constant, the light emitted from the third light flux controlling member 116 overlaps as w is smaller, so that uneven brightness can be suppressed.
 以上のことから、光束制御部材116と、拡散部材140とは、拡散部材140を正面から見た場合に、輝度ムラが生じないようにする観点から、上記の式(7)を満たすように配置されることが好ましい。 From the above, the light flux controlling member 116 and the diffusing member 140 are arranged so as to satisfy the above formula (7) from the viewpoint of preventing luminance unevenness when the diffusing member 140 is viewed from the front. It is preferred that
 次に、式(8)について説明する。式(8)は、拡散部材140を斜めから見た場合における条件を規定している。拡散部材140を斜めから見た場合には、第3光束制御部材116から出射された光が凸レンズ面153の光軸に対して所定の角度で出射されることが好ましい。図16Aは、式(8)に関連して、光路に対するwの影響を示す模式図であり、図16Bは、式(8)に関連して、光路に対するbflの影響を示す模式図である。 Next, equation (8) will be described. Formula (8) prescribes | regulates the conditions at the time of seeing the diffusion member 140 from diagonally. When the diffusing member 140 is viewed obliquely, the light emitted from the third light flux controlling member 116 is preferably emitted at a predetermined angle with respect to the optical axis of the convex lens surface 153. FIG. 16A is a schematic diagram showing the influence of w on the optical path in relation to equation (8), and FIG. 16B is a schematic diagram showing the influence of bfl on the optical path in relation to equation (8).
 |w/bfl|が0.2超であって、1.0未満となるように第3光束制御部材116および拡散部材140が配置された表示装置では、拡散部材140上において、第3光束制御部材116から出射された光が重なり合うため、輝度ムラを抑制できる。wが小さくなるか、またはbflの絶対値の値が大きくなることで、|w/bfl|が0.2以下になると、光を屈折する力が弱くなりすぎてしまい、光軸OAに対して斜めに出射する光が少なくなるため、端部が暗くなり、輝度ムラが生じるおそれがある。一方、wが大きくなるが、またはbflの絶対値の値が小さくなることで、|w/bfl|が1.0以上になると、光を屈折する力が強くなりすぎてしまう。これにより、光軸OAに対して斜めに出射される光が増えるため、拡散部材140を斜めから見た場合の輝度ムラは抑制されるが、光が拡げられすぎているため、必要な輝度が確保できなくなるおそれがある。 In the display device in which the third light flux control member 116 and the diffusion member 140 are arranged so that | w / bfl | is greater than 0.2 and less than 1.0, the third light flux control is performed on the diffusion member 140. Since the light emitted from the member 116 overlaps, luminance unevenness can be suppressed. If w becomes small or the absolute value of bfl becomes large, and | w / bfl | becomes 0.2 or less, the power to refract light becomes too weak, and the optical axis OA becomes smaller. Since the light emitted obliquely decreases, the end portion becomes dark and there is a risk of uneven brightness. On the other hand, if w becomes large or if the absolute value of bfl becomes small, and | w / bfl | becomes 1.0 or more, the power to refract light becomes too strong. Thereby, since the light emitted obliquely with respect to the optical axis OA increases, uneven luminance when the diffusing member 140 is viewed obliquely is suppressed, but since the light is excessively spread, the necessary luminance is reduced. There is a risk that it cannot be secured.
 図16Aに示されるように、bflが一定の場合、wが大きくなるほど、光軸OAに対して斜め方向に出射される光が増えるため、光軸OAに対して斜めから見た場合の輝度ムラが抑制できる。 As shown in FIG. 16A, when bfl is constant, as w increases, the amount of light emitted in an oblique direction with respect to the optical axis OA increases. Therefore, luminance unevenness when viewed obliquely with respect to the optical axis OA. Can be suppressed.
 図16Bに示されるように、wが一定の場合、bflの絶対値の値が小さいほど、光軸OAに対して斜め方向に出射される光が増えるため、光軸OAに対して斜めから見た場合の輝度ムラが抑制できる。 As shown in FIG. 16B, when w is constant, the smaller the absolute value of bfl is, the more light is emitted obliquely with respect to the optical axis OA. In this case, uneven brightness can be suppressed.
 以上のことから、第3光束制御部材116と、拡散部材140とは、拡散部材140を斜めから見た場合に、輝度ムラが生じないようにする観点から、上記の式(8)を満たすように配置されることが好ましい。 From the above, the third light flux controlling member 116 and the diffusing member 140 satisfy the above formula (8) from the viewpoint of preventing luminance unevenness when the diffusing member 140 is viewed obliquely. It is preferable to arrange | position.
 [実施の形態2]
 実施の形態2に係る表示装置は、第3光束制御部材216の構成のみが実施の形態1に係る表示装置100と異なる。そこで、実施の形態2では、第3光束制御部材216の構成のみについて説明する。
[Embodiment 2]
The display device according to the second embodiment is different from the display device 100 according to the first embodiment only in the configuration of the third light flux controlling member 216. Therefore, in the second embodiment, only the configuration of the third light flux controlling member 216 will be described.
 (第3光束制御部材の構成)
 図17は、第3光束制御部材216の構成を示す図である。図17Aは、第3光束制御部材216の平面図であり、図17Bは、底面図であり、図17Cは、側面図であり、図17Dは、図17Aに示されるA-A線の断面図である。
(Configuration of third light flux controlling member)
FIG. 17 is a diagram illustrating a configuration of the third light flux controlling member 216. 17A is a plan view of the third light flux controlling member 216, FIG. 17B is a bottom view, FIG. 17C is a side view, and FIG. 17D is a sectional view taken along line AA shown in FIG. 17A. It is.
 図17A~Dに示されるように、第3光束制御部材216は、第3入射面151と、第3出射面252とを有する。第3出射面252は、複数の凸レンズ面253を含む。 17A to 17D, the third light flux controlling member 216 has a third incident surface 151 and a third outgoing surface 252. The third exit surface 252 includes a plurality of convex lens surfaces 253.
 複数の凸レンズ面253は、第1の方向と、第1の方向に垂直な第2の方向とに沿って配列されている。本実施の形態において、凸レンズ面253の平面視形状は正方形であり、いずれも同じ大きさである。また、凸レンズ面253は、凸レンズ面253の中心軸CAを含むいずれの断面においても曲率を有する。当該凸レンズ面253の中心軸CAを含む断面形状は、円弧であってもよいし、頂部から離れるにつれて曲率半径が大きくなる曲線であってもよいし、中心軸CAと交わる部分が円弧で、円弧から離れるにつれて曲率半径が大きくなる曲線であってもよい。 The plurality of convex lens surfaces 253 are arranged along a first direction and a second direction perpendicular to the first direction. In the present embodiment, the convex lens surface 253 has a square shape in plan view, and both have the same size. Further, the convex lens surface 253 has a curvature in any cross section including the central axis CA of the convex lens surface 253. The cross-sectional shape including the central axis CA of the convex lens surface 253 may be an arc, a curve having a radius of curvature that increases with distance from the top, or an arc that intersects the central axis CA. It may be a curve in which the radius of curvature increases with distance from.
 以上のように、実施の形態2に係る表示装置は、実施の形態1に係る表示装置100と同様の効果に加え、凸レンズ面253が配列された第1の方向および第2の方向の両方について、視野角を広くすることができる。 As described above, the display device according to the second embodiment has the same effects as those of the display device 100 according to the first embodiment, and both the first direction and the second direction in which the convex lens surfaces 253 are arranged. The viewing angle can be widened.
 また、特に図示しないが、第3光束制御部材216は、複数の凹レンズ面を含む第3出射面252を有していてもよい。この場合も複数の凹レンズ面は、第1の方向および第2の方向に配列されている。さらに、第3光束制御部材216は、複数の凸レンズ面253または複数の凹レンズ面を含む第3入射面251を有していてもよい。 Although not particularly illustrated, the third light flux controlling member 216 may have a third emission surface 252 including a plurality of concave lens surfaces. Also in this case, the plurality of concave lens surfaces are arranged in the first direction and the second direction. Further, the third light flux controlling member 216 may have a third incident surface 251 including a plurality of convex lens surfaces 253 or a plurality of concave lens surfaces.
 なお、表示装置100’において、発光装置130は、複数配置されていてもよい。図18は、変形例に係る表示装置100’の構成を示す図である。図18Aは、表示装置100’の平面図であり、図18Bは、図18Aに示すA-A線の断面図である。 In the display device 100 ′, a plurality of light emitting devices 130 may be arranged. FIG. 18 is a diagram illustrating a configuration of a display device 100 ′ according to a modification. 18A is a plan view of the display device 100 ′, and FIG. 18B is a cross-sectional view taken along line AA shown in FIG. 18A.
 図18A、Bに示されるように、表示装置100’は、基板111’と、複数の発光装置130と、拡散部材140’と、(面光源装置110’)と、表示部材120’とを有する。表示装置100’では、1つの基板111’に複数の発光装置130が配置されている。なお、本実施の形態では、1つの基板111’に6つの発光装置130がマトリックス状に配置されている。 As shown in FIGS. 18A and 18B, the display device 100 ′ includes a substrate 111 ′, a plurality of light emitting devices 130, a diffusion member 140 ′, (a surface light source device 110 ′), and a display member 120 ′. . In the display device 100 ′, a plurality of light emitting devices 130 are arranged on one substrate 111 ′. In the present embodiment, six light emitting devices 130 are arranged in a matrix on one substrate 111 ′.
 拡散部材140’および表示部材120’には、複数の発光装置130から出射された光が到達する。本実施の形態では、6つの発光装置130から出射された光が到達するように、拡散部材140’および表示部材120’は、例えば基板111’と同じ大きさに形成されている。 Light emitted from the plurality of light emitting devices 130 reaches the diffusion member 140 ′ and the display member 120 ′. In the present embodiment, the diffusing member 140 ′ and the display member 120 ′ are formed, for example, in the same size as the substrate 111 ′ so that the light emitted from the six light emitting devices 130 reaches.
 以上のように構成することにより、面光源装置および表示装置を大型化できる。なお、複数の発光装置130を1つの拡散部材140’および表示部材120’に対して設ける代わりに、1つの発光装置130、拡散部材140’および表示部材120’を有する表示装置100を平面方向に複数配置して、表示装置を大型化してもよい。 By configuring as described above, the surface light source device and the display device can be enlarged. Instead of providing a plurality of light emitting devices 130 for one diffusion member 140 ′ and display member 120 ′, the display device 100 having one light emitting device 130, diffusion member 140 ′, and display member 120 ′ is arranged in the plane direction. A plurality of the display devices may be arranged to enlarge the display device.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 実施例1では、実施の形態1に係る表示装置100における、凸レンズ面153の第3中心軸CA3を含む断面における幅wと、凸レンズ面153の中心線と第3光束制御部材116における拡散部材140側の面との交点と、拡散部材140との距離tと、凸レンズ面153の曲率半径Rと、均斉度U0、U5/U0との関係について調べた。
[Example 1]
In Example 1, in the display device 100 according to Embodiment 1, the width w of the cross section including the third central axis CA3 of the convex lens surface 153, the center line of the convex lens surface 153, and the diffusion member 140 in the third light flux controlling member 116. The relationship between the intersection with the side surface, the distance t from the diffusing member 140, the radius of curvature R of the convex lens surface 153, and the uniformity U0, U5 / U0 was examined.
 (表示装置の構成)
 図19は、実施例で使用した表示装置100の構成を示す模式図である。図19に示されるように、表示装置100は、面光源装置110と、表示部材120とを有する。面光源装置110は、発光素子112と、光束制御部材113とを含む。光束制御部材113は、第1光束制御部材114と、第2光束制御部材115と第3光束制御部材116とを有する。なお、図19において、a=10mm、b=3mm、c=1mm、d=3mm、e=25mm、f=5mm、g=3mm、h=55.5mm、i=16.2mmであり、後述のNo.17の表示装置における寸法を示している。なお、実施例における第1光束制御部材の焦点距離fは、1mmであり、第1中心軸と第1中心軸から最も離れた発光素子における光軸との距離dは、-28.14mmである。すなわち、実施例におけるd/fは-0.036である。
(Configuration of display device)
FIG. 19 is a schematic diagram illustrating a configuration of the display device 100 used in the example. As shown in FIG. 19, the display device 100 includes a surface light source device 110 and a display member 120. The surface light source device 110 includes a light emitting element 112 and a light flux controlling member 113. The light flux control member 113 includes a first light flux control member 114, a second light flux control member 115, and a third light flux control member 116. In FIG. 19, a = 10 mm, b = 3 mm, c = 1 mm, d = 3 mm, e = 25 mm, f = 5 mm, g = 3 mm, h = 55.5 mm, and i = 16.2 mm. No. The dimension in 17 display apparatuses is shown. In the embodiment, the focal length f of the first light flux controlling member is 1 mm, and the distance d between the first central axis and the optical axis of the light emitting element farthest from the first central axis is −28.14 mm. . That is, d / f in the example is −0.036.
 各表示装置の表示領域における均斉度をシミュレーションにより求めた。表示領域121における均斉度は以下の式(9)で算出した。
 均斉度=最小輝度/最大輝度   (9)
 「最小輝度」とは、表示領域における輝度の最小値であり、「最大輝度」とは、表示領域における輝度の最大値である。
The uniformity in the display area of each display device was obtained by simulation. The uniformity in the display area 121 was calculated by the following formula (9).
Uniformity = minimum brightness / maximum brightness (9)
“Minimum luminance” is the minimum luminance value in the display area, and “maximum luminance” is the maximum luminance value in the display area.
 均斉度をシミュレーションした36種類の表示装置におけるパラメータを表1に示す。 Table 1 shows the parameters for 36 types of display devices that simulate the uniformity.
 表1におけるwは、第3中心軸を含む断面における凸レンズ面の幅であり、tは、凸レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、拡散部材との距離であり、Rは、凸レンズ面の曲率半径であり、nは、屈折率であり、U0は、表示領域を正面から見たときの均斉度であり、U5は、表示領域を5°傾斜した位置から見た場合の均斉度である。なお、特に示さないが、表示装置No.1~36は、上記式(1)を満たす。 In Table 1, w is the width of the convex lens surface in the cross section including the third central axis, and t is the intersection of the center line of the convex lens surface and the surface on the diffusing member side of the third light flux controlling member, and the diffusing member. R is the radius of curvature of the convex lens surface, n is the refractive index, U0 is the uniformity when the display area is viewed from the front, and U5 is inclined by 5 °. It is the degree of uniformity when viewed from the position. Although not particularly shown, the display device No. 1 to 36 satisfy the above formula (1).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各表示装置における「(第3中心軸を含む断面における凸レンズ面の幅w)/凸レンズ面の頂部および拡散部材140の距離t」と、均斉度U0と、との関係を図20に示す。図20は、表1にまとめた結果をプロットしたグラフである。図20における横軸は、「(凸レンズ面153の第3中心軸CA3を含む断面における幅w)/凸レンズ面153の頂部および拡散部材140との距離t」を示しており、縦軸は、表示装置を平面視したとき(光軸LAから見たとき)の均斉度U0を示している。 FIG. 20 shows the relationship between “(the width w of the convex lens surface in the cross section including the third central axis) 2 / distance t between the top of the convex lens surface and the diffusing member 140” and the uniformity U0 in each display device. FIG. 20 is a graph in which the results summarized in Table 1 are plotted. The horizontal axis in FIG. 20 indicates “(the width w of the cross section including the third central axis CA3 of the convex lens surface 153) 2 / the distance t between the top of the convex lens surface 153 and the diffusing member 140”. The uniformity U0 when the display device is viewed in plan (when viewed from the optical axis LA) is shown.
 表1および図20に示されるように、HUDに用いられる場合に必要とされる均斉度U0が0.7以上になるためには、w/tが0.85未満の必要があることが分かる。 As shown in Table 1 and FIG. 20, in order for the uniformity U0 required when used for HUD to be 0.7 or more, w 2 / t needs to be less than 0.85. I understand.
 また、表1および図21に示されるように、HUDに用いられる場合に必要とされる均斉度U5/U0が0.7以上になるためには、w/Rが0.4超1.4未満の必要があることが分かる。 Further, as shown in Table 1 and FIG. 21, in order for the degree of uniformity U5 / U0 required when used for HUD to be 0.7 or more, w / R is more than 0.4 and 1.4. It turns out that there is a need for less than.
 以上のように、凸レンズ面の第3中心軸を含む断面における幅wと、凸レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、拡散部材との距離tとが、0<w/t<0.85を満たし、かつ凸レンズ面の第3中心軸を含む断面における幅wと、凸レンズ面の曲率半径Rとが、0.4<w/R<1.4を満たせば、表示領域を輝度ムラが小さく、均一に照らすことができることが分かった。なお、特に結果を示さないが、凹レンズ面を含む第3光束制御部材を有する表示装置でも同様の結果が得られた。 As described above, the width w of the cross section including the third central axis of the convex lens surface, the intersection of the central line of the convex lens surface and the surface on the diffusion member side of the third light flux controlling member, and the distance t between the diffusion member and , 0 <w 2 /t<0.85, and the width w of the cross section including the third central axis of the convex lens surface and the curvature radius R of the convex lens surface are 0.4 <w / R <1.4. It was found that the display area can be illuminated uniformly with small luminance unevenness if the above condition is satisfied. Although no particular results are shown, similar results were obtained with a display device having a third light flux controlling member including a concave lens surface.
 [実施例2]
 実施例2では、第3入射面151に複数の凸レンズ面153または複数の凹レンズ面155が配置された第3光束制御部材116を有する表示装置100と、第3出射面152に複数の凸レンズ面153または複数の凹レンズ面155が配置された第3光束制御部材116を有する表示装置100と、についてそれぞれ調べた。
[Example 2]
In the second embodiment, the display device 100 having the third light flux controlling member 116 in which a plurality of convex lens surfaces 153 or a plurality of concave lens surfaces 155 are arranged on the third incident surface 151, and a plurality of convex lens surfaces 153 on the third output surface 152. Alternatively, the display device 100 having the third light flux controlling member 116 on which the plurality of concave lens surfaces 155 are arranged was examined.
 具体的には、実施の形態1に係る表示装置において、凸レンズ面の第3中心軸を含む断面における幅wと、凸レンズ面の頂部および拡散部材との距離tと、凸レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、前記凸レンズ面の焦点との長さbflと、均斉度U0、均斉度比U5/U0との関係について調べた。また、実施の形態1に係る表示装置において、凹レンズ面の第3中心軸を含む断面における幅wと、凹レンズ面の底部および拡散部材との距離tと、凹レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、前記凹レンズ面の焦点との長さbflと、均斉度U0、均斉度比U5/U0との関係について調べた。なお、表示装置の構成は、実施例1と同様である。 Specifically, in the display device according to the first embodiment, the width w of the cross section including the third central axis of the convex lens surface, the distance t between the top of the convex lens surface and the diffusing member, the center line of the convex lens surface, The relationship between the intersection of the three-beam control member with the surface on the diffusion member side and the length bfl of the focal point of the convex lens surface, the uniformity U0, and the uniformity ratio U5 / U0 was examined. In the display device according to the first embodiment, the width w of the section including the third central axis of the concave lens surface, the distance t between the bottom of the concave lens surface and the diffusing member, the center line of the concave lens surface, and the third light flux control. The relationship between the intersection of the member with the surface on the diffusing member side, the length bfl of the focal point of the concave lens surface, and the uniformity U0 and the uniformity ratio U5 / U0 was examined. The configuration of the display device is the same as that of the first embodiment.
 均斉度をシミュレーションした101種類の表示装置におけるパラメータを表2~5に示す。 Tables 2 to 5 show the parameters for 101 types of display devices that simulate the uniformity.
 表2~5におけるwは、第3中心軸を含む断面における凸レンズ面または凹レンズ面の幅であり、bflは、凸レンズ面または凹レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、凸レンズ面または凹レンズ面の焦点との長さであり、tは、凸レンズ面の頂部または凹レンズ面の底部、および拡散部材の距離であり、U0は、表示領域を正面から見たときの均斉度であり、U5は、表示領域を5°傾斜した位置から見た場合の均斉度である。なお、特に示さないが、表示装置No.37~83および88~133は、上記式(1)~(3)を満たす。 In Tables 2 to 5, w is the width of the convex lens surface or concave lens surface in the cross section including the third central axis, and bfl is the center line of the convex lens surface or concave lens surface and the surface on the diffusion member side in the third light flux controlling member. And t is the distance between the top of the convex lens surface or the bottom of the concave lens surface and the diffusion member, and U0 is the distance when the display area is viewed from the front. U5 is the degree of uniformity when the display area is viewed from a position tilted by 5 °. Although not particularly shown, the display device No. 37 to 83 and 88 to 133 satisfy the above formulas (1) to (3).
 表2、3は、第3入射面に凸レンズ面または凹レンズ面が配置された表示装置におけるパラメータを示しており、表4、5は、第3出射面に凸レンズ面または凹レンズ面が配置された表示装置におけるパラメータを示している。表2、3において、bflの値がプラスの表示装置は、第3入射面に凸レンズ面が配置された表示装置であり、bflの値がマイナスの表示装置は、第3入射面に凹レンズ面が配置された表示装置である。また、表4、5において、bflの値がプラスの表示装置は、第3出射面に凸レンズ面が配置された表示装置であり、bflの値がマイナスの表示装置は、第3出射面に凹レンズ面が配置された表示装置である。 Tables 2 and 3 show parameters in a display device in which a convex lens surface or a concave lens surface is arranged on the third entrance surface, and Tables 4 and 5 show displays in which a convex lens surface or a concave lens surface is arranged on the third exit surface. The parameters in the device are shown. In Tables 2 and 3, a display device with a positive bfl value is a display device in which a convex lens surface is arranged on the third entrance surface, and a display device with a negative bfl value has a concave lens surface on the third entrance surface. It is the arranged display device. In Tables 4 and 5, a display device having a positive bfl value is a display device in which a convex lens surface is disposed on the third exit surface, and a display device having a negative bfl value is a concave lens on the third exit surface. A display device in which a surface is arranged.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図22A、Bは、表2、3にまとめた結果をプロットしたグラフであり、図23A、Bは、表4、5にまとめた結果をプロットしたグラフである。図22Aは、第3入射面側に複数の凸レンズ面または複数の凹レンズ面を配置した場合の(w×bfl)/tと、均斉度U0と、の関係を示すグラフであり、図22Bは、第3入射面側に複数の凸レンズ面または複数の凹レンズ面を配置した場合の|w/bfl|と、均斉度比U5/U0と、の関係を示すグラフである。図23Aは、第3出射面側に複数の凸レンズ面または複数の凹レンズ面を配置した場合の(w×bfl)/tと、均斉度U0と、の関係を示すグラフであり、図23Bは、第3出射面側に複数の凸レンズ面または複数の凹レンズ面を配置した場合の|w/bfl|と、均斉度比U5/U0と、の関係を示すグラフである。図22Aおよび図23Aの横軸は、(w×bfl)/tを示しており、縦軸は、均斉度U0を示している。また、図22Bおよび図23Bの横軸は、|w/bfl|を示しており、縦軸は、均斉度比U5/U0を示している。 22A and 22B are graphs in which the results summarized in Tables 2 and 3 are plotted, and FIGS. 23A and 23B are graphs in which the results summarized in Tables 4 and 5 are plotted. FIG. 22A is a graph showing the relationship between (w × bfl) / t and the degree of uniformity U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third incident surface side, and FIG. It is a graph which shows the relationship between | w / bfl | and the uniformity ratio U5 / U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third incident surface side. FIG. 23A is a graph showing the relationship between (w × bfl) / t and the degree of uniformity U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third exit surface side, and FIG. It is a graph which shows the relationship between | w / bfl | and the uniformity ratio U5 / U0 when a plurality of convex lens surfaces or a plurality of concave lens surfaces are arranged on the third exit surface side. The horizontal axis of FIGS. 22A and 23A indicates (w × bfl) / t, and the vertical axis indicates the degree of uniformity U0. Moreover, the horizontal axis of FIG. 22B and FIG. 23B has shown | w / bfl |, and the vertical axis has shown the uniformity ratio U5 / U0.
 表2、3および図22A、Bに示されるように、凸レンズ面が第3入射面に配置された第3光束制御部材を用いた場合には、HUDに用いられる場合に必要とされる均斉度U0が0.7以上であって、かつ均斉度比U5/U0が0.7以上になるためには、(w×bfl)/tが-15超3未満であり、かつ|w/bfl|が0.2超1.0未満の必要があることが分かる。 As shown in Tables 2 and 3 and FIGS. 22A and 22B, when the third light flux controlling member having the convex lens surface disposed on the third incident surface is used, the degree of uniformity required when used for HUD. In order for U0 to be 0.7 or more and the uniformity ratio U5 / U0 to be 0.7 or more, (w × bfl) / t is more than −15 and less than 3, and | w / bfl | It can be seen that it needs to be greater than 0.2 and less than 1.0.
 例えば、表示装置No.84では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0が0.64であり、HUDに用いられる場合に必要とされる基準を満たしていなかった。しかし、拡散部材を正面から見た場合の指標である均斉度U0が0.84であり、HUDに用いられる場合に必要とされる基準を満たしていた。また、表示装置No.85では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0が0.76であるが、拡散部材を正面から見た場合の指標である均斉度U0が0.47であった。また、表示装置No.86および87では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0と、拡散部材を正面から見た場合の指標である均斉度U0のいずれも満たしていなかった。 For example, display device No. In 84, the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed from an oblique direction, is 0.64, which does not satisfy the standard required for use in HUD. However, the uniformity U0, which is an index when the diffusing member is viewed from the front, is 0.84, which satisfies the standard required for use in HUD. Also, the display device No. 85, the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed obliquely, is 0.76, but the uniformity U0, which is an index when the diffusing member is viewed from the front, is 0.47. It was. Also, the display device No. In 86 and 87, neither the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed from an oblique direction, nor the uniformity degree U0, which is an index when the diffusing member is viewed from the front, were satisfied.
 また、表4、5および図23A、Bに示されるように、凹レンズ面が第3入射面に配置された第3光束制御部材を用いた場合には、HUDに用いられる場合に必要とされる均斉度U0が0.7以上であって、かつ均斉度比U5/U0が0.7以上になるためには、(w×bfl)/tが-15超3未満であり、かつ|w/bfl|が0.2超1.0未満の必要があることが分かる。 Further, as shown in Tables 4 and 5 and FIGS. 23A and 23B, when the third light flux controlling member having the concave lens surface disposed on the third incident surface is used, it is required when used for HUD. In order for the uniformity U0 to be 0.7 or more and the uniformity ratio U5 / U0 to be 0.7 or more, (w × bfl) / t is more than −15 and less than 3, and | w / It can be seen that bfl | needs to be greater than 0.2 and less than 1.0.
 例えば、表示装置No.134では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0が0.76であり、HUDに用いられる場合に必要とされる基準を満たしていた。しかし、拡散部材を正面から見た場合の指標である均斉度U0が0.47であり、HUDに用いられる場合に必要とされる基準を満たしていなかった。また、表示装置No.135では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0が0.64であるが、拡散部材を正面から見た場合の指標である均斉度U0が0.84であった。また、表示装置No.136および137では、拡散部材を斜めから見た場合の指標である均斉度比U5/U0と、拡散部材を正面から見た場合の指標である均斉度U0のいずれも満たしていなかった。 For example, display device No. In 134, the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed from an oblique direction, is 0.76, which satisfies the standard required when used for HUD. However, the uniformity U0, which is an index when the diffusing member is viewed from the front, is 0.47, which does not satisfy the standard required when used for HUD. Also, the display device No. In 135, the uniformity ratio U5 / U0, which is an index when the diffusing member is viewed obliquely, is 0.64, but the uniformity U0, which is an index when the diffusing member is viewed from the front, is 0.84. It was. Also, the display device No. In 136 and 137, neither the uniformity ratio U5 / U0, which is an index when the diffusion member is viewed from an oblique direction, nor the uniformity U0, which is an index when the diffusion member is viewed from the front, was satisfied.
 以上のように、凸レンズ面または凹レンズ面の第3中心軸を含む断面における幅wと、凸レンズ面または凹レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、拡散部材との距離tと、凸レンズ面または凹レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、凸レンズ面または凹レンズ面の焦点との長さbflが、-15<(w×bfl)/t<3を満たし、かつ凸レンズ面または凹レンズ面の第3中心軸を含む断面における幅wと、凸レンズ面または凹レンズ面の中心線と第3光束制御部材における拡散部材側の面との交点と、凸レンズ面または凹レンズ面の焦点との長さbflが、0.2<|w/bfl|<1.0であれば輝度ムラが小さく、かつより均一に照らすことができることが分かった。 As described above, the width w of the cross section including the third central axis of the convex lens surface or the concave lens surface, the intersection of the center line of the convex lens surface or the concave lens surface and the surface on the diffusion member side of the third light flux controlling member, and the diffusion member And the length bfl of the intersection of the center line of the convex lens surface or the concave lens surface and the surface on the diffusion member side of the third light flux controlling member and the focal point of the convex lens surface or the concave lens surface is −15 <(w Xbfl) / t <3 and the width w of the cross section including the third central axis of the convex lens surface or the concave lens surface, the center line of the convex lens surface or the concave lens surface, and the surface on the diffusion member side of the third light flux controlling member It can be seen that if the length bfl of the intersection of the convex lens surface and the focal point of the convex lens surface or the concave lens surface is 0.2 <| w / bfl | <1.0, the luminance unevenness is small and more uniform illumination is possible. It was.
 なお、上述した例では、第3光束制御部材の第3入射面または第3出射面のいずれか一方に複数の凸状または凹状のレンズ面が配置される例を示したが、これに限らず、第3入射面および第3出射面の両面に複数の凸状レンズ面または複数の凹状レンズ面を形成してもよい。例えば、一方の面に凸状レンズ面を形成し、一方の面と同一ピッチで他方の面に複数の凹状レンズ面を形成する形態や、凸状レンズ面または凹状レンズ面を第3入射面および第3出射面の両方に同一ピッチで形成する形態が考えられる。その場合、第3出射面におけるレンズ面の中心軸と交わる点から第3光束制御部材の両面のレンズによる焦点までの距離bflとレンズパワーとの関係において、第3入射面および第3出射面の両面によるレンズのパワーがプラスの場合はbflがプラスの値、レンズのパワーがマイナスの場合はbflがマイナスの値となり、本発明の第3光束制御部材に求められる条件(式(7)および(8))を満たすように形成される。 In the above-described example, an example in which a plurality of convex or concave lens surfaces are arranged on either the third incident surface or the third emission surface of the third light flux controlling member has been described. A plurality of convex lens surfaces or a plurality of concave lens surfaces may be formed on both surfaces of the third entrance surface and the third exit surface. For example, a form in which a convex lens surface is formed on one surface and a plurality of concave lens surfaces are formed on the other surface at the same pitch as the one surface, or a convex lens surface or a concave lens surface is formed on the third incident surface and A form in which both the third emission surfaces are formed at the same pitch is conceivable. In that case, in the relationship between the lens power and the distance bfl from the point intersecting the central axis of the lens surface on the third exit surface to the focal points of the lenses on both surfaces of the third light flux controlling member, the third entrance surface and the third exit surface When the lens power by both surfaces is positive, bfl is a positive value, and when the lens power is negative, bfl is a negative value, and the conditions required for the third light flux controlling member of the present invention (formulas (7) and (7)) It is formed so as to satisfy 8)).
 本出願は、2016年12月15日出願の特願2016-243414および2017年3月14日出願の特願2017-048871に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2016-243414 filed on Dec. 15, 2016 and Japanese Patent Application No. 2017-048771 filed on Mar. 14, 2017. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係る面光源装置は、例えば、ヘッドアップディスプレイ(HUD)の光源として有用である。また、本発明に係る表示装置は、例えば、ヘッドアップディスプレイ(HUD)などとして有用である。 The surface light source device according to the present invention is useful as a light source for a head-up display (HUD), for example. The display device according to the present invention is useful as, for example, a head-up display (HUD).
 10 面光源装置
 11 基板
 12 LED
 14 レンズアレイ
 15 拡散部材
 16 境界線
 17 凹凸部
 100 表示装置
 110 面光源装置
 111 基板
 112 発光素子
 113 光束制御部材
 114 第1光束制御部材
 115 第2光束制御部材
 116、216 第3光束制御部材
 120 表示部材
 121 表示領域
 130 発光装置
 131 第1入射面
 132 第1出射面
 132a 内側第1出射面
 132b 外側第1出射面
 133 第1フランジ
 134 第1凹部
 140 拡散部材
 141 第2入射面
 142 第2出射面
 143 第2フランジ
 145 フレネルレンズ部
 146 凸部
 147 屈折面
 148 接続面
 151 第3入射面
 152 第3出射面
 153 凸レンズ面
 154 第3フランジ
 155 凹レンズ面
 CA 中心軸
 CA1 第1中心軸
 CA2 第2中心軸
 CA3 第3中心軸
 OA 光軸
10 Surface light source device 11 Substrate 12 LED
DESCRIPTION OF SYMBOLS 14 Lens array 15 Diffusing member 16 Boundary line 17 Uneven part 100 Display device 110 Surface light source device 111 Substrate 112 Light emitting element 113 Light flux control member 114 1st light flux control member 115 2nd light flux control member 116, 216 3rd light flux control member 120 Display Member 121 Display area 130 Light emitting device 131 First entrance surface 132 First exit surface 132a Inner first exit surface 132b Outside first exit surface 133 First flange 134 First recess 140 Diffusion member 141 Second entrance surface 142 Second exit surface 143 Second flange 145 Fresnel lens portion 146 Convex portion 147 Refraction surface 148 Connection surface 151 Third entrance surface 152 Third exit surface 153 Convex lens surface 154 Third flange 155 Concave lens surface CA Central axis CA1 First central axis CA2 Second central axis CA3 3rd central axis OA Optical axis

Claims (8)

  1.  複数の発光素子と、第1光束制御部材、第2光束制御部材および第3光束制御部材を含み、前記複数の発光素子から出射された光の配光を制御する光束制御部材とを有する発光装置と、
     前記発光装置と空気層を介して配置され、前記発光装置から出射された光が照射される拡散部材とを有する、面光源装置であって、
     前記第1光束制御部材は、
     前記第1光束制御部材の第1中心軸と交わるように、前記複数の発光素子と対向して配置された凹状の第1入射面と、
     前記第1中心軸と交わるように配置された内側出射面と、前記内側出射面を取り囲むように配置され、前記第1中心軸を含む断面における形状が凸状の外側出射面とを有する、前記第1入射面の反対側に配置された第1出射面とを含み、
     前記第2光束制御部材は、前記第1光束制御部材から出射された光を前記第1中心軸に沿う方向に向かうように制御し、
     前記第3光束制御部材は、
     前記第2光束制御部材から出射された光を入射させる第3入射面と、
     前記第3入射面の反対側に配置された第3出射面とを有し、
     前記第3入射面または前記第3出射面には、前記第3光束制御部材の第3中心軸を含む断面における形状が凸状の複数の凸レンズ面または凹状の複数の凹レンズ面が二次元状に配列され、
     前記第1光束制御部材の焦点距離をfとし、前記第1中心軸と、前記第1中心軸から最も離れた前記発光素子における光軸との距離をdとしたとき、以下の式(1)を満たし、
     前記第3中心軸を含む断面における前記凸レンズ面または前記凹レンズ面の幅をwとし、前記凸レンズ面または前記凹レンズ面の曲率半径をRとし、前記凸レンズ面または前記凹レンズ面の中心線と前記第3光束制御部材における前記拡散部材側の面との交点と、前記拡散部材との距離をtとしたとき、以下の式(2)および式(3)を満たす、
     面光源装置。
     -0.6<d/f<0   (1)
     0<w/t<0.85   (2)
     0.4<w/R<1.4   (3)
    A light emitting device having a plurality of light emitting elements, and a light flux controlling member that includes a first light flux controlling member, a second light flux controlling member, and a third light flux controlling member, and controls light distribution of light emitted from the plurality of light emitting elements. When,
    A surface light source device having a diffusing member that is disposed via the light emitting device and an air layer and irradiated with light emitted from the light emitting device,
    The first light flux controlling member is
    A concave first incident surface disposed to face the plurality of light emitting elements so as to intersect the first central axis of the first light flux controlling member;
    An inner emission surface arranged to intersect the first central axis, and an outer emission surface arranged so as to surround the inner emission surface and having a convex shape in a cross section including the first central axis, A first exit surface disposed on the opposite side of the first entrance surface,
    The second light flux controlling member controls the light emitted from the first light flux controlling member to be directed in a direction along the first central axis;
    The third light flux controlling member is
    A third incident surface on which light emitted from the second light flux controlling member is incident;
    A third exit surface disposed on the opposite side of the third entrance surface;
    A plurality of convex lens surfaces or a plurality of concave concave lens surfaces having a convex shape in a cross section including the third central axis of the third light flux controlling member are two-dimensionally formed on the third incident surface or the third output surface. Arranged,
    When the focal length of the first light flux controlling member is f and the distance between the first central axis and the optical axis of the light emitting element farthest from the first central axis is d, the following formula (1) The filling,
    The width of the convex lens surface or the concave lens surface in the cross section including the third central axis is w, the radius of curvature of the convex lens surface or the concave lens surface is R, the center line of the convex lens surface or the concave lens surface and the third When the intersection between the light flux controlling member and the surface on the diffusion member side and the distance from the diffusion member is t, the following expressions (2) and (3) are satisfied:
    Surface light source device.
    -0.6 <d / f <0 (1)
    0 <w 2 /t<0.85 (2)
    0.4 <w / R <1.4 (3)
  2.  前記第2光束制御部材は、
     前記第1出射面と対向して配置された第2入射面と、
     前記第2入射面の反対側に配置され、入射した光を前記第1中心軸に沿う方向に向かうように出射させる屈折型のフレネルレンズ部を有する第2出射面と含む、
     請求項1に記載の面光源装置。
    The second light flux controlling member is
    A second entrance surface disposed opposite the first exit surface;
    A second emission surface that is disposed on the opposite side of the second incidence surface and has a refractive Fresnel lens portion that emits incident light in a direction along the first central axis.
    The surface light source device according to claim 1.
  3.  前記第1中心軸と、前記第2光束制御部材の第2中心軸と、前記第3中心軸は、一致している、請求項1または請求項2に記載の面光源装置。 3. The surface light source device according to claim 1, wherein the first central axis, the second central axis of the second light flux controlling member, and the third central axis coincide with each other.
  4.  前記第1入射面および前記第1出射面は、前記第1中心軸を回転軸とする回転対称であり、
     前記第2入射面および前記第2出射面は、前記第2中心軸を回転軸とする回転対称である、
     請求項3に記載の面光源装置。
    The first entrance surface and the first exit surface are rotationally symmetric with the first central axis as a rotation axis,
    The second entrance surface and the second exit surface are rotationally symmetric with the second central axis as a rotation axis.
    The surface light source device according to claim 3.
  5.  前記複数の発光素子は、前記複数の発光素子から出射される全光束の中心である前記複数の発光素子の全光束光軸が前記第1中心軸および前記第2中心軸と一致するように配置され、
     前記複数の発光素子の各々は、前記第1中心軸に沿う方向に最も強く光を出射し、
     前記第1中心軸および前記第2中心軸を含む断面において、
     前記全光束光軸と前記複数の発光素子の発光面の延長線との交点を仮想出射点とし、前記仮想出射点から出射された第1光線の出射角度をθ1とし、
     前記第1光線が前記第1光束制御部材で制御された後、前記第1光束制御部材から出射されることで生成される第2光線の前記第1中心軸に対する角度をθ2とし、
     前記第2光線が前記第2光束制御部材で制御された後、前記第2光束制御部材から出射されることで生成される第3光線の前記第1中心軸に対する角度をθ3とした場合、さらに以下の式(4)~式(6)を満たす、
     請求項1~4のいずれか一項に記載の面光源装置。
    Figure JPOXMLDOC01-appb-M000001
     [式(4)において、0°<θ1<θ1n+1<60°、θ2はθ1に対応する光線の角度とする。]
    Figure JPOXMLDOC01-appb-M000002
     [式(5)において、0°<θ1n-1<θ1<θ1n+1<60°とする。]
     -6°<θ3<10°   ・・・(6)
     [式(6)において、0°<θ1<40°、θ3は、θ1に対応する光線の角度とする。θ3は、前記第1中心軸と平行に進行する光の角度を0°として、前記第1中心軸に近づくように進行する前記第3光線の前記第1中心軸に対する角度をマイナスの値とし、前記第1中心軸から離れるように進行する前記第1中心軸に対する前記第3光線の角度をプラスの値とする。]
    The plurality of light emitting elements are arranged such that the total light beam optical axes of the plurality of light emitting elements, which are the centers of the total light beams emitted from the plurality of light emitting elements, coincide with the first central axis and the second central axis. And
    Each of the plurality of light emitting elements emits light most strongly in a direction along the first central axis,
    In a cross section including the first central axis and the second central axis,
    The intersection of the total luminous flux optical axis and the extended line of the light emitting surface of the plurality of light emitting elements is a virtual emission point, the emission angle of the first light beam emitted from the virtual emission point is θ1,
    After the first light beam is controlled by the first light beam control member, an angle of the second light beam generated by being emitted from the first light beam control member with respect to the first central axis is θ2.
    When the angle with respect to the first central axis of the third light beam generated by being emitted from the second light beam control member after the second light beam is controlled by the second light beam control member is θ3, The following expressions (4) to (6) are satisfied.
    The surface light source device according to any one of claims 1 to 4.
    Figure JPOXMLDOC01-appb-M000001
    [In Expression (4), 0 ° <θ1 n <θ1 n + 1 <60 °, and θ2 n is the angle of the light beam corresponding to θ1 n . ]
    Figure JPOXMLDOC01-appb-M000002
    [In the formula (5), 0 ° <θ1 n−1 <θ1 n <θ1 n + 1 <60 °. ]
    −6 ° <θ3 <10 ° (6)
    [In Expression (6), 0 ° <θ1 <40 °, and θ3 is the angle of the light beam corresponding to θ1. θ3 is set to 0 ° as an angle of light traveling parallel to the first central axis, and a negative value with respect to the first central axis of the third light beam traveling closer to the first central axis, The angle of the third light ray with respect to the first central axis that travels away from the first central axis is a positive value. ]
  6.  前記凸レンズ面は、前記第3光束制御部材の厚み方向に垂直である第1の方向に直線状に延在する稜線を含み、かつ前記厚み方向および前記第1の方向に垂直である第2の方向にのみ曲率を有する曲面であるか、前記凸レンズ面の中心軸を含むいずれの断面においても曲率を有する曲面である、請求項1~5のいずれか一項に記載の面光源装置。 The convex lens surface includes a ridge line extending linearly in a first direction perpendicular to the thickness direction of the third light flux controlling member, and is a second perpendicular to the thickness direction and the first direction. The surface light source device according to any one of claims 1 to 5, wherein the surface light source device is a curved surface having a curvature only in a direction or a curved surface having a curvature in any cross section including a central axis of the convex lens surface.
  7.  前記第3光束制御部材が前記複数の凸レンズ面を有している場合、前記凸レンズ面の中心線と前記第3光束制御部材における前記拡散部材側の面との交点と、前記凸レンズ面の焦点との長さをプラスの値のbflとし、前記第3光束制御部材が前記複数の凹レンズ面を有している場合、前記凹レンズ面の中心線と前記第3光束制御部材における前記拡散部材側の面との交点と、前記凹レンズ面の焦点との長さをマイナスの値のbflとしたとき、さらに以下の式(7)および式(8)を満たす、
     請求項1~6のいずれか一項に記載の面光源装置。
     -15<(w×bfl)/t<3   (7)
     0.2<|w/bfl|<1.0   (8)
    When the third light flux controlling member has the plurality of convex lens surfaces, the intersection of the center line of the convex lens surface and the surface on the diffusion member side of the third light flux controlling member, and the focal point of the convex lens surface When the third light flux control member has the plurality of concave lens surfaces, the center line of the concave lens surface and the surface on the diffusion member side of the third light flux control member When the length of the intersection with the focal point of the concave lens surface is a negative bfl, the following expressions (7) and (8) are satisfied:
    The surface light source device according to any one of claims 1 to 6.
    −15 <(w × bfl) / t <3 (7)
    0.2 <| w / bfl | <1.0 (8)
  8.  請求項1~7のいずれか一項に記載の面光源装置と、
     前記面光源装置から出射された光を照射される表示部材と、
     を有する、表示装置。
    A surface light source device according to any one of claims 1 to 7,
    A display member that is irradiated with light emitted from the surface light source device;
    A display device.
PCT/JP2017/029372 2016-12-15 2017-08-15 Planar light source device and display device WO2018109978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/469,759 US10747055B2 (en) 2016-12-15 2017-08-15 Planar light source device and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-243414 2016-12-15
JP2016243414 2016-12-15
JP2017048871A JP2018098162A (en) 2016-12-15 2017-03-14 Surface light source device and display device
JP2017-048871 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018109978A1 true WO2018109978A1 (en) 2018-06-21

Family

ID=62558325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029372 WO2018109978A1 (en) 2016-12-15 2017-08-15 Planar light source device and display device

Country Status (1)

Country Link
WO (1) WO2018109978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447162B2 (en) 2021-04-07 2024-03-11 矢崎総業株式会社 Vehicle display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64209U (en) * 1987-06-19 1989-01-05
JP2007157686A (en) * 2005-11-11 2007-06-21 Hitachi Displays Ltd Lighting system and liquid crystal display device using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64209U (en) * 1987-06-19 1989-01-05
JP2007157686A (en) * 2005-11-11 2007-06-21 Hitachi Displays Ltd Lighting system and liquid crystal display device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447162B2 (en) 2021-04-07 2024-03-11 矢崎総業株式会社 Vehicle display device

Similar Documents

Publication Publication Date Title
JP2018098162A (en) Surface light source device and display device
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP4182076B2 (en) Light guide plate and flat illumination device
JP6629601B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
WO2012011304A1 (en) Light guiding body, light source unit, illumination device, and display device
EP2279374B1 (en) Optical element for asymmetric light distribution
US10634296B2 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP2016110869A (en) Light-emitting device and light flux control member
JP2018181726A (en) Luminous flux control member, light emitting device, surface light source device and display device
WO2012132872A1 (en) Illumination device
JP6748424B2 (en) Light emitting device, surface light source device, and display device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
WO2018155676A1 (en) Light-emitting device, planar light source device and display device
JP7445579B2 (en) backlight module
JP2020518869A (en) Diffusing lens and light emitting device employing the same
WO2016194798A1 (en) Planar light source device and liquid crystal display device
JP6437242B2 (en) Luminous flux control member, surface light source device, and display device
WO2018109978A1 (en) Planar light source device and display device
WO2019044968A1 (en) Light emitting device, area light source device, and display device
JP2003066239A (en) Light transmission plate and planar illuminator
JP2018194566A (en) Diffusion lens and light-emitting device
WO2019039366A1 (en) Light emitting device, surface light source device, and luminous flux control member
WO2018135407A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
JP2019040859A (en) Light-emitting device, surface light source device and light flux control member
JP6751452B2 (en) Area lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880172

Country of ref document: EP

Kind code of ref document: A1