US20150165560A1 - Laser processing of slots and holes - Google Patents

Laser processing of slots and holes Download PDF

Info

Publication number
US20150165560A1
US20150165560A1 US14/536,009 US201414536009A US2015165560A1 US 20150165560 A1 US20150165560 A1 US 20150165560A1 US 201414536009 A US201414536009 A US 201414536009A US 2015165560 A1 US2015165560 A1 US 2015165560A1
Authority
US
United States
Prior art keywords
laser
laser beam
glass
focal line
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/536,009
Inventor
Thomas Hackert
Sasha Marjanovic
Garrett Andrew Piech
Sergio Tsuda
Robert Stephen Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to US14/536,009 priority Critical patent/US20150165560A1/en
Priority to SG10201902702XA priority patent/SG10201902702XA/en
Priority to PCT/US2014/070531 priority patent/WO2015095151A2/en
Priority to CN201910313717.4A priority patent/CN109909622B/en
Priority to EP19157782.4A priority patent/EP3511302B1/en
Priority to KR1020217019445A priority patent/KR102366530B1/en
Priority to MYPI2016001380A priority patent/MY185774A/en
Priority to CN201480075766.4A priority patent/CN106029293B/en
Priority to SG11201605864RA priority patent/SG11201605864RA/en
Priority to EP14824299.3A priority patent/EP3083511B1/en
Priority to KR1020167019421A priority patent/KR102270486B1/en
Priority to TW103144133A priority patent/TWI632975B/en
Priority to TW107124418A priority patent/TWI679077B/en
Assigned to CORNING INCORPORATED reassignment CORNING INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PIECH, GARRETT ANDREW, WAGNER, ROBERT STEPHEN, MARJANOVIC, SASHA, TSUDA, SERGIO, HACKERT, THOMAS
Publication of US20150165560A1 publication Critical patent/US20150165560A1/en
Priority to US15/251,605 priority patent/US10233112B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • B23K26/381
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • B23K26/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Definitions

  • a method of laser drilling a material includes focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, directing the laser beam focal line into the material at a first location, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a hole along the laser beam focal line within the material, translating the material and the pulsed laser beam relative to each other starting from the first location along a first closed contour, thereby laser drilling a plurality of holes along the first closed contour within the material, translating the material and the pulsed laser beam relative to each other starting from the first location along a first closed contour, thereby laser drilling a plurality of holes along the first closed contour within the material, and directing a carbon dioxide (CO2) laser into the material around a second closed contour contained within the first closed contour to facilitate removal of an inner plug of the material along the first closed contour.
  • CO2 carbon dioxide
  • FIG. 1 is an illustration of a part to be cut out of a starting sheet.
  • the part has both outer and inner contours.
  • the outer contour can be easily released from the mother sheet by adding in additional cuts or “release lines.”
  • FIGS. 2A and 2B are illustrations of positioning of the laser beam focal line, i.e., the processing of a material transparent for the laser wavelength due to the induced absorption along the focal line.
  • FIG. 3A is an illustration of an optical assembly for laser drilling.
  • FIG. 3B-1 thru 3 B- 4 is an illustration of various possibilities to process the substrate by differently positioning the laser beam focal line relative to the substrate.
  • FIG. 4 is an illustration of a second optical assembly for laser drilling.
  • FIGS. 5A and 5B are illustrations of a third optical assembly for laser drilling.
  • FIG. 7A-7C is an illustration of different regimes for laser processing of materials.
  • FIG. 7A illustrates an unfocused laser beam
  • FIG. 7B illustrates a condensed laser beam with a spherical lens
  • FIG. 7C illustrates a condensed laser beam with an axicon or diffractive Fresnel lens.
  • FIG. 8B illustrates schematically relative intensity of laser pulses vs. time within an exemplary pulse burst, with each exemplary pulse burst containing 5 pulses.
  • FIG. 8C is a description of different laser steps and paths traced out to define an inner contour and remove the material inside this contour.
  • FIG. 9 is a description of the CO 2 laser step and path traced out to remove the material inside the contour.
  • FIG. 10 is an example of a hole and slot cut and then separated from a 0.7 mm thick sample. The hole and slot were cut and removed using the process according to this invention.
  • FIG. 11 is an angled image of the interior edge of a slot formed with the process described herein, after the CO 2 ablation process has been used to remove the interior material.
  • FIG. 12 is an edge image of a straight cut strip of 0.7 mm thick Corning 2320 NIOX (not ion exchanged) thick substrate, an exterior contour. This edge can be compared to the very similar edge shown in FIG. 11 .
  • FIG. 13 is a top view of a cut edge of a slot made with the process described herein. No chipping or checking is observed on the edge of the contour. This contour has a radius of about 2 mm.
  • FIGS. 14A-14C are illustrations of a fault line (or perforated line) with equally spaced defect lines or damage tracks of modified glass.
  • Disclosed herein is a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass.
  • the method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO 2 laser beam to promote full separation about the perforated line.
  • the laser process described below generates full body cuts of a variety of glasses in a single pass, with low sub-surface damage ( ⁇ 75 ⁇ m), and excellent surface roughness (Ra ⁇ 0.5 um).
  • Sub-surface damage (SSD) is defined as the extent of cracks or “checks” perpendicular to the cut edge of the glass piece.
  • the magnitude of the distance these cracks extend into the glass piece can determine the amount of later material removal that may be needed from grinding and polishing operations that are used to improve glass edge strength.
  • SSD may be measured by using confocal microscope to observed light scattering from the cracks, and determining the maximum distance the cracks extend into the body of the glass over a given cut edge.
  • One embodiment relates a method to cut and separate interior contours in materials such as glass, with a separation process that exposes the high quality edge generated by the above-mentioned perforation process without damaging it by the separation process.
  • a part When a part is cut out of a starting sheet of substrate, it may be comprised of outer or inner contours, as shown in FIG. 1 . Release of outer contour the part from the sheet can be done by adding additional cut lines known as “release lines”, as shown in FIG. 1 . However, for the interior contours, no release lines can be made, as they would mar the part of interest. In some cases, for the highly stressed materials and large enough interior contours, the inner part may self-separate and fall out.
  • a closed contour is perforated in a glass sheet.
  • the perforations are less than a few microns in diameter, typical spacing of the perforations is 1-15 ⁇ m, and the perforations go entirely through the glass sheet.
  • an additional contour could then be optionally perforated with the same process a few hundred microns to the interior of the first contour.
  • a focused CO 2 laser beam of a high enough power density to ablate the glass material, is then traced around the second contour, causing the glass material to fragment and be removed.
  • One or more passes of the laser may be used.
  • a high pressure assist gas is also forced out through a nozzle collinearly to the CO 2 beam, to provide additional force to drive the glass material out of the larger glass piece.
  • the created fault line is not enough to separate the glass automatically. This is often the case for display glasses such as Eagle XG®, Lotus, or ion-exchangeable glasses that are cut before any ion-exchange step. Thus, a secondary process step may be necessary. If so desired, a second laser can be used to create thermal stress to separate it, for example.
  • a second laser can be used to create thermal stress to separate it, for example.
  • Corning code 2320 NIOX non-ion exchanged Gorilla® Glass 3
  • CO 2 laser only start the separation and finish the separation manually.
  • the optional CO 2 laser separation is achieved with a defocused (i.e. spot size at the glass of 2-12 mm in diameter) continuous wave laser emitting at 10.6 ⁇ m and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing) is used to vary the induced thermal stress by varying the spot size.
  • CO 2 induced separation can generally be achieved by using a power at the glass of ⁇ 40 W, a spot size of about 2 mm, and a traverse rate of the beam of ⁇ 14-20 m/minute.
  • the optical method of forming the line focus can take multiple forms, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity.
  • the type of laser (picosecond, femtosecond, etc.) and wavelength (IR, green, UV, etc.) can also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate material. This wavelength may be, for example, 1064, 532, 355 or 266 nanometers.
  • Ultra-short pulse lasers can be used in combination with optics that generate a focal line to fully perforate the body of a range of glass compositions.
  • the pulse duration of the individual pulses is in a range of between greater than about 1 picoseconds and less than about 100 picoseconds, such as greater than about 5 picoseconds and less than about 20 picoseconds, and the repetition rate of the individual pulses can be in a range of between about 1 kHz and 4 MHz, such as in a range of between about 10 kHz and 650 kHz.
  • the pulses can be produced in bursts of two pulses, or more (such as, for example, 3 pulses, 4, pulses, 5 pulses, 10 pulses, 15 pulses, 20 pulses, or more) separated by a duration between the individual pulses within the pulse burst that is in a range of between about 1 nsec and about 50 nsec, for example, 10-50 nsec, or 10 to 30 nsec, such as about 20 nsec, and the burst repetition frequency can be in a range of between about 1 kHz and about 200 kHz.
  • the pulse burst laser beam can have a wavelength selected such that the material is substantially transparent at this wavelength.
  • the average laser power per burst measured at the material can be greater than 40 microJoules per mm thickness of material, for example between 40 microJoules/mm and 2500 microJoules/mm, or between 200 and 800 microJoules/mm.
  • the glass is moved relative to the laser beam (or the laser beam is translated relative to the glass) to create perforated lines that trace out the shape of any desired parts.
  • the laser creates hole-like defect zones (or damage tracks, or defect lines) that penetrate the full depth the glass, with internal openings, for example of approximately 1 micron in diameter.
  • These perforations, defect regions, damage tracks, or defect lines are generally spaced from 1 to 15 microns apart (for example, 2-12 microns, or 3-10 microns).
  • the defect lines extend, for example, through the thickness of the glass sheet, and are orthogonal to the major (flat) surfaces of the glass sheet.
  • an ultra-short ( ⁇ 10 psec) burst pulsed laser is used to create this high aspect ratio vertical defect line in a consistent, controllable and repeatable manner.
  • the detail of the optical setup that enables the creation of this vertical defect line is described below and in U.S. Application No. 61/752,489, filed on Jan. 15, 2013.
  • the essence of this concept is to use an axicon lens element in an optical lens assembly to create a region of high aspect ratio taper-free microchannel using ultra-short (picoseconds or femtosecond duration) Bessel beams.
  • the axicon condenses the laser beam into a region of cylindrical shape and high aspect ratio (long length and small diameter).
  • a method of laser drilling a material includes focusing a pulsed laser beam 2 into a laser beam focal line 2 b, viewed along the beam propagation direction.
  • laser 3 (not shown) emits laser beam 2 , at the beam incidence side of the optical assembly 6 referred to as 2 a, which is incident on the optical assembly 6 .
  • the optical assembly 6 turns the incident laser beam into an extensive laser beam focal line 2 b on the output side over a defined expansion range along the beam direction (length l of the focal line).
  • the planar substrate 1 to be processed is positioned in the beam path after the optical assembly overlapping at least partially the laser beam focal line 2 b of laser beam 2 .
  • Reference 1 a designates the surface of the planar substrate facing the optical assembly 6 or the laser, respectively
  • reference 1 b designates the reverse surface of substrate 1 usually spaced in parallel.
  • the substrate thickness (measured perpendicularly to the planes 1 a and 1 b, i.e., to the substrate plane) is labeled with d.
  • substrate 1 is aligned perpendicularly to the longitudinal beam axis and thus behind the same focal line 2 b produced by the optical assembly 6 (the substrate is perpendicular to the drawing plane) and viewed along the beam direction it is positioned relative to the focal line 2 b in such a way that the focal line 2 b viewed in beam direction starts before the surface 1 a of the substrate and stops before the surface 1 b of the substrate, i.e. still within the substrate.
  • the focal line 2 b viewed in beam direction starts before the surface 1 a of the substrate and stops before the surface 1 b of the substrate, i.e. still within the substrate.
  • the extensive laser beam focal line 2 b thus generates (in case of a suitable laser intensity along the laser beam focal line 2 b which is ensured due to the focusing of laser beam 2 on a section of length l, i.e. a line focus of length l) an extensive section 2 c viewed along the longitudinal beam direction, along which an induced absorption is generated in the substrate material which induces a defect line or crack formation in the substrate material along section 2 c.
  • the crack formation is not only local, but over the entire length of the extensive section 2 c of the induced absorption.
  • the length of section 2 c (i.e., after all, the length of the overlapping of laser beam focal line 2 b with substrate 1 ) is labeled with reference L.
  • the average diameter or the average extension of the section of the induced absorption (or the sections in the material of substrate 1 undergoing the crack formation) is labeled with reference D.
  • This average extension D basically corresponds to the average diameter ⁇ of the laser beam focal line 2 b, that is, an average spot diameter in a range of between about 0.1 ⁇ m and about 5 ⁇ m.
  • FIG. 2A shows, substrate material transparent for the wavelength ⁇ of laser beam 2 is heated due to the induced absorption along the focal line 2 b.
  • FIG. 2B outlines that the warming material will eventually expand so that a correspondingly induced tension leads to micro-crack formation, with the tension being the highest at surface 1 a.
  • the individual focal lines to be positioned on the substrate surface along parting line 5 should be generated using the optical assembly described below (hereinafter, the optical assembly is alternatively also referred to as laser optics).
  • the roughness results particularly from the spot size or the spot diameter of the focal line.
  • certain requirements must usually be imposed on the numerical aperture of laser optics 6 . These requirements are met by laser optics 6 described below.
  • the laser beam must illuminate the optics up to the required aperture, which is typically achieved by means of beam widening using widening telescopes between laser and focusing optics.
  • the spot size should not vary too strongly for the purpose of a uniform interaction along the focal line. This can, for example, be ensured (see the embodiment below) by illuminating the focusing optics only in a small, circular area so that the beam opening and thus the percentage of the numerical aperture only vary slightly.
  • the laser radiation 2 a emitted by laser 3 is first directed onto a circular aperture 8 which is completely opaque for the laser radiation used.
  • Aperture 8 is oriented perpendicular to the longitudinal beam axis and is centered on the central beam of the depicted beam bundle 2 a.
  • the diameter of aperture 8 is selected in such a way that the beam bundles near the center of beam bundle 2 a or the central beam (here labeled with 2 a Z) hit the aperture and are completely absorbed by it. Only the beams in the outer perimeter range of beam bundle 2 a (marginal rays, here labeled with 2 a R) are not absorbed due to the reduced aperture size compared to the beam diameter, but pass aperture 8 laterally and hit the marginal areas of the focusing optic elements of the optical assembly 6 , which is designed as a spherically cut, bi-convex lens 7 here.
  • Lens 7 centered on the central beam is deliberately designed as a non-corrected, bi-convex focusing lens in the form of a common, spherically cut lens. Put another way, the spherical aberration of such a lens is deliberately used.
  • aspheres or multi-lens systems deviating from ideally corrected systems, which do not form an ideal focal point but a distinct, elongated focal line of a defined length can also be used (i.e., lenses or systems which do not have a single focal point). The zones of the lens thus focus along a focal line 2 b, subject to the distance from the lens center.
  • the diameter of aperture 8 across the beam direction is approximately 90% of the diameter of the beam bundle (beam bundle diameter defined by the extension to the decrease to 1/e 2 ) (intensity) and approximately 75% of the diameter of the lens of the optical assembly 6 .
  • the focal line 2 b of a non-aberration-corrected spherical lens 7 generated by blocking out the beam bundles in the center is thus used.
  • FIG. 3A shows the section in one plane through the central beam, the complete three-dimensional bundle can be seen when the depicted beams are rotated around the focal line 2 b.
  • This focal line is that the conditions (spot size, laser intensity) along the focal line, and thus along the desired depth in the material, vary and therefore the desired type of interaction (no melting, induced absorption, thermal-plastic deformation up to crack formation) may possibly only be selected in a part of the focal line. This means in turn that possibly only a part of the incident laser light is absorbed in the desired way. In this way, the efficiency of the process (required average laser power for the desired separation speed) is impaired on the one hand, and on the other hand the laser light might be transmitted into undesired deeper places (parts or layers adherent to the substrate or the substrate holding fixture) and interact there in an undesirable way (heating, diffusion, absorption, unwanted modification).
  • a focal line 2 b is generated which has a length l which is substantially the same as the substrate thickness d.
  • the length L of the extensive section of induced absorption 2 c (which extends here from the substrate surface to a defined substrate depth, but not to the reverse surface 1 b ) is smaller than the length l of focal line 2 b.
  • the focal line thus starts within the substrate and extends over the reverse surface 1 b to beyond the substrate.
  • FIG. 4 depicts another applicable optical assembly 6 .
  • the basic construction follows the one described in FIG. 3A so that only the differences are described below.
  • the depicted optical assembly is based upon the use of optics with a non-spherical free surface in order to generate the focal line 2 b, which is shaped in such a way that a focal line of defined length l is formed.
  • aspheres can be used as optic elements of the optical assembly 6 .
  • a so-called conical prism also often referred to as axicon
  • An axicon is a special, conically cut lens which forms a spot source on a line along the optical axis (or transforms a laser beam into a ring).
  • the layout of such an axicon is principally known to one of skill in the art; the cone angle in the example is 10°.
  • the apex of the axicon labeled here with reference 9 is directed towards the incidence direction and centered on the beam center.
  • substrate 1 (here aligned perpendicularly to the main beam axis) can be positioned in the beam path directly behind axicon 9 .
  • FIG. 4 shows, it is also possible to shift substrate 1 along the beam direction due to the optical characteristics of the axicon without leaving the range of focal line 2 b.
  • the extensive section of the induced absorption 2 c in the material of substrate 1 therefore extends over the entire substrate thickness d.
  • the depicted layout is subject to the following restrictions: As the focal line of axicon 9 already starts within the lens, a significant part of the laser energy is not focused into part 2 c of focal line 2 b, which is located within the material, in case of a finite distance between lens and material. Furthermore, length l of focal line 2 b is related to the beam diameter for the available refraction indices and cone angles of axicon 9 , which is why, in case of relatively thin materials (several millimeters), the total focal line is too long, having the effect that the laser energy is again not specifically focused into the material.
  • FIG. 5A depicts such an optical assembly 6 in which a first optical element (viewed along the beam direction) with a non-spherical free surface designed to form an extensive laser beam focal line 2 b is positioned in the beam path of laser 3 .
  • this first optical element is an axicon 10 with a cone angle of 5°, which is positioned perpendicularly to the beam direction and centered on laser beam 3 .
  • the apex of the axicon is oriented towards the beam direction.
  • a second, focusing optical element here the plano-convex lens 11 (the curvature of which is oriented towards the axicon), is positioned in beam direction at a distance z 1 from the axicon 10 .
  • the distance z 1 in this case approximately 300 mm, is selected in such a way that the laser radiation formed by axicon 10 circularly incides on the marginal area of lens 11 .
  • Lens 11 focuses the circular radiation on the output side at a distance z 2 , in this case approximately 20 mm from lens 11 , on a focal line 2 b of a defined length, in this case 1.5 mm.
  • the effective focal length of lens 11 is 25 mm here.
  • the circular transformation of the laser beam by axicon 10 is labeled with the reference SR.
  • FIG. 5B depicts the formation of the focal line 2 b or the induced absorption 2 c in the material of substrate 1 according to FIG. 5A in detail.
  • the optical characteristics of both elements 10 , 11 as well as the positioning of them is selected in such a way that the extension 1 of the focal line 2 b in beam direction is exactly identical with the thickness d of substrate 1 . Consequently, an exact positioning of substrate 1 along the beam direction is required in order to position the focal line 2 b exactly between the two surfaces 1 a and 1 b of substrate 1 , as shown in FIG. 5B .
  • the focal line is formed at a certain distance from the laser optics, and if the greater part of the laser radiation is focused up to a desired end of the focal line.
  • this can be achieved by illuminating a primarily focusing element 11 (lens) only circularly on a required zone, which, on the one hand, serves to realize the required numerical aperture and thus the required spot size, on the other hand, however, the circle of diffusion diminishes in intensity after the required focal line 2 b over a very short distance in the center of the spot, as a basically circular spot is formed. In this way, the crack formation is stopped within a short distance in the required substrate depth.
  • a combination of axicon 10 and focusing lens 11 meets this requirement.
  • the axicon acts in two different ways: due to the axicon 10 , a usually round laser spot is sent to the focusing lens 11 in the form of a ring, and the asphericity of axicon 10 has the effect that a focal line is formed beyond the focal plane of the lens instead of a focal point in the focal plane.
  • the length l of focal line 2 b can be adjusted via the beam diameter on the axicon.
  • the numerical aperture along the focal line on the other hand, can be adjusted via the distance z 1 axicon-lens and via the cone angle of the axicon. In this way, the entire laser energy can be concentrated in the focal line.
  • the circular illumination still has the advantage that, on the one hand, the laser power is used in the best possible way as a large part of the laser light remains concentrated in the required length of the focal line, on the other hand, it is possible to achieve a uniform spot size along the focal line—and thus a uniform separation process along the focal line—due to the circularly illuminated zone in conjunction with the desired aberration set by means of the other optical functions.
  • both effects can be avoided by inserting another lens, a collimating lens 12 : this further, positive lens 12 serves to adjust the circular illumination of focusing lens 11 very tightly.
  • the focal length f′ of collimating lens 12 is selected in such a way that the desired circle diameter dr results from distance z 1 a from the axicon to the collimating lens 12 , which is equal to f′.
  • the desired width br of the ring can be adjusted via the distance z 1 b (collimating lens 12 to focusing lens 11 ).
  • the small width of the circular illumination leads to a short focal line. A minimum can be achieved at distance f′.
  • the optical assembly 6 depicted in FIG. 6 is thus based on the one depicted in FIG. 5A so that only the differences are described below.
  • the collimating lens 12 here also designed as a plano-convex lens (with its curvature towards the beam direction) is additionally placed centrally in the beam path between axicon 10 (with its apex towards the beam direction), on the one side, and the plano-convex lens 11 , on the other side.
  • the distance of collimating lens 12 from axicon 10 is referred to as z 1 a, the distance of focusing lens 11 from collimating lens 12 as z 1 b, and the distance of the generated focal line 2 b from the focusing lens 11 as z 2 (always viewed in beam direction).
  • the circular radiation SR formed by axicon 10 which incides divergently and under the circle diameter dr on the collimating lens 12 , is adjusted to the required circle width br along the distance z 1 b for an at least approximately constant circle diameter dr at the focusing lens 11 .
  • a very short focal line 2 b is supposed to be generated so that the circle width br of approx. 4 mm at lens 12 is reduced to approx. 0.5 mm at lens 11 due to the focusing properties of lens 12 (circle diameter dr is 22 mm in the example).
  • FIGS. 7A-7C illustrate the laser-matter interaction at different laser intensity regimes.
  • the unfocused laser beam 710 goes through a transparent substrate 720 without introducing any modification to it.
  • the nonlinear effect is not present because the laser energy density (or laser energy per unit area illuminated by the beam) is below the threshold necessary to induce nonlinear effects.
  • the illuminated area is reduced and the energy density increases, triggering the nonlinear effect that will modify the material to permit formation of a fault line only in the volume where that condition is satisfied.
  • the beam waist of the focused laser is positioned at the surface of the substrate, modification of the surface will occur.
  • the beam waist of the focused laser is positioned below the surface of the substrate, nothing happens at the surface when the energy density is below the threshold of the nonlinear optical effect.
  • the laser intensity is high enough to trigger multi-photon non-linear effects, thus inducing damage to the material.
  • the diffraction pattern of an axicon lens 750 creates interference that generates a Bessel-shaped intensity distribution (cylinder of high intensity 760 ) and only in that volume is the intensity high enough to create nonlinear absorption and modification to the material 720 .
  • the diameter of cylinder 760 in which Bessel-shaped intensity distribution is high enough to create nonlinear absorption and modification to the material, is also the spot diameter of the laser beam focal line, as referred to herein.
  • Each “burst” (also referred to herein as a “pulse burst” 500 ) contains multiple individual pulses 500 A (such as at least 2 pulses, at least 3 pulses, at least 4 pulses, at least 5 pulses, at least 10 pulses, at least 15 pulses, at least 20 pulses, or more) of very short duration. That is, a pulse bust is a “pocket” of pulses, and the bursts are separated from one another by a longer duration than the separation of individual adjacent pulses within each burst.
  • Pulses 500 A have pulse duration T d of up to 100 psec (for example, 0.1 psec, 5 psec, 10 psec, 15 psec, 18 psec, 20 psec, 22 psec, 25 psec, 30 psec, 50 psec, 75 psec, or therebetween).
  • the energy or intensity of each individual pulse 500 A within the burst may not be equal to that of other pulses within the burst, and the intensity distribution of the multiple pulses within a burst 500 often follows an exponential decay in time governed by the laser design.
  • each pulse 500 A within the burst 500 of the exemplary embodiments described herein is separated in time from the subsequent pulse in the burst by a duration T p from 1 nsec to 50 nsec (e.g. 10-50 nsec, or 10-30 nsec, with the time often governed by the laser cavity design).
  • T p the time separation between adjacent pulses (pulse-to-pulse separation) within a burst 500 is relatively uniform ( ⁇ 10%).
  • each pulse within a burst is separated in time from the subsequent pulse by approximately 20 nsec (50 MHz).
  • the pulse to pulse separation T p within a burst is maintained within about ⁇ 10%, or about ⁇ 2 nsec.
  • the time between each “burst” of pulses i.e., time separation T b between bursts
  • the time separation T b is around 5 microseconds for a laser with pulse burst repetition rate or frequency of about 200 kHz.
  • the laser burst repetition frequency may be in a range of between about 1 kHz and about 4 MHz. More preferably, the laser burst repetition rates can be, for example, in a range of between about 10 kHz and 650 kHz.
  • the time T b between the first pulse in each burst to the first pulse in the subsequent burst may be 0.25 microsecond (4 MHz burst repetition rate) to 1000 microseconds (1 kHz burst repetition rate), for example 0.5 microseconds (2 MHz burst repetition rate) to 40 microseconds (25 kHz burst repetition rate), or 2 microseconds (500 kHz burst repetition rate) to 20 microseconds (50 k Hz burst repetition rate).
  • the exact timings, pulse durations, and burst repetition rates can vary depending on the laser design, but short pulses (T d ⁇ 20 psec and preferably T d ⁇ 15 psec) of high intensity have been shown to work particularly well.
  • the energy required to modify the material can be described in terms of the burst energy—the energy contained within a burst (each burst 500 contains a series of pulses 500 A), or in terms of the energy contained within a single laser pulse (many of which may comprise a burst).
  • the energy per burst can be from 25-750 ⁇ J, more preferably 50-500 ⁇ J, or 50-250 ⁇ J. In some embodiments the energy per burst is 100-250 ⁇ J.
  • the energy of an individual pulse within the pulse burst will be less, and the exact individual laser pulse energy will depend on the number of pulses 500 A within the pulse burst 500 and the rate of decay (e.g., exponential decay rate) of the laser pulses with time as shown in FIGS. 8A and 8B .
  • the rate of decay e.g., exponential decay rate
  • each individual laser pulse 500 A will contain less energy than if the same pulse burst 500 had only 2 individual laser pulses.
  • a laser capable of generating such pulse bursts is advantageous for cutting or modifying transparent materials, for example glass.
  • the use of a pulse burst sequence that spreads the laser energy over a rapid sequence of pulses within the burst 500 allows access to larger timescales of high intensity interaction with the material than is possible with single-pulse lasers.
  • a single-pulse can be expanded in time, as this is done the intensity within the pulse must drop as roughly one over the pulse width. Hence if a 10 psec single pulse is expanded to a 10 nsec pulse, the intensity drop by roughly three orders of magnitude.
  • the intensity during each pulse 500 A within the burst 500 can remain very high—for example three 10 psec pulses 500 A spaced apart in time by approximately 10 nsec still allows the intensity within each pulse to be approximately three times higher than that of a single 10 psec pulse, while the laser is allowed to interact with the material over a timescale that is now three orders of magnitude larger.
  • This adjustment of multiple pulses 500 A within a burst thus allows manipulation of time-scale of the laser-material interaction in ways that can facilitate greater or lesser light interaction with a pre-existing plasma plume, greater or lesser light-material interaction with atoms and molecules that have been pre-excited by an initial or previous laser pulse, and greater or lesser heating effects within the material that can promote the controlled growth of microcracks.
  • the required amount of burst energy to modify the material will depend on the substrate material composition and the length of the line focus used to interact with the substrate. The longer the interaction region, the more the energy is spread out, and higher burst energy will be required.
  • Timings, pulse durations, and burst repetition rates can vary depending on the laser design, but short pulses ( ⁇ 15 psec, or ⁇ 10 psec) of high intensity have been shown to work well with this technique.
  • a defect line or a hole is formed in the material when a single burst of pulses strikes essentially the same location on the glass. That is, multiple laser pulses within a single burst correspond to a single defect line or a hole location in the glass.
  • the individual pulses within the burst cannot be at exactly the same spatial location on the glass. However, they are well within 1 ⁇ m of one another—i.
  • sp spacing
  • the individual pulses within the burst strike the glass within 250 nm of each other.
  • Multi-photon effects or multi-photon absorption (MPA) is the simultaneous absorption of two or more photons of identical or different frequencies in order to excite a molecule from one state (usually the ground state) to a higher energy electronic state (ionization).
  • the energy difference between the involved lower and upper states of the molecule can be equal to the sum of the energies of the two photons.
  • MPA also called induced absorption, can be can be a second-order, third-order process, or higher-order process, for example, that is several orders of magnitude weaker than linear absorption.
  • MPA differs from linear absorption in that the strength of induced absorption can be proportional to the square or cube (or higher power law) of the light intensity, for example, instead of being proportional to the light intensity itself.
  • MPA is a nonlinear optical process.
  • the lateral spacing (pitch) between the defect lines (damage tracks) is determined by the pulse rate of the laser as the substrate is translated underneath the focused laser beam. Only a single picosecond laser pulse burst is usually necessary to form an entire hole, but multiple bursts may be used if desired.
  • the laser can be triggered to fire at longer or shorter intervals.
  • the laser triggering generally is synchronized with the stage driven motion of the workpiece beneath the beam, so laser pulse bursts are triggered at a fixed spacing, such as for example every 1 micron, or every 5 microns.
  • Distance, or periodicity, between adjacent perforations or defect lines along the direction of the fault line can be greater than 0.1 micron and less than or equal to about 20 microns in some embodiments, for example.
  • the spacing or periodicity between adjacent perforations or defect lines is between 0.5 and 15 microns, or between 3 and 10 microns, or between 0.5 micron and 3.0 microns.
  • the periodicity can be between 2 micron and 8 microns.
  • pulse burst lasers with certain volumetric pulse energy density ( ⁇ J/ ⁇ m 3 ) within the approximately cylindrical volume of the line focus re preferable to create the perforated contours in the glass.
  • This can be achieved, for example, by utilizing pulse burst lasers, preferably with at least 2 pulses per burst and providing volumetric energy densities within the alkaline earth boro-aluminosilicate glasses (with low or no alkali) of about 0.005 ⁇ J/ ⁇ m 3 or higher to ensure a damage track is formed, but less than 0.100 ⁇ J/ ⁇ 3 so as to not damage the glass too much, for example 0.005 ⁇ J/ ⁇ m 3 -0.100 ⁇ J/ ⁇ m 3
  • FIG. 1 illustrates the problem to be solved.
  • a part 22 is to be cut out of a glass sheet 20 .
  • additional release lines can be cut in the larger glass sheet that extend any crack lines to the edges of the sheet, allowing the glass to break into sections which can be removed.
  • interior contours such as those needed for a home button on a phone
  • creating additional release lines would cut through the part of interest.
  • the interior hole or slot is “locked in place”, and is difficult to remove.
  • One manner of releasing a larger hole is to first perforate the contour of the hole, and then follow up with a laser heating process, such as with a CO 2 laser, that heats up the inner glass piece until it softens and then is compliant enough to drop out.
  • a laser heating process such as with a CO 2 laser
  • FIG. 8C illustrates a process that solves this problem, and has been successfully used to separate holes down to 1.5 mm diameter out of 0.7 mm thick code 2320 glass (ion-exchanged and non-ion exchanged), and also to create slots with widths and radii as small as 1.5 mm.
  • Step 1 A perforation of a first contour 24 is made in glass sheet 20 using the picosecond pulse burst process that defines the desired shape of the contour (e.g., hole, slot) to be cut.
  • the picosecond pulse burst process that defines the desired shape of the contour (e.g., hole, slot) to be cut.
  • 210 ⁇ J bursts were used to pitch to perforate the material and to create damage tracks or defect lines at 4 ⁇ m pitch.
  • damage track spacings may also be employed, such as 1-15 microns, or 3-10 microns, or 3-7 microns.
  • 3-7 micron pitch works well, but for other glasses such as the display glass Eagle XG, smaller pitches may be preferred, such a 1-3 microns.
  • typical pulse burst laser powers are 10 W-150 Watts with laser powers of 25-60 Watts being sufficient (and optimum) for many glasses.
  • Step 2 A second perforation line 26 is formed to form a second contour inside of the first contour, using the same laser process, but approximately a few hundred microns inside the first contour. This step is optional, but is often preferred, as the extra perforation is designed to act as a thermal barrier and to promote the fragmentation and removal of material inside the hole when the next process step is employed.
  • Step 3 A highly focused CO 2 laser 28 is used to ablate the material inside the hole, by tracing out the approximate path defined by the second perforation contour described above, or slightly (100 ⁇ m) inside the 2nd contour. This will physically melt, ablate, and drive out the glass material inside of the hole or slot.
  • a CO 2 laser power of about 14 Watts with a focused spot size of about 100 ⁇ m diameter was used, and the CO 2 laser was translated around the path at a speed of about 0.35 m/min, executing 1-2 passes to completely remove the material, the number of passes begin dependent on the exact geometry of the hole or slot.
  • the CO 2 beam would be defined as “focused” if it achieved a high enough intensity such that the glass material is melted and/or ablated by the high intensity.
  • the power density of the focused spot can be about 1750 W/mm 2 , which would be accomplished with the above described conditions, or could be from 500 W/mm 2 to 5000 W/mm 2 , depending on the desired speed of traversal of the laser beam across the surface.
  • a highly velocity assist gas such as pressurized air or nitrogen is blown through a nozzle surrounding the CO 2 laser head 32 .
  • Multiple passes of the CO 2 laser, at the same inner radius or slightly different inner radii may be used, depending on the resistance of the material to the forced removal.
  • the above high pressure compressed air was forced through a about 1 mm nozzle using a pressure of 80 psi. The nozzle was positioned about 1 mm above the glass substrate during the ablation, and the CO 2 beam was focused such that it passed without vignetting through the aperture of the nozzle.
  • FIG. 9 shows a side view of the above this process, to illustrate how the CO 2 ablation and air nozzle will create loosened material and force it out of the interior of the hole or slot.
  • FIG. 11 shows an angled view of the interior edge.
  • the edge shows the same textured damage track or filament structure achieved with outer contours made with the same damage track or filamentation process, which is shown for comparison in FIG. 12 .
  • FIG. 13 shows a top view of the cut edge of a slot made with the process described. No chirping or checking is observed on the edge of the contour. This contour has a radius of about 2 mm.
  • the method to cut and separate transparent materials, and more specifically TFT glass compositions is essentially based on creating a fault line 110 formed of a plurality of vertical defect lines 120 in the material or workpiece 130 to be processed with an ultra-short pulsed laser 140 .
  • the defect lines 120 extend, for example, through the thickness of the glass sheet, and are orthogonal to the major (flat) surfaces of the glass sheet.
  • “Fault lines” are also referred to as “contours” herein. While fault lines or contours can be linear, like the fault line 110 illustrated in FIG. 14A , the fault lines or contours can also be nonlinear, having a curvature.
  • Curved fault lines or contours can be produced by translating either the workpiece 130 or laser beam 140 with respect to the other in two dimensions instead of one dimension, for example.
  • the creation of a fault line 110 alone can be enough to induce self-separation. In this case, no secondary separation processes, such as tension/bending forces or thermal stress created for example by a CO 2 laser, are necessary.
  • a plurality of defect lines can define a contour. The separated edge or surface with the defect lines is defined by the contour. The induced absorption creating the defect lines can produce particles on the separated edge or surface with an average diameter of less than 3 microns, resulting in a very clean cutting process.
  • the created fault line is not enough to separate the material spontaneously, and a secondary step may be necessary.
  • the perforated glass part may be placed in an chamber such as an oven to create a bulk heating or cooling of the glass part, to create thermal stress to separate the parts along the defect line, such a process can be slow and may require large ovens or chambers to accommodate many arts or large pieces or perforated glass.
  • a second laser can be used to create thermal stress to separate it, for example.
  • separation can be achieved, after the creation of a fault line, by application of mechanical force or by using a thermal source (e.g., an infrared laser, for example a CO 2 laser) to create thermal stress and force separation of the material.
  • a thermal source e.g., an infrared laser, for example a CO 2 laser
  • CO 2 laser separation is achieved, for example, with a defocused continuous wave (cw) laser emitting at 10.6 microns and with power adjusted by controlling its duty cycle.
  • Focus change i.e., extent of defocusing up to and including focused spot size
  • Defocused laser beams include those laser beams that produce a spot size larger than a minimum, diffraction-limited spot size on the order of the size of the laser wavelength.
  • the exact power levels, spot sizes, and scanning speeds chosen within the specified ranges may depend on the material use, its thickness, coefficient of thermal expansion (CTE), elastic modulus, since all of these factors influence the amount of thermal stress imparted by a specific rate of energy deposition at a given spatial location. If the spot size is too small (i.e. ⁇ 1 mm), or the CO 2 laser power is too high (>400 W), or the scanning speed is too slow (less than 10 mm/sec), the glass may be over heated, creating ablation, melting or thermally generated cracks in the glass, which are undesirable, as they will reduce the edge strength of the separated parts. Preferably the CO 2 laser beam scanning speed is >50 mm/sec, in order to induce efficient and reliable part separation.
  • CTE coefficient of thermal expansion
  • the spot size created by the CO 2 laser is too large (>20 mm), or the laser power is too low ( ⁇ 10 W, or in some cases ⁇ 30 W), or the scanning speed is too high (>500 mm/sec), insufficient heating occurs which results in too low a thermal stress to induce reliable part separation.
  • a CO 2 laser power of 200 Watts may be used, with a spot diameter at the glass surface of approximately 6 mm, and a scanning speed of 250 mm/sec to induce part separation for 0.7 mm thick Corning Eagle XG® glass that has been perforated with the above mentioned psec laser.
  • a thicker Corning Eagle XG® glass substrate may require more CO 2 laser thermal energy per unit time to separate than a thinner Eagle XG® substrate, or a glass with a lower CTE may require more CO 2 laser thermal energy to separate than a glass with a lower CTE. Separation along the perforated line will occur very quickly (less than 1 second) after CO 2 spot passes a given location, for example within 100 milliseconds, within 50 milliseconds, or within 25 milliseconds.
  • Distance, or periodicity, between adjacent defect lines 120 along the direction of the fault lines 110 can be greater than 0.1 micron and less than or equal to about 20 microns in some embodiments, for example.
  • the periodicity between adjacent defect lines 120 may be between 0.5 and 15 microns, or between 3 and 10 microns, or between 0.5 micron and 3.0 microns.
  • the periodicity between adjacent defect lines 120 can be between 0.5 micron and 1.0 micron.
  • the optical method of forming the line focus can take multiple forms, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity.
  • the type of laser (picosecond, femtosecond, etc.) and wavelength (IR, green, UV, etc.) can also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate material in the region of focus to create breakdown of the substrate material or glass workpiece, through nonlinear optical effects.
  • the laser is a pulse burst laser which allows for control of the energy deposition with time by adjusting the number of pulses within a given burst.
  • the axicon condenses the laser beam into a high intensity region of cylindrical shape and high aspect ratio (long length and small diameter). Due to the high intensity created with the condensed laser beam, nonlinear interaction of the electromagnetic field of the laser and the substrate material occurs and the laser energy is transferred to the substrate to effect formation of defects that become constituents of the fault line. However, it is important to realize that in the areas of the material where the laser energy intensity is not high (e.g., glass volume of substrate surrounding the central convergence line), the material is transparent to the laser and there is no mechanism for transferring energy from the laser to the material. As a result, nothing happens to the glass or workpiece when the laser intensity is below the nonlinear threshold.
  • the material e.g., glass volume of substrate surrounding the central convergence line
  • a roughness of the separated (cut) surface which can be, for example, 0.1 to 1 microns or for example 0.25 to 1 microns
  • the surface roughness generated by this process is often ⁇ 0.5 ⁇ m (Ra), and can be as low as 0.1 ⁇ m (Ra). This has great impact on the edge strength of the part as strength is governed by the number of defects, their statistical distribution in terms of size and depth. The higher these numbers are the weaker the edges of the part will be.
  • the hole and slot release process described here takes full advantage of the high-quality edge created by this line-focus picosecond laser perforation process—it ensures that the removal of the interior glass material is done in a manner that cleanly releases the glass along this perforation line, and does not induce ablative damage, micro-cracking, or other defects to the desired part edge.
  • the perforated hole contour may be created by the picosecond laser process described herein at speeds of 80-1000 mm/sec, depending only on the acceleration capabilities of the stages involved. This is in contrast to ablative hole and slot drilling methods, where material is removed “layer by layer” and requires many passes or long residence times per location of the laser beam.
  • Tight radii may be cut ( ⁇ 2 mm), allowing creation of small holes and slots (such as required for speakers/microphone in a cell phone application). Also, since the defect lines strongly control the location of any crack propagation, those method give great control to the spatial location of a cut, and allow for cut and separation of structures and features as small as a few hundred microns.
  • the process to fabricate glass plates from the incoming glass panel to the final size and shape involves several steps that encompass cutting the panel, cutting to size, finishing and edge shaping, thinning the parts down to their target thickness, polishing, and even chemically strengthening in some cases. Elimination of any of these steps will improve manufacturing cost in terms of process time and capital expense.
  • the methods described above may reduce the number of steps by, for example:
  • a glass article has at least one inner contour edge with plurality of defect lines extending perpendicular to the face of the glass sheet at least 250 ⁇ m, the defect lines each having a diameter less than or equal to about 5 ⁇ m.
  • a glass article has at least one inner contour edge having a plurality of defect lines extending perpendicular to the major (i.e., large relative to the sides) flat face of the glass sheet at least 250 ⁇ m, the defect lines each having a diameter less than or equal to about 5 ⁇ m.
  • the smallest dimension or width of the interior contour defined by the inner contour edge is less than 5 mm, for example it may be 0.1 mm to 3 mm in width (or diameter), e.g, 0.5 mm to 2 mm.
  • the glass article comprises post-ion exchange glass.
  • the defect lines extend the full thickness of the at least one inner contour edge.
  • the at least one inner contour edge has an Ra surface roughness less than about 0.5 ⁇ m.
  • the at least one inner contour edge has subsurface damage up to a depth less than or equal to about 75 ⁇ m.
  • the defect lines extend the full thickness of the edge. The distance between the defect lines is, for example, less than or equal to about 7 ⁇ m.

Abstract

The present invention relates to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line.

Description

    RELATED APPLICATION(S)
  • This application claims the benefit of U.S. Provisional Application No. 61/917,148 filed on Dec. 17, 2013 and U.S. Provisional Application No. 62/022,855 filed on Jul. 10, 2014. The entire teachings of these applications are incorporated herein by reference.
  • BACKGROUND
  • The cutting of holes and slots in thin substrates of transparent materials, such as glass, can be accomplished by focused laser beams that are used to ablate material along the contour of a hole or slot, where multiple passes are used to remove layer after layer of material until the inner plug no longer is attached to the outer substrate piece. The problem with such processes is that they require many passes (dozens or even more) of the laser beam to remove the material layer by layer, they generate significant ablative debris which will contaminate the surfaces of the part, and they generate a lot of subsurface damage (>100 μm) along the edge of the contour.
  • Therefore, there is a need for an improved process for cutting holes and slots.
  • SUMMARY
  • Embodiments described herein relate to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass.
  • In one embodiment, a method of laser drilling a material includes focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, directing the laser beam focal line into the material at a first location, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a hole along the laser beam focal line within the material, translating the material and the pulsed laser beam relative to each other starting from the first location along a first closed contour, thereby laser drilling a plurality of holes along the first closed contour within the material, translating the material and the pulsed laser beam relative to each other starting from the first location along a first closed contour, thereby laser drilling a plurality of holes along the first closed contour within the material, and directing a carbon dioxide (CO2) laser into the material around a second closed contour contained within the first closed contour to facilitate removal of an inner plug of the material along the first closed contour.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
  • FIG. 1 is an illustration of a part to be cut out of a starting sheet. The part has both outer and inner contours. The outer contour can be easily released from the mother sheet by adding in additional cuts or “release lines.”
  • FIGS. 2A and 2B are illustrations of positioning of the laser beam focal line, i.e., the processing of a material transparent for the laser wavelength due to the induced absorption along the focal line.
  • FIG. 3A is an illustration of an optical assembly for laser drilling.
  • FIG. 3B-1 thru 3B-4 is an illustration of various possibilities to process the substrate by differently positioning the laser beam focal line relative to the substrate.
  • FIG. 4 is an illustration of a second optical assembly for laser drilling.
  • FIGS. 5A and 5B are illustrations of a third optical assembly for laser drilling.
  • FIG. 6 is a schematic illustration of a fourth optical assembly for laser drilling.
  • FIG. 7A-7C is an illustration of different regimes for laser processing of materials. FIG. 7A illustrates an unfocused laser beam, FIG. 7B illustrates a condensed laser beam with a spherical lens, and FIG. 7C illustrates a condensed laser beam with an axicon or diffractive Fresnel lens.
  • FIG. 8A illustrates schematically the relative intensity of laser pulses within an exemplary pulse burst vs. time, with each exemplary pulse burst having 3 pulses.
  • FIG. 8B illustrates schematically relative intensity of laser pulses vs. time within an exemplary pulse burst, with each exemplary pulse burst containing 5 pulses.
  • FIG. 8C is a description of different laser steps and paths traced out to define an inner contour and remove the material inside this contour.
  • FIG. 9 is a description of the CO2 laser step and path traced out to remove the material inside the contour.
  • FIG. 10 is an example of a hole and slot cut and then separated from a 0.7 mm thick sample. The hole and slot were cut and removed using the process according to this invention.
  • FIG. 11 is an angled image of the interior edge of a slot formed with the process described herein, after the CO2 ablation process has been used to remove the interior material.
  • FIG. 12 is an edge image of a straight cut strip of 0.7 mm thick Corning 2320 NIOX (not ion exchanged) thick substrate, an exterior contour. This edge can be compared to the very similar edge shown in FIG. 11.
  • FIG. 13 is a top view of a cut edge of a slot made with the process described herein. No chipping or checking is observed on the edge of the contour. This contour has a radius of about 2 mm.
  • FIGS. 14A-14C are illustrations of a fault line (or perforated line) with equally spaced defect lines or damage tracks of modified glass.
  • DETAILED DESCRIPTION
  • A description of example embodiments follows.
  • Disclosed herein is a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line. The laser process described below generates full body cuts of a variety of glasses in a single pass, with low sub-surface damage (<75 μm), and excellent surface roughness (Ra<0.5 um). Sub-surface damage (SSD) is defined as the extent of cracks or “checks” perpendicular to the cut edge of the glass piece. The magnitude of the distance these cracks extend into the glass piece can determine the amount of later material removal that may be needed from grinding and polishing operations that are used to improve glass edge strength. SSD may be measured by using confocal microscope to observed light scattering from the cracks, and determining the maximum distance the cracks extend into the body of the glass over a given cut edge.
  • One embodiment relates a method to cut and separate interior contours in materials such as glass, with a separation process that exposes the high quality edge generated by the above-mentioned perforation process without damaging it by the separation process. When a part is cut out of a starting sheet of substrate, it may be comprised of outer or inner contours, as shown in FIG. 1. Release of outer contour the part from the sheet can be done by adding additional cut lines known as “release lines”, as shown in FIG. 1. However, for the interior contours, no release lines can be made, as they would mar the part of interest. In some cases, for the highly stressed materials and large enough interior contours, the inner part may self-separate and fall out. However, for small holes and slots (e.g., 10 mm holes, slots of widths <few mm, for example ≦3 mm, or <2 mm, or even <1 mm), even for stressed materials, the inner part will not fall out. A hole is generally defined as a circular, or substantially circular feature in crossection. In contrast, slots are generally have highly elliptical features, such as features that have aspect ratios (e.g., cross-sectional or as viewed from the top or bottom, for example) of length to width of >4:1, typically ≧5:1, for example 1.5 mm×15 mm, or 3 mm×15 mm, or 1 mm×10 mm, or 1.5 mm by 7 mm, etc. Slots may have radiused corners, or the corners may be sharp (90 degree) features.
  • The challenge with separating an interior contour, such as a hole in a glass piece required for the “home” or power button on a smart phone, is that even if the contour is well perforated and a crack propagates around it, the inner plug of material may be under compressive pressure and locked in place by the material surrounding the plug. This means that the challenging part is an automated release process that allows the plug to drop out. This problem occurs regardless of whether or not the material to be cut is high stress and easy to form cracks in, like in the case of a chemically strengthened glass substrate like Gorilla® Glass, or if the material is low stress, like in the case of Eagle XG® glass. A high stress glass is a glass having central (in the center of the thickness of the glass) tension greater than about 24 MPa; while a low stress glass typically has a central tension less than about 24 MPa.
  • The present application is generally directed to a laser method and apparatus for precision cutting and separation of arbitrary shapes out of glass substrates in a controllable fashion, with negligible debris and minimum damage to part edges that preserves strength. The developed laser method relies on the material transparency to the laser wavelength in linear regime, or low laser intensity, which allows maintenance of a clean and pristine surface quality and on the reduced subsurface damage created by the area of high intensity around the laser focus. One of the key enablers of this process is the high aspect ratio of the defect created by the ultra-short pulsed laser. It allows creation of a fault line that extends from the top to the bottom surfaces of the material to be cut. In principle, this defect can be created by a single laser pulse and if necessary, additional pulses can be used to increase the extension of the affected area (depth and width).
  • Using a short pulse picosecond laser and optics which generate a focal line, a closed contour is perforated in a glass sheet. The perforations are less than a few microns in diameter, typical spacing of the perforations is 1-15 μm, and the perforations go entirely through the glass sheet.
  • To generate a weak point to facilitate material removal, an additional contour could then be optionally perforated with the same process a few hundred microns to the interior of the first contour.
  • A focused CO2 laser beam, of a high enough power density to ablate the glass material, is then traced around the second contour, causing the glass material to fragment and be removed. One or more passes of the laser may be used. A high pressure assist gas is also forced out through a nozzle collinearly to the CO2 beam, to provide additional force to drive the glass material out of the larger glass piece.
  • The method to cut and separate transparent materials is essentially based on creating a fault line on the material to be processed with an ultra-short pulsed laser. Depending on the material properties (absorption, CTE, stress, composition, etc.) and laser parameters chosen for processing that determined material, the creation of a fault line alone can be enough to induce self-separation. This is the case for most strengthened glasses (those that have already undergone ion-exchange before cutting) that have significant (i.e., greater than about 24 MPa) internal or central tension (CT). In this case, no secondary separation processes, such as tension/bending forces or CO2 laser, are necessary.
  • In some cases, the created fault line is not enough to separate the glass automatically. This is often the case for display glasses such as Eagle XG®, Lotus, or ion-exchangeable glasses that are cut before any ion-exchange step. Thus, a secondary process step may be necessary. If so desired, a second laser can be used to create thermal stress to separate it, for example. In the case of Corning code 2320 NIOX (non-ion exchanged Gorilla® Glass 3), we have found that separation can be achieved, after the creation of a defect line, by application of mechanical force or by tracing the existing fault line with an infrared CO2 laser beam to create thermal stress and force the parts to self-separate. Another option is to have the CO2 laser only start the separation and finish the separation manually. The optional CO2 laser separation is achieved with a defocused (i.e. spot size at the glass of 2-12 mm in diameter) continuous wave laser emitting at 10.6 μm and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing) is used to vary the induced thermal stress by varying the spot size. After generation of the perforation lines, CO2 induced separation can generally be achieved by using a power at the glass of ˜40 W, a spot size of about 2 mm, and a traverse rate of the beam of ˜14-20 m/minute.
  • However, even if the glass has enough internal stress to start self-separation after the formation of the defect line, the geometry of the cut contour may prevent an interior glass part from releasing. This is the case for most closed or inner contours, such as simple holes or slots. The interior portion of the aperture will remain in place due to the compression forces present in the glass sheet—the cracks may propagate between the perforated defects, but no room exists to allow the piece to fall out of the mother sheet.
  • Forming the Defect or Perforation Line
  • For the first process step, there are several methods to create that defect line. The optical method of forming the line focus can take multiple forms, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity. The type of laser (picosecond, femtosecond, etc.) and wavelength (IR, green, UV, etc.) can also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate material. This wavelength may be, for example, 1064, 532, 355 or 266 nanometers.
  • Ultra-short pulse lasers can be used in combination with optics that generate a focal line to fully perforate the body of a range of glass compositions. In some embodiments, the pulse duration of the individual pulses is in a range of between greater than about 1 picoseconds and less than about 100 picoseconds, such as greater than about 5 picoseconds and less than about 20 picoseconds, and the repetition rate of the individual pulses can be in a range of between about 1 kHz and 4 MHz, such as in a range of between about 10 kHz and 650 kHz.
  • In addition to a single pulse operation at the aforementioned individual pulse repetition rates, the pulses can be produced in bursts of two pulses, or more (such as, for example, 3 pulses, 4, pulses, 5 pulses, 10 pulses, 15 pulses, 20 pulses, or more) separated by a duration between the individual pulses within the pulse burst that is in a range of between about 1 nsec and about 50 nsec, for example, 10-50 nsec, or 10 to 30 nsec, such as about 20 nsec, and the burst repetition frequency can be in a range of between about 1 kHz and about 200 kHz. (Bursting or producing pulse bursts is a type of laser operation where the emission of pulses is not in a uniform and steady stream but rather in tight clusters of pulses.) The pulse burst laser beam can have a wavelength selected such that the material is substantially transparent at this wavelength. The average laser power per burst measured at the material can be greater than 40 microJoules per mm thickness of material, for example between 40 microJoules/mm and 2500 microJoules/mm, or between 200 and 800 microJoules/mm. For example, for 0.5 mm-0.7 mm thick Corning 2320 non-ion exchanged glass one may use 200 μJ pulse bursts to cut and separate the glass, which gives an exemplary range of 285-400 μJ/mm. The glass is moved relative to the laser beam (or the laser beam is translated relative to the glass) to create perforated lines that trace out the shape of any desired parts.
  • The laser creates hole-like defect zones (or damage tracks, or defect lines) that penetrate the full depth the glass, with internal openings, for example of approximately 1 micron in diameter. These perforations, defect regions, damage tracks, or defect lines are generally spaced from 1 to 15 microns apart (for example, 2-12 microns, or 3-10 microns). The defect lines extend, for example, through the thickness of the glass sheet, and are orthogonal to the major (flat) surfaces of the glass sheet.
  • In one embodiment, an ultra-short (˜10 psec) burst pulsed laser is used to create this high aspect ratio vertical defect line in a consistent, controllable and repeatable manner. The detail of the optical setup that enables the creation of this vertical defect line is described below and in U.S. Application No. 61/752,489, filed on Jan. 15, 2013. The essence of this concept is to use an axicon lens element in an optical lens assembly to create a region of high aspect ratio taper-free microchannel using ultra-short (picoseconds or femtosecond duration) Bessel beams. In other words, the axicon condenses the laser beam into a region of cylindrical shape and high aspect ratio (long length and small diameter). Due to the high intensity created with the condensed laser beam, nonlinear interaction of the laser electromagnetic field and the material occurs and the laser energy is transferred to the substrate. However, it is important to realize that in the areas where the laser energy intensity is not high (i.e., glass surface, glass volume surrounding the central convergence line), nothing happens to the glass as the laser intensity is below the nonlinear threshold.
  • Turning to FIGS. 2A and 2B, a method of laser drilling a material includes focusing a pulsed laser beam 2 into a laser beam focal line 2 b, viewed along the beam propagation direction. As shown in FIG. 3, laser 3 (not shown) emits laser beam 2, at the beam incidence side of the optical assembly 6 referred to as 2 a, which is incident on the optical assembly 6. The optical assembly 6 turns the incident laser beam into an extensive laser beam focal line 2 b on the output side over a defined expansion range along the beam direction (length l of the focal line). The planar substrate 1 to be processed is positioned in the beam path after the optical assembly overlapping at least partially the laser beam focal line 2 b of laser beam 2. Reference 1 a designates the surface of the planar substrate facing the optical assembly 6 or the laser, respectively, reference 1 b designates the reverse surface of substrate 1 usually spaced in parallel. The substrate thickness (measured perpendicularly to the planes 1 a and 1 b, i.e., to the substrate plane) is labeled with d.
  • As FIG. 2A depicts, substrate 1 is aligned perpendicularly to the longitudinal beam axis and thus behind the same focal line 2 b produced by the optical assembly 6 (the substrate is perpendicular to the drawing plane) and viewed along the beam direction it is positioned relative to the focal line 2 b in such a way that the focal line 2 b viewed in beam direction starts before the surface 1 a of the substrate and stops before the surface 1 b of the substrate, i.e. still within the substrate. In the overlapping area of the laser beam focal line 2 b with substrate 1, i.e. in the substrate material covered by focal line 2 b, the extensive laser beam focal line 2 b thus generates (in case of a suitable laser intensity along the laser beam focal line 2 b which is ensured due to the focusing of laser beam 2 on a section of length l, i.e. a line focus of length l) an extensive section 2 c viewed along the longitudinal beam direction, along which an induced absorption is generated in the substrate material which induces a defect line or crack formation in the substrate material along section 2 c. The crack formation is not only local, but over the entire length of the extensive section 2 c of the induced absorption. The length of section 2 c (i.e., after all, the length of the overlapping of laser beam focal line 2 b with substrate 1) is labeled with reference L. The average diameter or the average extension of the section of the induced absorption (or the sections in the material of substrate 1 undergoing the crack formation) is labeled with reference D. This average extension D basically corresponds to the average diameter δ of the laser beam focal line 2 b, that is, an average spot diameter in a range of between about 0.1 μm and about 5 μm.
  • As FIG. 2A shows, substrate material transparent for the wavelength λ of laser beam 2 is heated due to the induced absorption along the focal line 2 b. FIG. 2B outlines that the warming material will eventually expand so that a correspondingly induced tension leads to micro-crack formation, with the tension being the highest at surface 1 a.
  • Concrete optical assemblies 6, which can be applied to generate the focal line 2 b, as well as a concrete optical setup, in which these optical assemblies can be applied, are described below. All assemblies or setups are based on the description above so that identical references are used for identical components or features or those which are equal in their function. Therefore only the differences are described below.
  • As the parting face eventually resulting in the separation is or must be of high quality (regarding breaking strength, geometric precision, roughness and avoidance of re-machining requirements), the individual focal lines to be positioned on the substrate surface along parting line 5 should be generated using the optical assembly described below (hereinafter, the optical assembly is alternatively also referred to as laser optics). The roughness results particularly from the spot size or the spot diameter of the focal line. In order to achieve a low spot size of, for example, 0.5 μm to 2 μm in case of a given wavelength λ of laser 3 (interaction with the material of substrate 1), certain requirements must usually be imposed on the numerical aperture of laser optics 6. These requirements are met by laser optics 6 described below.
  • In order to achieve the required numerical aperture, the optics must, on the one hand, dispose of the required opening for a given focal length, according to the known Abbé formulae (N.A.=n sin (theta), n: refractive index of the glass to be processes, theta: half the aperture angle; and theta=arc tan (D/2f); D: aperture, f: focal length). On the other hand, the laser beam must illuminate the optics up to the required aperture, which is typically achieved by means of beam widening using widening telescopes between laser and focusing optics.
  • The spot size should not vary too strongly for the purpose of a uniform interaction along the focal line. This can, for example, be ensured (see the embodiment below) by illuminating the focusing optics only in a small, circular area so that the beam opening and thus the percentage of the numerical aperture only vary slightly.
  • According to FIG. 3A (section perpendicular to the substrate plane at the level of the central beam in the laser beam bundle of laser radiation 2; here, too, the center of the laser beam 2 is preferably perpendicularly incident to the substrate plane, i.e. angle is 0° so that the focal line 2 b or the extensive section of the induced absorption 2 c is parallel to the substrate normal), the laser radiation 2 a emitted by laser 3 is first directed onto a circular aperture 8 which is completely opaque for the laser radiation used. Aperture 8 is oriented perpendicular to the longitudinal beam axis and is centered on the central beam of the depicted beam bundle 2 a. The diameter of aperture 8 is selected in such a way that the beam bundles near the center of beam bundle 2 a or the central beam (here labeled with 2 aZ) hit the aperture and are completely absorbed by it. Only the beams in the outer perimeter range of beam bundle 2 a (marginal rays, here labeled with 2 aR) are not absorbed due to the reduced aperture size compared to the beam diameter, but pass aperture 8 laterally and hit the marginal areas of the focusing optic elements of the optical assembly 6, which is designed as a spherically cut, bi-convex lens 7 here.
  • Lens 7 centered on the central beam is deliberately designed as a non-corrected, bi-convex focusing lens in the form of a common, spherically cut lens. Put another way, the spherical aberration of such a lens is deliberately used. As an alternative, aspheres or multi-lens systems deviating from ideally corrected systems, which do not form an ideal focal point but a distinct, elongated focal line of a defined length, can also be used (i.e., lenses or systems which do not have a single focal point). The zones of the lens thus focus along a focal line 2 b, subject to the distance from the lens center. The diameter of aperture 8 across the beam direction is approximately 90% of the diameter of the beam bundle (beam bundle diameter defined by the extension to the decrease to 1/e2) (intensity) and approximately 75% of the diameter of the lens of the optical assembly 6. The focal line 2 b of a non-aberration-corrected spherical lens 7 generated by blocking out the beam bundles in the center is thus used. FIG. 3A shows the section in one plane through the central beam, the complete three-dimensional bundle can be seen when the depicted beams are rotated around the focal line 2 b.
  • One disadvantage of this focal line is that the conditions (spot size, laser intensity) along the focal line, and thus along the desired depth in the material, vary and therefore the desired type of interaction (no melting, induced absorption, thermal-plastic deformation up to crack formation) may possibly only be selected in a part of the focal line. This means in turn that possibly only a part of the incident laser light is absorbed in the desired way. In this way, the efficiency of the process (required average laser power for the desired separation speed) is impaired on the one hand, and on the other hand the laser light might be transmitted into undesired deeper places (parts or layers adherent to the substrate or the substrate holding fixture) and interact there in an undesirable way (heating, diffusion, absorption, unwanted modification).
  • FIG. 3B-1-4 show (not only for the optical assembly in FIG. 3A, but basically also for any other applicable optical assembly 6) that the laser beam focal line 2 b can be positioned differently by suitably positioning and/or aligning the optical assembly 6 relative to substrate 1 as well as by suitably selecting the parameters of the optical assembly 6: As FIG. 3B-1 outlines, the length l of the focal line 2 b can be adjusted in such a way that it exceeds the substrate thickness d (here by factor 2). If substrate 1 is placed (viewed in longitudinal beam direction) centrally to focal line 2 b, an extensive section of induced absorption 2 c is generated over the entire substrate thickness.
  • In the case shown in FIG. 3B-2, a focal line 2 b is generated which has a length l which is substantially the same as the substrate thickness d. As substrate 1 relative to line 2 is positioned in such a way that line 2 b starts in a point before, i.e. outside the substrate, the length L of the extensive section of induced absorption 2 c (which extends here from the substrate surface to a defined substrate depth, but not to the reverse surface 1 b) is smaller than the length l of focal line 2 b. FIG. 3B-3 shows the case in which the substrate 1 (viewed along the beam direction) is partially positioned before the starting point of focal line 2 b so that, here too, it applies to the length l of line 2 b 1>L (L=extension of the section of induced absorption 2 c in substrate 1). The focal line thus starts within the substrate and extends over the reverse surface 1 b to beyond the substrate. FIG. 3B-4 finally shows the case in which the generate focal line length l is smaller than the substrate thickness d so that—in case of a central positioning of the substrate relative to the focal line viewed in the direction of incidence—the focal line starts near the surface 1 a within the substrate and ends near the surface 1 b within the substrate (l=0.75·d).
  • It is particularly advantageous to realize the focal line positioning in such a way that at least one surface 1 a, 1 b is covered by the focal line, i.e. that the section of induced absorption 2 c starts at least on one surface. In this way it is possible to achieve virtually ideal cuts avoiding ablation, feathering and particulation at the surface.
  • FIG. 4 depicts another applicable optical assembly 6. The basic construction follows the one described in FIG. 3A so that only the differences are described below. The depicted optical assembly is based upon the use of optics with a non-spherical free surface in order to generate the focal line 2 b, which is shaped in such a way that a focal line of defined length l is formed. For this purpose, aspheres can be used as optic elements of the optical assembly 6. In FIG. 4, for example, a so-called conical prism, also often referred to as axicon, is used. An axicon is a special, conically cut lens which forms a spot source on a line along the optical axis (or transforms a laser beam into a ring). The layout of such an axicon is principally known to one of skill in the art; the cone angle in the example is 10°. The apex of the axicon labeled here with reference 9 is directed towards the incidence direction and centered on the beam center. As the focal line 2 b of the axicon 9 already starts in its interior, substrate 1 (here aligned perpendicularly to the main beam axis) can be positioned in the beam path directly behind axicon 9. As FIG. 4 shows, it is also possible to shift substrate 1 along the beam direction due to the optical characteristics of the axicon without leaving the range of focal line 2 b. The extensive section of the induced absorption 2 c in the material of substrate 1 therefore extends over the entire substrate thickness d.
  • However, the depicted layout is subject to the following restrictions: As the focal line of axicon 9 already starts within the lens, a significant part of the laser energy is not focused into part 2 c of focal line 2 b, which is located within the material, in case of a finite distance between lens and material. Furthermore, length l of focal line 2 b is related to the beam diameter for the available refraction indices and cone angles of axicon 9, which is why, in case of relatively thin materials (several millimeters), the total focal line is too long, having the effect that the laser energy is again not specifically focused into the material.
  • This is the reason for an enhanced optical assembly 6 which comprises both an axicon and a focusing lens. FIG. 5A depicts such an optical assembly 6 in which a first optical element (viewed along the beam direction) with a non-spherical free surface designed to form an extensive laser beam focal line 2 b is positioned in the beam path of laser 3. In the case shown in FIG. 5A, this first optical element is an axicon 10 with a cone angle of 5°, which is positioned perpendicularly to the beam direction and centered on laser beam 3. The apex of the axicon is oriented towards the beam direction. A second, focusing optical element, here the plano-convex lens 11 (the curvature of which is oriented towards the axicon), is positioned in beam direction at a distance z1 from the axicon 10. The distance z1, in this case approximately 300 mm, is selected in such a way that the laser radiation formed by axicon 10 circularly incides on the marginal area of lens 11. Lens 11 focuses the circular radiation on the output side at a distance z2, in this case approximately 20 mm from lens 11, on a focal line 2 b of a defined length, in this case 1.5 mm. The effective focal length of lens 11 is 25 mm here. The circular transformation of the laser beam by axicon 10 is labeled with the reference SR.
  • FIG. 5B depicts the formation of the focal line 2 b or the induced absorption 2 c in the material of substrate 1 according to FIG. 5A in detail. The optical characteristics of both elements 10, 11 as well as the positioning of them is selected in such a way that the extension 1 of the focal line 2 b in beam direction is exactly identical with the thickness d of substrate 1. Consequently, an exact positioning of substrate 1 along the beam direction is required in order to position the focal line 2 b exactly between the two surfaces 1 a and 1 b of substrate 1, as shown in FIG. 5B.
  • It is therefore advantageous if the focal line is formed at a certain distance from the laser optics, and if the greater part of the laser radiation is focused up to a desired end of the focal line. As described, this can be achieved by illuminating a primarily focusing element 11 (lens) only circularly on a required zone, which, on the one hand, serves to realize the required numerical aperture and thus the required spot size, on the other hand, however, the circle of diffusion diminishes in intensity after the required focal line 2 b over a very short distance in the center of the spot, as a basically circular spot is formed. In this way, the crack formation is stopped within a short distance in the required substrate depth. A combination of axicon 10 and focusing lens 11 meets this requirement. The axicon acts in two different ways: due to the axicon 10, a usually round laser spot is sent to the focusing lens 11 in the form of a ring, and the asphericity of axicon 10 has the effect that a focal line is formed beyond the focal plane of the lens instead of a focal point in the focal plane. The length l of focal line 2 b can be adjusted via the beam diameter on the axicon. The numerical aperture along the focal line, on the other hand, can be adjusted via the distance z1 axicon-lens and via the cone angle of the axicon. In this way, the entire laser energy can be concentrated in the focal line.
  • If the crack formation (i.e., defect line) is supposed to continue to the emergence side of the substrate, the circular illumination still has the advantage that, on the one hand, the laser power is used in the best possible way as a large part of the laser light remains concentrated in the required length of the focal line, on the other hand, it is possible to achieve a uniform spot size along the focal line—and thus a uniform separation process along the focal line—due to the circularly illuminated zone in conjunction with the desired aberration set by means of the other optical functions.
  • Instead of the plano-convex lens depicted in FIG. 5A, it is also possible to use a focusing meniscus lens or another higher corrected focusing lens (asphere, multi-lens system).
  • In order to generate very short focal lines 2 b using the combination of an axicon and a lens depicted in FIG. 5A, it would be necessary to select a very small beam diameter of the laser beam inciding on the axicon. This has the practical disadvantage that the centering of the beam onto the apex of the axicon must be very precise and that therefore the result is very sensitive to direction variations of the laser (beam drift stability). Furthermore, a tightly collimated laser beam is very divergent, i.e. due to the light deflection the beam bundle becomes blurred over short distances.
  • As shown in FIG. 6, both effects can be avoided by inserting another lens, a collimating lens 12: this further, positive lens 12 serves to adjust the circular illumination of focusing lens 11 very tightly. The focal length f′ of collimating lens 12 is selected in such a way that the desired circle diameter dr results from distance z1 a from the axicon to the collimating lens 12, which is equal to f′. The desired width br of the ring can be adjusted via the distance z1 b (collimating lens 12 to focusing lens 11). As a matter of pure geometry, the small width of the circular illumination leads to a short focal line. A minimum can be achieved at distance f′.
  • The optical assembly 6 depicted in FIG. 6 is thus based on the one depicted in FIG. 5A so that only the differences are described below. The collimating lens 12, here also designed as a plano-convex lens (with its curvature towards the beam direction) is additionally placed centrally in the beam path between axicon 10 (with its apex towards the beam direction), on the one side, and the plano-convex lens 11, on the other side. The distance of collimating lens 12 from axicon 10 is referred to as z1 a, the distance of focusing lens 11 from collimating lens 12 as z1 b, and the distance of the generated focal line 2 b from the focusing lens 11 as z2 (always viewed in beam direction). As shown in FIG. 6, the circular radiation SR formed by axicon 10, which incides divergently and under the circle diameter dr on the collimating lens 12, is adjusted to the required circle width br along the distance z1 b for an at least approximately constant circle diameter dr at the focusing lens 11. In the case shown, a very short focal line 2 b is supposed to be generated so that the circle width br of approx. 4 mm at lens 12 is reduced to approx. 0.5 mm at lens 11 due to the focusing properties of lens 12 (circle diameter dr is 22 mm in the example).
  • In the depicted example it is possible to achieve a length of the focal line l of less than 0.5 min using a typical laser beam diameter of 2 mm, a focusing lens 11 with a focal length f=25 mm, and a collimating lens with a focal length f=150 mm. Furthermore applies Z1 a=Z1 b=140 mm and Z2=15 mm.
  • FIGS. 7A-7C illustrate the laser-matter interaction at different laser intensity regimes. In the first case, shown in FIG. 7A, the unfocused laser beam 710 goes through a transparent substrate 720 without introducing any modification to it. In this particular case, the nonlinear effect is not present because the laser energy density (or laser energy per unit area illuminated by the beam) is below the threshold necessary to induce nonlinear effects. The higher the energy density, the higher is the intensity of the electromagnetic field. Therefore, as shown in FIG. 7B when the laser beam is focused by spherical lens 730 to a smaller spot size, as shown in FIG. 7B, the illuminated area is reduced and the energy density increases, triggering the nonlinear effect that will modify the material to permit formation of a fault line only in the volume where that condition is satisfied. In this way, if the beam waist of the focused laser is positioned at the surface of the substrate, modification of the surface will occur. In contrast, if the beam waist of the focused laser is positioned below the surface of the substrate, nothing happens at the surface when the energy density is below the threshold of the nonlinear optical effect. But at the focus 740, positioned in the bulk of the substrate 720, the laser intensity is high enough to trigger multi-photon non-linear effects, thus inducing damage to the material. Finally, as shown in FIG. 7C in the case of an axicon, as shown in FIG. 7C, the diffraction pattern of an axicon lens 750, or alternatively a Fresnel axicon, creates interference that generates a Bessel-shaped intensity distribution (cylinder of high intensity 760) and only in that volume is the intensity high enough to create nonlinear absorption and modification to the material 720. The diameter of cylinder 760, in which Bessel-shaped intensity distribution is high enough to create nonlinear absorption and modification to the material, is also the spot diameter of the laser beam focal line, as referred to herein. Spot diameter D of a Bessel beam can be expressed as D=(2.4048λ)/(2πB), where λ is the laser beam wavelength and B is a function of the axicon angle.
  • Note that typical operation of such a picosecond laser described herein creates a “burst” 500 of pulses 500A. (See, for example, FIGS. 8A and 8B). Each “burst” (also referred to herein as a “pulse burst” 500) contains multiple individual pulses 500A (such as at least 2 pulses, at least 3 pulses, at least 4 pulses, at least 5 pulses, at least 10 pulses, at least 15 pulses, at least 20 pulses, or more) of very short duration. That is, a pulse bust is a “pocket” of pulses, and the bursts are separated from one another by a longer duration than the separation of individual adjacent pulses within each burst. Pulses 500A have pulse duration Td of up to 100 psec (for example, 0.1 psec, 5 psec, 10 psec, 15 psec, 18 psec, 20 psec, 22 psec, 25 psec, 30 psec, 50 psec, 75 psec, or therebetween). The energy or intensity of each individual pulse 500A within the burst may not be equal to that of other pulses within the burst, and the intensity distribution of the multiple pulses within a burst 500 often follows an exponential decay in time governed by the laser design. Preferably, each pulse 500A within the burst 500 of the exemplary embodiments described herein is separated in time from the subsequent pulse in the burst by a duration Tp from 1 nsec to 50 nsec (e.g. 10-50 nsec, or 10-30 nsec, with the time often governed by the laser cavity design). For a given laser, the time separation Tp between adjacent pulses (pulse-to-pulse separation) within a burst 500 is relatively uniform (±10%). For example, in some embodiments, each pulse within a burst is separated in time from the subsequent pulse by approximately 20 nsec (50 MHz). For example, for a laser that produces pulse separation Tp of about 20 nsec, the pulse to pulse separation Tp within a burst is maintained within about ±10%, or about ±2 nsec. The time between each “burst” of pulses (i.e., time separation Tb between bursts) will be much longer (e.g., 0.25≦Tb≦1000 microseconds, for example 1-10 microseconds, or 3-8 microseconds). In some of the exemplary embodiments of the laser described herein the time separation Tb is around 5 microseconds for a laser with pulse burst repetition rate or frequency of about 200 kHz. The laser burst repetition rate is relates to the time Tb between the first pulse in a burst to the first pulse in the subsequent burst (laser burst repetition rate=1/Tb). In some embodiments, the laser burst repetition frequency may be in a range of between about 1 kHz and about 4 MHz. More preferably, the laser burst repetition rates can be, for example, in a range of between about 10 kHz and 650 kHz. The time Tb between the first pulse in each burst to the first pulse in the subsequent burst may be 0.25 microsecond (4 MHz burst repetition rate) to 1000 microseconds (1 kHz burst repetition rate), for example 0.5 microseconds (2 MHz burst repetition rate) to 40 microseconds (25 kHz burst repetition rate), or 2 microseconds (500 kHz burst repetition rate) to 20 microseconds (50 k Hz burst repetition rate). The exact timings, pulse durations, and burst repetition rates can vary depending on the laser design, but short pulses (Td<20 psec and preferably Td≦15 psec) of high intensity have been shown to work particularly well.
  • The energy required to modify the material can be described in terms of the burst energy—the energy contained within a burst (each burst 500 contains a series of pulses 500A), or in terms of the energy contained within a single laser pulse (many of which may comprise a burst). For these applications, the energy per burst can be from 25-750 μJ, more preferably 50-500 μJ, or 50-250 μJ. In some embodiments the energy per burst is 100-250 μJ. The energy of an individual pulse within the pulse burst will be less, and the exact individual laser pulse energy will depend on the number of pulses 500A within the pulse burst 500 and the rate of decay (e.g., exponential decay rate) of the laser pulses with time as shown in FIGS. 8A and 8B. For example, for a constant energy/burst, if a pulse burst contains 10 individual laser pulses 500A, then each individual laser pulse 500A will contain less energy than if the same pulse burst 500 had only 2 individual laser pulses.
  • The use of a laser capable of generating such pulse bursts is advantageous for cutting or modifying transparent materials, for example glass. In contrast with the use of single pulses spaced apart in time by the repetition rate of the single-pulsed laser, the use of a pulse burst sequence that spreads the laser energy over a rapid sequence of pulses within the burst 500 allows access to larger timescales of high intensity interaction with the material than is possible with single-pulse lasers. While a single-pulse can be expanded in time, as this is done the intensity within the pulse must drop as roughly one over the pulse width. Hence if a 10 psec single pulse is expanded to a 10 nsec pulse, the intensity drop by roughly three orders of magnitude. Such a reduction can reduce the optical intensity to the point where non-linear absorption is no longer significant, and light material interaction is no longer strong enough to allow for cutting. In contrast, with a pulse burst laser, the intensity during each pulse 500A within the burst 500 can remain very high—for example three 10 psec pulses 500A spaced apart in time by approximately 10 nsec still allows the intensity within each pulse to be approximately three times higher than that of a single 10 psec pulse, while the laser is allowed to interact with the material over a timescale that is now three orders of magnitude larger. This adjustment of multiple pulses 500A within a burst thus allows manipulation of time-scale of the laser-material interaction in ways that can facilitate greater or lesser light interaction with a pre-existing plasma plume, greater or lesser light-material interaction with atoms and molecules that have been pre-excited by an initial or previous laser pulse, and greater or lesser heating effects within the material that can promote the controlled growth of microcracks. The required amount of burst energy to modify the material will depend on the substrate material composition and the length of the line focus used to interact with the substrate. The longer the interaction region, the more the energy is spread out, and higher burst energy will be required. The exact timings, pulse durations, and burst repetition rates can vary depending on the laser design, but short pulses (<15 psec, or ≦10 psec) of high intensity have been shown to work well with this technique. A defect line or a hole is formed in the material when a single burst of pulses strikes essentially the same location on the glass. That is, multiple laser pulses within a single burst correspond to a single defect line or a hole location in the glass. Of course, since the glass is translated (for example by a constantly moving stage) (or the beam is moved relative to the glass, the individual pulses within the burst cannot be at exactly the same spatial location on the glass. However, they are well within 1 μm of one another—i. e., they strike the glass at essentially the same location. For example, they may strike the glass at a spacing, sp, from one another where 0<sp≦500 nm. For example, when a glass location is hit with a burst of 20 pulses the individual pulses within the burst strike the glass within 250 nm of each other. Thus, in some embodiments 1 nm<sp<250 nm. In some embodiments 1 nm<sp<100 nm.
  • Multi-photon effects, or multi-photon absorption (MPA) is the simultaneous absorption of two or more photons of identical or different frequencies in order to excite a molecule from one state (usually the ground state) to a higher energy electronic state (ionization). The energy difference between the involved lower and upper states of the molecule can be equal to the sum of the energies of the two photons. MPA, also called induced absorption, can be can be a second-order, third-order process, or higher-order process, for example, that is several orders of magnitude weaker than linear absorption. MPA differs from linear absorption in that the strength of induced absorption can be proportional to the square or cube (or higher power law) of the light intensity, for example, instead of being proportional to the light intensity itself. Thus, MPA is a nonlinear optical process.
  • The lateral spacing (pitch) between the defect lines (damage tracks) is determined by the pulse rate of the laser as the substrate is translated underneath the focused laser beam. Only a single picosecond laser pulse burst is usually necessary to form an entire hole, but multiple bursts may be used if desired. To form damage tracks (defect lines) at different pitches, the laser can be triggered to fire at longer or shorter intervals. For cutting operations, the laser triggering generally is synchronized with the stage driven motion of the workpiece beneath the beam, so laser pulse bursts are triggered at a fixed spacing, such as for example every 1 micron, or every 5 microns. Distance, or periodicity, between adjacent perforations or defect lines along the direction of the fault line can be greater than 0.1 micron and less than or equal to about 20 microns in some embodiments, for example. For example, the spacing or periodicity between adjacent perforations or defect lines is between 0.5 and 15 microns, or between 3 and 10 microns, or between 0.5 micron and 3.0 microns. For example, in some embodiments the periodicity can be between 2 micron and 8 microns.
  • We discovered that using pulse burst lasers with certain volumetric pulse energy density (μJ/μm3) within the approximately cylindrical volume of the line focus re preferable to create the perforated contours in the glass. This can be achieved, for example, by utilizing pulse burst lasers, preferably with at least 2 pulses per burst and providing volumetric energy densities within the alkaline earth boro-aluminosilicate glasses (with low or no alkali) of about 0.005 μJ/μm3 or higher to ensure a damage track is formed, but less than 0.100 μJ/μ3 so as to not damage the glass too much, for example 0.005 μJ/μm3-0.100 μJ/μm3
  • Interior Contour Process
  • FIG. 1 illustrates the problem to be solved. A part 22 is to be cut out of a glass sheet 20. To release the outer contour of a part, additional release lines can be cut in the larger glass sheet that extend any crack lines to the edges of the sheet, allowing the glass to break into sections which can be removed. However, for interior contours such as those needed for a home button on a phone, creating additional release lines would cut through the part of interest. Thus the interior hole or slot is “locked in place”, and is difficult to remove. Even if the glass is high stress and crack propagate from perforation to perforation in the outer diameter of the hole or slot, the interior glass will not release, as the material will be too rigid and is held by compressional force.
  • One manner of releasing a larger hole is to first perforate the contour of the hole, and then follow up with a laser heating process, such as with a CO2 laser, that heats up the inner glass piece until it softens and then is compliant enough to drop out. This works well for larger hole diameters and thinner materials. However, as the aspect ratio (thickness/diameter) of the glass plug gets very large, such methods have more difficulty. For example, with such methods, 10 mm diameter holes can be released from 0.7 mm thick glass, but <4 mm holes cannot always be released in the same glass thickness.
  • FIG. 8C illustrates a process that solves this problem, and has been successfully used to separate holes down to 1.5 mm diameter out of 0.7 mm thick code 2320 glass (ion-exchanged and non-ion exchanged), and also to create slots with widths and radii as small as 1.5 mm. Step 1—A perforation of a first contour 24 is made in glass sheet 20 using the picosecond pulse burst process that defines the desired shape of the contour (e.g., hole, slot) to be cut. For example, for Corning's code 2320 0.7 mm thick non-ion exchanged glass, 210 μJ bursts were used to pitch to perforate the material and to create damage tracks or defect lines at 4 μm pitch. Depending on the exact material, other damage track spacings may also be employed, such as 1-15 microns, or 3-10 microns, or 3-7 microns. For ion-exchangeable glasses such as those described above, 3-7 micron pitch works well, but for other glasses such as the display glass Eagle XG, smaller pitches may be preferred, such a 1-3 microns. In the embodiments described herein, typical pulse burst laser powers are 10 W-150 Watts with laser powers of 25-60 Watts being sufficient (and optimum) for many glasses.
  • Step 2—A second perforation line 26 is formed to form a second contour inside of the first contour, using the same laser process, but approximately a few hundred microns inside the first contour. This step is optional, but is often preferred, as the extra perforation is designed to act as a thermal barrier and to promote the fragmentation and removal of material inside the hole when the next process step is employed.
  • Step 3—A highly focused CO2 laser 28 is used to ablate the material inside the hole, by tracing out the approximate path defined by the second perforation contour described above, or slightly (100 μm) inside the 2nd contour. This will physically melt, ablate, and drive out the glass material inside of the hole or slot. For code 2320 0.7 mm thick non-ion exchanged glass available from Corning Incorporated, a CO2 laser power of about 14 Watts with a focused spot size of about 100 μm diameter was used, and the CO2 laser was translated around the path at a speed of about 0.35 m/min, executing 1-2 passes to completely remove the material, the number of passes begin dependent on the exact geometry of the hole or slot. In general, for this process step, the CO2 beam would be defined as “focused” if it achieved a high enough intensity such that the glass material is melted and/or ablated by the high intensity. For example, the power density of the focused spot can be about 1750 W/mm2, which would be accomplished with the above described conditions, or could be from 500 W/mm2 to 5000 W/mm2, depending on the desired speed of traversal of the laser beam across the surface.
  • In addition, as shown in FIG. 9, a highly velocity assist gas such as pressurized air or nitrogen is blown through a nozzle surrounding the CO2 laser head 32. This blows a directed stream of gas at the focused CO2 laser spot on the glass, and helps force the loosened glass material out of the larger substrate. Multiple passes of the CO2 laser, at the same inner radius or slightly different inner radii may be used, depending on the resistance of the material to the forced removal. In the case of the above high pressure compressed air was forced through a about 1 mm nozzle using a pressure of 80 psi. The nozzle was positioned about 1 mm above the glass substrate during the ablation, and the CO2 beam was focused such that it passed without vignetting through the aperture of the nozzle.
  • FIG. 9 shows a side view of the above this process, to illustrate how the CO2 ablation and air nozzle will create loosened material and force it out of the interior of the hole or slot.
  • Sample Results:
  • FIG. 10 shows the results of the process, for a cover glass for a typical handheld phone. The geometry of the oblong hole (home button) was about 5.2 mm by 16 mm, with about 1.5 mm radius corners, and for the slot, it was 15 mm long, 1.6 mm wide, with about 0.75 mm radii on the ends. Excellent edge quality (Ra of about 0.5 microns, no chipping observable under a 100× magnification microscope) and consistent material removal and separation were observed over >100 parts using this process.
  • FIG. 11 shows an angled view of the interior edge. The edge shows the same textured damage track or filament structure achieved with outer contours made with the same damage track or filamentation process, which is shown for comparison in FIG. 12. This indicates that the CO2 ablation process described above has removed the loosened interior material without damaging the high quality, low roughness, and low sub-surface edge which is generally created with the picosecond perforation process described above.
  • FIG. 13 shows a top view of the cut edge of a slot made with the process described. No chirping or checking is observed on the edge of the contour. This contour has a radius of about 2 mm.
  • As illustrated in FIGS. 14A-14C, the method to cut and separate transparent materials, and more specifically TFT glass compositions, is essentially based on creating a fault line 110 formed of a plurality of vertical defect lines 120 in the material or workpiece 130 to be processed with an ultra-short pulsed laser 140. The defect lines 120 extend, for example, through the thickness of the glass sheet, and are orthogonal to the major (flat) surfaces of the glass sheet. “Fault lines” are also referred to as “contours” herein. While fault lines or contours can be linear, like the fault line 110 illustrated in FIG. 14A, the fault lines or contours can also be nonlinear, having a curvature. Curved fault lines or contours can be produced by translating either the workpiece 130 or laser beam 140 with respect to the other in two dimensions instead of one dimension, for example. Depending on the material properties (absorption, CTE, stress, composition, etc.) and laser parameters chosen for processing the material 130, the creation of a fault line 110 alone can be enough to induce self-separation. In this case, no secondary separation processes, such as tension/bending forces or thermal stress created for example by a CO2 laser, are necessary. As illustrated in FIG. 14A, a plurality of defect lines can define a contour. The separated edge or surface with the defect lines is defined by the contour. The induced absorption creating the defect lines can produce particles on the separated edge or surface with an average diameter of less than 3 microns, resulting in a very clean cutting process.
  • In some cases, the created fault line is not enough to separate the material spontaneously, and a secondary step may be necessary. While the perforated glass part may be placed in an chamber such as an oven to create a bulk heating or cooling of the glass part, to create thermal stress to separate the parts along the defect line, such a process can be slow and may require large ovens or chambers to accommodate many arts or large pieces or perforated glass. If so desired, a second laser can be used to create thermal stress to separate it, for example. In the case of TFT glass compositions, separation can be achieved, after the creation of a fault line, by application of mechanical force or by using a thermal source (e.g., an infrared laser, for example a CO2 laser) to create thermal stress and force separation of the material. Another option is to have the CO2 laser only start the separation and then finish the separation manually. The optional CO2 laser separation is achieved, for example, with a defocused continuous wave (cw) laser emitting at 10.6 microns and with power adjusted by controlling its duty cycle. Focus change (i.e., extent of defocusing up to and including focused spot size) is used to vary the induced thermal stress by varying the spot size. Defocused laser beams include those laser beams that produce a spot size larger than a minimum, diffraction-limited spot size on the order of the size of the laser wavelength. For example, CO2 laser spot sizes of 1 to 20 mm, for example 1 to 12 mm, 3 to 8 mm, or about 7 mm, 2 mm, and 20 mm can be used for CO2 lasers, for example, with a CO2 10.6 μm wavelength laser. Other lasers, whose emission wavelength is also absorbed by the glass, may also be used, such as lasers with wavelengths emitting in the 9-11 micron range, for example. In such cases CO2 laser with power levels between 100 and 400 Watts may be used, and the beam may be scanned at speeds of 50-500 mm/sec along or adjacent to the defect lines, which creates sufficient thermal stress to induce separation. The exact power levels, spot sizes, and scanning speeds chosen within the specified ranges may depend on the material use, its thickness, coefficient of thermal expansion (CTE), elastic modulus, since all of these factors influence the amount of thermal stress imparted by a specific rate of energy deposition at a given spatial location. If the spot size is too small (i.e. <1 mm), or the CO2 laser power is too high (>400 W), or the scanning speed is too slow (less than 10 mm/sec), the glass may be over heated, creating ablation, melting or thermally generated cracks in the glass, which are undesirable, as they will reduce the edge strength of the separated parts. Preferably the CO2 laser beam scanning speed is >50 mm/sec, in order to induce efficient and reliable part separation. However, if the spot size created by the CO2 laser is too large (>20 mm), or the laser power is too low (<10 W, or in some cases <30 W), or the scanning speed is too high (>500 mm/sec), insufficient heating occurs which results in too low a thermal stress to induce reliable part separation.
  • For example, in some embodiments, a CO2 laser power of 200 Watts may be used, with a spot diameter at the glass surface of approximately 6 mm, and a scanning speed of 250 mm/sec to induce part separation for 0.7 mm thick Corning Eagle XG® glass that has been perforated with the above mentioned psec laser. For example a thicker Corning Eagle XG® glass substrate may require more CO2 laser thermal energy per unit time to separate than a thinner Eagle XG® substrate, or a glass with a lower CTE may require more CO2 laser thermal energy to separate than a glass with a lower CTE. Separation along the perforated line will occur very quickly (less than 1 second) after CO2 spot passes a given location, for example within 100 milliseconds, within 50 milliseconds, or within 25 milliseconds.
  • Distance, or periodicity, between adjacent defect lines 120 along the direction of the fault lines 110 can be greater than 0.1 micron and less than or equal to about 20 microns in some embodiments, for example. For example, in some embodiments, the periodicity between adjacent defect lines 120 may be between 0.5 and 15 microns, or between 3 and 10 microns, or between 0.5 micron and 3.0 microns. For example, in some embodiments the periodicity between adjacent defect lines 120 can be between 0.5 micron and 1.0 micron.
  • There are several methods to create the defect line. The optical method of forming the line focus can take multiple forms, using donut shaped laser beams and spherical lenses, axicon lenses, diffractive elements, or other methods to form the linear region of high intensity. The type of laser (picosecond, femtosecond, etc.) and wavelength (IR, green, UV, etc.) can also be varied, as long as sufficient optical intensities are reached to create breakdown of the substrate material in the region of focus to create breakdown of the substrate material or glass workpiece, through nonlinear optical effects. Preferably, the laser is a pulse burst laser which allows for control of the energy deposition with time by adjusting the number of pulses within a given burst.
  • In the present application, an ultra-short pulsed laser is used to create a high aspect ratio vertical defect line in a consistent, controllable and repeatable manner. The details of the optical setup that enables the creation of this vertical defect line are described below, and in U.S. Application No. 61/752,489 filed on Jan. 15, 2013, the entire contents of which are incorporated by reference as if fully set forth herein. The essence of this concept is to use optics to create a line focus of a high intensity laser beam within a transparent part. One version of this concept is to use an axicon lens element in an optical lens assembly to create a region of high aspect ratio, taper-free microchannels using ultra-short (picoseconds or femtosecond duration) Bessel beams. In other words, the axicon condenses the laser beam into a high intensity region of cylindrical shape and high aspect ratio (long length and small diameter). Due to the high intensity created with the condensed laser beam, nonlinear interaction of the electromagnetic field of the laser and the substrate material occurs and the laser energy is transferred to the substrate to effect formation of defects that become constituents of the fault line. However, it is important to realize that in the areas of the material where the laser energy intensity is not high (e.g., glass volume of substrate surrounding the central convergence line), the material is transparent to the laser and there is no mechanism for transferring energy from the laser to the material. As a result, nothing happens to the glass or workpiece when the laser intensity is below the nonlinear threshold.
  • The methods described above provide the following benefits that may translate to enhanced laser processing capabilities and cost savings and thus lower cost manufacturing. The cutting process offers:
  • 1) Full separation of interior contours being cut: the methods described above are capable of completely separating/cutting holes and slots in a clean and controlled fashion in ion-exchangeable glass (such as Gorilla® glass, Corning glass codes 2318, 2319, 2320 or the like) as produced by the fusion draw process, or other glass forming processes, before the glass part has undergone chemical strengthening.
  • 2) Separation of holes/slots with very small dimensions: Other processes may be used to heat and induce softening of a glass plug which can allow it to drop out of a glass sheet. However, as the aspect ratio (thickness/diameter) of the glass plug gets very large, such methods fail. For example, heating (not ablation) of the interior glass plug will drop out 10 mm diameter holes out of 0.7 mm thick glass, but if the diameter of the hole is reduced to 4 mm, such processes will not work. However, the process disclosed here has been used to remove glass plugs that have dimensions as small as 1.5 mm (diameter of a circle, or width of a slot) in 0.7 mm thick glass.
  • 3) Reduced subsurface defects and excellent edge quality: Due to the ultra-short pulse interaction between laser and material, there is little thermal interaction and thus a minimal heat affected zone that can result in undesirable stress and micro-cracking. In addition, the optics that condense the laser beam into the glass creates defect lines that are typically 2 to 5 microns diameter on the surface of the part. After separation, the subsurface damage is <75 μm, and can be adjusted to be <25 μm. The roughness of the separated surface (or cut edge), results particularly from the spot size or the spot diameter of the focal line. A roughness of the separated (cut) surface which can be, for example, 0.1 to 1 microns or for example 0.25 to 1 microns), can be characterized, for example, by an Ra surface roughness statistic (roughness arithmetic average of absolute values of the heights of the sampled surface, which include the heights of bumps resulting from the spot diameter of the focal line). The surface roughness generated by this process is often <0.5 μm (Ra), and can be as low as 0.1 μm (Ra). This has great impact on the edge strength of the part as strength is governed by the number of defects, their statistical distribution in terms of size and depth. The higher these numbers are the weaker the edges of the part will be. In addition, if any mechanical finishing processes such as grinding and polishing are later used to modify the edge shape, the amount of material removal required will be lower for parts with less sub-surface damage. This reduces or eliminates finishing steps, lower part cost. The hole and slot release process described here takes full advantage of the high-quality edge created by this line-focus picosecond laser perforation process—it ensures that the removal of the interior glass material is done in a manner that cleanly releases the glass along this perforation line, and does not induce ablative damage, micro-cracking, or other defects to the desired part edge.
  • Speed: Unlike processes which use focused laser to purely ablate the material around the inner contour, this laser process is a single pass process for the perforation line. The perforated hole contour may be created by the picosecond laser process described herein at speeds of 80-1000 mm/sec, depending only on the acceleration capabilities of the stages involved. This is in contrast to ablative hole and slot drilling methods, where material is removed “layer by layer” and requires many passes or long residence times per location of the laser beam.
  • Process cleanliness: the methods described above are capable of separating/cutting glass or other transparent brittle materials in a clean and controlled fashion. It is very challenging to use conventional ablative or thermal laser processes because they tend to trigger heat affected zones that induce micro-cracks and fragmentation of the glass into several smaller pieces. The characteristics of the laser pulses and the induced interactions with the material of the disclosed method avoid all of these issues because they occur in a very short time scale and the material transparency to the laser radiation minimizes the induced thermal effects. Since the defect line is created within the object, the presence of debris and adhered particles during the cutting step is virtually eliminated. If there are any particulates resulting from the created defect line, they are well contained until the part is separated.
  • Cutting Complex Profiles and Shapes in Different Sizes
  • The methods described above enable cutting/separation of glass and other substrates following many forms and shapes, which is a limitation in other competing technologies. Tight radii may be cut (<2 mm), allowing creation of small holes and slots (such as required for speakers/microphone in a cell phone application). Also, since the defect lines strongly control the location of any crack propagation, those method give great control to the spatial location of a cut, and allow for cut and separation of structures and features as small as a few hundred microns.
  • Elimination of Process Steps
  • The process to fabricate glass plates from the incoming glass panel to the final size and shape involves several steps that encompass cutting the panel, cutting to size, finishing and edge shaping, thinning the parts down to their target thickness, polishing, and even chemically strengthening in some cases. Elimination of any of these steps will improve manufacturing cost in terms of process time and capital expense. The methods described above may reduce the number of steps by, for example:
  • Reduced debris and edge defects generation—potential elimination of washing and drying stations
  • Cutting the sample directly to its final size, shape and thickness—eliminating need for finishing lines.
  • Thus, according to some embodiments, a glass article has at least one inner contour edge with plurality of defect lines extending perpendicular to the face of the glass sheet at least 250 μm, the defect lines each having a diameter less than or equal to about 5 μm. For example, a glass article has at least one inner contour edge having a plurality of defect lines extending perpendicular to the major (i.e., large relative to the sides) flat face of the glass sheet at least 250 μm, the defect lines each having a diameter less than or equal to about 5 μm. In some embodiments, the smallest dimension or width of the interior contour defined by the inner contour edge is less than 5 mm, for example it may be 0.1 mm to 3 mm in width (or diameter), e.g, 0.5 mm to 2 mm. According to some embodiments, the glass article comprises post-ion exchange glass. According to some embodiments, the defect lines extend the full thickness of the at least one inner contour edge. According to at least some embodiments, the at least one inner contour edge has an Ra surface roughness less than about 0.5 μm. According to at least some embodiments, the at least one inner contour edge has subsurface damage up to a depth less than or equal to about 75 μm. In at least some embodiments, of the glass article the defect lines extend the full thickness of the edge. The distance between the defect lines is, for example, less than or equal to about 7 μm.
  • The relevant teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
  • While exemplary embodiments have been disclosed herein, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims (43)

What is claimed is:
1. A method of laser drilling a material comprising:
focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction;
directing the laser beam focal line into the material at a first location, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a damage track along the laser beam focal line within the material;
translating the material and the pulsed laser beam relative to each other starting from the first location along a first closed contour, thereby laser drilling a plurality of holes along the first closed contour within the material; and
directing a focused carbon dioxide (CO2) laser into the material around a second closed contour contained within the first closed contour to facilitate removal of an inner plug of the material along the first closed contour.
2. The method of claim 1, further comprising:
directing the laser beam focal line into the material at a second location, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a damage track along the laser beam focal line within the material; and
translating the material and the pulsed laser beam relative to each other starting from the second location along a third closed contour, thereby laser drilling a plurality of damage tracks along the third closed contour within the material, the third closed contour contained within the first closed contour.
3. The method of claim 2, wherein the second closed contour is offset from the first closed contour by less than 500 μm.
4. The method of claim 2, wherein the second closed contour and the third closed contour coincide.
5. The method of claim 2, wherein the second closed contour is contained between the first closed contour and third closed contour.
6. The method of claim 2, wherein the second closed contour is contained within the third closed contour at an offset of less than 500 μm.
7. The method of claim 1, further comprising directing an assist gas toward the material and collinear with the CO2 laser beam.
8. The method of claim 1, wherein removal of the inner plug defines an opening in the material, the opening having a width between 0.5 mm and 100 mm.
9. The method of claim 1, wherein removal of the inner plug defines a slot in the material that has a width between 0.5 mm and 100 mm.
10. The method of claim 1, wherein the induced absorption produces subsurface damage at the first contour of up to a depth less than or equal to about 75 μm within the material.
11. The method of claim 1, wherein the induced absorption produces an Ra surface roughness at the first contour of less than or equal to about 0.5 μm.
12. The method of claim 1, wherein the material has a thickness in a range of between about 100 μm and about 8 mm.
13. The method of claim 1, wherein the material and pulsed laser beam are translated relative to each other at a speed in a range of between about 1 mm/sec and about 3400 mm/sec.
14. The method of claim 1, wherein the pulse duration is in a range of between greater than about 1 picosecond and less than about 100 picoseconds.
15. The method of claim 14, wherein the pulse duration is in a range of between greater than about 5 picoseconds and less than about 20 picoseconds.
16. The method of claim 1, wherein the repetition rate is in a range of between about 1 kHz and 2 MHz.
17. The method of claim 16, wherein the repetition rate is in a range of between about 10 kHz and 650 kHz.
18. The method of claim 1, wherein the pulsed laser beam has an energy per burst measured at the material greater than 40 μJ per mm thickness of material.
19. The method of claim 1, wherein the pulses are produced in pulse bursts of at least two pulses separated by a duration in a range of between about 1 nsec and about 50 nsec, and the burst repetition frequency is in a range of between about 1 kHz and about 650 kHz.
20. The method of claim 19, wherein the pulses are separated by a duration of about 10-50 nsec.
21. The method of claim 1, wherein the pulsed laser beam has a wavelength selected such that the material is substantially transparent at this wavelength.
22. The method of claim 1, wherein the laser beam focal line has a length in a range of between about 0.1 mm and about 100 mm.
23. The method of claim 22, wherein the laser beam focal line has a length in a range of between about 0.1 mm and about 10 mm.
24. The method of claim 23, wherein the laser beam focal line has a length in a range of between about 0.1 mm and about 1 mm.
25. The method of claim 1, wherein the laser beam focal line has an average spot diameter in a range of between about 0.1 μm and about 5 μm.
26. The method of claim 1, wherein the material comprises chemically strengthened glass.
27. The method of claim 1, wherein the material comprises non-strengthened glass.
28. A glass article prepared by the method of claim 1.
29. A glass article having at least one inner contour edge having a plurality of defect lines extending perpendicular to the major face of the glass sheet at least 250 μm, the defect lines each having a diameter less than or equal to about 5 μm.
30. A glass article according to claim 29, wherein said major face of glass sheet is flat.
31. The glass article of claim 29 where the smallest dimension or width of the inner contour defined by the inner contour edge is less than 5 mm.
32. The glass article of claim 29, wherein the glass article comprises post-ion exchange glass.
33. The glass article of claim 29, wherein the defect lines extend the full thickness of the at least one inner contour edge.
34. The glass article of claim 29, wherein the at least one inner contour edge has an Ra surface roughness less than about 0.5 μm.
35. The glass article of claim 29, wherein the at least one inner contour edge has subsurface damage up to a depth less than or equal to about 75 μm.
36. The glass article of claim 29, wherein the defect lines extend the full thickness of the edge.
37. The glass article of claim 29, wherein a distance between the defect lines is less than or equal to about 7 μm.
38. The method of claim 1, wherein the pulsed laser produces pulse bursts with at least 2 pulses per pulse burst.
39. The method of claim 1, wherein the pulsed laser has laser power of 10 W-150 W and produces pulse bursts with at least 2 pulses per pulse burst.
40. The method of claim 39, wherein the pulsed laser has laser power of 10 W-100 W and produces pulse bursts with at least 2-25 pulses per pulse burst.
41. The method of claim 39, wherein the pulsed laser has laser power of 25 W-60 W, and produces pulse bursts with at least 2-25 pulses per burst and the periodicity between the defect lines is 2-10 microns.
42. The method of claim 39, wherein the pulsed laser has laser power of 10 W-100 W and the workpiece or the laser beam is translated relative to one another at a rate of at least 0.25 m/sec.
43. The method of claim 39, wherein (i) the pulsed laser has laser power of 10 W-100 W; and (ii) the workpiece or the laser beam is translated relative to one another at a rate of at least 0.4 m/sec.
US14/536,009 2013-12-17 2014-11-07 Laser processing of slots and holes Abandoned US20150165560A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US14/536,009 US20150165560A1 (en) 2013-12-17 2014-11-07 Laser processing of slots and holes
CN201480075766.4A CN106029293B (en) 2013-12-17 2014-12-16 The laser processing of slot and hole
SG11201605864RA SG11201605864RA (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
CN201910313717.4A CN109909622B (en) 2013-12-17 2014-12-16 Laser machining of grooves and holes
EP19157782.4A EP3511302B1 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
KR1020217019445A KR102366530B1 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
MYPI2016001380A MY185774A (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
SG10201902702XA SG10201902702XA (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
PCT/US2014/070531 WO2015095151A2 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
EP14824299.3A EP3083511B1 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
KR1020167019421A KR102270486B1 (en) 2013-12-17 2014-12-16 Laser processing of slots and holes
TW103144133A TWI632975B (en) 2013-12-17 2014-12-17 Methods for laser drilling materials and glass articles
TW107124418A TWI679077B (en) 2013-12-17 2014-12-17 Methods for laser drilling materials and glass articles
US15/251,605 US10233112B2 (en) 2013-12-17 2016-08-30 Laser processing of slots and holes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361917148P 2013-12-17 2013-12-17
US201462022855P 2014-07-10 2014-07-10
US14/536,009 US20150165560A1 (en) 2013-12-17 2014-11-07 Laser processing of slots and holes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/251,605 Division US10233112B2 (en) 2013-12-17 2016-08-30 Laser processing of slots and holes

Publications (1)

Publication Number Publication Date
US20150165560A1 true US20150165560A1 (en) 2015-06-18

Family

ID=53367281

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/536,009 Abandoned US20150165560A1 (en) 2013-12-17 2014-11-07 Laser processing of slots and holes
US15/251,605 Active 2035-04-08 US10233112B2 (en) 2013-12-17 2016-08-30 Laser processing of slots and holes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/251,605 Active 2035-04-08 US10233112B2 (en) 2013-12-17 2016-08-30 Laser processing of slots and holes

Country Status (8)

Country Link
US (2) US20150165560A1 (en)
EP (2) EP3083511B1 (en)
KR (2) KR102366530B1 (en)
CN (2) CN109909622B (en)
MY (1) MY185774A (en)
SG (2) SG11201605864RA (en)
TW (2) TWI632975B (en)
WO (1) WO2015095151A2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US20150343559A1 (en) * 2014-06-02 2015-12-03 Disco Corporation Chip manufacturing method
US20160304386A1 (en) * 2014-01-10 2016-10-20 Boe Technology Group Co., Ltd. Laser drilling method and laser drilling system
US9517962B2 (en) 2014-03-17 2016-12-13 Disco Corporation Plate-shaped object processing method
WO2017009149A1 (en) * 2015-07-15 2017-01-19 Schott Ag Method and device for the laser-supported detachment of a section from a planar glass element
WO2017025550A1 (en) * 2015-08-10 2017-02-16 Saint-Gobain Glass France Method for cutting a thin glass layer
US20170117139A1 (en) * 2015-10-23 2017-04-27 Infineon Technologies Ag System and method for removing dielectric material
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US20170189991A1 (en) * 2014-07-14 2017-07-06 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
WO2017165772A1 (en) 2016-03-24 2017-09-28 Corning Incorporated Laminated glass article with aperture formed therein and methods for forming the same
WO2017192835A1 (en) * 2016-05-06 2017-11-09 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US20170340518A1 (en) * 2016-05-31 2017-11-30 Corning Incorporated Anti-counterfeiting measures for glass articles
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
WO2018210746A1 (en) 2017-05-17 2018-11-22 Schott Ag Device and method for processing a workpiece along a predetermined processing line using a pulsed polychromatic laser beam and a filter
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10241256B2 (en) 2015-05-13 2019-03-26 Corning Incorporatedf Light guides with reduced hot spots and methods for making the same
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
WO2019165269A1 (en) * 2018-02-23 2019-08-29 Corning Incorporated Method of separating a liquid lens from an array of liquid lenses
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10429553B2 (en) 2015-02-27 2019-10-01 Corning Incorporated Optical assembly having microlouvers
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10586654B2 (en) 2017-12-21 2020-03-10 General Atomics Glass dielectric capacitors and manufacturing processes for glass dielectric capacitors
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
DE102018219465A1 (en) * 2018-11-14 2020-05-14 Flabeg Deutschland Gmbh Process for cutting a glass element and cutting system
JP2020514222A (en) * 2017-01-02 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Substrate separation method
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
WO2020169644A1 (en) * 2019-02-20 2020-08-27 Agc Glass Europe Method for manufacturing a partially textured glass article
EP3741731A1 (en) * 2019-05-22 2020-11-25 Schott Ag Method and device for processing glass elements
US10895766B2 (en) * 2019-02-27 2021-01-19 Samsung Dispiay Co., Ltd. Display device and repair method thereof
CN112620965A (en) * 2019-10-08 2021-04-09 台湾丽驰科技股份有限公司 Dual laser processing machine and processing method thereof
CN112714681A (en) * 2018-10-08 2021-04-27 伊雷克托科学工业股份有限公司 System and method for drilling holes in transparent materials
US11059131B2 (en) 2018-06-22 2021-07-13 Corning Incorporated Methods for laser processing a substrate stack having one or more transparent workpieces and a black matrix layer
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11161766B2 (en) 2015-07-15 2021-11-02 Schott Ag Method and device for separation of glass portions or glass ceramic portions
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
EP3916444A1 (en) * 2020-05-27 2021-12-01 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
CN113843516A (en) * 2020-06-10 2021-12-28 财团法人工业技术研究院 Glass workpiece laser processing system and method
CN115159828A (en) * 2022-06-13 2022-10-11 武汉华工激光工程有限责任公司 Laser cutting method and system for ground glass
US11542190B2 (en) * 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN116237654A (en) * 2023-02-22 2023-06-09 武汉荣科激光自动化设备有限公司 Intelligent control method of laser processing equipment
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11774676B2 (en) 2020-05-27 2023-10-03 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
WO2024010689A1 (en) * 2022-07-07 2024-01-11 Corning Incorporated Methods for drilling features in a substrate using laser perforation and laser ablation

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053156B2 (en) * 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
DE102015116846A1 (en) * 2015-10-05 2017-04-06 Schott Ag Process for filamentizing a workpiece with a shape deviating from the nominal contour and workpiece produced by filamentation
US20180178322A1 (en) * 2016-12-28 2018-06-28 Metal Industries Research & Development Centre Laser processing device and laser processing method
TW201843117A (en) * 2017-04-25 2018-12-16 美商康寧公司 3d laser perforation thermal sagging process
CN106891097A (en) * 2017-04-26 2017-06-27 信利光电股份有限公司 A kind of 3D cover plates preparation method and 3D cover plates with through hole
US10264672B2 (en) * 2017-04-28 2019-04-16 AGC Inc. Glass substrate and glass substrate for high frequency device
TW201919805A (en) * 2017-08-25 2019-06-01 美商康寧公司 Apparatuses and methods for laser processing transparent workpieces using an afocal beam adjustment assembly
US11065960B2 (en) 2017-09-13 2021-07-20 Corning Incorporated Curved vehicle displays
CN108161250A (en) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 Multifocal DYNAMIC DISTRIBUTION laser machines the method and device of brittle transparent material
WO2019151185A1 (en) * 2018-01-31 2019-08-08 Hoya株式会社 Method for producing glass substrate for magnetic disk
US20190263709A1 (en) * 2018-02-26 2019-08-29 Corning Incorporated Methods for laser forming transparent articles from a transparent mother sheet and processing the transparent articles in-situ
CN109604838A (en) * 2018-12-24 2019-04-12 大族激光科技产业集团股份有限公司 Semiconductor laser processing unit (plant)
KR20200120794A (en) 2019-04-11 2020-10-22 삼성디스플레이 주식회사 Display module, manufacturing method for display module, and laser machining method
TWI705871B (en) * 2019-05-07 2020-10-01 鴻超環保能源股份有限公司 Multi-laser cutting method and system thereof
CN110342806B (en) * 2019-06-27 2021-11-09 大族激光科技产业集团股份有限公司 Processing method of glass cover plate with through hole
RU2720791C1 (en) 2019-09-06 2020-05-13 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКОЕ ОБЪЕДИНЕНИЕ "ИРЭ-Полюс" (ООО НТО "ИРЭ-Полюс") Method of laser processing of transparent brittle material and device for its implementation
CN111558785B (en) * 2020-07-14 2020-10-23 武汉华工激光工程有限责任公司 Method for processing three-dimensional contour of transparent material
CN114178710A (en) * 2020-08-24 2022-03-15 奥特斯(中国)有限公司 Component carrier and method for producing the same
US11851363B2 (en) 2020-10-26 2023-12-26 Flexi Glass Co., Ltd. Method for manufacturing ultra-thin glass substrate and method for manufacturing display panel
CN114131212A (en) * 2021-11-10 2022-03-04 江苏大学 Laser modification cutting and automatic separation method for transparent material closed solid structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126573A1 (en) * 2010-07-12 2013-05-23 Filaser Inc. Method of material processing by laser filamentation
US20130291598A1 (en) * 2011-01-11 2013-11-07 Asahi Glass Company, Limited Method of cutting strengthened glass plate
US20140027951A1 (en) * 2012-07-30 2014-01-30 Raydiance, Inc. Cutting of brittle materials with tailored edge shape and roughness
WO2014079570A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
US20150003461A1 (en) * 2011-10-28 2015-01-01 Emulex Corporation Method for parsing network packets having future defined tags
US20150038313A1 (en) * 2013-08-02 2015-02-05 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
US20150367442A1 (en) * 2013-02-04 2015-12-24 Newport Corporation Method and Apparatus for Laser Cutting Transparent and Semitransparent Substrates
US20160028058A1 (en) * 2014-07-25 2016-01-28 Samsung Sdi Co., Ltd. Rechargeable battery having insulation layer

Family Cites Families (407)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1790397A (en) 1931-01-27 Glass workins machine
US2682134A (en) 1951-08-17 1954-06-29 Corning Glass Works Glass sheet containing translucent linear strips
US2749794A (en) 1953-04-24 1956-06-12 Corning Glass Works Illuminating glassware and method of making it
GB1242172A (en) 1968-02-23 1971-08-11 Ford Motor Co A process for chemically cutting glass
US3647410A (en) 1969-09-09 1972-03-07 Owens Illinois Inc Glass ribbon machine blow head mechanism
US3775084A (en) 1970-01-02 1973-11-27 Owens Illinois Inc Pressurizer apparatus for glass ribbon machine
US3729302A (en) 1970-01-02 1973-04-24 Owens Illinois Inc Removal of glass article from ribbon forming machine by vibrating force
US3695497A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Method of severing glass
US3695498A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Non-contact thermal cutting
DE2231330A1 (en) 1972-06-27 1974-01-10 Agfa Gevaert Ag METHOD AND DEVICE FOR GENERATING A SHARP FOCUS
DE2757890C2 (en) 1977-12-24 1981-10-15 Fa. Karl Lutz, 6980 Wertheim Method and device for producing containers from tubular glass, in particular ampoules
US4441008A (en) 1981-09-14 1984-04-03 Ford Motor Company Method of drilling ultrafine channels through glass
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
JPS6246930A (en) 1985-08-21 1987-02-28 Bandou Kiko Kk Apparatus for dividing glass plate
US4646308A (en) 1985-09-30 1987-02-24 Spectra-Physics, Inc. Synchronously pumped dye laser using ultrashort pump pulses
US4749400A (en) 1986-12-12 1988-06-07 Ppg Industries, Inc. Discrete glass sheet cutting
DE3789858T2 (en) 1986-12-18 1994-09-01 Sumitomo Chemical Co Light control plates.
US4918751A (en) 1987-10-05 1990-04-17 The University Of Rochester Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers
IL84255A (en) 1987-10-23 1993-02-21 Galram Technology Ind Ltd Process for removal of post- baked photoresist layer
JPH01179770A (en) 1988-01-12 1989-07-17 Hiroshima Denki Gakuen Method for bonding metal and ceramic
US4764930A (en) 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4929065A (en) 1988-11-03 1990-05-29 Isotec Partners, Ltd. Glass plate fusion for macro-gradient refractive index materials
US4891054A (en) 1988-12-30 1990-01-02 Ppg Industries, Inc. Method for cutting hot glass
US5112722A (en) 1989-04-12 1992-05-12 Nippon Sheet Glass Co., Ltd. Method of producing light control plate which induces scattering of light at different angles
US5104210A (en) 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5035918A (en) 1989-04-26 1991-07-30 Amp Incorporated Non-flammable and strippable plating resist and method of using same
US5040182A (en) 1990-04-24 1991-08-13 Coherent, Inc. Mode-locked laser
EP0614388B1 (en) 1991-11-06 2002-06-12 LAI, Shui, T. Corneal surgery device
US5314522A (en) 1991-11-19 1994-05-24 Seikosha Co., Ltd. Method of processing photosensitive glass with a pulsed laser to form grooves
US5265107A (en) 1992-02-05 1993-11-23 Bell Communications Research, Inc. Broadband absorber having multiple quantum wells of different thicknesses
JPH05323110A (en) 1992-05-22 1993-12-07 Hitachi Koki Co Ltd Multibeam generating element
US6016223A (en) 1992-08-31 2000-01-18 Canon Kabushiki Kaisha Double bessel beam producing method and apparatus
CA2112843A1 (en) 1993-02-04 1994-08-05 Richard C. Ujazdowski Variable repetition rate picosecond laser
JPH06318756A (en) 1993-05-06 1994-11-15 Toshiba Corp Laser
WO1994029069A1 (en) 1993-06-04 1994-12-22 Seiko Epson Corporation Apparatus and method for laser machining, and liquid crystal panel
US6489589B1 (en) 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
JP3531199B2 (en) 1994-02-22 2004-05-24 三菱電機株式会社 Optical transmission equipment
US5436925A (en) 1994-03-01 1995-07-25 Hewlett-Packard Company Colliding pulse mode-locked fiber ring laser using a semiconductor saturable absorber
US5400350A (en) 1994-03-31 1995-03-21 Imra America, Inc. Method and apparatus for generating high energy ultrashort pulses
US5778016A (en) 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
JP2526806B2 (en) 1994-04-26 1996-08-21 日本電気株式会社 Semiconductor laser and its operating method
WO1995031023A1 (en) 1994-05-09 1995-11-16 Massachusetts Institute Of Technology Dispersion-compensated laser using prismatic end elements
US6016324A (en) 1994-08-24 2000-01-18 Jmar Research, Inc. Short pulse laser system
US5434875A (en) 1994-08-24 1995-07-18 Tamar Technology Co. Low cost, high average power, high brightness solid state laser
US5776220A (en) 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
US5696782A (en) 1995-05-19 1997-12-09 Imra America, Inc. High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers
JPH09106243A (en) 1995-10-12 1997-04-22 Dainippon Printing Co Ltd Method for duplicating hologram
US5736709A (en) 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
US7353829B1 (en) 1996-10-30 2008-04-08 Provectus Devicetech, Inc. Methods and apparatus for multi-photon photo-activation of therapeutic agents
KR100490317B1 (en) 1996-11-13 2005-05-17 코닝 인코포레이티드 Method for forming an internally channeled glass article
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (en) 1997-06-11 1999-06-01 Cuvelier Georges Capping METHOD FOR GLASS PIECES.
DE19728766C1 (en) 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Use of a method for producing a predetermined breaking point in a vitreous body
US6078599A (en) 1997-07-22 2000-06-20 Cymer, Inc. Wavelength shift correction technique for a laser
JP3264224B2 (en) 1997-08-04 2002-03-11 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
DE19750320C1 (en) 1997-11-13 1999-04-01 Max Planck Gesellschaft Light pulse amplification method
GB2335603B (en) 1997-12-05 2002-12-04 Thermolase Corp Skin enhancement using laser light
US6501578B1 (en) 1997-12-19 2002-12-31 Electric Power Research Institute, Inc. Apparatus and method for line of sight laser communications
JPH11197498A (en) 1998-01-13 1999-07-27 Japan Science & Technology Corp Method for selectively modifying inside of inorganic material and inorganic material with selectively modified inside
US6272156B1 (en) 1998-01-28 2001-08-07 Coherent, Inc. Apparatus for ultrashort pulse transportation and delivery
JPH11240730A (en) 1998-02-27 1999-09-07 Nec Kansai Ltd Break cutting of brittle material
JPH11269683A (en) 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
US6160835A (en) 1998-03-20 2000-12-12 Rocky Mountain Instrument Co. Hand-held marker with dual output laser
EP0949541B1 (en) 1998-04-08 2006-06-07 ASML Netherlands B.V. Lithography apparatus
US6256328B1 (en) 1998-05-15 2001-07-03 University Of Central Florida Multiwavelength modelocked semiconductor diode laser
JPH11347758A (en) 1998-06-10 1999-12-21 Mitsubishi Heavy Ind Ltd Super precision machining device
JP4396953B2 (en) 1998-08-26 2010-01-13 三星電子株式会社 Laser cutting apparatus and cutting method
DE19851353C1 (en) 1998-11-06 1999-10-07 Schott Glas Method and apparatus for cutting a laminate consisting of a brittle material and a plastic
JP3178524B2 (en) 1998-11-26 2001-06-18 住友重機械工業株式会社 Laser marking method and apparatus and marked member
US7649153B2 (en) 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
US6445491B2 (en) 1999-01-29 2002-09-03 Irma America, Inc. Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification
US6381391B1 (en) 1999-02-19 2002-04-30 The Regents Of The University Of Michigan Method and system for generating a broadband spectral continuum and continuous wave-generating system utilizing same
DE19908630A1 (en) 1999-02-27 2000-08-31 Bosch Gmbh Robert Shielding against laser beams
JP4218209B2 (en) 1999-03-05 2009-02-04 三菱電機株式会社 Laser processing equipment
US6484052B1 (en) 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
EP1043110B1 (en) 1999-04-02 2006-08-23 Murata Manufacturing Co., Ltd. Laser method for machining through holes in a ceramic green sheet
US6373565B1 (en) 1999-05-27 2002-04-16 Spectra Physics Lasers, Inc. Method and apparatus to detect a flaw in a surface of an article
CN2388062Y (en) 1999-06-21 2000-07-19 郭广宗 Double-glazing window for vehicle and ship
US6449301B1 (en) 1999-06-22 2002-09-10 The Regents Of The University Of California Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors
US6259151B1 (en) 1999-07-21 2001-07-10 Intersil Corporation Use of barrier refractive or anti-reflective layer to improve laser trim characteristics of thin film resistors
US6573026B1 (en) 1999-07-29 2003-06-03 Corning Incorporated Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses
DE19952331C1 (en) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Method and device for quickly cutting a workpiece from brittle material using laser beams
JP2001130921A (en) 1999-10-29 2001-05-15 Mitsuboshi Diamond Industrial Co Ltd Method and device for processing brittle substrate
JP2001138083A (en) 1999-11-18 2001-05-22 Seiko Epson Corp Laser beam machining device and laser irradiation method
JP4592855B2 (en) 1999-12-24 2010-12-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6339208B1 (en) 2000-01-19 2002-01-15 General Electric Company Method of forming cooling holes
US6552301B2 (en) 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
JP3530114B2 (en) 2000-07-11 2004-05-24 忠弘 大見 Single crystal cutting method
JP2002040330A (en) 2000-07-25 2002-02-06 Olympus Optical Co Ltd Optical element changeover controller
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
KR100673073B1 (en) * 2000-10-21 2007-01-22 삼성전자주식회사 Method and Apparatus for cutting non-metal substrate using a laser beam
US20020110639A1 (en) 2000-11-27 2002-08-15 Donald Bruns Epoxy coating for optical surfaces
US20020082466A1 (en) 2000-12-22 2002-06-27 Jeongho Han Laser surgical system with light source and video scope
JP4880820B2 (en) 2001-01-19 2012-02-22 株式会社レーザーシステム Laser assisted machining method
JP2002228818A (en) 2001-02-05 2002-08-14 Taiyo Yuden Co Ltd Diffraction optical device for laser beam machining and device and method for laser beam machining
SG108262A1 (en) 2001-07-06 2005-01-28 Inst Data Storage Method and apparatus for cutting a multi-layer substrate by dual laser irradiation
JP3775250B2 (en) 2001-07-12 2006-05-17 セイコーエプソン株式会社 Laser processing method and laser processing apparatus
WO2003015976A1 (en) 2001-08-10 2003-02-27 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material substrate chamfering method and chamfering device
JP3795778B2 (en) 2001-08-24 2006-07-12 株式会社ノリタケカンパニーリミテド Resinoid grinding wheel using hydrogenated bisphenol A type epoxy resin
JP2003114400A (en) 2001-10-04 2003-04-18 Sumitomo Electric Ind Ltd Laser optical system and laser machining method
JP2003154517A (en) * 2001-11-21 2003-05-27 Seiko Epson Corp Method and equipment for fracturing fragile material and manufacturing method for electronic component
US6720519B2 (en) 2001-11-30 2004-04-13 Matsushita Electric Industrial Co., Ltd. System and method of laser drilling
US6973384B2 (en) 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
JP2003238178A (en) 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd Shower plate for introducing gas and method for manufacturing the same
DE60335538D1 (en) 2002-03-12 2011-02-10 Hamamatsu Photonics Kk METHOD FOR CUTTING A PROCESSED OBJECT
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
US6744009B1 (en) 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
CA2396831A1 (en) 2002-08-02 2004-02-02 Femtonics Corporation Microstructuring optical wave guide devices with femtosecond optical pulses
JP2004209675A (en) 2002-12-26 2004-07-29 Kashifuji:Kk Pressure-cutting apparatus and pressure-cutting method
KR100497820B1 (en) 2003-01-06 2005-07-01 로체 시스템즈(주) Glass-plate cutting machine
JP3775410B2 (en) 2003-02-03 2006-05-17 セイコーエプソン株式会社 Laser processing method, laser welding method and laser processing apparatus
EP1609559B1 (en) 2003-03-12 2007-08-08 Hamamatsu Photonics K. K. Laser beam machining method
AU2004232803C1 (en) 2003-04-22 2010-05-13 The Coca-Cola Company Method and apparatus for strengthening glass
US7511886B2 (en) 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
FR2855084A1 (en) 2003-05-22 2004-11-26 Air Liquide FOCUSING OPTICS FOR LASER CUTTING
JP2005000952A (en) 2003-06-12 2005-01-06 Nippon Sheet Glass Co Ltd Laser beam machining method and device
US7492948B2 (en) 2003-06-26 2009-02-17 Denmarks Tekniske Universitet Generation of a desired wavefront with a plurality of phase contrast filters
KR101119387B1 (en) 2003-07-18 2012-03-07 하마마츠 포토닉스 가부시키가이샤 cutting method
JP2005104819A (en) 2003-09-10 2005-04-21 Nippon Sheet Glass Co Ltd Method and apparatus for cutting laminated glass
JP2005138143A (en) 2003-11-06 2005-06-02 Disco Abrasive Syst Ltd Machining apparatus using laser beam
JP2005144487A (en) 2003-11-13 2005-06-09 Seiko Epson Corp Laser beam machining device and laser beam machining method
WO2005053925A1 (en) 2003-12-04 2005-06-16 Mitsuboshi Diamond Industrial Co., Ltd. Substrate machining method, substrate machining device, substrate carrying method, and substrate carrying mechanism
US7633033B2 (en) 2004-01-09 2009-12-15 General Lasertronics Corporation Color sensing for laser decoating
WO2005068163A1 (en) 2004-01-16 2005-07-28 Japan Science And Technology Agency Micro-fabrication method
JP4074589B2 (en) 2004-01-22 2008-04-09 Tdk株式会社 Laser processing apparatus and laser processing method
CN1925945A (en) 2004-03-05 2007-03-07 奥林巴斯株式会社 Laser processing apparatus
DE102004014277A1 (en) * 2004-03-22 2005-10-20 Fraunhofer Ges Forschung Process for the laser-thermal separation of flat glass
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP4418282B2 (en) 2004-03-31 2010-02-17 株式会社レーザーシステム Laser processing method
JP4890746B2 (en) 2004-06-14 2012-03-07 株式会社ディスコ Wafer processing method
US7804043B2 (en) 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US7820941B2 (en) * 2004-07-30 2010-10-26 Corning Incorporated Process and apparatus for scoring a brittle material
JP3887394B2 (en) 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 Brittle material cleaving system and method
ATE520495T1 (en) 2004-10-25 2011-09-15 Mitsuboshi Diamond Ind Co Ltd METHOD AND DEVICE FOR FORMING CRACKS
JP4692717B2 (en) 2004-11-02 2011-06-01 澁谷工業株式会社 Brittle material cleaving device
JP4222296B2 (en) 2004-11-22 2009-02-12 住友電気工業株式会社 Laser processing method and laser processing apparatus
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
KR101170587B1 (en) 2005-01-05 2012-08-01 티에이치케이 인텍스 가부시키가이샤 Method and device for breaking work, method for scribing and breaking work, and scribing device with breaking function
US20060207976A1 (en) * 2005-01-21 2006-09-21 Bovatsek James M Laser material micromachining with green femtosecond pulses
WO2006082738A1 (en) 2005-02-03 2006-08-10 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
JP2006248885A (en) 2005-02-08 2006-09-21 Takeji Arai Cutting method of quartz by ultrashort pulse laser
US20060261118A1 (en) 2005-05-17 2006-11-23 Cox Judy K Method and apparatus for separating a pane of brittle material from a moving ribbon of the material
US7402773B2 (en) 2005-05-24 2008-07-22 Disco Corporation Laser beam processing machine
JP4490883B2 (en) 2005-07-19 2010-06-30 株式会社レーザーシステム Laser processing apparatus and laser processing method
DE102005039833A1 (en) 2005-08-22 2007-03-01 Rowiak Gmbh Device and method for material separation with laser pulses
JP2007055000A (en) * 2005-08-23 2007-03-08 Japan Steel Works Ltd:The Method and device for cutting article to be processed made of nonmetal material
KR20070023958A (en) 2005-08-25 2007-03-02 삼성전자주식회사 Cutting system and cutting method for liquid crystal display panel
DE102006042280A1 (en) 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Transparent material scribing comprises using single scan of focused beam of ultrashort laser pulses to simultaneously create surface groove in material and modified region(s) within bulk of material
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
PL1950019T3 (en) 2005-09-12 2012-08-31 Nippon Sheet Glass Co Ltd Interlayer film separation method
KR100792593B1 (en) 2005-10-12 2008-01-09 한국정보통신대학교 산학협력단 Method for formating single pulse pattern by using a ultrashort pulse laser and its system
US7838331B2 (en) 2005-11-16 2010-11-23 Denso Corporation Method for dicing semiconductor substrate
JP2007142001A (en) 2005-11-16 2007-06-07 Denso Corp Laser beam machine and laser beam machining method
US20070111480A1 (en) 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
US7977601B2 (en) 2005-11-28 2011-07-12 Electro Scientific Industries, Inc. X and Y orthogonal cut direction processing with set beam separation using 45 degree beam split orientation apparatus and method
WO2007069516A1 (en) 2005-12-16 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP4483793B2 (en) 2006-01-27 2010-06-16 セイコーエプソン株式会社 Microstructure manufacturing method and manufacturing apparatus
US7418181B2 (en) 2006-02-13 2008-08-26 Adc Telecommunications, Inc. Fiber optic splitter module
JP5245819B2 (en) 2006-02-15 2013-07-24 旭硝子株式会社 Method and apparatus for chamfering glass substrate
US7535634B1 (en) 2006-02-16 2009-05-19 The United States Of America As Represented By The National Aeronautics And Space Administration Optical device, system, and method of generating high angular momentum beams
JP4672689B2 (en) 2006-02-22 2011-04-20 日本板硝子株式会社 Glass processing method and processing apparatus using laser
EP1990125B1 (en) 2006-02-22 2011-10-12 Nippon Sheet Glass Company, Limited Glass processing method using laser
US20090176034A1 (en) 2006-02-23 2009-07-09 Picodeon Ltd. Oy Surface Treatment Technique and Surface Treatment Apparatus Associated With Ablation Technology
JP2007253203A (en) 2006-03-24 2007-10-04 Sumitomo Electric Ind Ltd Optical apparatus for laser beam machining
US20070298529A1 (en) 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
ES2428826T3 (en) 2006-07-03 2013-11-11 Hamamatsu Photonics K.K. Laser and chip processing procedure
DE102006035555A1 (en) 2006-07-27 2008-01-31 Eliog-Kelvitherm Industrieofenbau Gmbh Arrangement and method for the deformation of glass panes
US8168514B2 (en) 2006-08-24 2012-05-01 Corning Incorporated Laser separation of thin laminated glass substrates for flexible display applications
CN101130216A (en) * 2006-08-25 2008-02-27 富士迈半导体精密工业(上海)有限公司 Laser cutting method
JP2008062547A (en) * 2006-09-08 2008-03-21 Hiroshima Univ Method and device for splitting rigid brittle plate by laser irradiation
EP2065120B1 (en) 2006-09-19 2015-07-01 Hamamatsu Photonics K.K. Laser processing method
DE102006051105B3 (en) 2006-10-25 2008-06-12 Lpkf Laser & Electronics Ag Device for processing a workpiece by means of laser radiation
AT504726A1 (en) 2007-01-05 2008-07-15 Lisec Maschb Gmbh METHOD AND DEVICE FOR MANUFACTURING A DIVIDER IN A GLASS PANEL
WO2008102848A1 (en) 2007-02-22 2008-08-28 Nippon Sheet Glass Company, Limited Glass for anodic bonding
WO2008104346A2 (en) 2007-02-27 2008-09-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation and methods for producing crystalline thin films and solar cells
WO2008126742A1 (en) 2007-04-05 2008-10-23 Cyber Laser Inc. Laser machining method, laser cutting method, and method for dividing structure having multilayer board
CN101279403B (en) * 2007-04-06 2012-03-14 富士迈半导体精密工业(上海)有限公司 Laser processing method
DE102007018674A1 (en) 2007-04-18 2008-10-23 Lzh Laserzentrum Hannover E.V. Method for forming through-holes in glass components
US8236116B2 (en) 2007-06-06 2012-08-07 Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) Method of making coated glass article, and intermediate product used in same
US8169587B2 (en) 2007-08-16 2012-05-01 Apple Inc. Methods and systems for strengthening LCD modules
WO2009042212A2 (en) 2007-09-26 2009-04-02 Aradigm Corporation Impinging jet nozzles in stretched or deformed substrates
KR20090057161A (en) 2007-12-01 2009-06-04 주식회사 이엔팩 Toilet bowl seat
CN101462822B (en) 2007-12-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 Friable non-metal workpiece with through hole and method of processing the same
US20090183764A1 (en) 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
JP5098665B2 (en) 2008-01-23 2012-12-12 株式会社東京精密 Laser processing apparatus and laser processing method
KR101303542B1 (en) 2008-02-11 2013-09-03 엘지디스플레이 주식회사 Plat Display Panel Cutting Apparatus
CN102006964B (en) 2008-03-21 2016-05-25 Imra美国公司 Material processing method based on laser and system
JP5333816B2 (en) 2008-03-26 2013-11-06 旭硝子株式会社 Glass plate cutting apparatus and method
US8237080B2 (en) 2008-03-27 2012-08-07 Electro Scientific Industries, Inc Method and apparatus for laser drilling holes with Gaussian pulses
JP5345334B2 (en) 2008-04-08 2013-11-20 株式会社レミ Thermal stress cleaving method for brittle materials
JP5274085B2 (en) 2008-04-09 2013-08-28 株式会社アルバック Laser processing apparatus, laser beam pitch variable method, and laser processing method
US8358888B2 (en) 2008-04-10 2013-01-22 Ofs Fitel, Llc Systems and techniques for generating Bessel beams
PL2119512T3 (en) 2008-05-14 2018-02-28 Gerresheimer Glas Gmbh Method and device for removing contaminating particles from containers on automatic production system
US8053704B2 (en) 2008-05-27 2011-11-08 Corning Incorporated Scoring of non-flat materials
JP2009297734A (en) 2008-06-11 2009-12-24 Nitto Denko Corp Adhesive sheet for laser processing and laser processing method
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US7810355B2 (en) 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
JP5155774B2 (en) 2008-08-21 2013-03-06 株式会社ノリタケカンパニーリミテド Resinoid superabrasive wheel for plateau surface processing
JP2010075991A (en) 2008-09-29 2010-04-08 Fujifilm Corp Laser beam machining apparatus
JP5297139B2 (en) 2008-10-09 2013-09-25 新光電気工業株式会社 Wiring board and manufacturing method thereof
US8895892B2 (en) 2008-10-23 2014-11-25 Corning Incorporated Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
US8092739B2 (en) 2008-11-25 2012-01-10 Wisconsin Alumni Research Foundation Retro-percussive technique for creating nanoscale holes
US9346130B2 (en) 2008-12-17 2016-05-24 Electro Scientific Industries, Inc. Method for laser processing glass with a chamfered edge
EP2202545A1 (en) 2008-12-23 2010-06-30 Karlsruher Institut für Technologie Beam transformation module with an axicon in a double-pass mode
KR101020621B1 (en) 2009-01-15 2011-03-09 연세대학교 산학협력단 Method for menufacturing a photonic device using optical fibers, Photonic device using optical fibers and Optical tweezer
US8347651B2 (en) 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
US8327666B2 (en) 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass
US8341976B2 (en) 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
US8245540B2 (en) 2009-02-24 2012-08-21 Corning Incorporated Method for scoring a sheet of brittle material
CN102326232B (en) 2009-02-25 2016-01-20 日亚化学工业株式会社 The manufacture method of semiconductor element
CN101502914A (en) 2009-03-06 2009-08-12 苏州德龙激光有限公司 Picosecond laser machining apparatus for processing nozzle micropore
CN201357287Y (en) 2009-03-06 2009-12-09 苏州德龙激光有限公司 Novel picosecond laser processing device
JP5300544B2 (en) 2009-03-17 2013-09-25 株式会社ディスコ Optical system and laser processing apparatus
KR101041140B1 (en) 2009-03-25 2011-06-13 삼성모바일디스플레이주식회사 Method for cutting substrate using the same
US20100252959A1 (en) 2009-03-27 2010-10-07 Electro Scientific Industries, Inc. Method for improved brittle materials processing
US20100279067A1 (en) 2009-04-30 2010-11-04 Robert Sabia Glass sheet having enhanced edge strength
WO2010129459A2 (en) 2009-05-06 2010-11-11 Corning Incorporated Carrier for glass substrates
ATE551304T1 (en) 2009-05-13 2012-04-15 Corning Inc METHOD AND EQUIPMENT FOR SHAPING ENDLESS GLASS PANELS
US8132427B2 (en) 2009-05-15 2012-03-13 Corning Incorporated Preventing gas from occupying a spray nozzle used in a process of scoring a hot glass sheet
US8269138B2 (en) 2009-05-21 2012-09-18 Corning Incorporated Method for separating a sheet of brittle material
DE102009023602B4 (en) 2009-06-02 2012-08-16 Grenzebach Maschinenbau Gmbh Device for the industrial production of elastically deformable large-area glass plates in large quantities
WO2010139841A1 (en) 2009-06-04 2010-12-09 Corelase Oy Method and apparatus for processing substrates
TWI395630B (en) 2009-06-30 2013-05-11 Mitsuboshi Diamond Ind Co Ltd Apparatus for processing glass substrate by laser beam
US8592716B2 (en) 2009-07-22 2013-11-26 Corning Incorporated Methods and apparatus for initiating scoring
CN201471092U (en) 2009-08-07 2010-05-19 苏州德龙激光有限公司 High-precision Z-axis objective table of picosecond laser machining equipment
CN101637849B (en) 2009-08-07 2011-12-07 苏州德龙激光有限公司 High-precision Z-axis carrier platform of picosecond laser process equipment
JP5500914B2 (en) 2009-08-27 2014-05-21 株式会社半導体エネルギー研究所 Laser irradiation device
US8932510B2 (en) * 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
KR20120073249A (en) 2009-08-28 2012-07-04 코닝 인코포레이티드 Methods for laser cutting articles from chemically strengthened glass substrates
KR101094284B1 (en) * 2009-09-02 2011-12-19 삼성모바일디스플레이주식회사 Substrate cutting appartus and method for cutting substrate using the same
US20110088324A1 (en) 2009-10-20 2011-04-21 Wessel Robert B Apparatus and method for solar heat gain reduction in a window assembly
TWI472494B (en) 2009-11-03 2015-02-11 Corning Inc Laser scoring of a moving glass ribbon having a non-constant speed
EP2507182B1 (en) * 2009-11-30 2014-03-05 Corning Incorporated Methods for laser scribing and separating glass substrates
US20120234807A1 (en) 2009-12-07 2012-09-20 J.P. Sercel Associates Inc. Laser scribing with extended depth affectation into a workplace
US8338745B2 (en) 2009-12-07 2012-12-25 Panasonic Corporation Apparatus and methods for drilling holes with no taper or reverse taper
TWI438162B (en) 2010-01-27 2014-05-21 Wintek Corp Cutting method and preparatory cutting structure for reinforced glass
US8743165B2 (en) 2010-03-05 2014-06-03 Micronic Laser Systems Ab Methods and device for laser processing
JP5249979B2 (en) 2010-03-18 2013-07-31 三星ダイヤモンド工業株式会社 Method of processing brittle material substrate and laser processing apparatus used therefor
US8654538B2 (en) 2010-03-30 2014-02-18 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
US8951889B2 (en) 2010-04-16 2015-02-10 Qmc Co., Ltd. Laser processing method and laser processing apparatus
WO2011132600A1 (en) 2010-04-20 2011-10-27 旭硝子株式会社 Glass substrate for semiconductor device via
JP5514955B2 (en) 2010-04-21 2014-06-04 エルジー・ケム・リミテッド Glass sheet cutting device
DE202010006047U1 (en) 2010-04-22 2010-07-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam shaping unit for focusing a laser beam
US8245539B2 (en) 2010-05-13 2012-08-21 Corning Incorporated Methods of producing glass sheets
KR20130079395A (en) 2010-05-19 2013-07-10 미쓰비시 가가꾸 가부시키가이샤 Sheet for cards and card
CN103025350A (en) 2010-05-21 2013-04-03 诺华有限公司 Influenza virus reassortment method
GB2481190B (en) 2010-06-04 2015-01-14 Plastic Logic Ltd Laser ablation
KR101873702B1 (en) 2010-06-29 2018-07-02 코닝 인코포레이티드 Multi-Layer Glass Sheet Made by Co-drawing Using the Overflow Downdraw Fusion Process
DE102010025967B4 (en) 2010-07-02 2015-12-10 Schott Ag Method for producing a multiplicity of holes, device for this and glass interposer
DE102010025965A1 (en) 2010-07-02 2012-01-05 Schott Ag Method for the low-stress production of perforated workpieces
DE202010013161U1 (en) 2010-07-08 2011-03-31 Oerlikon Solar Ag, Trübbach Laser processing with several beams and suitable laser optics head
WO2012008343A1 (en) 2010-07-12 2012-01-19 旭硝子株式会社 Tio2-containing quartz-glass substrate for an imprint mold and manufacturing method therefor
KR20120015366A (en) 2010-07-19 2012-02-21 엘지디스플레이 주식회사 Method for cutting tempered glass and apparatus for cutting the same
JP5580129B2 (en) 2010-07-20 2014-08-27 株式会社アマダ Solid state laser processing equipment
JP5669001B2 (en) 2010-07-22 2015-02-12 日本電気硝子株式会社 Glass film cleaving method, glass roll manufacturing method, and glass film cleaving apparatus
KR101940332B1 (en) 2010-07-26 2019-01-18 하마마츠 포토닉스 가부시키가이샤 Substrate processing method
US8741777B2 (en) 2010-07-26 2014-06-03 Hamamatsu Photonics K.K. Substrate processing method
JP2012031018A (en) 2010-07-30 2012-02-16 Asahi Glass Co Ltd Tempered glass substrate, method for grooving tempered glass substrate, and method for cutting tempered glass substrate
US8604380B2 (en) 2010-08-19 2013-12-10 Electro Scientific Industries, Inc. Method and apparatus for optimally laser marking articles
US8584354B2 (en) 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
TWI402228B (en) 2010-09-15 2013-07-21 Wintek Corp Cutting method and thin film process for reinforced glass, preparatory cutting structure of reinforced glass and reinforced glass block
US8887529B2 (en) 2010-10-29 2014-11-18 Corning Incorporated Method and apparatus for cutting glass ribbon
JP5617556B2 (en) 2010-11-22 2014-11-05 日本電気硝子株式会社 Strip glass film cleaving apparatus and strip glass film cleaving method
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
US8607590B2 (en) 2010-11-30 2013-12-17 Corning Incorporated Methods for separating glass articles from strengthened glass substrate sheets
CN103237771B (en) 2010-11-30 2016-10-19 康宁股份有限公司 The method forming high density hole array in glass
TW201226345A (en) 2010-12-27 2012-07-01 Liefco Optical Inc Method of cutting tempered glass
KR101298019B1 (en) 2010-12-28 2013-08-26 (주)큐엠씨 Laser processing apparatus
EP2662177A1 (en) 2011-01-05 2013-11-13 Kiyoyuki Kondo Beam processing device
JP5480169B2 (en) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 Laser processing method
CN102248302A (en) * 2011-01-13 2011-11-23 苏州德龙激光有限公司 Device and method for abnormally cutting toughened glass by ultra-short pulse laser
JP2012159749A (en) 2011-02-01 2012-08-23 Nichia Chem Ind Ltd Bessel beam generator
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
US8933367B2 (en) * 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
CN103380482B (en) 2011-02-10 2016-05-25 信越聚合物株式会社 Single crystallization base plate manufacture method and inner upgrading layer form single crystals parts
KR20130103623A (en) 2011-02-10 2013-09-23 신에츠 폴리머 가부시키가이샤 Production method for monocrystalline substrate and production method for monocrystalline member with modified layer formed therein
DE102011000768B4 (en) 2011-02-16 2016-08-18 Ewag Ag Laser processing method and laser processing apparatus with switchable laser arrangement
US8584490B2 (en) 2011-02-18 2013-11-19 Corning Incorporated Laser cutting method
JP5193326B2 (en) * 2011-02-25 2013-05-08 三星ダイヤモンド工業株式会社 Substrate processing apparatus and substrate processing method
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
JP2012187618A (en) 2011-03-11 2012-10-04 V Technology Co Ltd Laser machining apparatus for glass substrate
TWI469936B (en) 2011-03-31 2015-01-21 Avanstrate Inc Manufacture of glass plates
EP2696312A4 (en) 2011-04-07 2015-04-22 Nethom Wireless identification tag, electronic product pcb having same, and system for managing electronic products
US8986072B2 (en) 2011-05-26 2015-03-24 Corning Incorporated Methods of finishing an edge of a glass sheet
US20120299219A1 (en) 2011-05-27 2012-11-29 Hamamatsu Photonics K.K. Laser processing method
TWI547454B (en) 2011-05-31 2016-09-01 康寧公司 High-speed micro-hole fabrication in glass
CN103596893A (en) 2011-06-15 2014-02-19 旭硝子株式会社 Method for cutting glass plate
JP2013007842A (en) 2011-06-23 2013-01-10 Toyo Seikan Kaisha Ltd Structure forming device, structure forming method, and structure
KR101519867B1 (en) 2011-06-28 2015-05-13 가부시키가이샤 아이에이치아이 Device and method for cutting brittle member
TWI572480B (en) 2011-07-25 2017-03-01 康寧公司 Laminated and ion-exchanged strengthened glass laminates
US9527158B2 (en) 2011-07-29 2016-12-27 Ats Automation Tooling Systems Inc. Systems and methods for producing silicon slim rods
KR101120471B1 (en) 2011-08-05 2012-03-05 (주)지엘코어 Apparatus for cleaving brittle materials by using the pulse laser of multi-focusing method
US8635887B2 (en) 2011-08-10 2014-01-28 Corning Incorporated Methods for separating glass substrate sheets by laser-formed grooves
JP2013043808A (en) 2011-08-25 2013-03-04 Asahi Glass Co Ltd Holder for tempered glass plate cutting, and method for cutting tempered glass plate
KR20140057573A (en) 2011-08-29 2014-05-13 아사히 가라스 가부시키가이샤 Cutting method for reinforced glass plate and reinforced glass plate cutting device
JPWO2013031778A1 (en) 2011-08-31 2015-03-23 旭硝子株式会社 Method of cutting tempered glass sheet and tempered glass sheet cutting device
PH12012000258A1 (en) 2011-09-09 2015-06-01 Hoya Corp Method of manufacturing an ion-exchanged glass article
WO2013039230A1 (en) 2011-09-15 2013-03-21 日本電気硝子株式会社 Method for cutting glass sheet
KR101962661B1 (en) 2011-09-15 2019-03-27 니폰 덴키 가라스 가부시키가이샤 Glass plate cutting method and glass plate cutting device
DE112011105635T5 (en) 2011-09-21 2014-08-28 Raydiance, Inc. Systems and methods for separating materials
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
FR2980859B1 (en) 2011-09-30 2013-10-11 Commissariat Energie Atomique LITHOGRAPHY METHOD AND DEVICE
JP5864988B2 (en) 2011-09-30 2016-02-17 浜松ホトニクス株式会社 Tempered glass sheet cutting method
DE102011084128A1 (en) 2011-10-07 2013-04-11 Schott Ag Method for cutting a thin glass with special formation of the edge
JP2013091578A (en) 2011-10-25 2013-05-16 Mitsuboshi Diamond Industrial Co Ltd Scribing method for glass substrate
KR101269474B1 (en) 2011-11-09 2013-05-30 주식회사 모린스 Method for cutting tempered glass
US20130129947A1 (en) 2011-11-18 2013-05-23 Daniel Ralph Harvey Glass article having high damage resistance
US8677783B2 (en) 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
KR20130065051A (en) 2011-12-09 2013-06-19 삼성코닝정밀소재 주식회사 Cutting method of tempered glass and method of manufacturing touch screen panel using the same
KR101258403B1 (en) * 2011-12-09 2013-04-30 로체 시스템즈(주) Method for cutting tempered glass substrate
WO2013089124A1 (en) 2011-12-12 2013-06-20 日本電気硝子株式会社 Method for cutting and separating plate glass
TW201332917A (en) 2011-12-12 2013-08-16 Nippon Electric Glass Co Cutting and separating method of plate glass, and cutting and separating apparatus of plate glass
JP2013152986A (en) 2012-01-24 2013-08-08 Disco Abrasive Syst Ltd Method for processing wafer
CN104136967B (en) 2012-02-28 2018-02-16 伊雷克托科学工业股份有限公司 For the article for separating the method and device of reinforcing glass and being produced by the reinforcing glass
CN104125934A (en) 2012-02-28 2014-10-29 伊雷克托科学工业股份有限公司 Method and apparatus for separation of strengthened glass and articles produced thereby
US9895771B2 (en) 2012-02-28 2018-02-20 General Lasertronics Corporation Laser ablation for the environmentally beneficial removal of surface coatings
WO2013130608A1 (en) 2012-02-29 2013-09-06 Electro Scientific Industries, Inc. Methods and apparatus for machining strengthened glass and articles produced thereby
US9082764B2 (en) 2012-03-05 2015-07-14 Corning Incorporated Three-dimensional integrated circuit which incorporates a glass interposer and method for fabricating the same
JP2013187247A (en) 2012-03-06 2013-09-19 Nippon Hoso Kyokai <Nhk> Interposer and method for manufacturing the same
TW201343296A (en) 2012-03-16 2013-11-01 Ipg Microsystems Llc Laser scribing system and method with extended depth affectation into a workpiece
JP2013203631A (en) 2012-03-29 2013-10-07 Asahi Glass Co Ltd Method for cutting tempered glass plate and apparatus for cutting tempered glass plate
TW201339111A (en) 2012-03-29 2013-10-01 Global Display Co Ltd Method for cutting tempered glass
JP2013203630A (en) 2012-03-29 2013-10-07 Asahi Glass Co Ltd Method for cutting tempered glass plate
WO2013151660A1 (en) 2012-04-05 2013-10-10 Sage Electrochromics, Inc. Method of and apparatus for thermal laser scribe cutting for electrochromic device production; corresponding cut glass panel
JP2013216513A (en) 2012-04-05 2013-10-24 Nippon Electric Glass Co Ltd Method for cutting glass film and glass film lamination body
JP2015120604A (en) 2012-04-06 2015-07-02 旭硝子株式会社 Method and system for cutting tempered glass plate
FR2989294B1 (en) 2012-04-13 2022-10-14 Centre Nat Rech Scient DEVICE AND METHOD FOR NANO-MACHINING BY LASER
US20130288010A1 (en) 2012-04-27 2013-10-31 Ravindra Kumar Akarapu Strengthened glass article having shaped edge and method of making
KR20130124646A (en) 2012-05-07 2013-11-15 주식회사 엠엠테크 Method for cutting tempered glass
US9365446B2 (en) 2012-05-14 2016-06-14 Richard Green Systems and methods for altering stress profiles of glass
CN102672355B (en) 2012-05-18 2015-05-13 杭州士兰明芯科技有限公司 Scribing method of LED (light-emitting diode) substrate
DE102012010635B4 (en) 2012-05-18 2022-04-07 Leibniz-Institut für Oberflächenmodifizierung e.V. Process for 3D structuring and shaping of surfaces made of hard, brittle and optical materials
JP6009225B2 (en) 2012-05-29 2016-10-19 浜松ホトニクス株式会社 Cutting method of tempered glass sheet
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
JP6022223B2 (en) 2012-06-14 2016-11-09 株式会社ディスコ Laser processing equipment
CN104428264A (en) 2012-07-09 2015-03-18 旭硝子株式会社 Method for cutting tempered glass plate
AT13206U1 (en) 2012-07-17 2013-08-15 Lisec Maschb Gmbh Method and arrangement for dividing flat glass
US8842358B2 (en) 2012-08-01 2014-09-23 Gentex Corporation Apparatus, method, and process with laser induced channel edge
KR101395054B1 (en) 2012-08-08 2014-05-14 삼성코닝정밀소재 주식회사 Cutting method and stage for cutting of tempered glass
KR20140022981A (en) 2012-08-14 2014-02-26 (주)하드램 Laser cutting apparatus for tempered glass comprising substrate edge protection unit and method for cutting tempered glass
KR20140022980A (en) 2012-08-14 2014-02-26 (주)하드램 Laser cutting apparatus for tempered glass and method for cutting tempered glass
US9446590B2 (en) 2012-08-16 2016-09-20 Hewlett-Packard Development Company, L.P. Diagonal openings in photodefinable glass
US20140047957A1 (en) 2012-08-17 2014-02-20 Jih Chun Wu Robust Torque-Indicating Wrench
JP5727433B2 (en) 2012-09-04 2015-06-03 イムラ アメリカ インコーポレイテッド Transparent material processing with ultrashort pulse laser
CN102923939B (en) 2012-09-17 2015-03-25 江西沃格光电股份有限公司 Method for cutting tempered glass
CN102898014A (en) 2012-09-29 2013-01-30 江苏太平洋石英股份有限公司 Method for non-contact laser cutting of quartz glass product and device thereof
CN102916081B (en) * 2012-10-19 2015-07-08 张立国 Edge deletion method for thin-film solar cells
LT6046B (en) 2012-10-22 2014-06-25 Uab "Lidaris" Change-over device for adjustable optical mounts and a system comprising such devices
US20140110040A1 (en) 2012-10-23 2014-04-24 Ronald Steven Cok Imprinted micro-louver structure method
DE102012110971A1 (en) 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
KR20140064220A (en) 2012-11-20 2014-05-28 에스케이씨 주식회사 Process for the preparation of film for security
JP2016508069A (en) 2012-11-29 2016-03-17 コーニング インコーポレイテッド Sacrificial cover layer and method for laser drilling a substrate
WO2014085663A1 (en) 2012-11-29 2014-06-05 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
CN203021443U (en) 2012-12-24 2013-06-26 深圳大宇精雕科技有限公司 Water jet cutter for glass plate
CN103013374B (en) 2012-12-28 2014-03-26 吉林大学 Bionic anti-sticking lyophobic and oleophobic pasting film
JP5860173B2 (en) 2012-12-29 2016-02-16 Hoya株式会社 Glass substrate for magnetic disk and magnetic disk
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
JP6801846B2 (en) 2013-02-05 2020-12-16 マサチューセッツ インスティテュート オブ テクノロジー 3D holographic imaging flow cytometry
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
WO2014130522A1 (en) 2013-02-25 2014-08-28 Corning Incorporated Methods of manufacturing a thin glass pane
CN103143841B (en) 2013-03-08 2014-11-26 西北工业大学 Method for hole machining with picosecond laser
KR102209964B1 (en) 2013-03-13 2021-02-02 삼성디스플레이 주식회사 Picosecond laser processing device
EP2969375B1 (en) 2013-03-15 2018-09-12 Kinestral Technologies, Inc. Laser cutting strengthened glass
EP2781296B1 (en) * 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
LT2964417T (en) 2013-04-04 2022-04-11 Lpkf Laser & Electronics Ag Method for providing through-openings in a substrate
US9764978B2 (en) 2013-04-04 2017-09-19 Lpkf Laser & Electronics Ag Method and device for separating a substrate
CN103273195B (en) 2013-05-28 2015-03-04 江苏大学 Micro-blanking automation device and method of sheet metal under indirect impact of laser
CN103316990B (en) 2013-05-28 2015-06-10 江苏大学 Micro-blanking automation device of pulsed laser driven flying sheet loading plate and method thereof
US9776891B2 (en) 2013-06-26 2017-10-03 Corning Incorporated Filter and methods for heavy metal remediation of water
KR101344368B1 (en) 2013-07-08 2013-12-24 정우라이팅 주식회사 Cutting device for glass tube using laser
CN103359948A (en) 2013-07-12 2013-10-23 深圳南玻伟光导电膜有限公司 Method for cutting tempered glass
KR20150009153A (en) 2013-07-16 2015-01-26 동우 화인켐 주식회사 Method for hole making of strengthened glass
US9102011B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
US9296646B2 (en) 2013-08-29 2016-03-29 Corning Incorporated Methods for forming vias in glass substrates
CN203509350U (en) 2013-09-27 2014-04-02 东莞市盛雄激光设备有限公司 Picosecond laser processing device
CN103531414B (en) 2013-10-14 2016-03-02 南京三乐电子信息产业集团有限公司 A kind of picosecond pulse laser cutting preparation method of grid-control TWT aperture plate
US10017410B2 (en) 2013-10-25 2018-07-10 Rofin-Sinar Technologies Llc Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
DE102013223637B4 (en) 2013-11-20 2018-02-01 Trumpf Laser- Und Systemtechnik Gmbh A method of treating a laser transparent substrate for subsequently separating the substrate
KR102216118B1 (en) 2013-11-25 2021-02-17 코닝 인코포레이티드 Methods for determining a shape of a substantially cylindrical specular reflective surface
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
CN103746027B (en) 2013-12-11 2015-12-09 西安交通大学 A kind of method at the superfine electric isolution groove of ITO conductive film surface etch
US9687936B2 (en) 2013-12-17 2017-06-27 Corning Incorporated Transparent material cutting with ultrafast laser and beam optics
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US20150166393A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US20150165563A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
CN103831539B (en) 2014-01-10 2016-01-20 合肥鑫晟光电科技有限公司 Laser boring method and laser drilling system
WO2015127583A1 (en) 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
JP6318756B2 (en) 2014-03-24 2018-05-09 東レ株式会社 Polyester film
TWI730945B (en) 2014-07-08 2021-06-21 美商康寧公司 Methods and apparatuses for laser processing materials
LT2965853T (en) 2014-07-09 2016-11-25 High Q Laser Gmbh Processing of material using elongated laser beams
US20160009066A1 (en) 2014-07-14 2016-01-14 Corning Incorporated System and method for cutting laminated structures
EP3552753A3 (en) 2014-07-14 2019-12-11 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
CN104344202A (en) 2014-09-26 2015-02-11 张玉芬 Porous glass
JP7292006B2 (en) 2015-03-24 2023-06-16 コーニング インコーポレイテッド Laser cutting and processing of display glass compositions
JP2018537389A (en) 2015-11-25 2018-12-20 コーニング インコーポレイテッド How to separate a glass web

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126573A1 (en) * 2010-07-12 2013-05-23 Filaser Inc. Method of material processing by laser filamentation
US20130291598A1 (en) * 2011-01-11 2013-11-07 Asahi Glass Company, Limited Method of cutting strengthened glass plate
US20150003461A1 (en) * 2011-10-28 2015-01-01 Emulex Corporation Method for parsing network packets having future defined tags
US20140027951A1 (en) * 2012-07-30 2014-01-30 Raydiance, Inc. Cutting of brittle materials with tailored edge shape and roughness
WO2014079570A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
US20150367442A1 (en) * 2013-02-04 2015-12-24 Newport Corporation Method and Apparatus for Laser Cutting Transparent and Semitransparent Substrates
US20150038313A1 (en) * 2013-08-02 2015-02-05 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
US20160028058A1 (en) * 2014-07-25 2016-01-28 Samsung Sdi Co., Ltd. Rechargeable battery having insulation layer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"What is the difference between Ra and RMS?"; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishing-ra.html), Accessed 8/8/2016 *
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf ; archived on October 6, 2013). *

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11345625B2 (en) * 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US20190225530A1 (en) * 2013-03-21 2019-07-25 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US11713271B2 (en) * 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US20160304386A1 (en) * 2014-01-10 2016-10-20 Boe Technology Group Co., Ltd. Laser drilling method and laser drilling system
US10221086B2 (en) * 2014-01-10 2019-03-05 Boe Technology Group Co., Ltd. Laser drilling method and laser drilling system
US9517962B2 (en) 2014-03-17 2016-12-13 Disco Corporation Plate-shaped object processing method
US20150343559A1 (en) * 2014-06-02 2015-12-03 Disco Corporation Chip manufacturing method
US9682440B2 (en) * 2014-06-02 2017-06-20 Disco Corporation Chip manufacturing method
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) * 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US20170189991A1 (en) * 2014-07-14 2017-07-06 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10429553B2 (en) 2015-02-27 2019-10-01 Corning Incorporated Optical assembly having microlouvers
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10241256B2 (en) 2015-05-13 2019-03-26 Corning Incorporatedf Light guides with reduced hot spots and methods for making the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
WO2017009149A1 (en) * 2015-07-15 2017-01-19 Schott Ag Method and device for the laser-supported detachment of a section from a planar glass element
US20180134606A1 (en) * 2015-07-15 2018-05-17 Schott Ag Method and device for laser-assisted separation of a portion from a sheet glass element
EP3590898A1 (en) 2015-07-15 2020-01-08 Schott AG Complementary sections of a planar glass element
US11884573B2 (en) 2015-07-15 2024-01-30 Schott Ag Method and device for separation of glass portions or glass ceramic portions
US11161766B2 (en) 2015-07-15 2021-11-02 Schott Ag Method and device for separation of glass portions or glass ceramic portions
US11572301B2 (en) * 2015-07-15 2023-02-07 Schott Ag Method and device for laser-assisted separation of a portion from a sheet glass element
US10759690B2 (en) 2015-08-10 2020-09-01 Saint-Gobain Glass France Method for cutting a thin glass layer
WO2017025550A1 (en) * 2015-08-10 2017-02-16 Saint-Gobain Glass France Method for cutting a thin glass layer
RU2694089C1 (en) * 2015-08-10 2019-07-09 Сэн-Гобэн Гласс Франс Method of cutting a thin glass layer
US20170117139A1 (en) * 2015-10-23 2017-04-27 Infineon Technologies Ag System and method for removing dielectric material
US10672603B2 (en) * 2015-10-23 2020-06-02 Infineon Technologies Ag System and method for removing dielectric material
WO2017165772A1 (en) 2016-03-24 2017-09-28 Corning Incorporated Laminated glass article with aperture formed therein and methods for forming the same
US11155494B2 (en) 2016-03-24 2021-10-26 Corning Incorporated Laminated glass article with aperture formed therein and methods for forming the same
TWI794959B (en) * 2016-05-06 2023-03-01 美商康寧公司 Laser cutting and removal of contoured shapes from transparent substrates
WO2017192835A1 (en) * 2016-05-06 2017-11-09 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
KR102405144B1 (en) 2016-05-06 2022-06-07 코닝 인코포레이티드 Laser cutting and removal of contour shapes from transparent substrates
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
KR20190004345A (en) * 2016-05-06 2019-01-11 코닝 인코포레이티드 Laser cutting and removal of contour shapes from transparent substrates
JP2022000410A (en) * 2016-05-06 2022-01-04 コーニング インコーポレイテッド Laser cutting and removal of contour set profile from transparent substrate
EP3957611A1 (en) * 2016-05-06 2022-02-23 Corning Incorporated Transparent substrates with improved edge surfaces
US10676240B2 (en) * 2016-05-31 2020-06-09 Corning Incorporated Anti-counterfeiting measures for glass articles
US20170340518A1 (en) * 2016-05-31 2017-11-30 Corning Incorporated Anti-counterfeiting measures for glass articles
US11667434B2 (en) 2016-05-31 2023-06-06 Corning Incorporated Anti-counterfeiting measures for glass articles
US11932445B2 (en) 2016-05-31 2024-03-19 Corning Incorporated Anti-counterfeiting measures for glass articles
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) * 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
JP7267920B2 (en) 2017-01-02 2023-05-02 ショット アクチエンゲゼルシャフト Substrate separation method
JP2020514222A (en) * 2017-01-02 2020-05-21 ショット アクチエンゲゼルシャフトSchott AG Substrate separation method
US11618707B2 (en) * 2017-01-02 2023-04-04 Schott Ag Method for separating substrates
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
WO2018210746A1 (en) 2017-05-17 2018-11-22 Schott Ag Device and method for processing a workpiece along a predetermined processing line using a pulsed polychromatic laser beam and a filter
DE102017208290A1 (en) 2017-05-17 2018-11-22 Schott Ag Apparatus and method for processing a workpiece along a predetermined processing line
US20200101561A1 (en) * 2017-05-17 2020-04-02 Schott Ag Device and method for processing a workpiece along a predetermined processing line using a pulsed polychromatic laser beam and a filter
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10586654B2 (en) 2017-12-21 2020-03-10 General Atomics Glass dielectric capacitors and manufacturing processes for glass dielectric capacitors
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
WO2019165269A1 (en) * 2018-02-23 2019-08-29 Corning Incorporated Method of separating a liquid lens from an array of liquid lenses
US11059131B2 (en) 2018-06-22 2021-07-13 Corning Incorporated Methods for laser processing a substrate stack having one or more transparent workpieces and a black matrix layer
CN112714681A (en) * 2018-10-08 2021-04-27 伊雷克托科学工业股份有限公司 System and method for drilling holes in transparent materials
US20210245303A1 (en) * 2018-10-08 2021-08-12 Electro Scientific Industries, Inc. Systems and methods for drilling vias in transparent materials
DE102018219465A1 (en) * 2018-11-14 2020-05-14 Flabeg Deutschland Gmbh Process for cutting a glass element and cutting system
WO2020169644A1 (en) * 2019-02-20 2020-08-27 Agc Glass Europe Method for manufacturing a partially textured glass article
US10895766B2 (en) * 2019-02-27 2021-01-19 Samsung Dispiay Co., Ltd. Display device and repair method thereof
EP3741731A1 (en) * 2019-05-22 2020-11-25 Schott Ag Method and device for processing glass elements
CN112620965A (en) * 2019-10-08 2021-04-09 台湾丽驰科技股份有限公司 Dual laser processing machine and processing method thereof
US11640031B2 (en) 2020-05-27 2023-05-02 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
US11774676B2 (en) 2020-05-27 2023-10-03 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
EP3916444A1 (en) * 2020-05-27 2021-12-01 Corning Research & Development Corporation Laser-cleaving of an optical fiber array with controlled cleaving angle
CN113843516A (en) * 2020-06-10 2021-12-28 财团法人工业技术研究院 Glass workpiece laser processing system and method
CN115159828A (en) * 2022-06-13 2022-10-11 武汉华工激光工程有限责任公司 Laser cutting method and system for ground glass
WO2024010689A1 (en) * 2022-07-07 2024-01-11 Corning Incorporated Methods for drilling features in a substrate using laser perforation and laser ablation
CN116237654A (en) * 2023-02-22 2023-06-09 武汉荣科激光自动化设备有限公司 Intelligent control method of laser processing equipment

Also Published As

Publication number Publication date
EP3083511A2 (en) 2016-10-26
KR20160101103A (en) 2016-08-24
MY185774A (en) 2021-06-07
CN109909622B (en) 2020-12-01
CN106029293A (en) 2016-10-12
WO2015095151A3 (en) 2015-09-11
SG11201605864RA (en) 2016-08-30
KR102270486B1 (en) 2021-06-29
WO2015095151A2 (en) 2015-06-25
EP3083511B1 (en) 2019-04-10
US20160368809A1 (en) 2016-12-22
EP3511302A1 (en) 2019-07-17
KR20210080612A (en) 2021-06-30
CN106029293B (en) 2019-05-14
EP3511302B1 (en) 2022-01-26
TWI632975B (en) 2018-08-21
TW201536463A (en) 2015-10-01
US10233112B2 (en) 2019-03-19
TW201836752A (en) 2018-10-16
TWI679077B (en) 2019-12-11
SG10201902702XA (en) 2019-04-29
KR102366530B1 (en) 2022-02-23
CN109909622A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
US10233112B2 (en) Laser processing of slots and holes
US10179748B2 (en) Laser processing of sapphire substrate and related applications
US10377658B2 (en) Apparatuses and methods for laser processing
US20180105451A1 (en) Creation of holes and slots in glass substrates
US10252931B2 (en) Laser cutting of thermally tempered substrates
KR102288419B1 (en) Processing 3d shaped transparent brittle substrate
US10442719B2 (en) Edge chamfering methods
US9850160B2 (en) Laser cutting of display glass compositions
US20150166391A1 (en) Laser cut composite glass article and method of cutting
US20160311717A1 (en) 3-d forming of glass

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HACKERT, THOMAS;MARJANOVIC, SASHA;PIECH, GARRETT ANDREW;AND OTHERS;SIGNING DATES FROM 20141118 TO 20150114;REEL/FRAME:034725/0430

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION