JP2002228818A - Diffraction optical device for laser beam machining and device and method for laser beam machining - Google Patents

Diffraction optical device for laser beam machining and device and method for laser beam machining

Info

Publication number
JP2002228818A
JP2002228818A JP2001027670A JP2001027670A JP2002228818A JP 2002228818 A JP2002228818 A JP 2002228818A JP 2001027670 A JP2001027670 A JP 2001027670A JP 2001027670 A JP2001027670 A JP 2001027670A JP 2002228818 A JP2002228818 A JP 2002228818A
Authority
JP
Japan
Prior art keywords
diffraction
laser
laser beam
processing
grating pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001027670A
Other languages
Japanese (ja)
Inventor
Hisashi Sawada
寿史 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2001027670A priority Critical patent/JP2002228818A/en
Publication of JP2002228818A publication Critical patent/JP2002228818A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To dispense with an optical system for condensing such as a lens, therefore to dispense with troublesome adjustment such as optical axis positioning and focusing between a diffraction element and the optical condensing system and further to simultaneously make a laser beam condense and irradiate a surface with difference in level by branching the laser beam 5 and further three-dimensionally condensing the respective branched laser beams. SOLUTION: A hologram element 1 using a Fresnel diffraction phenomenon is used. The laser beam is branched into a plurality of luminous fluxes with a diffraction grating pattern of a diffraction surface 4 of the hologram element 1. At the same time, the branched laser beams are condensed with a Fresnel lens and focused on a plurality of spots 3a, 3b... on a surface of a material to be worked 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザー加工を行う
ため、レーザービームを加工物の加工面に収束して照射
する光学素子に関し、特に、レーザービームを加工物の
加工面上の複数のスポットに同時に収束して照射するこ
とが可能な回折面を有するレーザー加工用回折光学素
子、それを備えたレーザ加工装置及びそれを使用したレ
ーザ加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for converging and irradiating a laser beam on a processing surface of a workpiece in order to perform laser processing. The present invention relates to a laser processing diffractive optical element having a diffraction surface capable of simultaneously converging and irradiating, a laser processing apparatus including the same, and a laser processing method using the same.

【0002】[0002]

【従来の技術】例えば、レーザー加工において多点の穿
孔加工を行う場合、現在では一般にマスク転写法がとら
れている。しかし、これはマスクでレーザー光の多くを
遮断してしまうため、レーザー光の利用効率が低く、単
価の高いレーザーエネルギーを有効に使用できないとい
う問題がある。
2. Description of the Related Art For example, when performing multi-point drilling in laser processing, a mask transfer method is generally used at present. However, this has a problem that since much of the laser light is blocked by the mask, the utilization efficiency of the laser light is low, and the expensive laser energy cannot be used effectively.

【0003】これを解決するため、最近、回折光学素子
を使用した加工法が開発されている。回折光学素子は、
回折格子パターンによりレーザービームの波面制御を行
い、CO2レーザー、YAGレーザーやエキシマレーザ
ー等から発した加工用レーザービームを任意の数の光束
に分岐するものである。
In order to solve this problem, a processing method using a diffractive optical element has recently been developed. Diffractive optical element
The wavefront of the laser beam is controlled by a diffraction grating pattern, and a processing laser beam emitted from a CO 2 laser, a YAG laser, an excimer laser, or the like is branched into an arbitrary number of light beams.

【0004】[0004]

【発明が解決しようとしている課題】しかしながら、従
来のレーザー加工用回折光学素子は、フーリエ型であ
り、それのみでは、分岐したビームをぞれぞれ集光する
ことができない。そのため高価なレンズ系を使用した集
光光学系が必要になつてくる。また、回折光学素子と収
束レンズを併用するため、それらの光軸合わせや位置合
わせ等の面倒な光学的調整を必要とする。しかも、この
集光レンズを使用したレーザー加工用回折光学装置で
は、集光は同一平面上に限定されるため、段差のある加
工面への同時加工は困難である。
However, the conventional diffractive optical element for laser processing is a Fourier type, and it is not possible to collect each of the split beams by itself. Therefore, a condensing optical system using an expensive lens system is required. In addition, since a diffractive optical element and a converging lens are used together, complicated optical adjustment such as optical axis alignment and position alignment is required. In addition, in the diffraction optical device for laser processing using the condensing lens, the condensing is limited to the same plane, so that it is difficult to simultaneously process the processing surface having a step.

【0005】本発明は、前記従来のレーザー加工用回折
光学装置の課題に鑑み、レーザービームを分岐し、かつ
それぞれ分岐したレーザービームを3次元的に集光させ
ることができ、これにより集光のためのレンズ等の光学
系を不要にし、それ故回折素子と集光光学系との面倒な
光軸合わせや焦点合わせ等の調整も不要とし、なお且つ
段差のある面への同時集光照射も可能とするレーザー加
工用回折光学素子を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional diffraction optical apparatus for laser processing, and is capable of branching a laser beam and condensing each of the branched laser beams three-dimensionally. Optical system, such as a lens, is unnecessary, so that complicated adjustment of the optical axis and focusing between the diffractive element and the condensing optical system is also unnecessary, and simultaneous converging irradiation on a stepped surface is also possible. An object of the present invention is to provide a diffractive optical element for laser processing that can be used.

【0006】[0006]

【課題を解決するための手段】本発明では、前記の目的
を達成するため、フレネル回折現象を使用したホログラ
ム素子1を用い、ホログラム素子1の回折面4の回折格
子パターンにより、レーザービームを複数の光束に分岐
すると同時に、フレネルレンズによりそれら分岐したレ
ーザービームを収束し、加工物2の加工面上の複数のス
ポット3a、3b…に集光するようにした。ホログラム
素子1の回折格子パターンは、回折による分岐機能を有
すると同時に、回折レンズとしての機能を持たせること
もできるので、回折素子と集光レンズ等とを併用せず、
単一の光学要素であるホログラム素子のみでレーザービ
ームの分岐と収束を行うことを可能としたものである。
According to the present invention, in order to achieve the above object, a hologram element 1 using a Fresnel diffraction phenomenon is used, and a plurality of laser beams are formed by a diffraction grating pattern on a diffraction surface 4 of the hologram element 1. At the same time, the laser beams branched by the Fresnel lens are converged and condensed on a plurality of spots 3a, 3b,... On the processing surface of the workpiece 2. The diffraction grating pattern of the hologram element 1 has a function as a diffraction lens at the same time as having a branching function by diffraction, so that the diffraction element and the condenser lens are not used together.
This makes it possible to split and converge a laser beam only by a hologram element which is a single optical element.

【0007】本発明によるレーザー加工用回折光学素子
は、レーザービーム3を複数の光束に分岐し、かつその
分岐した各光束をそれぞれ加工物2の加工面上の複数の
スポット3a、3b…に集光する回折格子パターンを形
成した回折面4を有するホログラム素子1からなる。
The diffractive optical element for laser processing according to the present invention splits the laser beam 3 into a plurality of light beams and collects the split light beams into a plurality of spots 3a, 3b,. It comprises a hologram element 1 having a diffraction surface 4 on which a light diffraction grating pattern is formed.

【0008】ホログラム素子1は、その回折格子パター
ンを適宜に設計することにより、回折による分岐の機能
と共に、ホログラムレンズとしての機能をも兼ね備える
ことができる。これにより、ホログラム素子1とは別体
の集光レンズを使用しなくても、レーザービームを分岐
し、その分岐されたレーザービームを、加工物2の複数
のスポット3a、3bに収束することが可能となる。
By appropriately designing the diffraction grating pattern of the hologram element 1, the hologram element 1 can have not only the function of branching due to diffraction but also the function of a hologram lens. Thus, the laser beam can be split and the split laser beam can be converged on the plurality of spots 3a and 3b of the workpiece 2 without using a condenser lens separate from the hologram element 1. It becomes possible.

【0009】また、このようなホログラム素子1は、そ
の回折面4における回折格子の設計によって、前記回折
面4に焦点距離の異なる分岐したレーザービーム3を生
成する回折格子パターンを形成することもできる。これ
により、段差等により、ホログラム素子1からの距離が
異なる複数の箇所にレーザーのスポット3a、3b…を
当てて、それぞれレーザー加工をすることもできる。
Further, in such a hologram element 1, a diffraction grating pattern for generating branched laser beams 3 having different focal lengths can be formed on the diffraction surface 4 by designing the diffraction grating on the diffraction surface 4. . Thereby, the laser spots 3a, 3b,... Can be applied to a plurality of places at different distances from the hologram element 1 due to a step or the like, and laser processing can be performed.

【0010】さらに、ホログラム1の回折面4の回折格
子パターンのより具体的構造について述べると、ホログ
ラム1の回折面4を複数のピクセルに分割し、各ピクセ
ルのそれぞれに位相を与え、それらの位相の分布により
回折格子パターンを形成する。ホログラム1の回折面4
の二次元平面において、位相が連続的に変化する曲面状
のホログラムパターンは、設計も容易ではなく、また製
造も事実上困難である。これに対し、ホログラム1の回
折面4を複数のピクセルに分解し、その各ピクセル毎に
段階的な光学的位相を決めることは、コンピュータを使
用した計算機ホログラム技術により比較的容易に設計す
ることができる。また、マスクを用いたエッチング制御
等により、レリーフ型等も比較的簡単に作ることができ
る。特に、ホログラム1の回折面の各ピクセルに与える
位相配分を、最適回転角法(Optimal Rotation Angle M
ethod:以下「ORA法」と言う。)により最適化する
ことにより、最適な計算機ホログラム(Computer Gener
ated Hologram:以下「CGH法」と言う。)が設計で
きる。
Further, a more specific structure of the diffraction grating pattern of the diffraction surface 4 of the hologram 1 will be described. The diffraction surface 4 of the hologram 1 is divided into a plurality of pixels, and a phase is given to each pixel. Form a diffraction grating pattern according to the distribution. Diffraction surface 4 of hologram 1
In the two-dimensional plane, a curved hologram pattern whose phase continuously changes is not easy to design, and is actually difficult to manufacture. On the other hand, decomposing the diffraction surface 4 of the hologram 1 into a plurality of pixels and determining a stepwise optical phase for each pixel can be designed relatively easily by computer-generated hologram technology using a computer. it can. In addition, a relief type or the like can be relatively easily manufactured by controlling etching using a mask. In particular, the phase distribution given to each pixel on the diffraction surface of the hologram 1 is determined by the optimal rotation angle method (Optimal Rotation Angle M).
ethod: Hereinafter referred to as the “ORA method”. ) To optimize the computer generated hologram (Computer Gener
ated Hologram: Hereinafter referred to as “CGH method”. ) Can be designed.

【0011】[0011]

【発明の実施の形態】次に、図面を参照しながら、本発
明の実施の形態について、具体的且つ詳細に説明する。
図1は、レーザ加工用回折光学素子を使用してレーザー
ビームを加工物2の加工面上に照射し、その加工面をレ
ーザー加工する場合の概念を示す図である。図示してな
いYAGレーザーやエキシマレーザー等のレーザー発光
素子で発生した加工用レーザービーム5を、ホログラム
素子1に通して分岐すると共に、それら分岐したレーザ
ービームをそれぞれ加工物2の加工面上の複数のスポッ
ト3a、3b…に照射する。レーザービーム5がホログ
ラム素子1を透過するとき、その回折面4に形成された
回折格子パターンにより回折され、複数のレーザービー
ムに分岐される。また、このホログラム素子1の回折面
4の回折格子パターンは、ホログラムレンズとしての機
能を有し、分岐したレーザービームをそれぞれ収束し、
加工物2の加工面上の複数のスポット3a、3b…に集
光する。
Embodiments of the present invention will now be described specifically and in detail with reference to the drawings.
FIG. 1 is a view showing a concept in a case where a laser beam is irradiated onto a processing surface of a workpiece 2 by using a diffraction optical element for laser processing, and the processing surface is laser-processed. A processing laser beam 5 generated by a laser light emitting element such as a YAG laser or an excimer laser (not shown) passes through the hologram element 1 and branches. Are irradiated to the spots 3a, 3b,. When the laser beam 5 passes through the hologram element 1, the laser beam 5 is diffracted by a diffraction grating pattern formed on the diffraction surface 4 and is split into a plurality of laser beams. The diffraction grating pattern on the diffraction surface 4 of the hologram element 1 has a function as a hologram lens, and converges the branched laser beams, respectively.
Focus on a plurality of spots 3a, 3b,... On the processing surface of the workpiece 2.

【0012】例えば、加工物2の加工面上の複数のスポ
ット3a、3b…にレーザー加工で孔空けする場合、加
工面の穿孔位置以外の部分をマスク等で覆わなくても、
それら穿孔位置にスポット3a、3b…としてレーザー
ビームを照射できるので、その部分のみをレーザー加工
で穿孔できることになる。
For example, when a plurality of spots 3a, 3b... On the processing surface of the workpiece 2 are drilled by laser processing, a portion other than the drilling position on the processing surface is not covered with a mask or the like.
Since the laser beam can be irradiated as spots 3a, 3b,... To these perforation positions, only that portion can be perforated by laser processing.

【0013】図2は、本発明の他の実施形態によるレー
ザ加工用回折光学素子を示す概念図である。図示してな
いYAGレーザーやエキシマレーザー等のレーザー発光
素子で発生した加工用レーザービーム5を、ホログラム
素子1に通して分岐する点は、前述の図1に示したもの
と同様である。ここでは、加工物2の加工面に段差があ
り、そのため、ホログラム素子1の回折面からレーザー
加工しようとする複数の位置までの距離が異なっている
点が異なる。ホログラム素子1は、その回折面4におけ
る回折格子の設計によって、前記回折面4に焦点距離の
異なる分岐したレーザービーム3を生成する回折格子パ
ターンを形成することもできる。これにより、ホログラ
ム素子1の回折面から距離の異なる複数の位置にレーザ
ーのスポット3a、3bを集光させてレーザー加工を行
うこともできる。
FIG. 2 is a conceptual diagram showing a diffractive optical element for laser processing according to another embodiment of the present invention. The point that the processing laser beam 5 generated by a laser light emitting element such as a YAG laser or an excimer laser (not shown) is branched through the hologram element 1 is the same as that shown in FIG. Here, there is a step in the processing surface of the workpiece 2, and therefore, the difference is that the distances from the diffraction surface of the hologram element 1 to a plurality of positions where laser processing is to be performed are different. The hologram element 1 can also form a diffraction grating pattern that generates branched laser beams 3 having different focal lengths on the diffraction surface 4 by designing the diffraction grating on the diffraction surface 4. Accordingly, laser processing can be performed by condensing the laser spots 3a and 3b at a plurality of positions at different distances from the diffraction surface of the hologram element 1.

【0014】ホログラム素子1の回折面4に形成する回
折格子パターンにより構成されるフレネルレンズは、そ
の回折格子パターンの設計により、分岐した個々のレー
ザービームの焦点距離を異ならせることが可能である。
このため、回折面4に形成する回折格子パターンを適宜
設計することにより、図2に示すように、加工物2の加
工面に段差があり、そのため、レーザー加工しようとす
る複数の加工位置のホログラム素子1の回折面からの距
離が全て同じでない場合であっても、分岐したレーザー
ビームをそれぞれ収束し、加工物2の加工面上の複数の
加工位置にそれぞれスポット3a、3b…として集光す
ることができる。
In the Fresnel lens constituted by the diffraction grating pattern formed on the diffraction surface 4 of the hologram element 1, the focal length of each branched laser beam can be made different by designing the diffraction grating pattern.
For this reason, by appropriately designing the diffraction grating pattern formed on the diffraction surface 4, as shown in FIG. 2, there is a step on the processing surface of the workpiece 2, and therefore, holograms at a plurality of processing positions to be laser-processed Even when the distances from the diffraction surface of the element 1 are not all the same, the branched laser beams are respectively converged and condensed as spots 3a, 3b,... At a plurality of processing positions on the processing surface of the workpiece 2. be able to.

【0015】図3(C)は、このようなホログラム素子
1の回折面4の回折格子パターンの例を示す。この例に
おけるホログラム素子1の回折面4のサイズは、図1
(A)に示すように、3mm×3mmであり、レーザー
ビームの波長は240nmである。
FIG. 3C shows an example of a diffraction grating pattern on the diffraction surface 4 of such a hologram element 1. The size of the diffraction surface 4 of the hologram element 1 in this example is shown in FIG.
As shown in (A), the size is 3 mm × 3 mm, and the wavelength of the laser beam is 240 nm.

【0016】図3(B)は、このようなホログラム素子
1を通して分岐し、収束したレーザービームを照射する
加工物2の加工面を示すもので、分岐したレーザービー
ムを集光して照射するスポットを、黒い背景の中の明る
い点で示している。ホログラム素子1の回折面4から加
工物2の加工面までの距離、すなわち、焦点距離は80
mmである。図3(B)に示すように、図示した加工物
2の加工面上のスポット3a、3b…は、縦横に等間隔
で並んだ合計36個の点である。
FIG. 3 (B) shows a processing surface of a workpiece 2 which is branched through such a hologram element 1 and is irradiated with a converged laser beam. The spot on which the branched laser beam is focused and irradiated is shown. Are indicated by bright dots on a black background. The distance from the diffraction surface 4 of the hologram element 1 to the processing surface of the workpiece 2, that is, the focal length is 80
mm. As shown in FIG. 3B, the spots 3a, 3b,... On the processing surface of the workpiece 2 shown in the drawing are a total of 36 points arranged vertically and horizontally at equal intervals.

【0017】図4は、この図3(B)に示す加工物2の
加工面上において、スポットの列が存在する一直線上に
ついて、各位置に照射されるレーザー光の強度の例を示
している。レーザー光の強度は、最大強度を1としたと
きの相対比で示している。この図4に示すように、レー
ザー光の強度はスポットの位置でピークを示し、それら
は何れのスポットでもほぼ最大値であり、他の部分では
ほぼ0である。このように、加工物2の加工面上のスポ
ット3a、3b…の位置とそれ以外の位置とでは、レー
ザー光強度が高いコントラストを示しており、スポット
3a、3b…にレーザービームが集光されていることが
分かる。
FIG. 4 shows an example of the intensity of the laser beam applied to each position on a straight line on which a row of spots exists on the processing surface of the workpiece 2 shown in FIG. 3B. . The intensity of the laser light is shown as a relative ratio when the maximum intensity is set to 1. As shown in FIG. 4, the intensity of the laser light shows a peak at the position of the spot, which is almost the maximum value in any spot, and is almost 0 in other portions. Thus, the laser beam intensity shows a high contrast between the positions of the spots 3a, 3b... On the processing surface of the workpiece 2 and other positions, and the laser beams are focused on the spots 3a, 3b. You can see that it is.

【0018】前述した各ホログラム素子1の回折面4の
回折格子パターンは、回折面4の二次元平面において、
位相が連続的に変化する曲面状のものにより形成するこ
ともできる。しかし、そのような回折面4の回折格子パ
ターンは、設計することも、また製造することも困難で
あることが多い。
The diffraction grating pattern on the diffraction surface 4 of each of the hologram elements 1 described above is expressed by a two-dimensional plane of the diffraction surface 4.
It can also be formed of a curved surface whose phase continuously changes. However, it is often difficult to design and manufacture such a diffraction grating pattern on the diffraction surface 4.

【0019】そこで、ホログラム素子1の回折面4を複
数のピクセルに分け、それぞれのピクセルに最適な位相
を与え、そのピクセルの集合により回折面4の回折格子
パターンを形成する。ホログラム素子1の回折面4の面
積がAmm2、そのピクセルの数がN個の場合、ピクセ
ル解像度はN/Abit・mm-2である。
Therefore, the diffraction surface 4 of the hologram element 1 is divided into a plurality of pixels, an optimum phase is given to each pixel, and a diffraction grating pattern of the diffraction surface 4 is formed by a set of the pixels. When the area of the diffraction surface 4 of the hologram element 1 is Amm 2 and the number of pixels is N, the pixel resolution is N / Abit · mm −2 .

【0020】例えば、前述の図3(C)に示した回折格
子パターンの例では、何れもホログラム素子1の回折面
4のサイズを3mm×3mmとし、それらを300×3
00個のピクセルに分解して位相を与えており、ピクセ
ル解像度N/Aは、10,000bit・mm-2であ
る。すなわち、ピクセルサイズは、10μm×10μm
である。また、これら各ピクセルに与える位相の段階を
Dとすると、位相深度はDとなる。これらのN/AやD
を無限大とすると、前述した曲面状の回折格子パターン
に限りなく近づくことになる。このピクセル解像度や位
相深度は、必要な光学特性と設計や製造の容易性との兼
ね合いから適宜決定する。
For example, in the above-described example of the diffraction grating pattern shown in FIG. 3C, the size of the diffraction surface 4 of the hologram element 1 is set to 3 mm × 3 mm, and these are set to 300 × 3.
The phase is given by being decomposed into 00 pixels, and the pixel resolution N / A is 10,000 bits · mm −2 . That is, the pixel size is 10 μm × 10 μm
It is. If the phase of the phase given to each pixel is D, the phase depth is D. These N / A and D
If is set to infinity, it will be as close as possible to the above-mentioned curved diffraction grating pattern. The pixel resolution and the phase depth are appropriately determined based on a balance between necessary optical characteristics and ease of design and manufacture.

【0021】例えば図5は、ホログラム素子の回折面4
の或る部分を断面し、その断面した方向に沿って40〜
100のピクセルに与えた位相を示すグラフの例であ
る。光源から発射される光を分岐し、収束する目的に応
じて、ホログラム素子1の回折面4の各ピクセル毎に光
学的な位相を決めることは、コンピュータを使用した計
算機ホログラム技術により比較的容易に設計することが
できる。特に、ホログラム素子1の回折面4の各ピクセ
ルに与える位相配分を、ORA法により最適化すること
により、最適なCGHが設計できる。
For example, FIG. 5 shows the diffraction surface 4 of the hologram element.
Is cross-sectioned, and 40-
It is an example of the graph which shows the phase given to 100 pixels. It is relatively easy to determine the optical phase for each pixel on the diffraction surface 4 of the hologram element 1 according to the purpose of splitting and converging the light emitted from the light source by computer-generated hologram technology using a computer. Can be designed. In particular, the optimal CGH can be designed by optimizing the phase distribution given to each pixel on the diffraction surface 4 of the hologram element 1 by the ORA method.

【0022】[0022]

【発明の効果】以上説明した通り、本発明によるレーザ
ー加工用回折光学素子では、レーザービームを分岐し、
かつそれぞれ分岐したビームを3次元的に集光させるこ
とができるので、集光のためのレンズ等の光学系が不要
になり、それ故、回折素子と集光光学系との面倒な光軸
合わせや焦点合わせ等の調整も不要となる。また、段差
のある面への同時加工も可能となる。
As described above, the diffractive optical element for laser processing according to the present invention branches the laser beam,
In addition, since the branched beams can be condensed three-dimensionally, an optical system such as a lens for condensing is unnecessary, and therefore, a troublesome optical axis alignment between the diffraction element and the condensing optical system is required. Adjustment such as focusing and focusing becomes unnecessary. Also, simultaneous processing on a stepped surface is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態によるレーザー加工用回折光
学素子によるレーザ加工の概念を示す概念図である。
FIG. 1 is a conceptual diagram showing the concept of laser processing by a laser processing diffractive optical element according to an embodiment of the present invention.

【図2】本発明の他の実施形態によるレーザー加工用回
折光学素子によるレーザ加工の概念を示す概念図であ
る。
FIG. 2 is a conceptual diagram showing a concept of laser processing by a laser processing diffractive optical element according to another embodiment of the present invention.

【図3】本発明の実施形態によるレーザー加工用回折光
学素子と加工物の配置を示す斜視図、ホログラム素子に
よる集光スポットの配置例及びホログラム素子の回折パ
ターンの例を示すパターン図である。
FIG. 3 is a perspective view showing an arrangement of a diffraction optical element for laser processing and a workpiece according to an embodiment of the present invention, an arrangement example of a condensed spot by a hologram element, and a pattern diagram showing an example of a diffraction pattern of the hologram element.

【図4】前記実施形態によるレーザー加工用回折光学素
子を通してレーザー光を照射した加工面における位置に
おけるレーザー光強度を示すグラフである。
FIG. 4 is a graph showing laser light intensity at a position on a processing surface irradiated with laser light through the laser processing diffractive optical element according to the embodiment.

【図5】前記実施形態によるレーザー加工用回折光学素
子のホログラム素子の回折面の断面をピクセル番号と位
相とで表したグラフである。
FIG. 5 is a graph showing a cross section of a diffraction surface of a hologram element of the laser processing diffractive optical element according to the embodiment by a pixel number and a phase.

【符号の説明】[Explanation of symbols]

1 ホログラム素子 2 加工物 3a スポット 3b スポット 3c スポット 3c スポット 4 ホログラム素子の回折面 5 レーザービーム Reference Signs List 1 hologram element 2 workpiece 3a spot 3b spot 3c spot 3c spot 4 diffraction plane of hologram element 5 laser beam

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03H 1/08 G03H 1/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03H 1/08 G03H 1/08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 レーザービーム(3)を複数の光束に分
岐し、かつその分岐した各光束をそれぞれ加工物(2)
の加工面上の複数のスポット(3a)、(3b)…に集
光する回折格子パターンを形成した回折面(4)を有す
るホログラム素子(1)からなることを特徴とするレー
ザー加工用回折光学素子。
A laser beam (3) is split into a plurality of light beams, and each of the split light beams is processed into a workpiece (2).
Characterized by a hologram element (1) having a diffraction surface (4) formed with a diffraction grating pattern for focusing light on a plurality of spots (3a), (3b). element.
【請求項2】 前記回折面(4)が焦点距離の異なる分
岐したレーザービーム(3)を生成する回折格子パター
ンを形成していることを特徴とする請求項1に記載のレ
ーザー加工用回折光学素子。
2. The diffractive optic for laser processing according to claim 1, wherein said diffraction surface forms a diffraction grating pattern for generating a branched laser beam having a different focal length. element.
【請求項3】 前記回折面(4)が複数のピクセルに分
割され、各ピクセルに与えた位相の分布により回折格子
パターンが形成されていることを特徴とする請求項1ま
たは2に記載のレーザー加工用回折光学素子。
3. The laser according to claim 1, wherein the diffraction surface is divided into a plurality of pixels, and a diffraction grating pattern is formed by a phase distribution given to each pixel. Diffractive optical element for processing.
【請求項4】 前記回折面(4)の各ピクセルに与えた
位相配分が、最適回転角法により最適化されていること
を特徴とする請求項3に記載のレーザー加工用回折光学
素子。
4. The diffractive optical element for laser processing according to claim 3, wherein a phase distribution given to each pixel of the diffraction surface is optimized by an optimal rotation angle method.
【請求項5】 レーザービーム(3)を複数の光束に分
岐し、かつその分岐したレーザービームを(3)それぞ
れ加工物(2)の加工面上の複数のスポット(3a)、
(3b)…に集光する回折格子パターンを形成した回折
面(4)を有するホログラム素子を備えることを特徴と
するレーザー加工装置。
5. A laser beam (3) is split into a plurality of light beams, and the split laser beams are divided into a plurality of spots (3a) on a processing surface of a workpiece (2), respectively.
(3b) A laser processing apparatus comprising a hologram element having a diffraction surface (4) on which a diffraction grating pattern for focusing light is formed.
【請求項6】 前記ホログラム素子が、焦点距離の異な
る分岐したレーザービーム(3)を生成する回折格子パ
ターンを形成した回折面(4)を有することを特徴とす
る請求項5に記載のレーザー加工装置。
6. The laser processing according to claim 5, wherein the hologram element has a diffraction surface (4) on which a diffraction grating pattern for generating a branched laser beam (3) having a different focal length is formed. apparatus.
【請求項7】 レーザービーム(3)を複数の光束に分
岐し、かつその分岐したレーザービームをそれぞれ加工
物(2)の加工面上の複数のスポット(3a)、(3
b)…に集光する回折格子パターンを形成した回折面
(4)を有するホログラム素子を用い、前記加工物
(2)の加工面にレ一ザービームを照射してその加工面
を加工することを特徴とするレーザー加工方法。
7. A laser beam (3) is split into a plurality of light beams, and the split laser beams are respectively split into a plurality of spots (3a), (3) on a processing surface of a workpiece (2).
b) using a hologram element having a diffraction surface (4) formed with a diffraction grating pattern for condensing a laser beam on the processing surface of the workpiece (2) to process the processing surface; Characterized laser processing method.
【請求項8】 前記ホログラム素子が、焦点距離の異な
る分岐したレーザービーム(3)を生成する回折格子パ
ターンを形成した回折面(4)を有することを特徴とす
る請求項7に記載のレーザー加工方法。
8. The laser processing according to claim 7, wherein the hologram element has a diffraction surface (4) on which a diffraction grating pattern for generating a branched laser beam (3) having a different focal length is formed. Method.
JP2001027670A 2001-02-05 2001-02-05 Diffraction optical device for laser beam machining and device and method for laser beam machining Pending JP2002228818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001027670A JP2002228818A (en) 2001-02-05 2001-02-05 Diffraction optical device for laser beam machining and device and method for laser beam machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001027670A JP2002228818A (en) 2001-02-05 2001-02-05 Diffraction optical device for laser beam machining and device and method for laser beam machining

Publications (1)

Publication Number Publication Date
JP2002228818A true JP2002228818A (en) 2002-08-14

Family

ID=18892287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001027670A Pending JP2002228818A (en) 2001-02-05 2001-02-05 Diffraction optical device for laser beam machining and device and method for laser beam machining

Country Status (1)

Country Link
JP (1) JP2002228818A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077115A1 (en) 2003-02-06 2004-09-10 Sumitomo Electric Industries, Ltd. Diffractive optical element and laser machining apparatus using same
JP2005153013A (en) * 2003-10-31 2005-06-16 Seiko Epson Corp Method for machining substrate, method for manufacturing microlens sheet, transmission screen, projector, display device, and substrate machining apparatus
JP2007258691A (en) * 2006-02-21 2007-10-04 Semiconductor Energy Lab Co Ltd Device for laser irradiation, method of laser irradiation, and method of fabricating semiconductor device
CN100451689C (en) * 2007-03-21 2009-01-14 中国科学院上海光学精密机械研究所 Polarizing lens and producing method thereof
US7532378B2 (en) 2006-02-21 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of laser irradiation, and method for manufacturing semiconductor device
US7940441B2 (en) 2006-02-03 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of memory element, laser irradiation apparatus, and laser irradiation method
US8580700B2 (en) 2006-02-17 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2015030127A1 (en) * 2013-09-02 2015-03-05 旭硝子株式会社 Diffraction optical element, projection device, and measurement device
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117709U (en) * 1988-09-08 1989-08-09
JPH02117791A (en) * 1988-09-17 1990-05-02 Philips Gloeilampenfab:Nv Laser light working apparatus
JPH08148423A (en) * 1994-11-18 1996-06-07 Mitsubishi Electric Corp Laser annealing method
JP2000330058A (en) * 1999-05-24 2000-11-30 Ricoh Co Ltd Optical writing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117709U (en) * 1988-09-08 1989-08-09
JPH02117791A (en) * 1988-09-17 1990-05-02 Philips Gloeilampenfab:Nv Laser light working apparatus
JPH08148423A (en) * 1994-11-18 1996-06-07 Mitsubishi Electric Corp Laser annealing method
JP2000330058A (en) * 1999-05-24 2000-11-30 Ricoh Co Ltd Optical writing device

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440188B2 (en) 2003-02-06 2008-10-21 Sumitomo Electric Industries, Ltd. Diffractive optical element
CN100437157C (en) * 2003-02-06 2008-11-26 住友电气工业株式会社 Diffractive optical element and laser machining apparatus using same
WO2004077115A1 (en) 2003-02-06 2004-09-10 Sumitomo Electric Industries, Ltd. Diffractive optical element and laser machining apparatus using same
JP2005153013A (en) * 2003-10-31 2005-06-16 Seiko Epson Corp Method for machining substrate, method for manufacturing microlens sheet, transmission screen, projector, display device, and substrate machining apparatus
JP4729883B2 (en) * 2003-10-31 2011-07-20 セイコーエプソン株式会社 Substrate processing method, microlens sheet manufacturing method, transmissive screen, projector, display device, and substrate processing device
US7940441B2 (en) 2006-02-03 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of memory element, laser irradiation apparatus, and laser irradiation method
US8426324B2 (en) 2006-02-03 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of memory element, laser irradiation apparatus, and laser irradiation method
US8580700B2 (en) 2006-02-17 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101418730B1 (en) * 2006-02-21 2014-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation apparatus, method of laser irradiation, and method for manufacturing semiconductor device
JP2007258691A (en) * 2006-02-21 2007-10-04 Semiconductor Energy Lab Co Ltd Device for laser irradiation, method of laser irradiation, and method of fabricating semiconductor device
US7532378B2 (en) 2006-02-21 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, method of laser irradiation, and method for manufacturing semiconductor device
CN100451689C (en) * 2007-03-21 2009-01-14 中国科学院上海光学精密机械研究所 Polarizing lens and producing method thereof
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
WO2015030127A1 (en) * 2013-09-02 2015-03-05 旭硝子株式会社 Diffraction optical element, projection device, and measurement device
JPWO2015030127A1 (en) * 2013-09-02 2017-03-02 旭硝子株式会社 Diffractive optical element, projection device and measuring device
US9897438B2 (en) 2013-09-02 2018-02-20 Asahi Glass Company, Limited Diffraction optical element, projection device, and measurement device
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Similar Documents

Publication Publication Date Title
JP2002228818A (en) Diffraction optical device for laser beam machining and device and method for laser beam machining
US5633735A (en) Use of fresnel zone plates for material processing
US5521628A (en) Laser system for simultaneously marking multiple parts
JP3346374B2 (en) Laser drilling machine
US6507003B2 (en) Method and apparatus for laser processing
US5290992A (en) Apparatus for maximizing light beam utilization
US6727460B2 (en) System for high-speed production of high quality laser-induced damage images inside transparent materials
JPH08276288A (en) Substrate processing device
CA2688799A1 (en) In-line holographic mask for micromachining
JP2001138083A (en) Laser beam machining device and laser irradiation method
US20210394309A1 (en) Apparatus and method for structuring a roller surface
JP2005028438A (en) Machining apparatus utilizing laser beam
KR19990007929A (en) Multi-faced repeated exposure method and apparatus
US20160263701A1 (en) Laser marking method and system and laser marked object
JP2008168297A (en) Apparatus and method for laser beam machining
JP2003053577A (en) Method and device for generating top flat beam and method and device for laser beam machining using the top flat beam
US5519724A (en) Multiwavelength and multibeam diffractive optics system for material processing
US9586286B2 (en) Apparatus and method for fabricating periodic micro-pattern by laser beams
JPH10282450A (en) Binary optics and laser beam machining device
JP5322765B2 (en) Laser processing apparatus and laser processing method
JP2002026466A (en) Condensing optical system and light source for laser machines
JP3216987B2 (en) Laser transfer processing apparatus and laser transfer processing method
JP2003255262A (en) Specialized optical system using femtosecond laser
KR101180705B1 (en) a laser beam patterning device
JP2006320938A (en) Apparatus and method for laser beam machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629