JP2013187247A - Interposer and method for manufacturing the same - Google Patents

Interposer and method for manufacturing the same Download PDF

Info

Publication number
JP2013187247A
JP2013187247A JP2012049416A JP2012049416A JP2013187247A JP 2013187247 A JP2013187247 A JP 2013187247A JP 2012049416 A JP2012049416 A JP 2012049416A JP 2012049416 A JP2012049416 A JP 2012049416A JP 2013187247 A JP2013187247 A JP 2013187247A
Authority
JP
Japan
Prior art keywords
electrode group
interposer
transparent insulator
electric circuit
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012049416A
Other languages
Japanese (ja)
Inventor
Tetsuya Hayashida
哲哉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
NHK Engineering System Inc
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
NHK Engineering System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp, NHK Engineering System Inc filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012049416A priority Critical patent/JP2013187247A/en
Publication of JP2013187247A publication Critical patent/JP2013187247A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an interposer capable of connecting terminals by the shortest electrical path.SOLUTION: An interposer 1 according to the present invention includes: a transparent insulator 11; a first electrode group 12 composed of a plurality of electrodes arranged on a first surface 11a of the transparent insulator 11; a second electrode group 13 composed of the same number of electrodes as the first electrode group 12 which are arranged on a second surface 11b opposite to the first surface 11a of the transparent insulator 11; and an electrode group 14 which penetrates the transparent insulator 11 and connects corresponding electrodes of the first electrode group 12 and the second electrode group 13 at the shortest distance.

Description

本発明はインターポーザおよびその製造方法に係り、特に、対応する端子間を直線状の電路で接続したインターポーザおよびその製造方法に関する。   The present invention relates to an interposer and a method for manufacturing the interposer, and more particularly to an interposer in which corresponding terminals are connected by a linear electric circuit and a method for manufacturing the interposer.

近年半導体集積回路(IC)は一層小型化、高集積化が進んでおり、外部接続端子も高密度化してきている。   In recent years, semiconductor integrated circuits (ICs) have been further miniaturized and highly integrated, and external connection terminals have also been increased in density.

ICの外部接続端子の高密度化に対応して実装基板上に形成する端子を高密度化することは、製作費の上昇を招くだけでなく、実装技術も高度となる。   Increasing the density of the terminals formed on the mounting substrate in response to the increase in the density of the external connection terminals of the IC not only increases the manufacturing cost, but also increases the mounting technology.

このため、ICと実装基板の間に設置し、ICの端子ピッチを実装基板の端子ピッチに変換するインターポーザがすでに開発されている(例えば、特許文献1参照)。   For this reason, an interposer that is installed between an IC and a mounting board and converts the terminal pitch of the IC into the terminal pitch of the mounting board has already been developed (see, for example, Patent Document 1).

なお、インターポーザは、IC自体を積層するPoP(パッケージ・オン・パッケージ)あるいはPiP(パッケージ・イン・パッケージ)にも使用されている。   The interposer is also used for PoP (package on package) or PiP (package in package) for stacking ICs themselves.

特開2011−086767号公報JP 2011-086767 A

しかしながら、既存のインターポーザは、基板両面の端子間を水平方向の電路と基板を貫通する垂直方向のビアとで接続する構造であり、ピッチの変換率を大きくするためには、基板を複数枚積層し階段状に端子間を接続する必要があった。   However, the existing interposer has a structure in which the terminals on both sides of the board are connected by a horizontal electric circuit and a vertical via that penetrates the board. To increase the pitch conversion rate, multiple boards are stacked. It was necessary to connect the terminals in a staircase pattern.

このため、インターポーザの構造が複雑となるだけでなく、ICの端子と実装基板(または他のIC)の端子を結ぶ電路の長さが長くなるという課題があった。   For this reason, there is a problem that not only the structure of the interposer becomes complicated, but also the length of the electric circuit connecting the terminal of the IC and the terminal of the mounting substrate (or other IC) becomes long.

本発明は上記課題に鑑みなされたものであって、端子間を最短長の電路で接続することのできるインターポーザを提供することを目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at providing the interposer which can connect between terminals with the shortest electric circuit.

本発明に係るインターポーザは、平板状の透明絶縁体と、前記透明絶縁体の第1の面上に配置される複数個の電極群である第1の電極群と、前記透明絶縁体の前記第1の面の裏面である第2の面上に配置される前記第1の電極群と同数の電極群である第2の電極群と、前記透明絶縁体を貫通し、前記第1の電極群と前記第2の電極群の対応する電極間を最短距離で接続する電路群とを具備する。   An interposer according to the present invention includes a flat transparent insulator, a first electrode group that is a plurality of electrode groups disposed on a first surface of the transparent insulator, and the first electrode of the transparent insulator. A second electrode group which is the same number of electrode groups as the first electrode group disposed on the second surface which is the back surface of the first surface; and the first electrode group which penetrates the transparent insulator. And an electric circuit group connecting the corresponding electrodes of the second electrode group with the shortest distance.

この構成により、インターポーザ両面の端子を直線的に接続して構造を簡略化することができる。   With this configuration, the terminals on both sides of the interposer can be linearly connected to simplify the structure.

本発明に係るインターポーザは、前記電路群が、前記透明絶縁体にフェムト秒レーザアシストエッチングにより前記透明絶縁体内に形成された貫通孔の内壁に形成される電路で構成される。   In the interposer according to the present invention, the electric circuit group is configured by an electric circuit formed on an inner wall of a through hole formed in the transparent insulator by femtosecond laser-assisted etching.

この構成により、透明絶縁体に直線状の電路を形成することができる。   With this configuration, a linear electric circuit can be formed in the transparent insulator.

本発明に係るインターポーザは、前記電路が、めっきまたはCVDにより前記貫通孔内部に形成されたものである。   In the interposer according to the present invention, the electric circuit is formed in the through hole by plating or CVD.

この構成により、高アスペクト比の貫通孔内に電路を形成することができる。   With this configuration, an electric circuit can be formed in the through hole having a high aspect ratio.

本発明に係るインターポーザの製造方法は、平板状の透明絶縁体の第1の面上の複数の位置と前記平板状絶縁体の前記第1の面の裏面である第2の面上の前記第1の面上の複数の位置に対応する位置との最短経路に沿ってフェムト秒レーザにより前記透明絶縁体の内部に改質部を形成する改質部形成段階と、前記改質部をエッチングにより削除して前記透明絶縁体に貫通孔を穿孔する穿孔段階と、前記貫通孔の内部に電路を形成する電路形成段階と、前記平板状絶縁体の第1の面および第2の面の前記貫通孔の開口位置に前記電路と電気的に接続する電極群を形成する電極群形成段階と、を含む。   The method of manufacturing an interposer according to the present invention includes a plurality of positions on the first surface of the flat transparent insulator and the second surface on the second surface which is the back surface of the first surface of the flat insulator. A modified portion forming step of forming a modified portion in the transparent insulator by a femtosecond laser along a shortest path with positions corresponding to a plurality of positions on one surface; and etching the modified portion by etching A drilling step of removing and drilling a through hole in the transparent insulator, an electric circuit forming step of forming an electric circuit inside the through hole, and the penetration of the first surface and the second surface of the flat insulator And an electrode group forming step of forming an electrode group electrically connected to the electric circuit at the opening position of the hole.

本発明によれば、インターポーザ両面の端子が直線的に接続されるため、インターポーザの構造を簡略化することができる。   According to the present invention, since the terminals on both sides of the interposer are linearly connected, the structure of the interposer can be simplified.

本発明に係るインターポーザの上面図(a)、下面図(c)およびX−X断面図(b)である。It is the top view (a), bottom view (c), and XX sectional view (b) of the interposer according to the present invention. 本発明に係るインターポーザの使用状況を示す模式図である。It is a schematic diagram which shows the use condition of the interposer which concerns on this invention. 本発明に係るインターポーザの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the interposer which concerns on this invention. フェムト秒レーザ光で改質層を形成する場合の模式図である。It is a schematic diagram in the case of forming a modified layer with femtosecond laser light. 裏面照射型撮像素子と本発明に係るインターボーザを適用した超高速撮像装置の構成図である。It is a block diagram of the ultra high-speed imaging device to which the backside illumination type image sensor and the interposer according to the present invention are applied.

以下本発明に係るインターポーザの実施例について説明する。   Examples of interposers according to the present invention will be described below.

図1は本発明に係るインターポーザの上面図(a)、下面図(c)およびX−X断面図(b)である。   FIG. 1 is a top view (a), a bottom view (c), and an XX sectional view (b) of an interposer according to the present invention.

インターポーザ1は、平面状の透明絶縁体11であり、上面11aに第1の電極群12が、下面11bに第2の電極群13が形成されている。   The interposer 1 is a planar transparent insulator 11, and a first electrode group 12 is formed on the upper surface 11a, and a second electrode group 13 is formed on the lower surface 11b.

なお、第1の電極群12の電極間ピッチと第2の電極群13の電極間ピッチは相違しており、第1の電極群12を構成する電極数と第2の電極群13を構成する電極数は同一である。   The interelectrode pitch of the first electrode group 12 and the interelectrode pitch of the second electrode group 13 are different, and the number of electrodes constituting the first electrode group 12 and the second electrode group 13 are constituted. The number of electrodes is the same.

図1の実施例は、第2の電極群13の電極間ピッチは第1の電極群12の電極間ピッチの倍である場合、すなわちピッチ変換率が"2"である場合を示しているが、これは本発明を限定するものではなく、ピッチ変換率は任意の倍率(>0)であってよく、均等である必要もない。さらに、各電極群の電極間ピッチは同一でなくてもよい。   The embodiment of FIG. 1 shows a case where the interelectrode pitch of the second electrode group 13 is twice the interelectrode pitch of the first electrode group 12, that is, the pitch conversion rate is “2”. This does not limit the present invention, and the pitch conversion rate may be any magnification (> 0) and need not be equal. Furthermore, the pitch between electrodes of each electrode group may not be the same.

そして、透明絶縁体11の内部には、第1の電極群12と第2の電極群13の対応する電極間を最短距離で接続する電路群14が設けられている。   In the transparent insulator 11, an electric path group 14 that connects the corresponding electrodes of the first electrode group 12 and the second electrode group 13 with the shortest distance is provided.

図2はインターポーザの使用状況を示す模式図であって、インターポーザ1の上面11a上には第1のIC21が搭載され、第1の電極群12は第1のIC21の外部端子と接触している。   FIG. 2 is a schematic diagram showing the use situation of the interposer. The first IC 21 is mounted on the upper surface 11 a of the interposer 1, and the first electrode group 12 is in contact with the external terminal of the first IC 21. .

インターポーザ1の下面11bの下には第2のIC(またはプリント基板)22が配置され、第2の電極群13は第2のIC22の外部端子と接触している。   A second IC (or printed circuit board) 22 is disposed under the lower surface 11 b of the interposer 1, and the second electrode group 13 is in contact with an external terminal of the second IC 22.

したがって、第1のIC21の外部端子と第2のIC22の外部端子とは第1の電極群12、電路群14および第2の電極群13を介して電気的に接続されることとなる。   Therefore, the external terminal of the first IC 21 and the external terminal of the second IC 22 are electrically connected via the first electrode group 12, the electric path group 14, and the second electrode group 13.

図3は、本発明に係るインターポーザの製造方法を示すフローチャートであって、まず第1段階として、例えば合成石英である透明絶縁体11にフェムト秒レーザを使用して改質部を形成する(ステップ1)。   FIG. 3 is a flowchart showing a method for manufacturing an interposer according to the present invention. First, as a first step, a modified portion is formed using a femtosecond laser on a transparent insulator 11 made of synthetic quartz, for example (step). 1).

すなわち、透明絶縁体11の所定箇所にフェムト秒レーザ光31を照射すると、レーザ光の集光部には構造改質部32が形成される。   That is, when the femtosecond laser beam 31 is irradiated to a predetermined portion of the transparent insulator 11, the structural modification unit 32 is formed in the laser beam condensing unit.

レーザ光としては、波長800ナノメートル、パルス幅260〜300フェムト秒、繰り返し周波数200キロヘルツのチタン・サファイアレーザより発射されるレーザ光を開口比0.5の対物レンズで集光したものが適当である。   As the laser beam, a laser beam emitted from a titanium / sapphire laser having a wavelength of 800 nanometers, a pulse width of 260 to 300 femtoseconds, and a repetition frequency of 200 kilohertz is condensed with an objective lens having an aperture ratio of 0.5. is there.

なお、レーザパルスのエネルギは透明絶縁体のアブレーション閾値以下とし、改質中に集光部近傍が溶融等の損傷を受けないようにする必要がある。   The energy of the laser pulse needs to be less than the ablation threshold of the transparent insulator so that the vicinity of the light condensing part is not damaged such as melting during the modification.

レーザを毎秒1ミリメートルの速度で透明絶縁体11内を走査することにより、透明絶縁体11の内部に任意の形状の改質部を形成することができる。   By scanning the inside of the transparent insulator 11 with a laser at a speed of 1 millimeter per second, a modified portion having an arbitrary shape can be formed inside the transparent insulator 11.

図4は、透明絶縁体11の中央部から垂直上方に向かって改質層を形成する場合の模式図であり、レーザを中央部からZ軸方向に走査することとなる。   FIG. 4 is a schematic view when a modified layer is formed vertically upward from the central portion of the transparent insulator 11, and the laser is scanned from the central portion in the Z-axis direction.

なお、改質は透明絶縁体11の表面から離れた位置から表面に向かって形成することが望ましいので、透明絶縁体11の上面11aから下面11bまでを貫通する貫通孔を形成するには、まず透明絶縁体11の中央部から上面11aまでの改質部を形成し、透明絶縁体11を裏返し、中央部から下面11bまでに改質部を形成する。   In addition, since it is desirable to form the modification from a position away from the surface of the transparent insulator 11 toward the surface, in order to form a through-hole penetrating from the upper surface 11a to the lower surface 11b of the transparent insulator 11, A reforming portion is formed from the central portion of the transparent insulator 11 to the upper surface 11a, the transparent insulator 11 is turned over, and a reforming portion is formed from the center portion to the lower surface 11b.

また、透明絶縁体11の上面11aから下面11bまでを斜めに貫通する貫通孔を形成するときは、レーザをZ軸方向だけでなく、X軸およびY軸の少なくとも1つの軸方向に走査すればよい。   Further, when forming a through hole that obliquely penetrates from the upper surface 11a to the lower surface 11b of the transparent insulator 11, the laser is scanned not only in the Z-axis direction but also in at least one of the X-axis and Y-axis directions. Good.

図3に戻って、改質部の形成が完了すると、エッチングにより改質部を除去し、透明絶縁材11に貫通孔を穿孔する(ステップ2)。   Returning to FIG. 3, when the formation of the modified portion is completed, the modified portion is removed by etching, and a through hole is formed in the transparent insulating material 11 (step 2).

エッチングは、ウエットエッチングよりもドライエッチングの方が貫通孔の形状を維持する観点から望ましい。   Etching is preferably dry etching rather than wet etching from the viewpoint of maintaining the shape of the through hole.

上記方法によれば、孔径がサブミクロンで、長さが数十〜数百ミクロンである高アスペクト比の貫通孔を形成することが可能となる。   According to the above method, it is possible to form a high aspect ratio through-hole having a hole diameter of submicron and a length of several tens to several hundreds of microns.

なお、上記したフェムト秒レーザとエッチングにより高アスペクト比の貫通孔を形成する技術は、フェムト秒レーザアシストエッチング法として既に公知である(例えば、http://www.nedo.go.jp/content/100116677.pdfを参照)。   The above-described technique for forming a high aspect ratio through-hole by etching with a femtosecond laser is already known as a femtosecond laser-assisted etching method (for example, http://www.nedo.go.jp/content/ 100116677.pdf).

次に、貫通孔の内部に電路を形成するが、貫通孔の内壁に導電層を形成することが現実的である(ステップ3)。   Next, although an electric circuit is formed inside the through hole, it is practical to form a conductive layer on the inner wall of the through hole (step 3).

導電層の形成方法としては、電解めっき、無電解めっき、CVD(化学気相成長)を適用することができる。   As a method for forming the conductive layer, electrolytic plating, electroless plating, or CVD (chemical vapor deposition) can be applied.

最後に、透明絶縁体11の上面11aおよび下面11bに貫通孔内の電路と接続する第1の電極群12および第2の電極群13を形成して(ステップ4)、インターポーザが完成する。   Finally, the first electrode group 12 and the second electrode group 13 connected to the electric path in the through hole are formed on the upper surface 11a and the lower surface 11b of the transparent insulator 11 (step 4), thereby completing the interposer.

なお、本発明に係るインターポーザでは、電路を上面の電極群と下面の電極群を最短距離で結ぶように形成しているが、ギガヘルツ以上の高周波信号を対象とする回路に適用する場合には、電路長を等しくしたいという要求もある。   In the interposer according to the present invention, the electric circuit is formed so as to connect the upper electrode group and the lower electrode group at the shortest distance, but when applied to a circuit targeting a high frequency signal of gigahertz or more, There is also a demand to make the circuit lengths equal.

上記のフェムト秒レーザアシストエッチング法によれば、透明絶縁体中に3次元的に改質部を形成することが可能であるため、等しい電路長を有するインターポーザの製造にも本発明を適用可能である。   According to the femtosecond laser assisted etching method described above, the modified portion can be formed three-dimensionally in the transparent insulator. Therefore, the present invention can be applied to the manufacture of an interposer having an equal circuit length. is there.

本発明に係るインターポーザは、裏面照射型撮像素子と半導体メモリを使用した超高速度撮像装置に適用することができる。
従来提案されている超高速撮像装置には、主に画素周辺記録型撮像素子(In Situ Storage Image Sensor、以下ISIS)が使用されていた。
The interposer according to the present invention can be applied to an ultra high-speed imaging device using a backside illumination type imaging device and a semiconductor memory.
Conventionally proposed ultra-high-speed imaging devices mainly use a pixel peripheral recording type imaging device (In Situ Storage Image Sensor, hereinafter referred to as ISIS).

しかし、ISISはフォトダイオードと記憶素子がウエハの同一面に形成されるため、実際の受光面積が小さくなり、感度が抑制されていた。
そこで、ウエハ表面全体で受光を可能とするために、裏面照射型撮像素子が実用化されている。
However, in the ISIS, since the photodiode and the storage element are formed on the same surface of the wafer, the actual light receiving area is reduced and the sensitivity is suppressed.
Therefore, in order to enable light reception over the entire wafer surface, a back-illuminated image sensor has been put into practical use.

裏面照射型撮像素子は、ウエハの裏面全体に撮像素子を形成し、ウエハ内を貫通する電路により撮像信号をウエハ表面に伝送し、ウエハ表面に形成された電極から撮像素子を外部に出力する構造となっている。
そこで、裏面照射型撮像素子の表面と本発明に係るインターボーザ1の上面11aとを接触させ、下面11bとメモリを接触させることにより、撮像素子から出力される撮像信号を連続的に記憶することが可能となる。
The backside-illuminated image sensor has a structure in which an image sensor is formed on the entire back surface of the wafer, an image signal is transmitted to the wafer surface through an electric path penetrating the wafer, and the image sensor is output to the outside from an electrode formed on the wafer surface. It has become.
Therefore, the imaging signal output from the imaging device is continuously stored by bringing the surface of the back-illuminated imaging device into contact with the upper surface 11a of the interposer 1 according to the present invention and bringing the lower surface 11b into contact with the memory. Is possible.

図5は、裏面照射型撮像素子と本発明に係るインターボーザを適用した超高速撮像装置の構成図であって、(d)は1個の裏面照射型撮像素子41と1個のメモリ42をインターポーザ1で接続した構成であり、(e)は1個の裏面照射型撮像素子41と複数個のメモリ42、43・・・をインターポーザ1で接続した構成である。   FIG. 5 is a configuration diagram of an ultra-high-speed imaging device to which the backside illumination type imaging device and the interposer according to the present invention are applied. FIG. 5D shows one backside illumination type imaging device 41 and one memory 42. (E) is a configuration in which one back-illuminated image sensor 41 and a plurality of memories 42, 43... Are connected by the interposer 1.

本発明は、端子間を最短長の電路で接続することのできるインターポーザを提供するものであり、産業上有用である。   INDUSTRIAL APPLICABILITY The present invention provides an interposer that can connect terminals with a shortest electric path, and is industrially useful.

1 インターポーザ
11 透明絶縁体
11a 上面(第1の面)
11b 下面(第2の面)
12 第1の電極群
13 第2の電極群
14 電路群
21 第1のIC
22 第2のIC
31 フェムト秒レーザ光
32 構造改質部
41 裏面照射型撮像素子
42、43 メモリ
1 Interposer 11 Transparent insulator 11a Upper surface (first surface)
11b Lower surface (second surface)
12 1st electrode group 13 2nd electrode group 14 Electric circuit group 21 1st IC
22 Second IC
31 Femtosecond laser beam 32 Structure modification unit 41 Back-illuminated image sensor 42, 43 Memory

Claims (4)

平板状の透明絶縁体と、
前記透明絶縁体の第1の面上に配置される複数個の電極群である第1の電極群と、
前記透明絶縁体の前記第1の面の裏面である第2の面上に配置される前記第1の電極群と同数の電極群である第2の電極群と、
前記透明絶縁体を貫通し、前記第1の電極群と前記第2の電極群の対応する電極間を最短距離で接続する電路群とを具備するインターポーザ。
A flat transparent insulator;
A first electrode group that is a plurality of electrode groups disposed on the first surface of the transparent insulator;
A second electrode group which is the same number of electrode groups as the first electrode group disposed on a second surface which is the back surface of the first surface of the transparent insulator;
An interposer comprising an electric path group penetrating the transparent insulator and connecting the corresponding electrodes of the first electrode group and the second electrode group at a shortest distance.
前記電路群が、前記透明絶縁体にフェムト秒レーザアシストエッチングにより前記透明絶縁体内に形成された貫通孔の内壁に形成される電路で構成される請求項1に記載のインターポーザ。   2. The interposer according to claim 1, wherein the electric circuit group is configured by an electric circuit formed on an inner wall of a through hole formed in the transparent insulator by femtosecond laser-assisted etching. 前記電路が、めっきまたはCVDにより前記貫通孔内部に形成されたものである請求項2に記載のインターポーザ。   The interposer according to claim 2, wherein the electric circuit is formed inside the through hole by plating or CVD. 平板状の透明絶縁体の第1の面上の複数の位置と前記平板状絶縁体の前記第1の面の裏面である第2の面上の前記第1の面上の複数の位置に対応する位置との最短経路に沿ってフェムト秒レーザにより前記透明絶縁体の内部に改質部を形成する改質部形成段階と、
前記改質部をエッチングにより削除して前記透明絶縁体に貫通孔を穿孔する穿孔段階と、
前記貫通孔の内部に電路を形成する電路形成段階と、
前記平板状絶縁体の第1の面および第2の面の前記貫通孔の開口位置に、前記電路と電気的に接続する電極群を形成する電極群形成段階と、を含むインターポーザの製造方法。
Corresponding to a plurality of positions on the first surface of the flat transparent insulator and a plurality of positions on the first surface on the second surface which is the back surface of the first surface of the flat insulator. A modified part forming step of forming a modified part in the transparent insulator by a femtosecond laser along the shortest path to the position to be
A drilling step of removing the modified portion by etching and drilling a through hole in the transparent insulator;
An electric circuit forming step of forming an electric circuit inside the through hole;
An interposer manufacturing method comprising: an electrode group forming step of forming an electrode group electrically connected to the electric path at the opening positions of the through holes on the first surface and the second surface of the flat insulator.
JP2012049416A 2012-03-06 2012-03-06 Interposer and method for manufacturing the same Pending JP2013187247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049416A JP2013187247A (en) 2012-03-06 2012-03-06 Interposer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049416A JP2013187247A (en) 2012-03-06 2012-03-06 Interposer and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013187247A true JP2013187247A (en) 2013-09-19

Family

ID=49388465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049416A Pending JP2013187247A (en) 2012-03-06 2012-03-06 Interposer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013187247A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016160391A1 (en) * 2015-03-27 2016-10-06 Corning Incorporated Gas permeable window and method of fabricating the same
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071157A (en) * 2007-09-14 2009-04-02 Shinko Electric Ind Co Ltd Wiring board and manufacturing method thereof, and semiconductor device
WO2012014718A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Method for manufacturing interposer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071157A (en) * 2007-09-14 2009-04-02 Shinko Electric Ind Co Ltd Wiring board and manufacturing method thereof, and semiconductor device
WO2012014718A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Method for manufacturing interposer

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
CN107666983A (en) * 2015-03-27 2018-02-06 康宁股份有限公司 Ventilative window and its manufacture method
JP2018516215A (en) * 2015-03-27 2018-06-21 コーニング インコーポレイテッド Gas permeable window and manufacturing method thereof
WO2016160391A1 (en) * 2015-03-27 2016-10-06 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness

Similar Documents

Publication Publication Date Title
JP2013187247A (en) Interposer and method for manufacturing the same
JP6013960B2 (en) Wiring board
JP2020519015A5 (en)
JP2014107553A (en) Circuit board with built-in electronic component and manufacturing method therefor
US9209240B2 (en) Metal-oxide-metal capacitor structure
US9553039B2 (en) Semiconductor device with through-substrate via covered by a solder ball and related method of production
JP2010114199A (en) Semiconductor device, and method of manufacturing the same
JP5833398B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor device
KR20070074466A (en) Light emitting device and manufacturing method thereof
JP2013004576A (en) Semiconductor device
KR20170014958A (en) Semiconductor package and method of manufacturing the same
KR101060936B1 (en) Methods of manufacturing interconnect structures, interposers, semiconductor packages, and interconnect structures
CN106664795A (en) Structural body and method for manufacturing same
JP2019149501A (en) Wiring board and electronic device
JP5790750B2 (en) Radiation detection sensor
JP5483544B2 (en) Semiconductor photo detector
JP5515881B2 (en) Radiation detection sensor and method of manufacturing radiation detection sensor
KR101243304B1 (en) Interposer and method for manufacturing thereof
JP5980554B2 (en) Electrical connection member, inspection method, and manufacturing method of electrical connection member
JP2008277595A (en) Semiconductor device, and manufacturing method thereof
JP2009071094A (en) Substrate with built-in component
KR20210054215A (en) Hybrid multi layer ceramic and probe card including the same
JP6565576B2 (en) Power supply board
US20220166187A1 (en) Optical device including a substrate with a conductor-filled trench on a conductive core
US20210239857A1 (en) Radiation detection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216