JP2018516215A - Gas permeable window and manufacturing method thereof - Google Patents

Gas permeable window and manufacturing method thereof Download PDF

Info

Publication number
JP2018516215A
JP2018516215A JP2017550572A JP2017550572A JP2018516215A JP 2018516215 A JP2018516215 A JP 2018516215A JP 2017550572 A JP2017550572 A JP 2017550572A JP 2017550572 A JP2017550572 A JP 2017550572A JP 2018516215 A JP2018516215 A JP 2018516215A
Authority
JP
Japan
Prior art keywords
article
gas
gas flow
flow path
permeable window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017550572A
Other languages
Japanese (ja)
Inventor
マリヤノヴィッチ,サシャ
アンドリュー ピーチ,ギャレット
アンドリュー ピーチ,ギャレット
アレン ウィーランド,クリストファー
アレン ウィーランド,クリストファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2018516215A publication Critical patent/JP2018516215A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

液体界面付加製造における使用に適した気体透過性ガラス窓は、約0.5ミリメートルより厚く、第1の表面および第2の表面を画成する光学的に透明なガラス物品を有する。複数の気体流路が、物品を第1の表面から第2の表面へと貫通して配置されている。気体流路は、物品の表面領域の約1.0%未満を占めると共に、物品が約10バーラー(約75×10−18/(N・s))と約2000バーラー(約15002×10−18/(N・s))の間の気体透過率を有するように、構成されている。A gas permeable glass window suitable for use in liquid interface addition manufacturing has an optically clear glass article that is thicker than about 0.5 millimeters and that defines a first surface and a second surface. A plurality of gas flow paths are disposed through the article from the first surface to the second surface. The gas flow path occupies less than about 1.0% of the surface area of the article, and the article is about 10 barrers (about 75 × 10 −18 m 4 / (N · s)) and about 2000 barrers (about 15002 × 10 8). It is configured to have a gas permeability between −18 m 4 / (N · s)).

Description

関連出願の相互参照Cross-reference of related applications

本出願は、米国特許法第119条の下、2015年3月27日出願の米国仮特許出願第62/139,238号の優先権の利益を主張し、その内容は依拠され、全体として参照により本明細書に組み込まれる。   This application claims the benefit of priority of US Provisional Patent Application No. 62 / 139,238, filed March 27, 2015, under 35 USC 119, the contents of which are relied upon and generally referenced Is incorporated herein by reference.

本発明は、気体透過性窓、および、その製造方法に関する。   The present invention relates to a gas permeable window and a method for manufacturing the same.

概して、ポリマー材料は、スペクトルの紫外線領域の波長を有する光に対して、低い透過性を有する。更に、ポリマー材料は、典型的には、他の光透過性材料より低い剛性値を有する。更に、ポリマー材料を、ある気体を透過しうるように処理すると、ポリマー材料の透過性および剛性属性が低下しうる。   In general, polymeric materials have low transparency to light having wavelengths in the ultraviolet region of the spectrum. Furthermore, polymeric materials typically have lower stiffness values than other light transmissive materials. Furthermore, if the polymer material is processed to be permeable to certain gases, the permeability and stiffness attributes of the polymer material can be reduced.

したがって、剛性が高く、かつ、紫外線光に対し透明でありながら、気体を透過しうる物品を製造することが、望まれる。   Accordingly, it is desirable to produce an article that is highly rigid and transparent to ultraviolet light while allowing gas to pass through.

一実施形態によれば、液体界面付加製造での使用に適した気体透過性ガラス窓は、約0.5ミリメートルより厚い、光学的に透明なガラス物品を含む。ガラス物品は、第1の表面および第2の表面を画成する。複数の気体流路が、物品を第1の表面から第2の表面へと貫通して配置されている。気体流路は、物品の表面領域の約1.0%未満を占めると共に、物品が約10バーラー(約75×10−18/(N・s))と約2000バーラー(約15002×10−18/(N・s))の間の気体透過率を有するように、構成されている。 According to one embodiment, a gas permeable glass window suitable for use in liquid interface addition manufacturing includes an optically clear glass article that is thicker than about 0.5 millimeters. The glass article defines a first surface and a second surface. A plurality of gas flow paths are disposed through the article from the first surface to the second surface. The gas flow path occupies less than about 1.0% of the surface area of the article, and the article is about 10 barrers (about 75 × 10 −18 m 4 / (N · s)) and about 2000 barrers (about 15002 × 10 8). It is configured to have a gas permeability between −18 m 4 / (N · s)).

他の実施形態によれば、気体透過性ガラス窓の形成方法は、第1の表面および第2の表面を有する光学的に透明なガラス物品を、提供する工程と、パルスレーザ光線を、光線の伝播方向に沿って見たレーザ光線の焦線に、合焦する工程と、レーザ光線の焦線を、光学的に透明なガラス物品内に、ガラス物品の第1の表面への入射角で繰り返し向けることにより、複数の気体流路を、物品内に形成する工程とを含む。レーザ光線の焦線は、誘起吸収を、物品内に発生させて、各誘起吸収は、物品内に、第1の表面から記第2の表面まで、レーザ光線の焦線に沿った気体流路を形成する。気体流路の個数および直径は、物品の望ましい気体透過率に基づいて、決定される。   According to another embodiment, a method of forming a gas permeable glass window comprises providing an optically transparent glass article having a first surface and a second surface, and a pulsed laser beam. The process of focusing on the focal line of the laser beam viewed along the propagation direction, and the focal line of the laser beam are repeated in the optically transparent glass article at an angle of incidence on the first surface of the glass article. Forming a plurality of gas flow paths in the article. The focal line of the laser beam causes induced absorption in the article, and each induced absorption is a gas flow path along the focal line of the laser beam from the first surface to the second surface in the article. Form. The number and diameter of the gas flow paths are determined based on the desired gas permeability of the article.

他の実施形態によれば、気体透過性窓は、第1の表面および第2の表面を画成する光学的に透明な物品を含む。複数の気体流路が、第1の表面から第2の表面へと延伸している。気体流路は、第1および第2の表面に直交する軸に対して約0°と約15°の間の角度で、配置されている。流路の角度は、中心点からの距離が増加するにつれて、増加している。   According to other embodiments, the gas permeable window includes an optically transparent article that defines a first surface and a second surface. A plurality of gas flow paths extend from the first surface to the second surface. The gas flow path is disposed at an angle between about 0 ° and about 15 ° with respect to an axis orthogonal to the first and second surfaces. The angle of the channel increases as the distance from the center point increases.

更なる特徴および利点は、以下の詳細な記載に示されると共に、部分的には、当業者には、その記載から容易に明らかであるか、または、添付の図面に加えて、以下の詳細な記載を含む本明細書および請求項に記載された実施形態を実施することにより、理解されるだろう。   Additional features and advantages will be set forth in the following detailed description, and in part will be readily apparent to those skilled in the art from the description, or in addition to the accompanying drawings. It will be understood by implementing the embodiments described herein, including the description, and the claims.

上記概略的な記載および以下の詳細な記載の両方が、単に例示的なものであり、請求項の本質および特徴を理解するための概観または枠組みを提供することを意図したものであると理解されるべきである。添付の図面は、更なる理解のために含められたものであり、本明細書に組み込まれ、その部分を構成する。図面は、1つ以上の実施形態を示し、詳細な記載と共に、様々な実施形態の原理および動作を説明する役割を果たす。   It is understood that both the foregoing general description and the following detailed description are exemplary only and are intended to provide an overview or framework for understanding the nature and characteristics of the claims. Should be. The accompanying drawings are included for further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments and, together with the detailed description, serve to explain the principles and operations of the various embodiments.

一実施形態による気体透過性窓の斜視図である。1 is a perspective view of a gas permeable window according to one embodiment. FIG. 一実施形態による図1のII線に沿って、強調して示した断面図である。It is sectional drawing emphasized along the II line of FIG. 1 by one Embodiment. 他の実施形態による図1のII線に沿って、強調して示した断面図である。It is sectional drawing emphasized along the II line of FIG. 1 by other embodiment. 更に他の実施形態による図1のII線に沿って、強調して示した断面図である。It is sectional drawing emphasized along the II line of FIG. 1 by further embodiment. レーザ穴あけ用光学アセンブリを示す概略図である。1 is a schematic diagram showing an optical assembly for laser drilling. FIG. レーザ光線の焦線を、物品に対して位置させる、代わりの工程を示す図である。It is a figure which shows the alternative process of locating the focal line of a laser beam with respect to articles | goods. 他の実施形態による窓のレーザ穴あけ方法を示す図である。It is a figure which shows the laser drilling method of the window by other embodiment. 一実施形態による窓の使用を示す図である。FIG. 6 illustrates the use of a window according to one embodiment. 代わりの実施形態による窓を強調して示した図である。FIG. 6 is a diagram showing an emphasized window according to an alternative embodiment.

ここで、添付の図面に例を示した本発明の好適な実施形態を、詳細に記載する。全ての図面を通して、同じ、または、類似の部分には、可能な限り、同じ参照番号を用いる。   Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

本明細書での記載のために、「上方」、「下方」、「右側」、「左側」、「後方」、「前方」、「垂直」、「水平」、および、それらの派生語である用語は、別段の記載がない限り、図1の向きの気体透過性窓10に関するものとする。しかしながら、明示的に否定する記載がない限りは、気体透過性窓10は、様々な代わりの向きを想定してもよいと、理解されるべきである。更に、添付の図面に示され、以下の明細書に記載される特定の装置および工程は、添付の請求項に定義した本発明概念の単なる例示的な実施形態であるということも、理解されるべきである。したがって、請求項が、明示的に別段の記載をしていない限りは、本明細書に開示した実施形態に関する特定の寸法および他の物理的特徴は、制限するものと、みなされるべきではない。   For the purposes of this description, "upper", "lower", "right", "left", "rear", "front", "vertical", "horizontal", and their derivatives The term shall refer to the gas permeable window 10 in the orientation of FIG. 1 unless stated otherwise. However, it should be understood that the gas permeable window 10 may assume a variety of alternative orientations unless explicitly stated otherwise. It is further understood that the specific devices and processes illustrated in the accompanying drawings and described in the following specification are merely exemplary embodiments of the inventive concepts defined in the appended claims. Should. Thus, unless expressly stated otherwise, the specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered limiting.

ここで、図1から2Cを参照すると、気体透過性窓10の一実施形態が示されている。窓10は、気体の均圧化が望まれる利用例だけではなく、液体界面付加製造装置での使用に適していてもよい。窓10は、第1の表面18および第2の表面22を画成する光学的に透明な物品14を含む。複数の気体流路26が、光学的に透明な物品14を貫通して延伸している。気体流路26は、第1の表面18から第2の表面22へと延伸し、窓10の異なる側の空間の間での流体の、および、光学的な連通を容易にする。各気体流路26が、物品14内を完全に貫通するように図示されているが、いくつかの気体流路26は、物品14内を完全に貫通していなくてもよいと、理解されるべきである。物品14は、約0.1ミリメートルから約15.0ミリメートルまでの範囲、または、約0.5ミリメートルから約10.0ミリメートルまでの範囲、または、約1ミリメートルから約3.2ミリメートルまでの範囲、または、約0.1ミリメートルから約0.7ミリメートルまでの範囲、または、約30マイクロメートルほど厚くてもよい厚さtを、有していてもよい。物品14は、ガラス、積層ガラス、ガラス複合材、サファイア、ガラスーサファイア積層体、および、略透明な他の材料のうち、少なくとも1つを含んでいてもよい材料で、作られている。物品14がガラスである実施形態において、例えば、コーニング(登録商標)製のEagle X6(登録商標)などの高性能ガラス、または、ソーダ石灰ガラスなどの割安なガラスを、利用してもよい。更に、物品14がガラスを含む実施形態において、ガラス物品14は、アルカリ、アルカリ土類、および/または、遷移金属の添加により存在する、少なくとも1つのイオン交換領域を有していてもよい。更に、物品14が、ガラスを含む場合には、物品14は、熱強化されていてもよい。光学的に透明な物品14が、ガラスを含む実施形態において、物品14、したがって、窓10は、約100ナノメートルと約1,200ナノメートルの間の範囲、または、約250ナノメートルと約1,100ナノメートルの間の範囲の波長を有する光に対して、光学的に透明であってもよい。   With reference now to FIGS. 1-2C, one embodiment of a gas permeable window 10 is shown. The window 10 may be suitable for use in a liquid interface addition manufacturing apparatus as well as an application example in which equalization of gas is desired. The window 10 includes an optically transparent article 14 that defines a first surface 18 and a second surface 22. A plurality of gas flow paths 26 extend through the optically transparent article 14. The gas flow path 26 extends from the first surface 18 to the second surface 22 to facilitate fluid and optical communication between the spaces on different sides of the window 10. Although each gas flow path 26 is illustrated as completely penetrating through the article 14, it will be understood that some gas flow paths 26 may not penetrate completely through the article 14. Should. Article 14 ranges from about 0.1 millimeters to about 15.0 millimeters, or ranges from about 0.5 millimeters to about 10.0 millimeters, or ranges from about 1 millimeter to about 3.2 millimeters. Or a thickness t that may range from about 0.1 millimeters to about 0.7 millimeters, or as thick as about 30 micrometers. The article 14 is made of a material that may include at least one of glass, laminated glass, glass composite, sapphire, glass-sapphire laminate, and other substantially transparent materials. In embodiments where the article 14 is glass, for example, high performance glass such as Eagle X6® from Corning®, or inexpensive glass such as soda lime glass may be utilized. Further, in embodiments where the article 14 includes glass, the glass article 14 may have at least one ion exchange region present due to the addition of alkali, alkaline earth, and / or transition metals. Further, when the article 14 includes glass, the article 14 may be heat strengthened. In embodiments where the optically transparent article 14 comprises glass, the article 14, and thus the window 10, ranges between about 100 nanometers and about 1,200 nanometers, or about 250 nanometers and about 1 , May be optically transparent to light having a wavelength in the range between 100 nanometers.

図示された実施形態において、気体流路26は、物品14の第1および第2の表面18、22に亘って、格子状に均等に離間しているが、更に追加で、または、その代わりに、他の構成または様式に配列されていてもよい。例えば、気体流路26は、物品14に亘ってランダムに、不規則に、若しくは、人間の目で容易には視認され難い他の様式または配列で、離間されていてもよい。気体流路26の密度、または、単位面積当たりの個数は、1平方ミリメートル当たり約10個と1平方ミリメートル当たり約40,000個の間の範囲、または、1平方ミリメートル当たり約50個と1平方ミリメートル当たり約20,000個の間の範囲、または、1平方ミリメートル当たり約100個と1平方ミリメートル当たり約400個の間の範囲であってもよい。更に、物品14のいくつかの部分は、他の部分と比べて、気体流路26の密度が、高いか、または、低くてもよい。例えば、気体流路の密度は、様式にしたがって、または、ランダムに、異なっていてもよく、更に、気体領域がない領域(例えば、物品14の真ん中または縁部)を含んでいてもよい。各気体流路26間の距離dは、気体流路26の向きに応じて、約1マイクロメートルと約400マイクロメートルの間、特に、約5マイクロメートルと約250マイクロメートルの間、更に特に、約50マイクロメートルと約100マイクロメートルの間の範囲であってもよい。   In the illustrated embodiment, the gas flow paths 26 are evenly spaced in a grid pattern across the first and second surfaces 18, 22 of the article 14, but additionally or alternatively , May be arranged in other configurations or manners. For example, the gas flow paths 26 may be spaced across the article 14 randomly, irregularly, or in other manners or arrangements that are not readily visible to the human eye. The density, or number per unit area, of the gas channels 26 ranges between about 10 and about 40,000 per square millimeter, or about 50 and 1 square per square millimeter. It may range between about 20,000 per millimeter, or between about 100 per square millimeter and about 400 per square millimeter. Further, some portions of the article 14 may have a higher or lower density of gas flow paths 26 than other portions. For example, the density of the gas flow path may vary according to the style or randomly, and may further include a region without a gas region (eg, the middle or edge of the article 14). The distance d between each gas channel 26 depends on the orientation of the gas channel 26, between about 1 micrometer and about 400 micrometers, in particular between about 5 micrometers and about 250 micrometers, more particularly It may range between about 50 micrometers and about 100 micrometers.

気体流路26の直径は、約0.1マイクロメートルから約250マイクロメートルの範囲、または、約0.2マイクロメートルから約100マイクロメートルの範囲、または、約0.25マイクロメートルから約50マイクロメートルの範囲であってもよい。気体流路26の直径は、流路毎に異なっていてもよく、または、物品14内の気体流路位置の関数として異なっていてもよいと、理解されるべきである。気体流路26の直径、および、光学的に透明な物品14の厚さtは、気体流路26の望ましいアスペクト比に基づいて設定されてもよい。アスペクト比は、気体流路26の直径に対する気体流路26の長さ(例えば、物品14の厚さt)として測定される。気体流路26のアスペクト比は、約20:1から約50,000:1の範囲であってもよく、または、約10:1から約12,000:1の範囲であってもよく、または、約50:1から約500:1の範囲であってもよい。いくつかの実施形態において、各気体流路26は、物品14に亘って、同じ、または、略同様のアスペクト比を有するが、他の実施形態においては、気体流路26のアスペクト比は、(例えば、個々の気体流路26の直径の増減によって、)異なっていてもよい。例えば、いくつかの実施形態において、気体流路26のアスペクト比は、ランダムに割り当てられてもよく、一方、他の実施形態において、アスペクト比は、もっと大きい様式または物品14上の個々の気体流路26の位置に基づいて、流路毎に変化して、または、異なっていてもよい。いくつかの実施形態において、細い気体流路26は、光学的に透明な物品14を透過する光の光学的歪みを最小にするかもしれないので、気体流路26のアスペクト比は、高いことが望ましい。更に、気体流路26のアスペクト比が高いと、物品14を通って送られた光から生成された画像中の任意のアーチファクトを、減少させるかもしれない。更に、物品14の表面領域うち、気体流路26によって占められた小さな部分も、気体透過性窓10の光透過率に影響するかもしれない。物品14の表面領域のうち、気体流路26によって占められた小さな部分は、約2.0%未満、特に、約1.0%未満、更に特に、約0.1%未満で、いくつかの実施形態においては、約0.01%であってもよい。   The diameter of the gas channel 26 ranges from about 0.1 micrometers to about 250 micrometers, or from about 0.2 micrometers to about 100 micrometers, or from about 0.25 micrometers to about 50 micrometers. It may be in the range of meters. It should be understood that the diameter of the gas flow path 26 may vary from flow path to flow path or may vary as a function of gas flow path location within the article 14. The diameter of the gas channel 26 and the thickness t of the optically transparent article 14 may be set based on the desired aspect ratio of the gas channel 26. The aspect ratio is measured as the length of the gas channel 26 with respect to the diameter of the gas channel 26 (for example, the thickness t of the article 14). The aspect ratio of the gas channel 26 may range from about 20: 1 to about 50,000: 1, or may range from about 10: 1 to about 12,000: 1, or About 50: 1 to about 500: 1. In some embodiments, each gas channel 26 has the same or substantially similar aspect ratio across the article 14, but in other embodiments, the aspect ratio of the gas channel 26 is ( It may be different (for example, by increasing or decreasing the diameter of the individual gas channels 26). For example, in some embodiments, the aspect ratio of the gas flow path 26 may be randomly assigned, while in other embodiments, the aspect ratio is greater in the manner or individual gas flow on the article 14. Based on the position of the path 26, it may vary for each flow path or may be different. In some embodiments, the narrow gas channel 26 may minimize the optical distortion of light transmitted through the optically transparent article 14, so that the aspect ratio of the gas channel 26 may be high. desirable. Further, the high aspect ratio of the gas flow path 26 may reduce any artifacts in the image generated from the light sent through the article 14. Furthermore, a small portion of the surface area of the article 14 occupied by the gas flow path 26 may also affect the light transmittance of the gas permeable window 10. A small portion of the surface area of the article 14 occupied by the gas flow path 26 is less than about 2.0%, particularly less than about 1.0%, more particularly less than about 0.1%, In embodiments, it may be about 0.01%.

光学的に透明な物品14を貫通する気体流路26を形成することで、気体(例えば、空気、または、加圧気体)などの流体が、気体透過性窓10の片側から他方側へと、透過するのを可能する。気体透過性窓10の望ましい透過率に応じて、気体流路26の直径、個数、および/または、気体流路26間の距離dを、変更してもよい。物品14の気体透過率は、約0.1バーラー(約0.8×10−18/(N・s))と約3000バーラー(約22503×10−18/(N・s))の間の範囲、または、約10バーラー(約75×10−18/(N・s))と約2000バーラー(約15002×10−18/(N・s))の間の範囲、または、約100バーラー(約750×10−18/(N・s)と約500バーラー(約3751×10−18/(N・s))の間の範囲であってもよい。他の方法で、系の漏れ率として定量化すると、窓10は、毎時約5PSI(約34.5kPa)より高いか、毎時約10PSI(約69.0kPa)より高いか、毎時約20PSI(約137.9kPa)より高い透過率を有していてもよい。約1気圧(約1013hPa)の下で、物品10は、約200マイクロメートル未満、特に、約100マイクロメートル未満、更に特に、約50マイクロメートル未満、曲がるべきである。 By forming a gas flow path 26 that penetrates the optically transparent article 14, a fluid such as a gas (e.g., air or pressurized gas) can flow from one side of the gas permeable window 10 to the other side. Allows to penetrate. Depending on the desired transmittance of the gas permeable window 10, the diameter and number of the gas flow paths 26 and / or the distance d between the gas flow paths 26 may be changed. The gas permeability of the article 14 is about 0.1 barrer (about 0.8 × 10 −18 m 4 / (N · s)) and about 3000 barrer (about 22503 × 10 −18 m 4 / (N · s)). ) Or between about 10 barrers (about 75 × 10 −18 m 4 / (N · s)) and about 2000 barrs (about 15002 × 10 −18 m 4 / (N · s)) Range, or even between about 100 barrers (about 750 × 10 −18 m 4 / (N · s) and about 500 barrers (about 3751 × 10 −18 m 4 / (N · s)) In other ways, quantified as the leakage rate of the system, the window 10 is higher than about 5 PSI (about 34.5 kPa) per hour, higher than about 10 PSI per hour (about 69.0 kPa), or about 20 PSI per hour ( May have a transmittance higher than about 137.9 kPa) . Under about 1 atmosphere (about 1013 hPa), the article 10, less than about 200 micrometers, in particular, less than about 100 microns, more particularly, less than about 50 microns, should turn.

図2Aに示された実施形態において、気体流路26は、各第1および第2の表面18、22に直交する方向に延伸し、光学的に透明な物品14を貫通している。気体流路は、略円筒状であるが、楕円形、三角形、正方形、または、もっと多数の辺を有する多角形を含む様々な形状であってもよい。更に、気体流路26は、窓10に亘って、形状が異なっていてもよいと理解されるべきである。気体流路26は、略均一な大きさを有するように図示されているが、気体流路26は、第1と第2の表面18、22の間で直径が異なり、次第に細くなるように、物品14を貫通していてもよい。   In the embodiment shown in FIG. 2A, the gas flow path 26 extends in a direction orthogonal to each of the first and second surfaces 18, 22 and penetrates the optically transparent article 14. The gas flow path is generally cylindrical, but may have various shapes including an ellipse, a triangle, a square, or a polygon with more sides. Further, it should be understood that the gas flow path 26 may vary in shape across the window 10. Although the gas flow path 26 is illustrated as having a substantially uniform size, the gas flow path 26 has a different diameter between the first and second surfaces 18, 22, and gradually becomes thinner. The article 14 may be penetrated.

ここで、図2Bに示された実施形態を参照すると、気体透過性窓10の気体流路26は、第1および第2の表面18、22に直交するZ軸に対する角度αが異なる。気体流路26が、直交する軸からずれる角度は、約0°と約20°の間の範囲、または、約0.1°と約15°の間の範囲、または、約0.1°と約10°の間の範囲であってもよい。図示された実施形態において、気体流路26が傾く角度は、物品14の中心領域または点からの距離が増加するにつれて、増加する。他の実施形態においては、気体流路26が傾く角度は、物品14上の位置に関係なく変化するか、または、様式を形成してもよい。気体流路26を傾斜させることは、気体が物品14を流れ抜け易くするように、および/または、気体透過性窓10の片側に位置する点光源から物品14を通って送られた光のアーチファクトの発生を最小にするように、行われてもよい。   Referring now to the embodiment shown in FIG. 2B, the gas flow path 26 of the gas permeable window 10 differs in the angle α relative to the Z axis perpendicular to the first and second surfaces 18,22. The angle by which the gas channel 26 is offset from the orthogonal axis is in the range between about 0 ° and about 20 °, in the range between about 0.1 ° and about 15 °, or about 0.1 °. It may be in the range between about 10 °. In the illustrated embodiment, the angle at which the gas channel 26 tilts increases as the distance from the central region or point of the article 14 increases. In other embodiments, the angle at which the gas channel 26 tilts may vary or form a pattern regardless of the position on the article 14. Inclining the gas flow path 26 facilitates the flow of gas through the article 14 and / or artifacts of light transmitted through the article 14 from a point light source located on one side of the gas permeable window 10. May be performed to minimize the occurrence of.

ここで、図2Cを参照すると、いくつかの実施形態において、光学的に透明な物品14は、多数の光学的に透明なシート40を含んでいてもよい。複数の光学的に透明なシート40を、組み立てて接合し、光学的に透明な物品14を形成してもよい。各シート40が、複数の孔44を画成している。シート40が組み立てられる場合に、孔44は、実質的に位置合わせされて、気体流路26を形成してもよい。物品14が、このように多数のシート40から構成される実施形態は、より小さい構成要素の処理を可能にしながら、高アスペクト比の気体流路26を提供する点で、有利である。図2Bに示された実施形態に関して記載したのと同様に、気体流路26は、直交するZ軸に対し角度αで、複数のシート40を貫通するように穴あけして形成されてもよいと、理解されるべきである。   Referring now to FIG. 2C, in some embodiments, the optically transparent article 14 may include a number of optically transparent sheets 40. A plurality of optically transparent sheets 40 may be assembled and joined to form the optically transparent article 14. Each sheet 40 defines a plurality of holes 44. When the sheet 40 is assembled, the holes 44 may be substantially aligned to form the gas flow path 26. Embodiments in which the article 14 is thus composed of multiple sheets 40 are advantageous in that it provides a high aspect ratio gas flow path 26 while allowing processing of smaller components. As described with respect to the embodiment shown in FIG. 2B, the gas flow path 26 may be formed by drilling through the plurality of sheets 40 at an angle α with respect to the orthogonal Z axis. Should be understood.

ここで、図3AからCを参照すると、一実施形態によれば、窓10の物品14を貫通する気体流路26を形成するのに、超短パルスレーザを使用してもよい。気体流路26の形成を可能にする光学的構成の詳細は、以下に、および、2013年1月15日出願の米国仮特許出願第61/752,489号明細書に記載され、その内容は、本明細書に完全に開示されているものとして、全体として参照により、本明細書に組み込まれる。更に、2014年10月31日出願の米国特許出願第14/530,410号明細書も、本明細書に完全に開示されているものとして、全体として参照により、本明細書に組み込まれる。短パルスレーザの概念の本質は、アキシコンレンズを、光学レンズアセンブリで用いて、高アスペクト比の気体流路26の領域を、超短(ピコ秒またはフェムト秒の持続時間の)ベッセルビームを用いて形成することである。換言すれば、アキシコンレンズは、レーザ光線を、物品14の本体内の略円筒状の形状で高アスペクト比を有する高強度領域へと、集光する。集光されたレーザ光線の高い強度により、レーザの電磁場と物品14の物質の間で非線形相互作用が起こり、レーザエネルギーが、物品14に伝達されて、気体流路26の構成部分となる欠陥の形成を引き起こす。しかしながら、物品14のうちレーザエネルギーが高くない領域(例えば、物品の第1の表面18、物品14のうち中心収束線の周囲の体積部分)では、物質はレーザ光に対し透明で、レーザ光から物質へのエネルギーの伝達作用がないということを、認識することが重要である。本開示の文脈の中では、吸収が、物質の深さ1ミリメートル当たり、約10%未満、好ましくは、約1%未満の場合に、物質は、このレーザ光の波長に対し略透明である。結果的に、レーザ光の強度が、非線形閾値未満の領域では、物品14は変化しない。   Referring now to FIGS. 3A-C, according to one embodiment, an ultrashort pulse laser may be used to form the gas flow path 26 through the article 14 of the window 10. Details of the optical configuration that enables the formation of the gas flow path 26 are described below and in US Provisional Patent Application No. 61 / 752,489, filed Jan. 15, 2013, the contents of which are Which is hereby incorporated by reference in its entirety as if fully disclosed herein. In addition, US patent application Ser. No. 14 / 530,410, filed Oct. 31, 2014, is also incorporated herein by reference in its entirety as if fully disclosed herein. The essence of the short pulse laser concept is that an axicon lens is used in the optical lens assembly, a region of the high aspect ratio gas channel 26 is used with a very short (picosecond or femtosecond duration) Bessel beam. Is to form. In other words, the axicon lens focuses the laser beam into a high intensity region having a high aspect ratio in a substantially cylindrical shape within the body of the article 14. Due to the high intensity of the focused laser beam, a non-linear interaction occurs between the electromagnetic field of the laser and the material of the article 14, and laser energy is transmitted to the article 14 to cause defects in the gas flow path 26. Causes formation. However, in the region of the article 14 where the laser energy is not high (eg, the first surface 18 of the article, the volume of the article 14 around the central convergence line), the material is transparent to the laser light and It is important to recognize that there is no energy transfer to the material. Within the context of this disclosure, a material is substantially transparent to the wavelength of the laser light when the absorption is less than about 10%, preferably less than about 1% per millimeter of material depth. As a result, the article 14 does not change in the region where the intensity of the laser light is less than the nonlinear threshold.

超短パルスレーザを使用することで、1つ以上の高エネルギーパルス、または、高エネルギーパルスの1つ以上のバーストを用いて、光学的に透明な物品14の中に、微細な(例えば、直径が、約0.1マイクロメートルと約0.5マイクロメートルの範囲、または、約0.1マイクロメートルと約2.0マイクロメートルの範囲の)気体流路26を、形成可能である。気体流路26は、レーザ光によって改質された物品14の物質の領域である。レーザ誘起された改質は、物品14の物質の構造を破壊させものである。構造的破壊は、圧縮、融解、物質の除去、再配列、および、結合の分裂を含む。気体流路26は、物品14の内部まで延伸し、レーザ光の(略円形の)断面形状と一致する断面形状を有する。気体流路26が異なる形状を有する実施形態において、気体流路26は、物品14および/またはレーザを移動させながら、多数のパルスにより形成されてもよい。作られた気体流路26の平均直径は、約0.1マイクロメートルから約50マイクロメートルの範囲、または、約1マイクロメートルから約20マイクロメートルの範囲、または、約2マイクロメートルから約10マイクロメートルの範囲、または、約0.1マイクロメートルから約5マイクロメートルの範囲であってもよい。本明細書に開示された実施形態において、気体流路26を囲む、破壊または改質された(例えば、圧縮、融解、または、他の方法で変えられた)物質の領域は、約50マイクロメートル未満の直径、特に、約10マイクロメートル未満の直径を有することが好ましい。   By using an ultrashort pulse laser, one or more high energy pulses, or one or more bursts of high energy pulses, are used to make fine (eg, diameter) in an optically transparent article 14. Can form gas flow paths 26 (in the range of about 0.1 micrometers and about 0.5 micrometers, or in the range of about 0.1 micrometers and about 2.0 micrometers). The gas flow path 26 is a region of the substance of the article 14 modified by laser light. The laser induced modification destroys the material structure of the article 14. Structural disruption includes compression, melting, material removal, rearrangement, and bond breakage. The gas flow path 26 extends to the inside of the article 14 and has a cross-sectional shape that matches the (substantially circular) cross-sectional shape of the laser light. In embodiments where the gas channel 26 has different shapes, the gas channel 26 may be formed by multiple pulses while moving the article 14 and / or the laser. The average diameter of the created gas channel 26 ranges from about 0.1 micrometer to about 50 micrometers, or from about 1 micrometer to about 20 micrometers, or from about 2 micrometers to about 10 micrometers. It may be in the range of meters, or in the range of about 0.1 micrometers to about 5 micrometers. In the embodiments disclosed herein, the area of the material that is destroyed or modified (eg, compressed, melted, or otherwise altered) surrounding the gas flow path 26 is about 50 micrometers. It is preferred to have a diameter of less than, especially less than about 10 micrometers.

個々の気体流路26は、数百キロヘルツ(例えば、1秒当たり、数十万)の速さで形成しうる。したがって、レーザ光源と物品14の相対的な動きにつれて、気体流路26を、互いに隣接して、どのような望ましい様式でも、配置しうる。気体流路26の空間的分離度および大きさは、少なくとも部分的には、窓10の望ましい透過率に基づいて、選択されてもよい。   Individual gas channels 26 may be formed at a rate of several hundred kilohertz (eg, hundreds of thousands per second). Thus, as the laser light source and article 14 move relative to each other, the gas flow paths 26 can be arranged in any desired manner adjacent to each other. The spatial separation and size of the gas channel 26 may be selected based at least in part on the desired transmittance of the window 10.

図3Aおよび3Bに戻り、物品14のレーザ穴あけ方法は、パルスレーザ光線50を、光線の伝播方向に沿って見たレーザ光線の焦線54へと合焦する工程を含む。レーザ光線の焦線54は、典型的には、場のプロファイルが、横方向に(つまり、伝播方向に)、ガウス関数よりゆっくりと減衰する特定の関数によって与えられる、例えば、ベッセルビーム、エアリービーム、ウェーバービーム、および、マシュービーム(つまり、非回折光線)などの様々な方法で、形成しうる。レーザ(不図示)は、光学アセンブリ62の光線入射側58で、パルスレーザ光線50を射出し、パルスレーザ光線50は、光学アセンブリ62へ入射する。光学アセンブリ62は、入射したレーザ光線を、出射側で、光線方向に沿った所定の拡大範囲(焦線の長さL)に亘る、レーザ光線の焦線54へと向ける。処理すべき物品14は、光学アセンブリ62の後段に、光線経路内に位置決めされ、レーザ光線50の焦線54と、少なくとも部分的に重なっている。   Returning to FIGS. 3A and 3B, the laser drilling method of the article 14 includes focusing the pulsed laser beam 50 onto the focal line 54 of the laser beam viewed along the direction of propagation of the beam. The focal line 54 of the laser beam is typically given by a specific function in which the field profile decays laterally (ie, in the propagation direction) more slowly than a Gaussian function, eg, Bessel beam, Airy beam. , Weber beams, and Matthew beams (ie, non-diffracted rays). A laser (not shown) emits a pulsed laser beam 50 on the light incident side 58 of the optical assembly 62, and the pulsed laser beam 50 is incident on the optical assembly 62. The optical assembly 62 directs the incident laser beam to the focal line 54 of the laser beam on the exit side over a predetermined expansion range (focal line length L) along the beam direction. The article 14 to be processed is positioned in the beam path after the optical assembly 62 and at least partially overlaps the focal line 54 of the laser beam 50.

図3Aに示されるように、物品14は、光線の縦軸に略垂直に、したがって、光学アセンブリ62によって形成された同じ焦線54の後で、位置合わせされ(基板は、描画平面に垂直)、光線方向に沿って見た場合、物品14は、光線方向に見た焦線54が、物品14の第1の表面18より前で始まり、物品14の第2の表面22の後で終わるように、つまり、物品14を貫通して延伸するように、焦線54に対して置かれる。レーザ光線の焦線54が物品14と重なる領域において、つまり、焦線54が占める物品14の領域において、(レーザ光線の焦線54に沿って適切なレーザ強度の場合には、)レーザ光線の焦線54は、光線の縦方向と位置合わせされた区分66を、このように形成し、それに沿って、物品14に、誘起非線形吸収が発生する。誘起非線形吸収は、物品内に、区分66に沿って、気体流路26を形成する。欠陥線の形成は、局所だけではなく、誘起吸収した区分66の全長に亘って延伸する。物品14を貫通して延伸するように図示しているが、焦線54は、物品14内に部分的にのみ延伸し、それによって、第1と第2の表面18、22の間を延伸するものではない気体流路26を形成してもよいことに、留意すべきである。誘起吸収した区分(または、気体流路26が形成された物品14の物質内の区分)の平均直径または範囲には、参照符号Dが付されている。平均範囲Dは、レーザ光線の焦線54の平均直径、つまり、平均スポット直径に、略一致する。局所的加熱および物品14の膨張により、加熱された物質の膨張による張力が生じるため、微細な亀裂が形成されるかもしれず、張力は、パルスレーザ光線50が物品14に接触する表面(例えば、第1または第2の表面18、22)において、最も高いことに、留意すべきである。   As shown in FIG. 3A, the article 14 is aligned substantially perpendicular to the longitudinal axis of the ray, and therefore after the same focal line 54 formed by the optical assembly 62 (the substrate is perpendicular to the drawing plane). When viewed along the ray direction, the article 14 is such that the focal line 54 seen in the ray direction begins before the first surface 18 of the article 14 and ends after the second surface 22 of the article 14. In other words, it is placed against the focal line 54 so as to extend through the article 14. In the region where the focal line 54 of the laser beam overlaps the article 14, that is, in the region of the article 14 occupied by the focal line 54 (in the case of an appropriate laser intensity along the focal line 54 of the laser beam) The focal line 54 thus forms a section 66 aligned with the longitudinal direction of the light rays, along which induced nonlinear absorption occurs in the article 14. Induced non-linear absorption forms a gas flow path 26 along the section 66 in the article. The formation of the defect line extends not only locally but also over the entire length of the induced and absorbed section 66. Although illustrated as extending through the article 14, the focal line 54 extends only partially into the article 14, thereby extending between the first and second surfaces 18, 22. It should be noted that a gas channel 26 that is not intended may be formed. The average diameter or range of the induced-absorbed section (or the section within the substance of the article 14 in which the gas channel 26 is formed) is denoted by the reference symbol D. The average range D substantially matches the average diameter of the focal line 54 of the laser beam, that is, the average spot diameter. Because local heating and expansion of the article 14 create tension due to the expansion of the heated material, microcracks may form, and the tension may be the surface on which the pulsed laser beam 50 contacts the article 14 (e.g., the first It should be noted that at the first or second surface 18, 22) it is highest.

図3Bに示されるように、物品14の第1および第2の表面に直交する軸とパルスレーザ光線50とが斜めになることで、物品14内にレーザ光線の焦線54が形成される角度が変わる。光線の焦線54が物品14に接触する角度を変えることによって、気体流路26を、区分66に沿って物品を貫通する角度で、形成してもよい。レーザ光線の焦線54は、物品14に、約0°から約20°の範囲、または、約0.5°から約15°の範囲、または、約1°から約10°の範囲の角度で、入射してもよい。   As shown in FIG. 3B, the angle at which the focal line 54 of the laser beam is formed in the article 14 when the axis orthogonal to the first and second surfaces of the article 14 and the pulse laser beam 50 are inclined. Changes. The gas flow path 26 may be formed at an angle through the article along the section 66 by changing the angle at which the focal line 54 of the light ray contacts the article 14. The focal line 54 of the laser beam is incident on the article 14 at an angle in the range of about 0 ° to about 20 °, or in the range of about 0.5 ° to about 15 °, or in the range of about 1 ° to about 10 °. , May be incident.

代わりの実施形態において、気体流路26は、レーザパーカッション穴あけにより、物品14内に形成されてもよい。パーカッション穴あけは、適切な波長および強度を有するレーザを用いて行われ、レーザスポットの大きさが、最終的な穴の大きさを決定する。使用してもよい波長は、約100ナノメートルと約1070ナノメートルの間の範囲、または、約150ナノメートルと約400ナノメートルの間の範囲であってもよい。例示的実施形態において、レーザは、約355ナノメートルの波長を有する紫外線レーザ光線を利用してもよい。穴あけの間、レーザは、物品14の表面(例えば、第1または第2の表面18、22)上の、約1マイクロメートルから約20マイクロメートルの範囲、または、約3マイクロメートルから約10マイクロメートルの範囲の直径を有するガウススポットに合焦される。レーザ光は、パルス状で、物品14上の同じ位置に、繰り返し当たる。レーザパルス持続時間は、約1ナノ秒と約100ナノ秒の間の範囲、または、約10ナノ秒と約25ナノ秒の間の範囲であってもよい。レーザは、毎秒約50,000パルスから、毎秒約150,000パルスまでの間、更に特に、毎秒約100,000パルスの性能を有していてもよい。物質の一部が、物品14から、各パルスにより除去され、気体流路26が形成され始める。気体流路26が、物品14内に形成されるにつれて、気体流路26は、レーザ光線を閉じ込めて、物品14を貫通する細長い孔を形成する。レーザ光は、パルス状に、気体流路26が、物品14内で望ましい深さになる(例えば、物品14を完全に貫通する)まで射出され、次に、レーザは、停止される。次に、レーザ光線と物品14は、互いに相対的に移動され、工程が繰り返されて、次の気体流路26が形成される。パーカッション穴あけは、気体流路26が、次第に細くなるのを可能にしてもよい。例えば、パーカッション穴あけを行うレーザ光が、物品14の第1の表面18に入射する一実施形態において、気体流路26は、第1の表面18での開口部が、約15から約25マイクロメートルの直径、および、物品14の第2の表面22上の開口部が、約5マイクロメートルから約10マイクロメートルの直径を、有していてもよい。   In an alternative embodiment, the gas flow path 26 may be formed in the article 14 by laser percussion drilling. Percussion drilling is performed using a laser with the appropriate wavelength and intensity, and the size of the laser spot determines the final hole size. The wavelengths that may be used may range between about 100 nanometers and about 1070 nanometers, or between about 150 nanometers and about 400 nanometers. In an exemplary embodiment, the laser may utilize an ultraviolet laser beam having a wavelength of about 355 nanometers. During drilling, the laser is in the range of about 1 micrometer to about 20 micrometers, or about 3 micrometers to about 10 micrometers, on the surface of the article 14 (eg, the first or second surface 18, 22). Focus on a Gaussian spot with a diameter in the range of meters. The laser light is repeatedly pulsed and hits the same position on the article 14. The laser pulse duration may be in the range between about 1 nanosecond and about 100 nanoseconds, or in the range between about 10 nanoseconds and about 25 nanoseconds. The laser may have a performance of between about 50,000 pulses per second to about 150,000 pulses per second, and more particularly about 100,000 pulses per second. A portion of the material is removed from the article 14 with each pulse, and the gas flow path 26 begins to form. As the gas flow path 26 is formed in the article 14, the gas flow path 26 confines the laser beam and forms an elongated hole through the article 14. The laser light is emitted in pulses until the gas flow path 26 is at the desired depth within the article 14 (eg, completely penetrates the article 14), and then the laser is turned off. Next, the laser beam and the article 14 are moved relative to each other, and the process is repeated to form the next gas flow path 26. Percussion drilling may allow the gas channel 26 to become progressively thinner. For example, in one embodiment where laser light for percussion drilling is incident on the first surface 18 of the article 14, the gas flow path 26 has an opening at the first surface 18 of about 15 to about 25 micrometers. And the opening on the second surface 22 of the article 14 may have a diameter of about 5 micrometers to about 10 micrometers.

採用するレーザ穴あけ方法に関わらず、気体流路26の形成後に、気体流路26の直径を増加させるか、または、気体流路26に存在する任意の微細亀裂を修復するのが、望ましいかもしれない。一実施形態において、化学エッチング処理を採用して、気体流路26を広げ、更に、レーザ穴あけ中に形成された任意の微細亀裂または機械的に弱い領域を修復するのが、望ましいかもしれない。エッチング液70(図3C)は、フッ化水素酸、硝酸、塩酸、水酸化カリウム、水酸化ナトリウム、および/または、それらの組合せを含んでいてもよい。例示的な一実施形態において、エッチング液は、約5%のフッ化水素酸、および、約10%の硝酸を含み、残りは、水であってもよい。典型的には、処理は、物品14を、エッチング液70の溶液に浸漬することによって行われる。酸の濃度、溶液の温度、および露光時間を制御することによって、物品14から除去される物質の総量を調節しうる。更に、エッチングは、物品14を揺り動かしながら、または、超音波が存在する状態で行って、損傷領域内の流体交換を増加させて、総エッチング時間を短くしてもよい。   Regardless of the laser drilling method employed, it may be desirable to increase the diameter of the gas channel 26 or repair any microcracks present in the gas channel 26 after the gas channel 26 is formed. Absent. In one embodiment, it may be desirable to employ a chemical etching process to widen the gas flow path 26 and repair any microcracks or mechanically weak areas formed during laser drilling. Etching solution 70 (FIG. 3C) may include hydrofluoric acid, nitric acid, hydrochloric acid, potassium hydroxide, sodium hydroxide, and / or combinations thereof. In one exemplary embodiment, the etchant includes about 5% hydrofluoric acid and about 10% nitric acid, with the balance being water. Typically, the treatment is performed by immersing the article 14 in a solution of the etchant 70. By controlling the acid concentration, solution temperature, and exposure time, the total amount of material removed from the article 14 can be adjusted. Further, the etching may be performed while rocking the article 14 or in the presence of ultrasound to increase fluid exchange in the damaged area and shorten the total etching time.

図3Cに示されたように、積層して配列された多数の光学的に透明なシート40を用いる物品14の実施形態は、急速処理で形成された気体流路26を有していてもよい。第1の工程において、複数のシート40が、互いに積層して配列されて、レーザの下に位置する積層体74を形成し、次に、概略を上述したレーザ穴あけ方法の1つによりレーザで穴あけされて、シート40を貫通する複数の孔が形成される。積層中に、シート40に、追加の孔または基準となる印を付け、後で、積層体74の再組立てが可能なようにしてもよい。例えば、1つ以上の開口部は、シート40の縁部に位置し、積層体74の組立て中および再組立て中に使用されてもよい保持ピンを受け付けるように、構成されてもよい。そのような保持ピンは、積層体74内のシート40を、速く、容易に位置合わせするのを可能にするだろう。各シート40は、約0.1ミリメートルと約2.0ミリメートルの厚さを有していてもよい。レーザ光線の焦線54を用いたレーザ穴あけの実施形態において、焦線54は、積層シート40全体を、または、シート40の一部のみを、貫通して延伸してもよい。例えば、焦線54は、積層体74内に位置し、パルス状で、次に、積層体74を貫通して下方に移動してもよい。図3Cは、超短パルス光線を用いるものとして図示しているが、レーザパーカッション穴あけを用いて、同様の結果を得てもよいと、理解されるべきである。   As shown in FIG. 3C, an embodiment of article 14 using multiple optically transparent sheets 40 arranged in a stack may have a gas flow path 26 formed by rapid processing. . In the first step, a plurality of sheets 40 are stacked on top of each other to form a laminate 74 positioned under the laser, and then drilled with a laser by one of the laser drilling methods outlined above. Thus, a plurality of holes penetrating the sheet 40 are formed. During lamination, the sheet 40 may be marked with additional holes or reference so that the laminate 74 can be reassembled later. For example, the one or more openings may be configured to receive retaining pins that are located at the edge of the sheet 40 and may be used during assembly and reassembly of the laminate 74. Such retaining pins will allow the sheet 40 in the laminate 74 to be quickly and easily aligned. Each sheet 40 may have a thickness of about 0.1 millimeters and about 2.0 millimeters. In the embodiment of laser drilling using the focal line 54 of the laser beam, the focal line 54 may extend through the entire laminated sheet 40 or only a part of the sheet 40. For example, the focal line 54 may be located in the stack 74, be pulsed, and then move down through the stack 74. Although FIG. 3C is illustrated as using ultrashort pulsed light, it should be understood that similar results may be obtained using laser percussion drilling.

第1の工程が完了すると、シート40を互いに分離する第2の工程が行われ、シート40は、上述したように、エッチング液70でエッチングされる。シート40を別々にエッチングすることで、気体流路26の修復および拡大が均等に行われるように、エッチング液70が、孔44に完全に入るのを確実にする。最後に、エッチング後に、シート40が清浄され、組み立てられて、物品14を形成する。物品14が多数のシート40で構成される実施形態において、物品14は、保持ピン、または、他の適切な接合および位置合わせ技術により、まとめて保持されてもよい。シート40を位置合わせすることで、孔44が、実質的に位置合わせされ、それによって、気体流路26が形成される。この技術を利用することで、エッチング液70が通り抜ける距離が短くなるので、物品14内で、高アスペクト比の適切なエッチングが確実に行われうる。更に、複数のシート40に、同時にレーザ穴あけを行うことは、処理量の増加という点で、製造上の利点を提供するかもしれない。   When the first step is completed, a second step of separating the sheets 40 from each other is performed, and the sheet 40 is etched with the etching solution 70 as described above. Etching the sheet 40 separately ensures that the etchant 70 completely enters the holes 44 so that the gas flow path 26 is evenly repaired and enlarged. Finally, after etching, the sheet 40 is cleaned and assembled to form the article 14. In embodiments where the article 14 is comprised of multiple sheets 40, the article 14 may be held together by holding pins or other suitable joining and alignment techniques. By aligning the sheet 40, the holes 44 are substantially aligned, thereby forming the gas flow path 26. By using this technique, the distance through which the etching solution 70 passes is shortened, so that appropriate etching with a high aspect ratio can be reliably performed in the article 14. Furthermore, simultaneous laser drilling of multiple sheets 40 may provide manufacturing advantages in terms of increased throughput.

物品14に対する気体流路26のレーザ穴あけは、物品に、イオン交換処理が行われる前または後に、行われてもよいと理解されるべきである。例示的なイオン交換処理は、物品14に、アルカリ、アルカリ土類、および/または、遷移金属を添加する工程を含む。   It should be understood that laser drilling of the gas flow path 26 to the article 14 may be performed before or after the article is subjected to an ion exchange process. An exemplary ion exchange treatment includes adding an alkali, alkaline earth, and / or transition metal to the article 14.

ここで、図4Aを参照すると、気体透過性窓10は、液体界面付加製造装置100での使用に適していてもよい。そのような実施形態において、気体透過性窓10は、ガラス、積層ガラス、および/または、ガラス複合材を、含んでいてもよい。図示された実施形態において、装置100は、液体ポリマー槽108を保持する筐体104を含む。装置100は、槽108の中へ、および、槽108の外へと移動されてもよい機械的ステッパー112を有する。機械的ステッパー112は、ポリマー部120が、その上で成長してもよい造形面116を含む。気体透過性窓10は、筐体104の底部に沿って位置し、光源128からの紫外線光124が、ミラー132で反射されて、槽108に入射するのを可能にする。いくつかの実施形態において、気体透過性窓10は、機械的留め具により、適切な位置に保持されてもよい。特定の実施形態において、気体透過性窓10は、2辺の長さが、それぞれ、約10.16センチメートル(4インチ)と17.78センチメートル(7インチ)から、約22.86センチメートル(9インチ)と40.64センチメートル(16インチ)のおよその寸法を有していてもよい。   Here, referring to FIG. 4A, the gas permeable window 10 may be suitable for use in the liquid interface addition manufacturing apparatus 100. In such embodiments, the gas permeable window 10 may include glass, laminated glass, and / or glass composite. In the illustrated embodiment, the apparatus 100 includes a housing 104 that holds a liquid polymer bath 108. The apparatus 100 has a mechanical stepper 112 that may be moved into and out of the bath 108. Mechanical stepper 112 includes a shaped surface 116 on which polymer portion 120 may grow. The gas permeable window 10 is located along the bottom of the housing 104 and allows the ultraviolet light 124 from the light source 128 to be reflected by the mirror 132 and incident on the bath 108. In some embodiments, the gas permeable window 10 may be held in place by a mechanical fastener. In certain embodiments, the gas permeable window 10 has a length of two sides from about 10.16 centimeters (4 inches) and 17.78 centimeters (7 inches), respectively, to about 22.86 centimeters. (9 inches) and 40.64 centimeters (16 inches).

光源128は、コントローラおよびメモリーに連結されて、作製すべきポリマー部分120の区分の画像を紫外線光124で投影するように構成された、投影機であってもよい。ポリマー部分120の一部が、造形面116に形成されると、機械的ステッパー112が、上方に進み、ポリマー部分120を、気体透過性窓10から離れるように移動させ、槽108内の流体が、ポリマー部分120と気体透過性窓10の間を流れるのを可能にする。次に、光源128は、ポリマー部分120の異なる画像を投影し、それによりポリマー部分120の次の部分が形成されるように、槽108に、ポリマー部分120上で、重合化わせる。ポリマー部分120が、気体透過性窓10上に、直接形成されるのを防ぐために、気体流路26は、重合化を阻止する気体(例えば、酸素)が通過して、槽108内に入ることを可能にし、それによって、槽108の重合化が起きない「デッドゾーン」を形成する。重合化を阻止する気体は、気体源136により供給される。気体源136は、約0.1気圧(約101hPa)から約10気圧(約10132hPa)の圧力で気体を提供してもよい。ポリマー部分120の望ましい成長速度を決定することによって、デッドゾーンの厚さ、したがって、導入される重合化を阻止する気体の必要量を、決定してもよい。気体透過性窓10を貫通して配置された気体流路26の直径および個数を変えることで、必要な透過率を満たして、部分120の適切な成長を可能にしてもよい。   The light source 128 may be a projector coupled to the controller and memory and configured to project an image of the section of polymer portion 120 to be produced with ultraviolet light 124. When a portion of the polymer portion 120 is formed on the build surface 116, the mechanical stepper 112 advances upward and moves the polymer portion 120 away from the gas permeable window 10 so that the fluid in the bath 108 is , Allowing flow between the polymer portion 120 and the gas permeable window 10. The light source 128 then causes the bath 108 to polymerize on the polymer portion 120 such that a different image of the polymer portion 120 is projected, thereby forming the next portion of the polymer portion 120. In order to prevent the polymer portion 120 from forming directly on the gas permeable window 10, the gas flow path 26 passes into the vessel 108 through which a gas (eg, oxygen) that inhibits polymerization passes. Thereby creating a “dead zone” in which polymerization of the vessel 108 does not occur. A gas that prevents polymerization is supplied by a gas source 136. The gas source 136 may provide gas at a pressure of about 0.1 atmosphere (about 101 hPa) to about 10 atmospheres (about 10132 hPa). By determining the desired growth rate of the polymer portion 120, the thickness of the dead zone, and thus the required amount of gas that prevents introduced polymerization, may be determined. Varying the diameter and number of gas flow paths 26 disposed through the gas permeable window 10 may satisfy the required permeability and allow the portion 120 to grow properly.

図4Bに図示されると共に上述したように、気体流路26は、気体透過性窓10の物品14を貫通する角度で配置されていてもよい。そのような角度にすることで、窓10を通る紫外線光124が、ガラス物品14によって減衰されないので、透過率を高くすることが可能である。更に、気体流路26を、反射した紫外線光束124の軸に沿って位置合わせすることによって、紫外線光124が、物品14に接触せずに、斜めの気体流路126を通り抜けるので、窓10による紫外線光124の散乱が減少する。紫外線光124は、ポリマー部分120を形成し、成長させるメカニズムであるので、その光に歪みがあると、結果的にポリマー部分120に光学的アーチファクトを発生させるかもしれないので、このことには、利点がある。   As shown in FIG. 4B and as described above, the gas flow path 26 may be disposed at an angle that penetrates the article 14 of the gas permeable window 10. With such an angle, the ultraviolet light 124 passing through the window 10 is not attenuated by the glass article 14, so that the transmittance can be increased. Further, by aligning the gas flow path 26 along the axis of the reflected ultraviolet light beam 124, the ultraviolet light 124 passes through the oblique gas flow path 126 without contacting the article 14. The scattering of ultraviolet light 124 is reduced. This is because the UV light 124 is a mechanism that forms and grows the polymer portion 120, so that distortion of the light may result in optical artifacts in the polymer portion 120. There are advantages.

他の実施形態において、気体透過性窓10は、気体透過性窓10に亘って、圧力差を最小にするのが望ましいであろう航空の利用例で、使われてもよい。例えば、気体透過性窓10は、航空機用の二重ガラス窓の1枚のガラス板を形成してもよい。そのような実施形態において、圧力差により、窓が、砕けたり、他の状態で割れたりすることがないように、ガラス板同士の間に閉じ込められた気体が、航空機客室区域の空気空間と等しい圧力になるのが可能であることが、望ましいだろう。   In other embodiments, the gas permeable window 10 may be used in aviation applications where it may be desirable to minimize the pressure differential across the gas permeable window 10. For example, the gas permeable window 10 may form one glass plate of an aircraft double glass window. In such embodiments, the gas trapped between the glass plates is equal to the air space of the aircraft cabin area so that the window does not break or otherwise crack due to pressure differences. It would be desirable to be able to become pressure.

当業者には、請求項の精神または範囲から逸脱することなく、様々な変更および変形が可能なことが明らかであろう。   It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the claims.

以下、本発明の好ましい実施形態を項分け記載する。   Hereinafter, preferable embodiments of the present invention will be described in terms of items.

実施形態1
気体透過性ガラス窓において、
厚さが約0.1ミリメートルより厚く、第1の表面および第2の表面を画成する光学的に透明なガラス物品と、
前記物品を前記第1の表面から前記第2の表面へと貫通して配置された、複数の気体流路と、
を含み、
前記気体流路は、前記物品の表面領域の約1.0%未満を占めると共に、該物品が約10バーラー(約75×10−18/(N・s))と約2000バーラー(約15002×10−18/(N・s))の間の気体透過率を有するように、構成されたものである、
気体透過性ガラス窓。
Embodiment 1
In the gas permeable glass window,
An optically clear glass article having a thickness greater than about 0.1 millimeter and defining the first surface and the second surface;
A plurality of gas flow paths disposed through the article from the first surface to the second surface;
Including
The gas flow path occupies less than about 1.0% of the surface area of the article and the article is about 10 barrers (about 75 × 10 −18 m 4 / (N · s)) and about 2000 barrers (about It is configured to have a gas permeability between 15002 × 10 −18 m 4 / (N · s).
Gas permeable glass window.

実施形態2
前記気体透過率が、約100バーラー(約750×10−18/(N・s))と約500バーラー(約3751m/(N・s))の間である、実施形態1に記載の気体透過性窓。
Embodiment 2
Embodiment 1. The embodiment 1 wherein the gas permeability is between about 100 barrers (about 750 × 10 −18 m 4 / (N · s)) and about 500 barrs (about 3751 m 4 / (N · s)). Gas permeable window.

実施形態3
前記気体流路が、前記物品の前記表面領域の約0.05%未満を占めるものである、実施形態2に記載の気体透過性窓。
Embodiment 3
The gas permeable window according to embodiment 2, wherein the gas flow path occupies less than about 0.05% of the surface area of the article.

実施形態4
前記ガラス物品は、積層された複数のガラスシートを含み、各前記ガラスシートは、貫通して延伸する複数の孔を有し、
更に、前記ガラスシートは、前記孔が実質的に位置合わせされて、気体流路を形成するように積層されたものである、実施形態1に記載の気体透過性窓。
Embodiment 4
The glass article includes a plurality of laminated glass sheets, each glass sheet having a plurality of holes extending therethrough,
Furthermore, the glass sheet is a gas permeable window according to the first embodiment, in which the holes are substantially aligned and laminated so as to form a gas flow path.

実施形態5
前記気体流路は、前記物品の全体に、ランダムに分布し、約5マイクロメートルと約400マイクロメートルの間、互いに離間したものである、実施形態1に記載の気体透過性窓。
Embodiment 5
The gas permeable window according to embodiment 1, wherein the gas flow paths are randomly distributed throughout the article and are spaced apart from each other between about 5 micrometers and about 400 micrometers.

実施形態6
前記気体流路が、約10:1と約12,000:1の間のアスペクト比を有するものである、実施形態5に記載の気体透過性窓。
Embodiment 6
6. The gas permeable window according to embodiment 5, wherein the gas flow path has an aspect ratio between about 10: 1 and about 12,000: 1.

実施形態7
前記気体流路が、約0.25マイクロメートルと約50.0マイクロメートルの間の直径を有し、前記物品の前記気体透過率が、約500バーラー(約3751×10−18/(N・s))未満である、実施形態1に記載の気体透過性窓。
Embodiment 7
The gas flow path has a diameter between about 0.25 micrometers and about 50.0 micrometers, and the gas permeability of the article is about 500 barrers (about 3751 × 10 −18 m 4 / ( N.s)) The gas permeable window according to embodiment 1, wherein

実施形態8
前記気体流路が、前記第1および第2の表面に直交する軸に対して約0°と約15°の間の角度で、前記物品を貫通して配置されているものである、実施形態7に記載の気体透過性窓。
Embodiment 8
An embodiment wherein the gas flow path is disposed through the article at an angle between about 0 ° and about 15 ° relative to an axis orthogonal to the first and second surfaces. The gas permeable window according to 7.

実施形態9
前記流路の前記角度が、中心点からの距離が増加するにつれて、増加するものである、実施形態8に記載の気体透過性窓。
Embodiment 9
The gas permeable window according to embodiment 8, wherein the angle of the flow path increases as the distance from the center point increases.

実施形態10
気体透過性ガラス窓の形成方法において、
第1の表面および第2の表面を有する光学的に透明なガラス物品を、提供する工程と、
パルスレーザ光線を、前記光線の伝播方向に沿って見たレーザ光線の焦線に、合焦する工程と、
前記レーザ光線の焦線を、光学的に透明な前記ガラス物品内に、該ガラス物品の前記第1の表面への入射角で繰り返し向けることにより、複数の気体流路を、該物品内に形成する工程であって、該レーザ光線の焦線は、誘起吸収を該物品内に発生させて、各前記誘起吸収が、該物品内に、該第1の表面から前記第2の表面まで、該レーザ光線の焦線に沿った気体流路を形成するものである工程と、
を有し、
前記気体流路の個数および直径は、前記物品の望ましい気体透過率に基づいて、決定されるものである、方法。
Embodiment 10
In the method of forming a gas permeable glass window,
Providing an optically clear glass article having a first surface and a second surface;
Focusing the pulsed laser beam on the focal line of the laser beam viewed along the propagation direction of the beam;
A plurality of gas flow paths are formed in the article by repeatedly directing the focal line of the laser beam into the optically transparent glass article at an angle of incidence on the first surface of the glass article. The focal line of the laser beam causes induced absorption to occur in the article, and each of the induced absorptions in the article from the first surface to the second surface, Forming a gas flow path along the focal line of the laser beam;
Have
The method wherein the number and diameter of the gas flow paths are determined based on the desired gas permeability of the article.

実施形態11
パルス持続時間が、約15ピコ秒未満である、実施形態10に記載の方法。
Embodiment 11
Embodiment 11. The method of embodiment 10 wherein the pulse duration is less than about 15 picoseconds.

実施形態12
エッチング剤を与えて、前記気体流路を拡大させる工程を、
更に含むものである、実施形態11に記載の方法。
Embodiment 12
Providing an etchant to expand the gas flow path;
Embodiment 12. The method of embodiment 11 further comprising:

実施形態13
前記気体流路が、約0°と約15°の間の角度で、前記物品を貫通して配置されると共に、該流路の前記角度が、中心点からの距離が増加するにつれて、増加するように、前記物品の前記表面への前記入射角を変化させるものである、実施形態10に記載の方法。
Embodiment 13
The gas flow path is disposed through the article at an angle between about 0 ° and about 15 °, and the angle of the flow path increases as the distance from the center point increases. Thus, the method of embodiment 10 wherein the angle of incidence on the surface of the article is varied.

実施形態14
前記気体流路が、約10:1と約12,000:1の間のアスペクト比を有するものである、実施形態10に記載の方法。
Embodiment 14
The method of embodiment 10, wherein the gas flow path has an aspect ratio between about 10: 1 and about 12,000: 1.

実施形態15
前記物品の前記気体透過率が、約100バーラー(約750×10−18/(N・s))と約500バーラー(約3751×10−18/(N・s))の間である、実施形態14に記載の方法。
Embodiment 15
The gas permeability of the article is between about 100 barrers (about 750 × 10 −18 m 4 / (N · s)) and about 500 barrers (about 3751 × 10 −18 m 4 / (N · s)). The method of embodiment 14, wherein

実施形態16
気体透過性窓において、
第1の表面および第2の表面を画成する光学的に透明な物品と、
前記第1の表面から前記第2の表面へと延伸する複数の気体流路と、
を含み、
前記気体流路は、前記第1および第2の表面に直交する軸に対して約0°と約15°の間の角度で、配置されていると共に、該流路の前記角度が、中心点からの距離が増加するにつれて、増加しているものである、
気体透過性窓。
Embodiment 16
In the gas permeable window,
An optically transparent article defining a first surface and a second surface;
A plurality of gas flow paths extending from the first surface to the second surface;
Including
The gas flow path is disposed at an angle between about 0 ° and about 15 ° with respect to an axis orthogonal to the first and second surfaces, and the angle of the flow path is a center point As the distance from increases,
Gas permeable window.

実施形態17
前記気体流路が、約10:1と約12,000:1の間のアスペクト比を有すると共に、前記物品の表面領域の約0.01%未満を占めるものである、実施形態16に記載の気体透過性窓。
Embodiment 17
17. The embodiment of embodiment 16, wherein the gas flow path has an aspect ratio between about 10: 1 and about 12,000: 1 and occupies less than about 0.01% of the surface area of the article. Gas permeable window.

実施形態18
光学的に透明な前記物品は、積層された複数の透明なシートを含み、各前記シートは、貫通して延伸する複数の孔を有し、
更に、前記透明なシートは、前記孔が実質的に位置合わせされて、気体流路を形成するように積層されたものである、実施形態17に記載の気体透過性窓。
Embodiment 18
The optically transparent article includes a plurality of laminated transparent sheets, each sheet having a plurality of holes extending therethrough,
Furthermore, the said transparent sheet | seat is a gas-permeable window of Embodiment 17 in which the said hole is substantially aligned and laminated | stacked so that a gas flow path may be formed.

実施形態19
前記物品の気体透過率が、約100バーラー(約750×10−18/(N・s))より高いものである、実施形態18に記載の気体透過性窓。
Embodiment 19
Embodiment 19. The gas permeable window of embodiment 18, wherein the article has a gas permeability greater than about 100 barrers (about 750 × 10 −18 m 4 / (N · s)).

実施形態20
光学的に透明な前記物品は、少なくとも1つのイオン交換領域を有するガラスを含むものである、実施形態19に記載の気体透過性窓。
Embodiment 20.
Embodiment 20. The gas permeable window according to embodiment 19, wherein the optically transparent article comprises glass having at least one ion exchange region.

10 気体透過性窓
14 物品
18 第1の表面
22 第2の表面
26 気体流路
40 シート
44 孔
100 装置
104 筐体
108 槽
112 機械的ステッパー
116 造形面
120 ポリマー部分
DESCRIPTION OF SYMBOLS 10 Gas-permeable window 14 Article 18 1st surface 22 2nd surface 26 Gas flow path 40 Sheet 44 Hole 100 Device 104 Case 108 Tank 112 Mechanical stepper 116 Modeling surface 120 Polymer part

Claims (11)

気体透過性ガラス窓において、
厚さが約0.1ミリメートルより厚く、第1の表面および第2の表面を画成する光学的に透明なガラス物品と、
前記物品を前記第1の表面から前記第2の表面へと貫通して配置された、複数の気体流路と、
を含み、
前記気体流路は、前記物品の表面領域の約1.0%未満を占めると共に、該物品が約10バーラー(約75×10−18/(N・s))と約2000バーラー(約15002×10−18/(N・s))の間の気体透過率を有するように、構成されたものである、
気体透過性窓。
In the gas permeable glass window,
An optically clear glass article having a thickness greater than about 0.1 millimeter and defining the first surface and the second surface;
A plurality of gas flow paths disposed through the article from the first surface to the second surface;
Including
The gas flow path occupies less than about 1.0% of the surface area of the article and the article is about 10 barrers (about 75 × 10 −18 m 4 / (N · s)) and about 2000 barrers (about It is configured to have a gas permeability between 15002 × 10 −18 m 4 / (N · s).
Gas permeable window.
気体透過性窓において、
第1の表面および第2の表面を画成する光学的に透明な物品と、
前記第1の表面から前記第2の表面へと延伸する複数の気体流路と、
を含み、
前記気体流路は、前記第1および第2の表面に直交する軸に対して約0°と約15°の間の角度で、配置されていると共に、該流路の前記角度が、中心点からの距離が増加するにつれて、増加しているものである、
気体透過性窓。
In the gas permeable window,
An optically transparent article defining a first surface and a second surface;
A plurality of gas flow paths extending from the first surface to the second surface;
Including
The gas flow path is disposed at an angle between about 0 ° and about 15 ° with respect to an axis orthogonal to the first and second surfaces, and the angle of the flow path is a center point As the distance from increases,
Gas permeable window.
前記気体透過率が、約100バーラー(約750×10−18/(N・s))より高い、請求項1または2に記載の気体透過性窓。 The gas permeable window according to claim 1, wherein the gas permeability is higher than about 100 barrers (about 750 × 10 −18 m 4 / (N · s)). 前記気体流路が、前記物品の前記表面領域の約0.05%未満を占めるものである、請求項1または2に記載の気体透過性窓。   The gas permeable window according to claim 1 or 2, wherein the gas flow path occupies less than about 0.05% of the surface area of the article. 前記ガラス物品は、積層された複数のガラスシートを含み、各前記ガラスシートは、貫通して延伸する複数の孔を有し、
更に、前記ガラスシートは、前記孔が実質的に位置合わせされて、気体流路を形成するように積層されたものである、請求項1または2に記載の気体透過性窓。
The glass article includes a plurality of laminated glass sheets, each glass sheet having a plurality of holes extending therethrough,
Furthermore, the said glass sheet is a gas-permeable window of Claim 1 or 2 by which the said hole is substantially aligned and laminated | stacked so that a gas flow path might be formed.
前記気体流路は、前記物品の全体に、ランダムに分布し、約5マイクロメートルと約400マイクロメートルの間、互いに離間したものである、請求項1に記載の気体透過性窓。   The gas permeable window of claim 1, wherein the gas flow paths are randomly distributed throughout the article and spaced from each other between about 5 micrometers and about 400 micrometers. 前記気体流路が、約10:1と約12,000:1の間のアスペクト比を有するものである、請求項2または6に記載の気体透過性窓。   7. The gas permeable window of claim 2 or 6, wherein the gas flow path has an aspect ratio between about 10: 1 and about 12,000: 1. 前記気体流路が、約0.25マイクロメートルと約50.0マイクロメートルの間の直径を有し、前記物品の前記気体透過率が、約500バーラー(約3751×10−18/(N・s))未満である、請求項1に記載の気体透過性窓。 The gas flow path has a diameter between about 0.25 micrometers and about 50.0 micrometers, and the gas permeability of the article is about 500 barrers (about 3751 × 10 −18 m 4 / ( The gas permeable window according to claim 1, which is less than N · s)). 前記気体流路が、前記第1および第2の表面に直交する軸に対して約0°と約15°の間の角度で、前記物品を貫通して配置されているものである、請求項8に記載の気体透過性窓。   The gas flow path is disposed through the article at an angle between about 0 ° and about 15 ° relative to an axis orthogonal to the first and second surfaces. The gas permeable window according to claim 8. 前記流路の前記角度が、中心点からの距離が増加するにつれて、増加するものである、請求項1、2または8に記載の気体透過性窓。   The gas permeable window according to claim 1, 2 or 8, wherein the angle of the flow path increases as the distance from the center point increases. 気体透過性ガラス窓の形成方法において、
第1の表面および第2の表面を有する光学的に透明なガラス物品を、提供する工程と、
パルスレーザ光線を、前記光線の伝播方向に沿って見たレーザ光線の焦線に、合焦する工程と、
前記レーザ光線の焦線を、光学的に透明な前記ガラス物品内に、該ガラス物品の前記第1の表面への入射角で繰り返し向けることにより、前記複数の気体流路を、該物品内に形成する工程であって、該レーザ光線の焦線は、誘起吸収を該物品内に発生させて、各前記誘起吸収が、該物品内に、該第1の表面から前記第2の表面まで、該レーザ光線の焦線に沿った気体流路を形成するものである工程と、
を有し、
前記気体流路の個数および直径は、前記物品の望ましい気体透過率に基づいて、決定されるものである、方法。
In the method of forming a gas permeable glass window,
Providing an optically clear glass article having a first surface and a second surface;
Focusing the pulsed laser beam on the focal line of the laser beam viewed along the propagation direction of the beam;
By repeatedly directing the focal line of the laser beam into the optically transparent glass article at an angle of incidence on the first surface of the glass article, the plurality of gas flow paths are formed in the article. The focal line of the laser beam generates induced absorption in the article, and each of the induced absorptions in the article from the first surface to the second surface, Forming a gas flow path along the focal line of the laser beam;
Have
The method wherein the number and diameter of the gas flow paths are determined based on the desired gas permeability of the article.
JP2017550572A 2015-03-27 2016-03-21 Gas permeable window and manufacturing method thereof Ceased JP2018516215A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562139238P 2015-03-27 2015-03-27
US62/139,238 2015-03-27
PCT/US2016/023381 WO2016160391A1 (en) 2015-03-27 2016-03-21 Gas permeable window and method of fabricating the same

Publications (1)

Publication Number Publication Date
JP2018516215A true JP2018516215A (en) 2018-06-21

Family

ID=55699815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550572A Ceased JP2018516215A (en) 2015-03-27 2016-03-21 Gas permeable window and manufacturing method thereof

Country Status (7)

Country Link
US (1) US10525657B2 (en)
EP (1) EP3274313A1 (en)
JP (1) JP2018516215A (en)
KR (1) KR20170131638A (en)
CN (1) CN107666983B (en)
TW (1) TW201638042A (en)
WO (1) WO2016160391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022519724A (en) * 2019-02-08 2022-03-24 コーニング インコーポレイテッド A method for laser machining transparent workpieces using a pulsed laser beam focal lens and steam etching

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
EP3166895B1 (en) 2014-07-08 2021-11-24 Corning Incorporated Methods and apparatuses for laser processing materials
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US11648623B2 (en) * 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
WO2016010991A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
KR20170105562A (en) 2015-01-12 2017-09-19 코닝 인코포레이티드 Laser cutting of thermally tempered substrates using multiple photon absorption methods
WO2016138054A1 (en) 2015-02-27 2016-09-01 Corning Incorporated Optical assembly having microlouvers
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
CN107666983B (en) 2015-03-27 2020-10-02 康宁股份有限公司 Venetian window and method for manufacturing the same
WO2016172788A1 (en) * 2015-04-30 2016-11-03 Fortier, Raymond Improved stereolithography system
JP6889155B2 (en) * 2015-09-25 2021-06-18 カーボン,インコーポレイテッド Build plate assembly for continuous liquid-phase printing with a writing panel, and related methods, systems and devices
US10442720B2 (en) * 2015-10-01 2019-10-15 AGC Inc. Method of forming hole in glass substrate by using pulsed laser, and method of producing glass substrate provided with hole
US11993015B2 (en) 2015-12-03 2024-05-28 Carbon, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
CN109803786B (en) 2016-09-30 2021-05-07 康宁股份有限公司 Apparatus and method for laser processing of transparent workpieces using non-axisymmetric beam spots
JP7066701B2 (en) 2016-10-24 2022-05-13 コーニング インコーポレイテッド Substrate processing station for laser-based processing of sheet glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10940638B2 (en) * 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
EP3615488B1 (en) * 2017-04-26 2021-10-06 Corning Incorporated Micro-perforated glass laminates and methods of making the same
US10626040B2 (en) * 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
DE102018100443A1 (en) * 2018-01-10 2019-07-11 Schott Ag Process and device for the production of glass precursors and glass products
US10815719B2 (en) 2018-02-19 2020-10-27 Katmann Elias, LLC Dynamic multi-pane insulating assembly and system
US11161325B2 (en) 2019-02-19 2021-11-02 Kattmann Elias, LLC Dynamic multi-pane insulating assembly and system
US12138887B2 (en) 2018-02-19 2024-11-12 Kattmann Elias, LLC Dynamic multi-pane insulating assembly and system
CN114889120B (en) * 2018-05-05 2024-06-07 清锋(北京)科技有限公司 Anti-sticking element, three-dimensional printing device and three-dimensional printing method
US11059131B2 (en) 2018-06-22 2021-07-13 Corning Incorporated Methods for laser processing a substrate stack having one or more transparent workpieces and a black matrix layer
CN108930491A (en) * 2018-07-23 2018-12-04 赣州市翔义科技有限公司 A kind of energy-saving and environment-friendly compound glass and installation method
US10470300B1 (en) * 2018-07-24 2019-11-05 AGC Inc. Glass panel for wiring board and method of manufacturing wiring board
WO2020093028A1 (en) * 2018-11-01 2020-05-07 Origin Laboratories, Inc. Method for build separation from a curing interface in an additive manufacturing process
US11104075B2 (en) 2018-11-01 2021-08-31 Stratasys, Inc. System for window separation in an additive manufacturing process
US11679555B2 (en) 2019-02-21 2023-06-20 Sprintray, Inc. Reservoir with substrate assembly for reducing separation forces in three-dimensional printing
US10766194B1 (en) 2019-02-21 2020-09-08 Sprintray Inc. Apparatus, system, and method for use in three-dimensional printing
MX2021003352A (en) * 2019-03-29 2021-07-02 Kattmann Elias Llc Dynamic multi-pane insulating assembly and system.
US11642848B2 (en) * 2019-09-23 2023-05-09 Carbon, Inc. Temperature responsive resin cassettes for additive manufacturing
US11565615B2 (en) * 2020-04-28 2023-01-31 Global Ip Holdings, Llc Anti-microbial, partition divider assembly for a cart such as a golf cart
US12030135B2 (en) * 2020-10-14 2024-07-09 Applied Materials, Inc. Methods to fabricate chamber component holes using laser drilling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238178A (en) * 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd Gas introducing shower plate and method of manufacturing the same
JP2004351494A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Drilling method of material transparent to laser
JP2013187247A (en) * 2012-03-06 2013-09-19 Nippon Hoso Kyokai <Nhk> Interposer and method for manufacturing the same
US20140361463A1 (en) * 2013-02-12 2014-12-11 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication

Family Cites Families (389)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1790397A (en) 1931-01-27 Glass workins machine
US2682134A (en) 1951-08-17 1954-06-29 Corning Glass Works Glass sheet containing translucent linear strips
US2749794A (en) 1953-04-24 1956-06-12 Corning Glass Works Illuminating glassware and method of making it
GB1242172A (en) 1968-02-23 1971-08-11 Ford Motor Co A process for chemically cutting glass
US3647410A (en) 1969-09-09 1972-03-07 Owens Illinois Inc Glass ribbon machine blow head mechanism
US3729302A (en) 1970-01-02 1973-04-24 Owens Illinois Inc Removal of glass article from ribbon forming machine by vibrating force
US3775084A (en) 1970-01-02 1973-11-27 Owens Illinois Inc Pressurizer apparatus for glass ribbon machine
US3695497A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Method of severing glass
US3695498A (en) 1970-08-26 1972-10-03 Ppg Industries Inc Non-contact thermal cutting
DE2231330A1 (en) 1972-06-27 1974-01-10 Agfa Gevaert Ag METHOD AND DEVICE FOR GENERATING A SHARP FOCUS
DE2757890C2 (en) 1977-12-24 1981-10-15 Fa. Karl Lutz, 6980 Wertheim Method and device for producing containers from tubular glass, in particular ampoules
US4441008A (en) * 1981-09-14 1984-04-03 Ford Motor Company Method of drilling ultrafine channels through glass
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
US4646308A (en) 1985-09-30 1987-02-24 Spectra-Physics, Inc. Synchronously pumped dye laser using ultrashort pump pulses
JPS6318756A (en) 1986-07-09 1988-01-26 Fujiwara Jiyouki Sangyo Kk Method and device for supervising controlled temperature in organism rearing and microorganism cultivation
US4749400A (en) 1986-12-12 1988-06-07 Ppg Industries, Inc. Discrete glass sheet cutting
DE3789858T2 (en) 1986-12-18 1994-09-01 Nippon Sheet Glass Co Ltd Light control plates.
US4918751A (en) 1987-10-05 1990-04-17 The University Of Rochester Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers
IL84255A (en) 1987-10-23 1993-02-21 Galram Technology Ind Ltd Process for removal of post- baked photoresist layer
JPH01179770A (en) 1988-01-12 1989-07-17 Hiroshima Denki Gakuen How to join metal and ceramics
US4764930A (en) 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4929065A (en) 1988-11-03 1990-05-29 Isotec Partners, Ltd. Glass plate fusion for macro-gradient refractive index materials
US4891054A (en) 1988-12-30 1990-01-02 Ppg Industries, Inc. Method for cutting hot glass
US5112722A (en) 1989-04-12 1992-05-12 Nippon Sheet Glass Co., Ltd. Method of producing light control plate which induces scattering of light at different angles
US5104210A (en) 1989-04-24 1992-04-14 Monsanto Company Light control films and method of making
US5035918A (en) 1989-04-26 1991-07-30 Amp Incorporated Non-flammable and strippable plating resist and method of using same
US5040182A (en) 1990-04-24 1991-08-13 Coherent, Inc. Mode-locked laser
DE69232640T2 (en) 1991-11-06 2003-02-06 Shui T Lai DEVICE FOR CORNEAL SURGERY
US5265107A (en) 1992-02-05 1993-11-23 Bell Communications Research, Inc. Broadband absorber having multiple quantum wells of different thicknesses
JPH05323110A (en) 1992-05-22 1993-12-07 Hitachi Koki Co Ltd Multi-beam generator
US6016223A (en) 1992-08-31 2000-01-18 Canon Kabushiki Kaisha Double bessel beam producing method and apparatus
CA2112843A1 (en) 1993-02-04 1994-08-05 Richard C. Ujazdowski Variable repetition rate picosecond laser
WO1994029069A1 (en) 1993-06-04 1994-12-22 Seiko Epson Corporation Apparatus and method for laser machining, and liquid crystal panel
US6489589B1 (en) 1994-02-07 2002-12-03 Board Of Regents, University Of Nebraska-Lincoln Femtosecond laser utilization methods and apparatus and method for producing nanoparticles
JP3531199B2 (en) 1994-02-22 2004-05-24 三菱電機株式会社 Optical transmission equipment
US5436925A (en) 1994-03-01 1995-07-25 Hewlett-Packard Company Colliding pulse mode-locked fiber ring laser using a semiconductor saturable absorber
US5400350A (en) 1994-03-31 1995-03-21 Imra America, Inc. Method and apparatus for generating high energy ultrashort pulses
US5778016A (en) 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
DE19513354A1 (en) 1994-04-14 1995-12-14 Zeiss Carl Surface processing equipment
JP2526806B2 (en) 1994-04-26 1996-08-21 日本電気株式会社 Semiconductor laser and its operating method
WO1995031023A1 (en) 1994-05-09 1995-11-16 Massachusetts Institute Of Technology Dispersion-compensated laser using prismatic end elements
US5434875A (en) 1994-08-24 1995-07-18 Tamar Technology Co. Low cost, high average power, high brightness solid state laser
US6016324A (en) 1994-08-24 2000-01-18 Jmar Research, Inc. Short pulse laser system
US5776220A (en) 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
US5696782A (en) 1995-05-19 1997-12-09 Imra America, Inc. High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers
JPH09106243A (en) 1995-10-12 1997-04-22 Dainippon Printing Co Ltd Method for duplicating hologram
US5736709A (en) 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
US7353829B1 (en) 1996-10-30 2008-04-08 Provectus Devicetech, Inc. Methods and apparatus for multi-photon photo-activation of therapeutic agents
KR100490317B1 (en) 1996-11-13 2005-05-17 코닝 인코포레이티드 Method for forming an internally channeled glass article
US6033583A (en) 1997-05-05 2000-03-07 The Regents Of The University Of California Vapor etching of nuclear tracks in dielectric materials
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (en) 1997-06-11 1999-06-01 Cuvelier Georges Capping METHOD FOR GLASS PIECES.
DE19728766C1 (en) 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Use of a method for producing a predetermined breaking point in a vitreous body
US6078599A (en) 1997-07-22 2000-06-20 Cymer, Inc. Wavelength shift correction technique for a laser
JP3264224B2 (en) 1997-08-04 2002-03-11 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
DE19750320C1 (en) 1997-11-13 1999-04-01 Max Planck Gesellschaft Light pulse amplification method
WO1999029243A1 (en) 1997-12-05 1999-06-17 Thermolase Corporation Skin enhancement using laser light
US6501578B1 (en) 1997-12-19 2002-12-31 Electric Power Research Institute, Inc. Apparatus and method for line of sight laser communications
JPH11197498A (en) 1998-01-13 1999-07-27 Japan Science & Technology Corp Method for selectively modifying inside of inorganic material and inorganic material with selectively modified inside
US6272156B1 (en) 1998-01-28 2001-08-07 Coherent, Inc. Apparatus for ultrashort pulse transportation and delivery
JPH11240730A (en) 1998-02-27 1999-09-07 Nec Kansai Ltd Break cutting of brittle material
JPH11269683A (en) 1998-03-18 1999-10-05 Armco Inc Method and apparatus for removing oxide from metal surface
US6160835A (en) 1998-03-20 2000-12-12 Rocky Mountain Instrument Co. Hand-held marker with dual output laser
EP0949541B1 (en) 1998-04-08 2006-06-07 ASML Netherlands B.V. Lithography apparatus
US6256328B1 (en) 1998-05-15 2001-07-03 University Of Central Florida Multiwavelength modelocked semiconductor diode laser
JPH11347758A (en) 1998-06-10 1999-12-21 Mitsubishi Heavy Ind Ltd Super precision machining device
TW419867B (en) 1998-08-26 2001-01-21 Samsung Electronics Co Ltd Laser cutting apparatus and method
DE19851353C1 (en) 1998-11-06 1999-10-07 Schott Glas Method and apparatus for cutting a laminate consisting of a brittle material and a plastic
JP3178524B2 (en) 1998-11-26 2001-06-18 住友重機械工業株式会社 Laser marking method and apparatus and marked member
US7649153B2 (en) 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
US6445491B2 (en) 1999-01-29 2002-09-03 Irma America, Inc. Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification
US6381391B1 (en) 1999-02-19 2002-04-30 The Regents Of The University Of Michigan Method and system for generating a broadband spectral continuum and continuous wave-generating system utilizing same
DE19908630A1 (en) 1999-02-27 2000-08-31 Bosch Gmbh Robert Shielding against laser beams
JP4218209B2 (en) 1999-03-05 2009-02-04 三菱電機株式会社 Laser processing equipment
US6484052B1 (en) 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
EP1043110B1 (en) 1999-04-02 2006-08-23 Murata Manufacturing Co., Ltd. Laser method for machining through holes in a ceramic green sheet
US6373565B1 (en) 1999-05-27 2002-04-16 Spectra Physics Lasers, Inc. Method and apparatus to detect a flaw in a surface of an article
CN2388062Y (en) 1999-06-21 2000-07-19 郭广宗 Double-glazing window for vehicle and ship
US6449301B1 (en) 1999-06-22 2002-09-10 The Regents Of The University Of California Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors
US6259151B1 (en) 1999-07-21 2001-07-10 Intersil Corporation Use of barrier refractive or anti-reflective layer to improve laser trim characteristics of thin film resistors
US6573026B1 (en) 1999-07-29 2003-06-03 Corning Incorporated Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses
DE19952331C1 (en) 1999-10-29 2001-08-30 Schott Spezialglas Gmbh Method and device for quickly cutting a workpiece from brittle material using laser beams
JP2001138083A (en) 1999-11-18 2001-05-22 Seiko Epson Corp Laser processing apparatus and laser irradiation method
JP4592855B2 (en) 1999-12-24 2010-12-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6339208B1 (en) 2000-01-19 2002-01-15 General Electric Company Method of forming cooling holes
US6552301B2 (en) 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method
JP3530114B2 (en) 2000-07-11 2004-05-24 忠弘 大見 Single crystal cutting method
JP2002040330A (en) 2000-07-25 2002-02-06 Olympus Optical Co Ltd Optical element changeover controller
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
KR100673073B1 (en) 2000-10-21 2007-01-22 삼성전자주식회사 Method and apparatus for cutting nonmetallic substrate using laser beam
US20020110639A1 (en) 2000-11-27 2002-08-15 Donald Bruns Epoxy coating for optical surfaces
US20020082466A1 (en) 2000-12-22 2002-06-27 Jeongho Han Laser surgical system with light source and video scope
JP4880820B2 (en) 2001-01-19 2012-02-22 株式会社レーザーシステム Laser assisted machining method
JP2002228818A (en) 2001-02-05 2002-08-14 Taiyo Yuden Co Ltd Diffraction optical device for laser beam machining and device and method for laser beam machining
JP3725805B2 (en) 2001-07-04 2005-12-14 三菱電線工業株式会社 Fiber wiring sheet and manufacturing method thereof
SG108262A1 (en) 2001-07-06 2005-01-28 Inst Data Storage Method and apparatus for cutting a multi-layer substrate by dual laser irradiation
JP3775250B2 (en) 2001-07-12 2006-05-17 セイコーエプソン株式会社 Laser processing method and laser processing apparatus
KR100820689B1 (en) 2001-08-10 2008-04-10 미쓰보시 다이야몬도 고교 가부시키가이샤 Chamfering Method and Chamfering Device for Brittle Material Substrate
JP2003114400A (en) 2001-10-04 2003-04-18 Sumitomo Electric Ind Ltd Laser optical system and laser processing method
JP2003154517A (en) 2001-11-21 2003-05-27 Seiko Epson Corp Method and apparatus for cleaving brittle material, and method for manufacturing electronic component
US6720519B2 (en) 2001-11-30 2004-04-13 Matsushita Electric Industrial Co., Ltd. System and method of laser drilling
US6973384B2 (en) 2001-12-06 2005-12-06 Bellsouth Intellectual Property Corporation Automated location-intelligent traffic notification service systems and methods
WO2003076119A1 (en) 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Method of cutting processed object
US6744009B1 (en) 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
CA2396831A1 (en) 2002-08-02 2004-02-02 Femtonics Corporation Microstructuring optical wave guide devices with femtosecond optical pulses
JP2004209675A (en) 2002-12-26 2004-07-29 Kashifuji:Kk Press cutting device and press cutting method
KR100497820B1 (en) 2003-01-06 2005-07-01 로체 시스템즈(주) Glass-plate cutting machine
JP3775410B2 (en) 2003-02-03 2006-05-17 セイコーエプソン株式会社 Laser processing method, laser welding method and laser processing apparatus
EP1609559B1 (en) 2003-03-12 2007-08-08 Hamamatsu Photonics K. K. Laser beam machining method
US7511886B2 (en) 2003-05-13 2009-03-31 Carl Zeiss Smt Ag Optical beam transformation system and illumination system comprising an optical beam transformation system
FR2855084A1 (en) 2003-05-22 2004-11-26 Air Liquide FOCUSING OPTICS FOR LASER CUTTING
JP2005000952A (en) 2003-06-12 2005-01-06 Nippon Sheet Glass Co Ltd Laser beam machining method and device
US7492948B2 (en) 2003-06-26 2009-02-17 Denmarks Tekniske Universitet Generation of a desired wavefront with a plurality of phase contrast filters
CN101862907B (en) 2003-07-18 2014-01-22 浜松光子学株式会社 Laser beam machining method, laser beam machining apparatus, and laser machined product
JP2005104819A (en) 2003-09-10 2005-04-21 Nippon Sheet Glass Co Ltd Method and apparatus for cutting laminated glass
JP2005138143A (en) 2003-11-06 2005-06-02 Disco Abrasive Syst Ltd Machining apparatus using laser beam
JP2005144487A (en) 2003-11-13 2005-06-09 Seiko Epson Corp Laser processing apparatus and laser processing method
US7633033B2 (en) 2004-01-09 2009-12-15 General Lasertronics Corporation Color sensing for laser decoating
JP4951241B2 (en) 2004-01-16 2012-06-13 独立行政法人科学技術振興機構 Fine processing method
JP4074589B2 (en) 2004-01-22 2008-04-09 Tdk株式会社 Laser processing apparatus and laser processing method
CN1925945A (en) 2004-03-05 2007-03-07 奥林巴斯株式会社 Laser processing apparatus
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
JP4418282B2 (en) 2004-03-31 2010-02-17 株式会社レーザーシステム Laser processing method
JP4890746B2 (en) 2004-06-14 2012-03-07 株式会社ディスコ Wafer processing method
US7804043B2 (en) 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US7136227B2 (en) 2004-08-06 2006-11-14 Matsushita Electric Industrial Co., Ltd. Fresnel zone plate based on elastic materials
JP3887394B2 (en) 2004-10-08 2007-02-28 芝浦メカトロニクス株式会社 Brittle material cleaving system and method
EP1806202B1 (en) 2004-10-25 2011-08-17 Mitsuboshi Diamond Industrial Co., Ltd. Method and device for forming crack
JP4692717B2 (en) 2004-11-02 2011-06-01 澁谷工業株式会社 Brittle material cleaving device
JP4222296B2 (en) 2004-11-22 2009-02-12 住友電気工業株式会社 Laser processing method and laser processing apparatus
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
JP5037138B2 (en) 2005-01-05 2012-09-26 Thk株式会社 Work breaking method and device, scribing and breaking method, and scribing device with break function
CN101069267A (en) 2005-02-03 2007-11-07 株式会社尼康 Optical integrator, illumination optical device, exposure device, and exposure method
JP2006248885A (en) 2005-02-08 2006-09-21 Takeji Arai Cutting method of quartz by ultrashort pulse laser
US20060261118A1 (en) 2005-05-17 2006-11-23 Cox Judy K Method and apparatus for separating a pane of brittle material from a moving ribbon of the material
US7402773B2 (en) 2005-05-24 2008-07-22 Disco Corporation Laser beam processing machine
JP4490883B2 (en) 2005-07-19 2010-06-30 株式会社レーザーシステム Laser processing apparatus and laser processing method
DE102005039833A1 (en) 2005-08-22 2007-03-01 Rowiak Gmbh Device and method for material separation with laser pulses
US7626138B2 (en) 2005-09-08 2009-12-01 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US9138913B2 (en) 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
WO2007032501A1 (en) 2005-09-12 2007-03-22 Nippon Sheet Glass Company, Limited Solution for separation of interlayer film and interlayer film separation method
KR100792593B1 (en) 2005-10-12 2008-01-09 한국정보통신대학교 산학협력단 Method and system for forming single pulse pattern using ultra short pulse laser
JP2007142001A (en) 2005-11-16 2007-06-07 Denso Corp Laser beam machine and laser beam machining method
US20070111480A1 (en) 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
US7838331B2 (en) 2005-11-16 2010-11-23 Denso Corporation Method for dicing semiconductor substrate
US7977601B2 (en) 2005-11-28 2011-07-12 Electro Scientific Industries, Inc. X and Y orthogonal cut direction processing with set beam separation using 45 degree beam split orientation apparatus and method
WO2007069516A1 (en) 2005-12-16 2007-06-21 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
JP4483793B2 (en) 2006-01-27 2010-06-16 セイコーエプソン株式会社 Microstructure manufacturing method and manufacturing apparatus
US7418181B2 (en) 2006-02-13 2008-08-26 Adc Telecommunications, Inc. Fiber optic splitter module
KR100985428B1 (en) 2006-02-15 2010-10-05 아사히 가라스 가부시키가이샤 Method and apparatus for chamfering glass substrates
US7535634B1 (en) 2006-02-16 2009-05-19 The United States Of America As Represented By The National Aeronautics And Space Administration Optical device, system, and method of generating high angular momentum beams
WO2007096958A1 (en) * 2006-02-22 2007-08-30 Nippon Sheet Glass Company, Limited Glass processing method using laser and processing device
JP4672689B2 (en) 2006-02-22 2011-04-20 日本板硝子株式会社 Glass processing method and processing apparatus using laser
WO2007096460A2 (en) 2006-02-23 2007-08-30 Picodeon Ltd Oy Surface treatment technique and surface treatment apparatus associated with ablation technology
JP2007253203A (en) 2006-03-24 2007-10-04 Sumitomo Electric Ind Ltd Optical device for laser processing
US20070298529A1 (en) 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
ES2428826T3 (en) 2006-07-03 2013-11-11 Hamamatsu Photonics K.K. Laser and chip processing procedure
DE102006035555A1 (en) 2006-07-27 2008-01-31 Eliog-Kelvitherm Industrieofenbau Gmbh Arrangement and method for the deformation of glass panes
US8168514B2 (en) 2006-08-24 2012-05-01 Corning Incorporated Laser separation of thin laminated glass substrates for flexible display applications
CN102489883B (en) 2006-09-19 2015-12-02 浜松光子学株式会社 Laser processing and laser processing device
DE102006051105B3 (en) 2006-10-25 2008-06-12 Lpkf Laser & Electronics Ag Device for processing a workpiece by means of laser radiation
AT504726A1 (en) 2007-01-05 2008-07-15 Lisec Maschb Gmbh METHOD AND DEVICE FOR MANUFACTURING A DIVIDER IN A GLASS PANEL
WO2008102848A1 (en) 2007-02-22 2008-08-28 Nippon Sheet Glass Company, Limited Glass for anodic bonding
CN101663125B (en) 2007-04-05 2012-11-28 查目工程股份有限公司 Laser machining method, laser cutting method, and method for dividing structure having multilayer board
DE102007018674A1 (en) 2007-04-18 2008-10-23 Lzh Laserzentrum Hannover E.V. Method for forming through-holes in glass components
US8236116B2 (en) 2007-06-06 2012-08-07 Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) Method of making coated glass article, and intermediate product used in same
US20090001372A1 (en) * 2007-06-29 2009-01-01 Lumination Llc Efficient cooling of lasers, LEDs and photonics devices
US8169587B2 (en) 2007-08-16 2012-05-01 Apple Inc. Methods and systems for strengthening LCD modules
JP2009056482A (en) 2007-08-31 2009-03-19 Seiko Epson Corp Substrate dividing method and display device manufacturing method
US20100276505A1 (en) 2007-09-26 2010-11-04 Roger Earl Smith Drilling in stretched substrates
US20090123766A1 (en) * 2007-11-13 2009-05-14 G3 Enterprises Modified barrier layers in liners for container closures, capable of providing varible, controlled oxygen ingress
KR20090057161A (en) 2007-12-01 2009-06-04 주식회사 이엔팩 Super Water Repellent Toilet Seat
CN101462822B (en) 2007-12-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 Friable non-metal workpiece with through hole and method of processing the same
US20090183764A1 (en) 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
JP5098665B2 (en) 2008-01-23 2012-12-12 株式会社東京精密 Laser processing apparatus and laser processing method
US8237080B2 (en) 2008-03-27 2012-08-07 Electro Scientific Industries, Inc Method and apparatus for laser drilling holes with Gaussian pulses
JP5345334B2 (en) 2008-04-08 2013-11-20 株式会社レミ Thermal stress cleaving method for brittle materials
JP5274085B2 (en) 2008-04-09 2013-08-28 株式会社アルバック Laser processing apparatus, laser beam pitch variable method, and laser processing method
US8358888B2 (en) 2008-04-10 2013-01-22 Ofs Fitel, Llc Systems and techniques for generating Bessel beams
EP2119512B1 (en) 2008-05-14 2017-08-09 Gerresheimer Glas GmbH Method and device for removing contaminating particles from containers on automatic production system
US8053704B2 (en) 2008-05-27 2011-11-08 Corning Incorporated Scoring of non-flat materials
JP2009297734A (en) 2008-06-11 2009-12-24 Nitto Denko Corp Adhesive sheet for laser processing and laser processing method
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US7810355B2 (en) 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
JP2010017990A (en) 2008-07-14 2010-01-28 Seiko Epson Corp Substrate dividing method
JP2010075991A (en) 2008-09-29 2010-04-08 Fujifilm Corp Laser beam machining apparatus
JP5297139B2 (en) 2008-10-09 2013-09-25 新光電気工業株式会社 Wiring board and manufacturing method thereof
US8895892B2 (en) 2008-10-23 2014-11-25 Corning Incorporated Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
US8092739B2 (en) 2008-11-25 2012-01-10 Wisconsin Alumni Research Foundation Retro-percussive technique for creating nanoscale holes
US9346130B2 (en) 2008-12-17 2016-05-24 Electro Scientific Industries, Inc. Method for laser processing glass with a chamfered edge
EP2202545A1 (en) 2008-12-23 2010-06-30 Karlsruher Institut für Technologie Beam transformation module with an axicon in a double-pass mode
KR101020621B1 (en) 2009-01-15 2011-03-09 연세대학교 산학협력단 Optical device manufacturing method using optical fiber, optical device using optical fiber and optical tweezer using same
US8347651B2 (en) 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
US8341976B2 (en) 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
US8327666B2 (en) 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass
US8245540B2 (en) 2009-02-24 2012-08-21 Corning Incorporated Method for scoring a sheet of brittle material
CN102326232B (en) 2009-02-25 2016-01-20 日亚化学工业株式会社 The manufacture method of semiconductor element
CN101502914A (en) 2009-03-06 2009-08-12 苏州德龙激光有限公司 Picosecond laser machining apparatus for processing nozzle micropore
CN201357287Y (en) 2009-03-06 2009-12-09 苏州德龙激光有限公司 Novel picosecond laser processing device
JP5300544B2 (en) 2009-03-17 2013-09-25 株式会社ディスコ Optical system and laser processing apparatus
KR101041140B1 (en) 2009-03-25 2011-06-13 삼성모바일디스플레이주식회사 Substrate Cutting Method
US20100252959A1 (en) 2009-03-27 2010-10-07 Electro Scientific Industries, Inc. Method for improved brittle materials processing
US20100279067A1 (en) 2009-04-30 2010-11-04 Robert Sabia Glass sheet having enhanced edge strength
US8697228B2 (en) 2009-05-06 2014-04-15 Corning Incorporated Carrier for glass substrates
ATE551304T1 (en) 2009-05-13 2012-04-15 Corning Inc METHOD AND EQUIPMENT FOR SHAPING ENDLESS GLASS PANELS
US8132427B2 (en) 2009-05-15 2012-03-13 Corning Incorporated Preventing gas from occupying a spray nozzle used in a process of scoring a hot glass sheet
US8269138B2 (en) 2009-05-21 2012-09-18 Corning Incorporated Method for separating a sheet of brittle material
DE102009023602B4 (en) 2009-06-02 2012-08-16 Grenzebach Maschinenbau Gmbh Device for the industrial production of elastically deformable large-area glass plates in large quantities
JP5525601B2 (en) 2009-06-04 2014-06-18 コアレイズ オーワイ Substrate processing method using laser
TWI395630B (en) 2009-06-30 2013-05-11 Mitsuboshi Diamond Ind Co Ltd Apparatus for processing glass substrate by laser beam
US8592716B2 (en) 2009-07-22 2013-11-26 Corning Incorporated Methods and apparatus for initiating scoring
CN101637849B (en) 2009-08-07 2011-12-07 苏州德龙激光有限公司 High-precision Z-axis carrier platform of picosecond laser process equipment
CN201471092U (en) 2009-08-07 2010-05-19 苏州德龙激光有限公司 High-precision Z-axis objective table of picosecond laser machining equipment
JP5500914B2 (en) 2009-08-27 2014-05-21 株式会社半導体エネルギー研究所 Laser irradiation device
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
US8943855B2 (en) 2009-08-28 2015-02-03 Corning Incorporated Methods for laser cutting articles from ion exchanged glass substrates
KR101094284B1 (en) 2009-09-02 2011-12-19 삼성모바일디스플레이주식회사 Substrate cutting device and substrate cutting method using same
US20110088324A1 (en) 2009-10-20 2011-04-21 Wessel Robert B Apparatus and method for solar heat gain reduction in a window assembly
JP5715639B2 (en) 2009-11-03 2015-05-13 コーニング インコーポレイテッド Laser scoring of moving glass ribbons with varying speed
US20120234807A1 (en) 2009-12-07 2012-09-20 J.P. Sercel Associates Inc. Laser scribing with extended depth affectation into a workplace
US8338745B2 (en) 2009-12-07 2012-12-25 Panasonic Corporation Apparatus and methods for drilling holes with no taper or reverse taper
WO2011082065A2 (en) 2009-12-30 2011-07-07 Gsi Group Corporation Link processing with high speed beam deflection
TWI438162B (en) 2010-01-27 2014-05-21 Wintek Corp Cutting method and preparatory cutting structure for reinforced glass
US8743165B2 (en) 2010-03-05 2014-06-03 Micronic Laser Systems Ab Methods and device for laser processing
JP5249979B2 (en) 2010-03-18 2013-07-31 三星ダイヤモンド工業株式会社 Method of processing brittle material substrate and laser processing apparatus used therefor
EP2550128B8 (en) 2010-03-24 2018-05-23 LIMO GmbH Device for impingement of a laser beam
US8654538B2 (en) 2010-03-30 2014-02-18 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
EP2562805A1 (en) 2010-04-20 2013-02-27 Asahi Glass Company, Limited Glass substrate for semiconductor device via
US8821211B2 (en) 2010-04-21 2014-09-02 Lg Chem, Ltd. Device for cutting of glass sheet
DE202010006047U1 (en) 2010-04-22 2010-07-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Beam shaping unit for focusing a laser beam
US8245539B2 (en) 2010-05-13 2012-08-21 Corning Incorporated Methods of producing glass sheets
EP2573137B1 (en) 2010-05-19 2023-08-30 Mitsubishi Chemical Corporation Sheet for cards and card
GB2481190B (en) 2010-06-04 2015-01-14 Plastic Logic Ltd Laser ablation
CN108395078B (en) 2010-06-29 2020-06-05 康宁股份有限公司 Multiple layer glass sheets produced by co-drawing using overflow downdraw fusion
DE102010025965A1 (en) 2010-07-02 2012-01-05 Schott Ag Method for the low-stress production of perforated workpieces
DE102010025967B4 (en) 2010-07-02 2015-12-10 Schott Ag Method for producing a multiplicity of holes, device for this and glass interposer
DE202010013161U1 (en) 2010-07-08 2011-03-31 Oerlikon Solar Ag, Trübbach Laser processing with several beams and suitable laser optics head
CA2805003C (en) 2010-07-12 2017-05-30 S. Abbas Hosseini Method of material processing by laser filamentation
CN103003054B (en) 2010-07-12 2014-11-19 旭硝子株式会社 TIO2-containing quartz-glass substrate for an imprint mold and manufacturing method therefor
KR20120015366A (en) 2010-07-19 2012-02-21 엘지디스플레이 주식회사 Tempered glass cutting method and cutting device
JP5580129B2 (en) 2010-07-20 2014-08-27 株式会社アマダ Solid state laser processing equipment
JP5669001B2 (en) 2010-07-22 2015-02-12 日本電気硝子株式会社 Glass film cleaving method, glass roll manufacturing method, and glass film cleaving apparatus
WO2012014724A1 (en) 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Substrate processing method
EP2599582B1 (en) 2010-07-26 2020-03-25 Hamamatsu Photonics K.K. Substrate processing method
JP2012031018A (en) 2010-07-30 2012-02-16 Asahi Glass Co Ltd Tempered glass substrate, method for grooving tempered glass substrate, and method for cutting tempered glass substrate
US8604380B2 (en) 2010-08-19 2013-12-10 Electro Scientific Industries, Inc. Method and apparatus for optimally laser marking articles
US8584354B2 (en) 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
TWI402228B (en) 2010-09-15 2013-07-21 Wintek Corp Cutting method and thin film process for reinforced glass, preparatory cutting structure of reinforced glass and reinforced glass block
TWI576320B (en) 2010-10-29 2017-04-01 康寧公司 Method and apparatus for cutting glass ribbon
JP5617556B2 (en) 2010-11-22 2014-11-05 日本電気硝子株式会社 Strip glass film cleaving apparatus and strip glass film cleaving method
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
EP2646384B1 (en) * 2010-11-30 2019-03-27 Corning Incorporated Methods of forming high-density arrays of holes in glass
US8607590B2 (en) 2010-11-30 2013-12-17 Corning Incorporated Methods for separating glass articles from strengthened glass substrate sheets
TW201226345A (en) 2010-12-27 2012-07-01 Liefco Optical Inc Method of cutting tempered glass
KR101298019B1 (en) 2010-12-28 2013-08-26 (주)큐엠씨 Laser processing apparatus
US10081075B2 (en) 2011-01-05 2018-09-25 Yuki Engineering System Co. Ltd. Beam processor
WO2012096053A1 (en) 2011-01-11 2012-07-19 旭硝子株式会社 Method for cutting reinforced glass plate
JP2012159749A (en) 2011-02-01 2012-08-23 Nichia Chem Ind Ltd Bessel beam generator
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
US8933367B2 (en) 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
JP6004338B2 (en) 2011-02-10 2016-10-05 信越ポリマー株式会社 Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP5875121B2 (en) 2011-02-10 2016-03-02 信越ポリマー株式会社 Method for producing single crystal substrate and method for producing internal modified layer-forming single crystal member
DE102011000768B4 (en) 2011-02-16 2016-08-18 Ewag Ag Laser processing method and laser processing apparatus with switchable laser arrangement
US8584490B2 (en) 2011-02-18 2013-11-19 Corning Incorporated Laser cutting method
JP2012187618A (en) 2011-03-11 2012-10-04 V Technology Co Ltd Laser machining apparatus for glass substrate
WO2012133843A1 (en) 2011-03-31 2012-10-04 AvanStrate株式会社 Glass plate production method
CN103548038B (en) 2011-04-07 2017-02-15 能通 RFID tag, electronic product PCB having same, and system for managing electronic products
US8986072B2 (en) 2011-05-26 2015-03-24 Corning Incorporated Methods of finishing an edge of a glass sheet
WO2012164649A1 (en) 2011-05-27 2012-12-06 浜松ホトニクス株式会社 Laser machining method
TWI547454B (en) 2011-05-31 2016-09-01 康寧公司 High-speed micro-hole fabrication in glass
CN103596893A (en) 2011-06-15 2014-02-19 旭硝子株式会社 Method for cutting glass plate
JP2013007842A (en) 2011-06-23 2013-01-10 Toyo Seikan Kaisha Ltd Structure forming device, structure forming method, and structure
WO2013002165A1 (en) 2011-06-28 2013-01-03 株式会社Ihi Device and method for cutting brittle member, and cut brittle member
TWI572480B (en) 2011-07-25 2017-03-01 康寧公司 Laminated and ion-exchanged strengthened glass laminates
CN103781587B (en) 2011-07-29 2016-09-07 Ats自动化加工系统公司 For producing the system and method for silicon slim rod
KR101120471B1 (en) 2011-08-05 2012-03-05 (주)지엘코어 Apparatus for cleaving brittle materials by using the pulse laser of multi-focusing method
US8635887B2 (en) 2011-08-10 2014-01-28 Corning Incorporated Methods for separating glass substrate sheets by laser-formed grooves
JP2013043808A (en) 2011-08-25 2013-03-04 Asahi Glass Co Ltd Holder for tempered glass plate cutting, and method for cutting tempered glass plate
JPWO2013031655A1 (en) 2011-08-29 2015-03-23 旭硝子株式会社 Method of cutting tempered glass sheet and tempered glass sheet cutting device
CN103764579A (en) 2011-08-31 2014-04-30 旭硝子株式会社 Cutting method for reinforced glass plate and reinforced glass plate cutting device
MY169296A (en) 2011-09-09 2019-03-21 Hoya Corp Method of manufacturing an ion-exchanged glass article
EP2990389B1 (en) 2011-09-15 2019-02-27 Nippon Electric Glass Co., Ltd Cutting method for glass sheet
US9010151B2 (en) 2011-09-15 2015-04-21 Nippon Electric Glass Co., Ltd. Glass sheet cutting method
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
KR20140075686A (en) 2011-09-21 2014-06-19 레이디안스, 아이엔씨. Systems and processes that singulate materials
JP5864988B2 (en) 2011-09-30 2016-02-17 浜松ホトニクス株式会社 Tempered glass sheet cutting method
FR2980859B1 (en) 2011-09-30 2013-10-11 Commissariat Energie Atomique LITHOGRAPHY METHOD AND DEVICE
DE102011084128A1 (en) 2011-10-07 2013-04-11 Schott Ag Method for cutting a thin glass with special formation of the edge
JP2013091578A (en) 2011-10-25 2013-05-16 Mitsuboshi Diamond Industrial Co Ltd Scribing method for glass substrate
KR101269474B1 (en) 2011-11-09 2013-05-30 주식회사 모린스 Method for cutting tempered glass
US20130129947A1 (en) 2011-11-18 2013-05-23 Daniel Ralph Harvey Glass article having high damage resistance
US8677783B2 (en) 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
KR20130065051A (en) 2011-12-09 2013-06-19 삼성코닝정밀소재 주식회사 Cutting method of tempered glass and method of manufacturing touch screen panel using the same
KR101987039B1 (en) 2011-12-12 2019-06-10 니폰 덴키 가라스 가부시키가이샤 Method for cutting and separating plate glass
TW201332917A (en) 2011-12-12 2013-08-16 Nippon Electric Glass Co Cutting and separating method of plate glass, and cutting and separating apparatus of plate glass
JP2013152986A (en) 2012-01-24 2013-08-08 Disco Abrasive Syst Ltd Method for processing wafer
US9895771B2 (en) 2012-02-28 2018-02-20 General Lasertronics Corporation Laser ablation for the environmentally beneficial removal of surface coatings
US20130221053A1 (en) 2012-02-28 2013-08-29 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
JP2015511571A (en) 2012-02-28 2015-04-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and apparatus for the separation of tempered glass and products produced thereby
KR20140131520A (en) 2012-02-29 2014-11-13 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Methods and apparatus for machining strengthened glass and articles produced thereby
US9082764B2 (en) 2012-03-05 2015-07-14 Corning Incorporated Three-dimensional integrated circuit which incorporates a glass interposer and method for fabricating the same
TW201343296A (en) 2012-03-16 2013-11-01 Ipg Microsystems Llc Laser scribing system and method with extended depth affectation into a workpiece
TW201339111A (en) 2012-03-29 2013-10-01 Global Display Co Ltd Method for cutting tempered glass
JP2013203630A (en) 2012-03-29 2013-10-07 Asahi Glass Co Ltd Method for cutting tempered glass plate
JP2013203631A (en) 2012-03-29 2013-10-07 Asahi Glass Co Ltd Method for cutting tempered glass plate and apparatus for cutting tempered glass plate
JP2013216513A (en) 2012-04-05 2013-10-24 Nippon Electric Glass Co Ltd Method for cutting glass film and glass film lamination body
CN104661787A (en) 2012-04-05 2015-05-27 Sage电致变色显示有限公司 Method of and apparatus for thermal laser scribe cutting for electrochromic device production; corresponding cut glass panel
JP2015120604A (en) 2012-04-06 2015-07-02 旭硝子株式会社 Method and system for cutting tempered glass plate
FR2989294B1 (en) 2012-04-13 2022-10-14 Centre Nat Rech Scient DEVICE AND METHOD FOR NANO-MACHINING BY LASER
US20130288010A1 (en) 2012-04-27 2013-10-31 Ravindra Kumar Akarapu Strengthened glass article having shaped edge and method of making
KR20130124646A (en) 2012-05-07 2013-11-15 주식회사 엠엠테크 Method for cutting tempered glass
US9365446B2 (en) 2012-05-14 2016-06-14 Richard Green Systems and methods for altering stress profiles of glass
DE102012010635B4 (en) 2012-05-18 2022-04-07 Leibniz-Institut für Oberflächenmodifizierung e.V. Process for 3D structuring and shaping of surfaces made of hard, brittle and optical materials
CN102672355B (en) 2012-05-18 2015-05-13 杭州士兰明芯科技有限公司 Scribing method of LED (light-emitting diode) substrate
JP6009225B2 (en) 2012-05-29 2016-10-19 浜松ホトニクス株式会社 Cutting method of tempered glass sheet
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
JP6022223B2 (en) 2012-06-14 2016-11-09 株式会社ディスコ Laser processing equipment
JP6065910B2 (en) 2012-07-09 2017-01-25 旭硝子株式会社 Cutting method of chemically strengthened glass sheet
AT13206U1 (en) 2012-07-17 2013-08-15 Lisec Maschb Gmbh Method and arrangement for dividing flat glass
TW201417928A (en) 2012-07-30 2014-05-16 Raydiance Inc Cutting of brittle materials with tailored edge shape and roughness
KR20140019535A (en) * 2012-08-06 2014-02-17 엘지이노텍 주식회사 Camera module and electronic device
KR101395054B1 (en) 2012-08-08 2014-05-14 삼성코닝정밀소재 주식회사 Cutting method and stage for cutting of tempered glass
KR20140022980A (en) 2012-08-14 2014-02-26 (주)하드램 Laser cutting apparatus for tempered glass and method for cutting tempered glass
KR20140022981A (en) 2012-08-14 2014-02-26 (주)하드램 Laser cutting apparatus for tempered glass comprising substrate edge protection unit and method for cutting tempered glass
WO2014028022A1 (en) * 2012-08-16 2014-02-20 Hewlett-Packard Development Company, L.P. Diagonal openings in photodefinable glass
US20140047957A1 (en) 2012-08-17 2014-02-20 Jih Chun Wu Robust Torque-Indicating Wrench
JP5727433B2 (en) 2012-09-04 2015-06-03 イムラ アメリカ インコーポレイテッド Transparent material processing with ultrashort pulse laser
CN102923939B (en) 2012-09-17 2015-03-25 江西沃格光电股份有限公司 Method for cutting tempered glass
CN102898014A (en) 2012-09-29 2013-01-30 江苏太平洋石英股份有限公司 Method for non-contact laser cutting of quartz glass product and device thereof
LT6046B (en) 2012-10-22 2014-06-25 Uab "Lidaris" Change-over device for adjustable optical mounts and a system comprising such devices
US20140110040A1 (en) 2012-10-23 2014-04-24 Ronald Steven Cok Imprinted micro-louver structure method
DE102012110971A1 (en) 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
KR20140064220A (en) 2012-11-20 2014-05-28 에스케이씨 주식회사 Process for the preparation of film for security
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
US9346706B2 (en) 2012-11-29 2016-05-24 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
EP2925482A1 (en) 2012-11-29 2015-10-07 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
CN203021443U (en) 2012-12-24 2013-06-26 深圳大宇精雕科技有限公司 Water jet cutter for glass plate
CN103013374B (en) 2012-12-28 2014-03-26 吉林大学 Bionic anti-sticking lyophobic and oleophobic pasting film
EP2754524B1 (en) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line
JP2016513016A (en) 2013-02-04 2016-05-12 ニューポート コーポレーション Method and apparatus for laser cutting transparent and translucent substrates
WO2014124057A1 (en) 2013-02-05 2014-08-14 Massachusetts Institute Of Technology 3-d holographic imaging flow cytometry
CN103143841B (en) 2013-03-08 2014-11-26 西北工业大学 Method for hole machining with picosecond laser
KR102209964B1 (en) 2013-03-13 2021-02-02 삼성디스플레이 주식회사 Picosecond laser processing device
WO2014144322A1 (en) 2013-03-15 2014-09-18 Kinestral Technologies, Inc. Laser cutting strengthened glass
EP2781296B1 (en) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Device and method for cutting out contours from flat substrates using a laser
WO2014161534A2 (en) 2013-04-04 2014-10-09 Lpkf Laser & Electronics Ag Method and device for providing through-openings in a substrate and a substrate produced in said manner
KR101857336B1 (en) 2013-04-04 2018-05-11 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 Method and device for separating a substrate
CN103316990B (en) 2013-05-28 2015-06-10 江苏大学 Micro-blanking automation device of pulsed laser driven flying sheet loading plate and method thereof
CN103273195B (en) 2013-05-28 2015-03-04 江苏大学 Micro-blanking automation device and method of sheet metal under indirect impact of laser
US9776891B2 (en) 2013-06-26 2017-10-03 Corning Incorporated Filter and methods for heavy metal remediation of water
KR101344368B1 (en) 2013-07-08 2013-12-24 정우라이팅 주식회사 Cutting device for glass tube using laser
CN103359948A (en) 2013-07-12 2013-10-23 深圳南玻伟光导电膜有限公司 Method for cutting tempered glass
US9102011B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
US20150034613A1 (en) 2013-08-02 2015-02-05 Rofin-Sinar Technologies Inc. System for performing laser filamentation within transparent materials
CN203509350U (en) 2013-09-27 2014-04-02 东莞市盛雄激光设备有限公司 Picosecond laser processing device
CN103531414B (en) 2013-10-14 2016-03-02 南京三乐电子信息产业集团有限公司 A kind of picosecond pulse laser cutting preparation method of grid-control TWT aperture plate
US10017410B2 (en) 2013-10-25 2018-07-10 Rofin-Sinar Technologies Llc Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
DE102013223637B4 (en) 2013-11-20 2018-02-01 Trumpf Laser- Und Systemtechnik Gmbh A method of treating a laser transparent substrate for subsequently separating the substrate
US9835442B2 (en) 2013-11-25 2017-12-05 Corning Incorporated Methods for determining a shape of a substantially cylindrical specular reflective surface
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
CN103746027B (en) 2013-12-11 2015-12-09 西安交通大学 A method of etching ultra-fine electrical isolation grooves on the surface of ITO conductive film
US20150165563A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US20150166393A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9687936B2 (en) 2013-12-17 2017-06-27 Corning Incorporated Transparent material cutting with ultrafast laser and beam optics
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
WO2015127583A1 (en) 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
US11780029B2 (en) 2014-03-05 2023-10-10 Panasonic Connect North America, division of Panasonic Corporation of North America Material processing utilizing a laser having a variable beam shape
US11204506B2 (en) 2014-03-05 2021-12-21 TeraDiode, Inc. Polarization-adjusted and shape-adjusted beam operation for materials processing
JP6318756B2 (en) 2014-03-24 2018-05-09 東レ株式会社 Polyester film
EP3166895B1 (en) 2014-07-08 2021-11-24 Corning Incorporated Methods and apparatuses for laser processing materials
EP2965853B2 (en) 2014-07-09 2020-03-25 High Q Laser GmbH Processing of material using elongated laser beams
US20160009066A1 (en) 2014-07-14 2016-01-14 Corning Incorporated System and method for cutting laminated structures
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
CN104344202A (en) 2014-09-26 2015-02-11 张玉芬 Porous glass
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
CN107666983B (en) 2015-03-27 2020-10-02 康宁股份有限公司 Venetian window and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238178A (en) * 2002-02-21 2003-08-27 Toshiba Ceramics Co Ltd Gas introducing shower plate and method of manufacturing the same
JP2004351494A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Drilling method of material transparent to laser
JP2013187247A (en) * 2012-03-06 2013-09-19 Nippon Hoso Kyokai <Nhk> Interposer and method for manufacturing the same
US20140361463A1 (en) * 2013-02-12 2014-12-11 Eipi Systems, Inc. Method and apparatus for three-dimensional fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022519724A (en) * 2019-02-08 2022-03-24 コーニング インコーポレイテッド A method for laser machining transparent workpieces using a pulsed laser beam focal lens and steam etching

Also Published As

Publication number Publication date
WO2016160391A1 (en) 2016-10-06
KR20170131638A (en) 2017-11-29
US20160279895A1 (en) 2016-09-29
TW201638042A (en) 2016-11-01
CN107666983A (en) 2018-02-06
US10525657B2 (en) 2020-01-07
EP3274313A1 (en) 2018-01-31
CN107666983B (en) 2020-10-02

Similar Documents

Publication Publication Date Title
JP2018516215A (en) Gas permeable window and manufacturing method thereof
US10377658B2 (en) Apparatuses and methods for laser processing
KR102287200B1 (en) Laser cut composite glass article and method of cutting
TWI679077B (en) Methods for laser drilling materials and glass articles
JP6585054B2 (en) Laser cutting of ion-exchangeable glass substrates
JP6585050B2 (en) Cutting stack transparent materials using ultrafast laser beam optics, destructive layers and other layers
JP2020079196A (en) Laser cutting of glass composition for display
US20180105451A1 (en) Creation of holes and slots in glass substrates
JP2019535523A (en) Method of laser processing a laminated work stack for forming a contour line of a first transparent workpiece and separating a resin layer from the first transparent workpiece
TW201713447A (en) Laser surface preparation of coated substrate
KR102587947B1 (en) Items that can be individually unified
US12054415B2 (en) Methods for laser processing rough transparent workpieces using pulsed laser beam focal lines and a fluid film
US20220098082A1 (en) Methods for adjusting beam properties for laser processing coated substrates
CN106946466A (en) Strengthened glass processes the method and device in hole
US20220073401A1 (en) Methods and optical assemblies for high angle laser processing of transparent workpieces
JP6673089B2 (en) Glass plate manufacturing method and glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20210120