JP2007253203A - Optical apparatus for laser beam machining - Google Patents

Optical apparatus for laser beam machining Download PDF

Info

Publication number
JP2007253203A
JP2007253203A JP2006082077A JP2006082077A JP2007253203A JP 2007253203 A JP2007253203 A JP 2007253203A JP 2006082077 A JP2006082077 A JP 2006082077A JP 2006082077 A JP2006082077 A JP 2006082077A JP 2007253203 A JP2007253203 A JP 2007253203A
Authority
JP
Japan
Prior art keywords
laser
lens
optical element
laser beam
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082077A
Other languages
Japanese (ja)
Inventor
Takashi Fuse
敬司 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006082077A priority Critical patent/JP2007253203A/en
Publication of JP2007253203A publication Critical patent/JP2007253203A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical apparatus for laser beam machining, which optical apparatus has high accuracy of a converging position, and can carry out high speed machining. <P>SOLUTION: A diffraction type optical element 8 for dividing a laser beam to be converged by an fθ lens 6 into a plurality of laser beams is arranged on an optical path between the fθ lens 6 for converging the laser beam deflected by a galvano-mirror 4 and a printed board 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザ光を熱源として用い、その熱によってプリント基板等の加工対象物を高速で局所的に加熱し、穴開けなどのレーザ加工を行う技術分野に関する。   The present invention relates to a technical field in which laser light is used as a heat source, and a workpiece such as a printed board is locally heated at high speed by the heat to perform laser processing such as drilling.

従来、レーザ光をガルバノミラーで偏向させてレンズで集光し、加工対象物に瞬時に穴開け等の加工をするレーザ加工用光学装置として、ガルバノミラー及びガルバノスキャナと、ガルバノミラーにより反射されたレーザ光を集光するfθレンズと、加工対象物をXY方向に移動させ、走査エリアを変えるXYテーブルとを備えたものがある。しかし、市場から要求されている加工時間の短縮を図ることは、ガルバノスキャナ、XYテーブルの能力が限界に近づいているため困難である。そのため、ガルバノミラーとfθレンズのほかに、レーザ光を複数のレーザ光に分岐する回折型光学素子(DOE)を光路に導入したレーザ加工用光学装置が知られている。このような装置として、例えば特許文献1に記載のものでは、レーザ発振器とガルバノミラーとの間の光路上に回折型光学素子を配置し、偏向された分岐レーザ光をfθレンズで集光することにより高速加工を可能としている。
特許第3458759号公報
Conventionally, a laser beam is deflected by a galvanometer mirror, condensed by a lens, and reflected by a galvanometer mirror, a galvanometer scanner, and a galvanometer mirror as an optical device for laser processing that instantaneously punches a workpiece. Some include an fθ lens that condenses laser light, and an XY table that moves a workpiece in the XY directions and changes a scanning area. However, it is difficult to reduce the processing time required by the market because the capabilities of the galvano scanner and the XY table are approaching the limits. Therefore, in addition to the galvanometer mirror and the fθ lens, there is known an optical apparatus for laser processing in which a diffractive optical element (DOE) that branches a laser beam into a plurality of laser beams is introduced into an optical path. As such an apparatus, for example, in the apparatus described in Patent Document 1, a diffractive optical element is disposed on an optical path between a laser oscillator and a galvanometer mirror, and the deflected branched laser light is collected by an fθ lens. Enables high-speed machining.
Japanese Patent No. 3458759

上記特許文献1のレーザ加工用光学装置で、加工対象物に微細な穴開け加工を行う場合、回折型光学素子で分岐された分岐レーザ光は、角度調整された二つのガルバノミラーで偏向されfθレンズを通って走査される。その際、加工対象物上の走査する箇所により、分岐レーザ光のスポット群のピッチが若干変わってしまうという原理上の問題がある。そのため、レーザ光の走査時における集光位置にズレが生じ、加工する穴のピッチ精度が低下するという問題がある。
これは、各分岐レーザ光の分岐角度(光軸と成す角度)とガルバノミラーによるレーザ光の偏向角度とが単純な和とならないことに原因がある。すなわち、ある分岐レーザ光の分岐角度のX成分、Y成分をα、β、X方向、Y方向の2つのガルバノミラーによる偏向角度(ミラー揺動によるビーム振り角)をξ、ζとすると、fθレンズへの入射角度のX成分、Y成分がそれぞれγ=α+ξ、η=β+ζのような単純和となれば、加工対象物上のスポットのピッチはΔX=f×Δγ=f×Δα、ΔY=f×Δη=f×Δβとなり、偏向角度ξ、ζによってピッチが変化することはない。ここで、fはfθレンズの焦点距離である。しかしながら、実際には、上記のような分岐角度と偏向角度の単純和は原理的に成立しない。詳細の説明は割愛するが、結論としては、γ≒(α+ξ)√(1+tanη)、η≒β√(1+tanξ)+ζというような複雑な関係式となってしまう。従って、スポットのピッチは、ΔX≒f×Δα√(1+tan(β√(1+tanξ)+ζ))、ΔY≒f×Δβ√(1+tanξ)となり、偏向角度ξ、ζによってピッチが変化することになるのである。
本発明はこのような従来技術の問題点に鑑み、高い集光位置精度を有する高速加工可能なレーザ加工用光学装置を提供することを目的とする。
When the laser processing optical device of Patent Document 1 performs fine drilling on a workpiece, the branched laser beam branched by the diffractive optical element is deflected by two angle-adjusted galvanometer mirrors and fθ. Scanned through the lens. At this time, there is a problem in principle that the pitch of the spot group of the branched laser light slightly changes depending on the scanning position on the workpiece. For this reason, there is a problem in that the condensing position at the time of scanning with the laser beam is shifted, and the pitch accuracy of the hole to be processed is lowered.
This is because the branch angle of each branch laser beam (angle formed with the optical axis) and the deflection angle of the laser beam by the galvanometer mirror are not a simple sum. In other words, if the X and Y components of the branching angle of a certain branched laser beam are α, β, the X direction, and the Y direction, the deflection angles by the two galvanometer mirrors (beam swing angles by mirror oscillation) are ξ and ζ. If the X component and the Y component of the incident angle to the lens are simple sums such as γ = α + ξ and η = β + ζ, the spot pitch on the workpiece is ΔX = f × Δγ = f × Δα, ΔY = f × Δη = f × Δβ, and the pitch does not change depending on the deflection angles ξ and ζ. Here, f is the focal length of the fθ lens. However, in practice, the simple sum of the branch angle and the deflection angle as described above does not hold in principle. Although a detailed description is omitted, the conclusion is that γ≈ (α + ξ) √ (1 + tan 2 η), η≈β√ (1 + tan 2 ξ) + ζ. Therefore, the spot pitch is ΔX≈f × Δα√ (1 + tan 2 (β√ (1 + tan 2 ξ) + ζ)), ΔY≈f × Δβ√ (1 + tan 2 ξ), and the pitch varies depending on the deflection angles ξ and ζ. It will be done.
An object of the present invention is to provide an optical device for laser processing capable of high-speed processing having high condensing position accuracy in view of such problems of the conventional technology.

上記目的を達成するため、本発明は次の技術的手段を講じた。
すなわち本発明は、レーザ光を発生させるレーザ発振器と、このレーザ発振器より発生した前記レーザ光を所定の偏向角度で偏向させるガルバノミラーと、このガルバノミラーにより偏向されたレーザ光を集光するfθレンズと、このfθレンズと加工対象物との間の光路上に配置され、前記fθレンズにより集光されるレーザ光を複数のレーザ光に分岐する回折型光学素子とを備えていることを特徴とするレーザ加工用光学装置である。
In order to achieve the above object, the present invention takes the following technical means.
That is, the present invention relates to a laser oscillator that generates laser light, a galvano mirror that deflects the laser light generated from the laser oscillator at a predetermined deflection angle, and an fθ lens that condenses the laser light deflected by the galvano mirror. And a diffractive optical element that is arranged on an optical path between the fθ lens and a workpiece and branches the laser light collected by the fθ lens into a plurality of laser beams. This is an optical device for laser processing.

上記本発明のレーザ加工用光学装置によれば、fθレンズで集光されたレーザ光が回折型光学素子により複数のレーザ光に分岐されるため、高速加工が可能となっている。
また、分岐ビームをガルバノミラーで偏向するのではないので、分岐角度と偏向角度とが単純な和とならないためにスポットのピッチ精度が低下するという前出の問題がなくなる。従って、レーザ光の走査時における集光位置精度を高めることができ、加工対象物に開ける穴のピッチ精度を向上させることができる。
According to the laser processing optical apparatus of the present invention, the laser beam condensed by the fθ lens is branched into a plurality of laser beams by the diffractive optical element, so that high-speed processing is possible.
In addition, since the branch beam is not deflected by the galvanometer mirror, the above-described problem that the pitch accuracy of the spot is lowered is eliminated because the branch angle and the deflection angle are not a simple sum. Therefore, it is possible to improve the light collection position accuracy during the scanning of the laser light, and to improve the pitch accuracy of the holes to be drilled in the workpiece.

上記本発明の前記fθレンズとして、像側テレセントリック光学系のものが最適である。像側テレセントリックでないfθレンズでは、ガルバノミラーによるビーム偏向角度に依存してfθレンズからの出射レーザ光に角度が付く。偏向角度が小さくて光軸に近い場合には光軸にほぼ平行となるが、偏向角度が大きくなるに従って、レーザ光がfθレンズから斜めに出射されるようになる。その斜めのレーザ光が回折型光学素子に入射すると、垂直入射の場合とは微妙に異なる分岐角度にレーザ光が分岐されるのである。数式では、sinα+sinθin∝λと表される。ここで、θinはレーザ光が回折型光学素子に入射する角度、λはレーザ光の波長である。一方、像側テレセントリックのfθレンズの場合は、ガルバノミラーによるビーム偏向角度に依らずfθレンズからの出射レーザ光はほぼ垂直となる。像側テレセントリックのfθレンズを使用することでレーザ光がほぼ垂直に回折型光学素子に入射するようになり(sinθin≒0)、斜入射の場合に発生する分岐角度のバラツキが抑制されるので、加工対象物上での集光位置精度を更に向上させる効果がある。 As the fθ lens of the present invention, an image side telecentric optical system is optimal. In an fθ lens that is not image-side telecentric, an angle is given to the laser beam emitted from the fθ lens depending on the beam deflection angle by the galvanometer mirror. When the deflection angle is small and close to the optical axis, the laser beam is almost parallel to the optical axis, but as the deflection angle increases, the laser light is emitted obliquely from the fθ lens. When the oblique laser beam is incident on the diffractive optical element, the laser beam is branched at a branching angle slightly different from that in the case of vertical incidence. In the mathematical expression, it is expressed as sin α + sin θ in ∝λ. Here, θ in is the angle at which the laser beam is incident on the diffractive optical element, and λ is the wavelength of the laser beam. On the other hand, in the case of an image-side telecentric fθ lens, the laser beam emitted from the fθ lens is substantially vertical regardless of the beam deflection angle by the galvanometer mirror. By using an image-side telecentric fθ lens, the laser light enters the diffractive optical element almost vertically (sin θ in ≈0), and variation in the branching angle that occurs in the case of oblique incidence is suppressed. There is an effect of further improving the accuracy of the light collection position on the workpiece.

上記本発明において、光軸方向における前記回折型光学素子の位置を調整する位置調整手段を備えていることが好ましい。
この場合、回折型光学素子の光軸方向における位置を調整し、回折型光学素子と加工対象物間の間隔を変えることで、分岐スポット群のピッチを比較的大きな範囲で変えることができる。
In the present invention, it is preferable that a position adjusting means for adjusting the position of the diffractive optical element in the optical axis direction is provided.
In this case, by adjusting the position of the diffractive optical element in the optical axis direction and changing the distance between the diffractive optical element and the object to be processed, the pitch of the branch spot group can be changed within a relatively large range.

上記本発明において、記回折型光学素子の軸心を回転軸とした回転角度を調整する角度調整手段を備えていることが好ましい。
この場合、回折型光学素子の軸心を回転軸とした回転角度を変えれば、分岐レーザ光のスポット群も同様に回転し向きが変わるため、分岐レーザ光のスポット群を加工対象物に対して適切な向きに簡単に調整することができる。
In the present invention, it is preferable that an angle adjusting means for adjusting a rotation angle about the axis of the diffraction type optical element as a rotation axis is provided.
In this case, if the rotation angle with the axis of the diffractive optical element as the rotation axis is changed, the spot group of the branched laser beam will also rotate and change its direction. Can be easily adjusted to the appropriate orientation.

上記の通り、本発明のレーザ加工用光学装置によれば、ガルバノミラーで偏向されたレーザ光の角度がfθレンズにより光路軸に対しおおよそ平行に修正され、加工対象物に対してほぼ垂直となった状態のレーザ光が回折型光学素子により分岐されることで、加工対象物上の走査する箇所により、分岐レーザ光のスポット群のピッチが変わってしまうという原理上の問題がなくなるので、高い集光位置精度で高速加工することができる。   As described above, according to the laser processing optical apparatus of the present invention, the angle of the laser light deflected by the galvanometer mirror is corrected approximately parallel to the optical path axis by the fθ lens, and becomes substantially perpendicular to the workpiece. Since the laser beam in the above state is branched by the diffractive optical element, there is no problem in principle that the pitch of the spot group of the branched laser beam changes depending on the scanning position on the workpiece. High-speed processing can be performed with optical position accuracy.

以下、本発明の実施形態について説明する。図1は、本発明に係るレーザ加工用光学装置の一実施形態を示す概略図であり、図2は、その要部を説明する模式図である。このレーザ加工用光学装置1は、レーザ光を発生させるレーザ発振器2と、レーザ発振器2の近傍に設けられたベンドミラー3と、レーザ光を偏向させる一対のガルバノミラー4と、ガルバノミラーを駆動するガルバノスキャナ5と、ガルバノミラー4により偏向されたレーザ光を集光するfθレンズ6と、このfθレンズ6と加工対象物7との間の光路上に配置された回折型光学素子8と、回折型光学素子8の位置調整手段と角度調整手段とが一体的に構成されたステージ機構10と、レーザ発振器2及びガルバノスキャナ5を制御する制御装置9とを備えている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a schematic view showing an embodiment of an optical apparatus for laser processing according to the present invention, and FIG. 2 is a schematic view for explaining the main part thereof. The optical apparatus 1 for laser processing drives a laser oscillator 2 that generates laser light, a bend mirror 3 provided in the vicinity of the laser oscillator 2, a pair of galvanometer mirrors 4 that deflect laser light, and a galvanometer mirror. A galvano scanner 5; an fθ lens 6 for condensing the laser light deflected by the galvano mirror 4; a diffractive optical element 8 disposed on the optical path between the fθ lens 6 and the workpiece 7; A stage mechanism 10 in which a position adjusting means and an angle adjusting means of the mold optical element 8 are integrally formed, and a control device 9 for controlling the laser oscillator 2 and the galvano scanner 5 are provided.

加工対象物はプリント基板7であり、レーザ照射によりその表面に複数の穴開け加工が行われる。レーザ発振器2で発生させるレーザ光は、例えば炭酸ガスレーザやYAGレーザ(基本波あるいはその高調波を含む)である。一対のガルバノミラー4は、レーザ発振器2より出力されたレーザ光を、所定の偏向角度で偏向させてプリント基板7上におけるX軸方向及びY軸方向に振らせるものである。制御装置9は、レーザ発振器2によるレーザ光出射を制御し、並びにガルバノスキャナ5を駆動してガルバノミラー4を揺動させfθレンズ6へのレーザ光入射位置を変化させる。fθレンズ6は、像側テレセントリック光学系とされており、当該fθレンズ6を用いることにより、ガルバノミラー4で様々な方向に偏向された光軸上及び光軸外のレーザ光が共に光軸に略平行となり、プリント基板7の表面にほぼ垂直入射し、その表面上で焦点を結ぶ。そうすることで、プリント基板7の表面に、例えば離散的に配置された複数の穴が開けられる。   The object to be processed is a printed circuit board 7, and a plurality of holes are formed on the surface by laser irradiation. The laser light generated by the laser oscillator 2 is, for example, a carbon dioxide laser or a YAG laser (including a fundamental wave or a harmonic thereof). The pair of galvanometer mirrors 4 deflects the laser light output from the laser oscillator 2 at a predetermined deflection angle and swings it in the X-axis direction and the Y-axis direction on the printed circuit board 7. The control device 9 controls the emission of the laser beam by the laser oscillator 2 and drives the galvano scanner 5 to oscillate the galvano mirror 4 to change the laser beam incident position on the fθ lens 6. The fθ lens 6 is an image-side telecentric optical system. By using the fθ lens 6, both the on-axis and off-axis laser beams deflected in various directions by the galvanometer mirror 4 are on the optical axis. It becomes substantially parallel, and is substantially perpendicularly incident on the surface of the printed circuit board 7 and focuses on the surface. By doing so, a plurality of holes arranged discretely, for example, are opened on the surface of the printed circuit board 7.

fθレンズ6とプリント基板7との間の光路上に配置された回折型光学素子8(DOE)は、一本の入射ビームを回折によって出射角度の相違する所望の空間分布をもつ複数のビームに分岐するものであり、各分岐レーザ光はfθレンズ6により集光されてプリント基板7に照射される。つまり、回折型光学素子8が一挙に複数本のレーザ光を作り出すので、ガルバノミラー4が静止した状態でプリント基板7上に瞬時に多数の穴を開けることができる。通常は、一度のレーザ光発振で1箇所の加工しかできないが、例えば25分光するように設計された回折型光学素子8とすることで、一度のレーザ発振で同時に25箇所の加工が可能となり、高速で穴開け加工ができる。   A diffractive optical element 8 (DOE) disposed on the optical path between the fθ lens 6 and the printed circuit board 7 converts a single incident beam into a plurality of beams having desired spatial distributions having different exit angles by diffraction. Each branched laser beam is condensed by the fθ lens 6 and applied to the printed circuit board 7. That is, since the diffractive optical element 8 generates a plurality of laser beams at once, a large number of holes can be instantaneously opened on the printed circuit board 7 with the galvanometer mirror 4 stationary. Normally, only one place can be processed by one laser beam oscillation, but for example, by using the diffractive optical element 8 designed to perform 25 spectroscopy, 25 points can be processed simultaneously by one laser oscillation. Drilling can be done at high speed.

図3にステージ機構10を示す。このステージ機構10は、光軸方向における回折型光学素子8の位置を調整する位置調整手段11と回折型光学素子8の軸心を回転軸とした回転角度を調整する角度調整手段12とが一体的に構成されたものである。位置調整手段11は、調整部本体11hや調整ローラ11r等からなり、この調整ローラ11rを回すことにより、回折型光学素子8がZ軸方向、すなわち光軸方向に動くようになっている。そうすることで、回折型光学素子8からプリント基板7までの距離Lが変化する。
一方、角度調整手段12は、調整部本体12hや調整ローラ12r等からなり、この調整ローラ12rを回すことにより、回折型光学素子8の軸心を回転軸とした回転角度が変化するようになっている。なお、位置調整手段11及び角度調整手段12の詳細な構成の説明は省略するが、これら各調整手段11,12は、市販されている公知のものを使用することができる。また、前記ステージ機構10では位置調整手段と角度調整手段が一体的に構成されているが、各手段が分離されて構成されても良い。角度調整手段を成すステージ機構を、位置調整手段を成す上下移動可能なステージ機構に接続する構成も取り得る。
FIG. 3 shows the stage mechanism 10. In this stage mechanism 10, a position adjusting unit 11 that adjusts the position of the diffractive optical element 8 in the optical axis direction and an angle adjusting unit 12 that adjusts the rotation angle about the axis of the diffractive optical element 8 as a rotation axis are integrated. It is structured. The position adjusting unit 11 includes an adjusting unit main body 11h, an adjusting roller 11r, and the like. By rotating the adjusting roller 11r, the diffractive optical element 8 moves in the Z-axis direction, that is, the optical axis direction. By doing so, the distance L from the diffractive optical element 8 to the printed circuit board 7 changes.
On the other hand, the angle adjustment means 12 includes an adjustment unit main body 12h, an adjustment roller 12r, and the like. By rotating the adjustment roller 12r, the rotation angle with the axis of the diffractive optical element 8 as the rotation axis changes. ing. Although detailed description of the position adjusting means 11 and the angle adjusting means 12 is omitted, commercially available known means can be used for the adjusting means 11 and 12. Further, in the stage mechanism 10, the position adjusting means and the angle adjusting means are integrally configured, but each means may be configured separately. A configuration is also possible in which the stage mechanism that forms the angle adjusting means is connected to the stage mechanism that forms the position adjusting means and is movable up and down.

回折型光学素子8の光軸方向の位置に関して、分岐レーザ光のスポット群のピッチをP1とすると、P1=Ltanθ(L:回折型光学素子8から加工対象物7までの距離、θ:回折型光学素子8に対して、光軸上のスポットと他のスポットがなす角度)の関係式となるので、回折型光学素子8からプリント基板7までの距離を、例えば5%変えると、スポット群のピッチが5%変化することになる。
これに対し、仮に回折型光学素子をレーザ発振器とガルバノミラーとの間に位置させた場合のスポット群のピッチをP2とすると、P2 λf1−(M/f)Δ(λ:波長、f:焦点距離、M:倍率、Δ:回折型光学素子を動かした距離)の関係式となるが、M=1/10〜1/100と小さいので、Δの変化量に対するスポット群のピッチP2の変化量が非常に小さい。
With respect to the position of the diffractive optical element 8 in the optical axis direction, if the pitch of the spot group of the branched laser light is P1, P1 = L tan θ (L: distance from the diffractive optical element 8 to the workpiece 7, θ: diffractive type Therefore, if the distance from the diffractive optical element 8 to the printed circuit board 7 is changed by, for example, 5%, the relation of the spot group is obtained. The pitch will change by 5%.
On the other hand, if the pitch of the spot group when the diffractive optical element is positioned between the laser oscillator and the galvanometer mirror is P2, P2 λf1- (M / f) Δ (λ: wavelength, f: focal length, M: magnification, Δ: distance moved by the diffractive optical element), M = 1/10 to 1/100 Since it is small, the change amount of the pitch P2 of the spot group with respect to the change amount of Δ is very small.

従って、位置調整手段11により回折型光学素子8からプリント基板7までの距離Lを変えると、ガルバノミラーの手間に回折型光学素子を位置させる場合よりも分岐レーザ光のスポット群のピッチP1を大きな範囲で変更することができる。
また、角度調整手段12により回折型光学素子8の軸心を回転軸とした回転角度を変えれば、分岐レーザ光のスポット群も同様に回転し向きを変えるので、分岐レーザ光のスポット群をプリント基板7に対して適切な向きに簡単に調整することができる。
Therefore, when the distance L from the diffractive optical element 8 to the printed circuit board 7 is changed by the position adjusting means 11, the pitch P1 of the spot group of the branched laser light is larger than when the diffractive optical element is positioned between the galvanometer mirrors. Can be changed in range.
In addition, if the angle adjustment means 12 changes the rotation angle about the axis of the diffractive optical element 8 as the rotation axis, the branch laser beam spot group also rotates and changes direction, so the branch laser beam spot group is printed. It can be easily adjusted to an appropriate orientation with respect to the substrate 7.

上記レーザ加工用光学装置1でプリント基板7に穴開け加工をする場合、レーザ発振器2で発生させたレーザ光は、発振器2により放出され、レーザ発振器2の近傍に設けられた2枚のベントミラー3により進行方向が変えられ、一対のガルバノミラー4で偏向されてfθレンズ6へ導かれる。ガルバノミラー4を出射したレーザ光が、fθレンズ6で集光されながら、ステージ機構10に保持された回折型光学素子8に入って分割され、分岐レーザ光となってfθレンズ6がもつ焦点距離に従ってプリント基板7に照射される。そして、ガルバノミラー4が、レーザ光の進行方向を振る(レーザ光を偏向する)ことにより、プリント基板7上の分岐レーザ光の照射位置を変化させ、プリント基板7に複数の穴開け加工が高速で行われる。   When the printed circuit board 7 is punched by the laser processing optical device 1, the laser light generated by the laser oscillator 2 is emitted by the oscillator 2, and two vent mirrors provided in the vicinity of the laser oscillator 2. The traveling direction is changed by 3, deflected by the pair of galvanometer mirrors 4, and guided to the fθ lens 6. The laser light emitted from the galvanometer mirror 4 is condensed by the fθ lens 6 and is divided by entering the diffractive optical element 8 held by the stage mechanism 10 to become a branched laser light and the focal length of the fθ lens 6. Then, the printed circuit board 7 is irradiated. The galvano mirror 4 changes the traveling direction of the laser beam (deflects the laser beam), thereby changing the irradiation position of the branched laser beam on the printed circuit board 7 and performing a plurality of holes in the printed circuit board 7 at high speed. Done in

上記本実施形態のレーザ加工用光学装置1によれば、fθレンズ6で集光されたレーザ光が回折型光学素子8により複数のレーザ光に分岐されるため、高速加工が可能となる。また、ガルバノミラー4で偏向されたレーザ光の角度がfθレンズ6により光路軸に対しほぼ平行に修正され、プリント基板7に対して垂直となった状態のレーザ光が回折型光学素子により分岐されることで、プリント基板7上の走査する箇所により、分岐レーザ光のスポット群のピッチが変わってしまうという原理上の問題がなくなる。従って、レーザ光の走査時における集光位置精度を高めることができ、プリント基板7に開ける穴のピッチ精度を向上させることができる。   According to the laser processing optical device 1 of the present embodiment, the laser light condensed by the fθ lens 6 is branched into a plurality of laser beams by the diffractive optical element 8, so that high speed processing is possible. The angle of the laser beam deflected by the galvanometer mirror 4 is corrected almost parallel to the optical path axis by the fθ lens 6, and the laser beam in a state perpendicular to the printed circuit board 7 is branched by the diffractive optical element. This eliminates the problem of the principle that the pitch of the spot group of the branched laser light changes depending on the scanning position on the printed circuit board 7. Therefore, it is possible to increase the accuracy of the condensing position at the time of scanning with the laser beam, and it is possible to improve the pitch accuracy of the holes formed in the printed board 7.

また、位置調整手段部11で回折型光学素子8の光軸方向における位置を変えることで、分岐レーザ光のスポット群のピッチP1を比較的大きな範囲で変更することができるため、プリント基板に開ける穴のピッチを簡単に変えることができる。さらに、角度調整手段12で分岐レーザ光のスポット群をプリント基板7に対して適切な向きに簡単に調整することができるため、作業性が向上する。
なお、本発明は上記実施形態に限定されるものではなく、例えば加工対象物はプリント基板以外のものでもよく、使用されるレーザ光、fθレンズ、回折型光学素子を限定するものではない。上記実施形態では、回折型光学素子8は、入射面のどの位置にレーザ光が照射されても同じように分岐することを前提としている。つまり、回折型光学素子は全面で一様な特性を持っているのである。この場合、スポット群の配置の変更やピッチの大きな変更は、回折型光学素子の交換で対応する。予め機能の異なる複数の回折型光学素子を準備して、回折型光学素子の交換手段を設けておけば、加工対象の穴の配置やピッチの変更に応じて回折型光学素子を交換することが可能である。一方、回折型光学素子は、その表面を複数の領域に分割してそれぞれの領域で異なるビーム分岐機能を持たせることもできる。この場合、レーザ光が入射する場所によって分岐レーザ光のスポット群の配置やピッチが変化する。この方法は、加工対象物上の走査位置とスポット群の配置やピッチが明確に分離して対応づけられるような加工分野では非常に有効である。これにより、複数枚の回折型光学素子を準備する必要がなくなる。
Further, by changing the position of the diffractive optical element 8 in the optical axis direction by the position adjusting unit 11, the pitch P1 of the spot group of the branched laser light can be changed within a relatively large range, so that the printed circuit board is opened. The pitch of holes can be changed easily. Furthermore, since the spot group of the branched laser light can be easily adjusted in an appropriate direction with respect to the printed circuit board 7 by the angle adjusting means 12, workability is improved.
In addition, this invention is not limited to the said embodiment, For example, a processed object may be things other than a printed circuit board, and does not limit the laser beam, f (theta) lens, and diffraction type optical element which are used. In the above embodiment, it is assumed that the diffractive optical element 8 branches in the same manner regardless of the position on the incident surface irradiated with the laser beam. That is, the diffractive optical element has uniform characteristics over the entire surface. In this case, a change in the arrangement of the spot group or a large change in the pitch can be handled by exchanging the diffractive optical element. If a plurality of diffractive optical elements having different functions are prepared in advance and a means for replacing the diffractive optical element is provided, the diffractive optical element can be replaced in accordance with the arrangement of the holes to be processed and the pitch change. Is possible. On the other hand, the diffractive optical element can be divided into a plurality of regions and have different beam branching functions in the respective regions. In this case, the arrangement and pitch of the spot groups of the branched laser light vary depending on where the laser light is incident. This method is very effective in the processing field in which the scanning position on the processing object and the arrangement and pitch of the spot group are clearly separated and corresponded. This eliminates the need to prepare a plurality of diffractive optical elements.

本実施形態に係るレーザ加工用光学装置の概略図である。It is the schematic of the optical apparatus for laser processing concerning this embodiment. レーザ加工用光学装置の要部を説明する模式図である。It is a schematic diagram explaining the principal part of the optical apparatus for laser processing. ステージ機構の説明図である。It is explanatory drawing of a stage mechanism.

符号の説明Explanation of symbols

1 レーザ加工用光学装置
2 レーザ発振器
4 ガルバノミラー
6 fθレンズ
7 プリント基板
8 回折型光学素子
10 ステージ機構
11 位置調整手段
12 角度調整手段
DESCRIPTION OF SYMBOLS 1 Optical apparatus for laser processing 2 Laser oscillator 4 Galvano mirror 6 f (theta) lens 7 Printed circuit board 8 Diffractive optical element 10 Stage mechanism 11 Position adjustment means 12 Angle adjustment means

Claims (4)

レーザ光を発生させるレーザ発振器と、このレーザ発振器より発生した前記レーザ光を所定の偏向角度で偏向させるガルバノミラーと、このガルバノミラーにより偏向されたレーザ光を集光するfθレンズと、このfθレンズと加工対象物との間の光路上に配置され、当該fθレンズにより集光されるレーザ光を複数のレーザ光に分岐する回折型光学素子とを備えていることを特徴とするレーザ加工用光学装置。   A laser oscillator that generates laser light, a galvano mirror that deflects the laser light generated from the laser oscillator at a predetermined deflection angle, an fθ lens that condenses the laser light deflected by the galvano mirror, and the fθ lens And a diffractive optical element that divides the laser beam condensed by the fθ lens into a plurality of laser beams. apparatus. 前記fθレンズが、像側テレセントリック光学系とされている請求項1に記載のレーザ加工用光学装置。   The optical apparatus for laser processing according to claim 1, wherein the fθ lens is an image side telecentric optical system. 光軸方向における前記回折型光学素子の位置を調整する位置調整手段を備えている請求項1又は2に記載のレーザ加工用光学装置。   The laser processing optical apparatus according to claim 1, further comprising a position adjusting unit that adjusts a position of the diffractive optical element in an optical axis direction. 前記回折型光学素子の軸心を回転軸とした回転角度を調整する角度調整手段を備えている請求項1〜3のいずれか一項に記載のレーザ加工用光学装置。   The optical apparatus for laser processing according to any one of claims 1 to 3, further comprising angle adjusting means for adjusting a rotation angle with the axis of the diffractive optical element as a rotation axis.
JP2006082077A 2006-03-24 2006-03-24 Optical apparatus for laser beam machining Pending JP2007253203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082077A JP2007253203A (en) 2006-03-24 2006-03-24 Optical apparatus for laser beam machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082077A JP2007253203A (en) 2006-03-24 2006-03-24 Optical apparatus for laser beam machining

Publications (1)

Publication Number Publication Date
JP2007253203A true JP2007253203A (en) 2007-10-04

Family

ID=38627953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082077A Pending JP2007253203A (en) 2006-03-24 2006-03-24 Optical apparatus for laser beam machining

Country Status (1)

Country Link
JP (1) JP2007253203A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107538A1 (en) * 2008-02-29 2009-09-03 トヨタ自動車 株式会社 Laser processing device and laser processing method
JP2009274081A (en) * 2008-05-12 2009-11-26 Sumitomo Electric Ind Ltd Laser processing apparatus
JP2010092952A (en) * 2008-10-06 2010-04-22 Ihi Corp Device and method for manufacturing white led
JP2011011212A (en) * 2009-06-30 2011-01-20 Mitsuboshi Diamond Industrial Co Ltd Glass substrate working device using laser beam
JP2011100073A (en) * 2009-11-09 2011-05-19 Seiko Epson Corp Optical scanning apparatus and image forming apparatus
WO2011135771A1 (en) * 2010-04-30 2011-11-03 パナソニック株式会社 Two-dimensional scanner
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
JP2022065693A (en) * 2020-10-16 2022-04-28 国立大学法人信州大学 Optical unit, laser processing equipment, laser processing method and three-dimensional processing equipment
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107538A1 (en) * 2008-02-29 2009-09-03 トヨタ自動車 株式会社 Laser processing device and laser processing method
JP2009274081A (en) * 2008-05-12 2009-11-26 Sumitomo Electric Ind Ltd Laser processing apparatus
JP2010092952A (en) * 2008-10-06 2010-04-22 Ihi Corp Device and method for manufacturing white led
JP2011011212A (en) * 2009-06-30 2011-01-20 Mitsuboshi Diamond Industrial Co Ltd Glass substrate working device using laser beam
JP2011100073A (en) * 2009-11-09 2011-05-19 Seiko Epson Corp Optical scanning apparatus and image forming apparatus
JP2011232661A (en) * 2010-04-30 2011-11-17 Panasonic Corp Two-dimensional scanner
US8582190B2 (en) 2010-04-30 2013-11-12 Panasonic Corporation Two-dimensional scanning device
WO2011135771A1 (en) * 2010-04-30 2011-11-03 パナソニック株式会社 Two-dimensional scanner
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JP2022065693A (en) * 2020-10-16 2022-04-28 国立大学法人信州大学 Optical unit, laser processing equipment, laser processing method and three-dimensional processing equipment
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Similar Documents

Publication Publication Date Title
JP2007253203A (en) Optical apparatus for laser beam machining
EP1271219B1 (en) Laser beam delivery system with trepanning module
JP4401410B2 (en) Laser processing equipment
KR20150126603A (en) Coordination of beam angle and workpiece movement for taper control
JP5242036B2 (en) Laser processing equipment
JP3292058B2 (en) Method and apparatus for processing wiring substrate using laser light
JP2016132035A (en) Laser machining systems and methods
JP2009178720A (en) Laser beam machining apparatus
JP5153205B2 (en) Laser marking device
JP2006281268A (en) Laser beam machine
KR101026356B1 (en) Laser scanning device
KR101918203B1 (en) Laser Processing Apparatus and Method
JP2008180983A (en) Laser microfabrication method
KR101299234B1 (en) Laser machining apparatus and method being capable of 2-beam-machining
JP2005262219A (en) Laser beam machining apparatus and laser beam drawing method
JP2004146823A5 (en)
JP2020062658A (en) Laser processing device and laser processing method
JP2004306101A (en) Apparatus and method for laser beam machining
JP3524855B2 (en) Laser irradiation apparatus and laser processing method
JP4169264B2 (en) Light beam generator
JP2020062657A (en) Laser processing device and laser processing method
CN212682809U (en) Laser equipment for wafer marking
KR102035020B1 (en) Micro Pattern Processing Apparatus Using Laser
JP4027873B2 (en) Laser processing apparatus and laser processing method
JP2023066566A (en) Illumination optical system and laser processing device