JP2006281268A - Laser beam machine - Google Patents

Laser beam machine Download PDF

Info

Publication number
JP2006281268A
JP2006281268A JP2005104326A JP2005104326A JP2006281268A JP 2006281268 A JP2006281268 A JP 2006281268A JP 2005104326 A JP2005104326 A JP 2005104326A JP 2005104326 A JP2005104326 A JP 2005104326A JP 2006281268 A JP2006281268 A JP 2006281268A
Authority
JP
Japan
Prior art keywords
laser
optical path
laser beam
total reflection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104326A
Other languages
Japanese (ja)
Other versions
JP2006281268A5 (en
Inventor
Atsushi Saito
敦 齋藤
Kaoru Matsumura
薫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2005104326A priority Critical patent/JP2006281268A/en
Priority to TW095105909A priority patent/TW200633807A/en
Priority to CNA2006100573189A priority patent/CN1840278A/en
Priority to KR1020060028939A priority patent/KR20060105577A/en
Publication of JP2006281268A publication Critical patent/JP2006281268A/en
Publication of JP2006281268A5 publication Critical patent/JP2006281268A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machine capable of effectively using a laser oscillator and machining various workpieces. <P>SOLUTION: A beam splitter 30 is freely positioned at an operating position where the beam splitter 30 interferes with a laser beam 2 and a standby position where the beam splitter does not interfere the laser beam 2. Also, a total reflection mirror 24 is freely positioned at a reflecting position where a laser beam 2q to be reflected becomes coaxial with a reflection beam 2b that is reflected by a total reflection mirror 34 and made incident to a total reflection mirror 25, and at a retreating position where the total reflection mirror 24 does not interfere with reflection beam 2b. When a laser beam is supplied to either one of machining heads 7a, 7b, the beam splitter 30 is positioned at the standby position while the total reflection mirror 24 is positioned at the reflecting position. When a laser beam is supplied to both machining heads 7a, 7b simultaneously, the beam splitter 30 is positioned at the operating position while the total reflection mirror 24 is positioned at the retreating position. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2個のレーザ照射部を備え、1個のレーザ発振器から出力されたレーザを2個のレーザ照射部に供給するようにしたレーザ加工機に関する。   The present invention relates to a laser processing machine that includes two laser irradiation units and supplies a laser output from one laser oscillator to two laser irradiation units.

図4は、従来のレーザ加工機の光学系の構成図である(特許文献1)。レーザ発振器1は、パルス状のレーザビーム2を出力する。ハーフミラー3は、入射するレーザビーム2の約50%を透過させ、残りを反射する。以下、ハーフミラー3を透過したレーザビーム2を透過ビーム2a、反射したレーザビーム2を反射ビーム2bという。全反射コーナミラー4a〜4eの反射面は固定されている。ガルバノミラー5a〜5dは、図中矢印で示すように、回転軸の回りに回転自在であり、反射面を任意の角度に位置決めすることができる。ガルバノミラー5a、5bは集光レンズ(fθレンズ)6aと共に図示を省略する支持手段に支持され第1の加工ヘッド7aを構成している。ガルバノミラー5c、5dは集光レンズ6bと共に図示を省略する支持手段に支持され第2の加工ヘッド7bを構成している。プリント基板8は、X−Yテーブル9に固定されている。ガルバノミラー5a、5bのスキャン領域10aおよびガルバノミラー5c、5dのスキャン領域10bは、50mm×50mm程度の大きさである。   FIG. 4 is a configuration diagram of an optical system of a conventional laser beam machine (Patent Document 1). The laser oscillator 1 outputs a pulsed laser beam 2. The half mirror 3 transmits about 50% of the incident laser beam 2 and reflects the rest. Hereinafter, the laser beam 2 transmitted through the half mirror 3 is referred to as a transmitted beam 2a, and the reflected laser beam 2 is referred to as a reflected beam 2b. The reflection surfaces of the total reflection corner mirrors 4a to 4e are fixed. The galvanometer mirrors 5a to 5d are rotatable around the rotation axis as indicated by arrows in the drawing, and the reflection surface can be positioned at an arbitrary angle. The galvanometer mirrors 5a and 5b are supported by a support means (not shown) together with a condenser lens (fθ lens) 6a to constitute a first processing head 7a. The galvanometer mirrors 5c and 5d are supported by a support means (not shown) together with the condenser lens 6b to constitute a second processing head 7b. The printed circuit board 8 is fixed to an XY table 9. The scan area 10a of the galvanometer mirrors 5a and 5b and the scan area 10b of the galvanometer mirrors 5c and 5d have a size of about 50 mm × 50 mm.

次に、従来のレーザ加工機の動作を説明する。レーザ発振器1から発振されたレーザビーム2は、ハーフミラー3により透過ビーム2aと反射ビーム2bに分けられる。透過ビーム2aは、全反射コーナミラー4a、4bにより反射されてガルバノミラー5aに入射し、ガルバノミラー5a、5bで定まる光路を通り、集光レンズ6aで集光され、スキャン領域10a内の穴を加工する。また、反射ビーム2bは、全反射コーナミラー4c〜4eにより反射されてガルバノミラー5cに入射し、ガルバノミラー5c、5dで定まる光路を通り、集光レンズ6bで集光され、スキャン領域10b内の穴を加工する。   Next, the operation of the conventional laser beam machine will be described. The laser beam 2 oscillated from the laser oscillator 1 is divided by the half mirror 3 into a transmitted beam 2a and a reflected beam 2b. The transmitted beam 2a is reflected by the total reflection corner mirrors 4a and 4b, enters the galvanometer mirror 5a, passes through an optical path determined by the galvanometer mirrors 5a and 5b, is collected by the condenser lens 6a, and passes through a hole in the scan region 10a. Process. The reflected beam 2b is reflected by the total reflection corner mirrors 4c to 4e, enters the galvanometer mirror 5c, passes through an optical path determined by the galvanometer mirrors 5c and 5d, is collected by the condenser lens 6b, and is reflected in the scan region 10b. Drill holes.

そして、ガルバノミラー5a〜5dを動作させ、加工ヘッド7aはスキャン領域10a内の穴を、加工ヘッド7bはスキャン領域10b内の穴を、順に加工する。スキャン領域10a、10b内の穴の加工が終了したら、X−Yテーブル9を移動させ、それぞれ次のスキャン領域内の加工を行う。なお、加工ヘッド7aと加工ヘッド7bの間隔Lは調整できるように構成されており、間隔Lはスキャン領域10aとスキャン領域10bが重複せず、かつX−Yテーブル9の移動回数が最小になるように予め調整される。   Then, the galvanometer mirrors 5a to 5d are operated, and the processing head 7a processes holes in the scan region 10a and the processing head 7b sequentially processes holes in the scan region 10b. When the processing of the holes in the scan areas 10a and 10b is completed, the XY table 9 is moved to process each of the next scan areas. The interval L between the machining head 7a and the machining head 7b is configured to be adjustable. The interval L does not overlap the scan area 10a and the scan area 10b, and the number of movements of the XY table 9 is minimized. Are adjusted in advance.

しかし、このレーザ加工機の場合、加工に必要な1ヘッド当たりのピーク値がWPである2本の分割ビームを得るためには、ピーク値が2WPの容量が大きいレーザ発振器を準備する必要がある。   However, in the case of this laser processing machine, in order to obtain two split beams having a peak value of WP per head necessary for processing, it is necessary to prepare a laser oscillator having a peak value of 2 WP and a large capacity. .

また、ハーフミラー(あるいは一対の45度反射ミラー等)によりレーザビームを分割する場合、透過ビーム2aと反射ビーム2bが同時に発生するため、スキャン領域10aとスキャン領域10bの加工個所は同数でなければならず、加工できるプリント基板の種類が限定される。また、ヘッドの数を奇数にすることは困難である。   In addition, when the laser beam is divided by a half mirror (or a pair of 45 degree reflection mirrors, etc.), the transmitted beam 2a and the reflected beam 2b are generated at the same time. In addition, the types of printed circuit boards that can be processed are limited. Also, it is difficult to make the number of heads odd.

そこで、レーザビームの光路を偏向可能な光路偏向手段を加工ヘッドと同数準備して光路に直列に配置し、パルス状のレーザビームを加工ヘッドのいずれか1個に供給するように構成したレーザ加工機がある(特許文献2)。   Therefore, laser beam processing is configured such that the same number of optical path deflecting means that can deflect the optical path of the laser beam as the processing head are prepared and arranged in series in the optical path, and a pulsed laser beam is supplied to any one of the processing heads. There is a machine (Patent Document 2).

特開平9−308983号公報JP-A-9-308983 特開2000−263271号公報JP 2000-263271 A

特許文献2の技術に依れば、レーザ発振器を有効に活用することができる。また、加工エネルギを正確に制御することが可能であり、品質に優れる穴を加工することができる。   According to the technique of Patent Document 2, the laser oscillator can be used effectively. Further, the machining energy can be accurately controlled, and a hole with excellent quality can be machined.

しかし、特許文献2のレーザ加工機は、例えば2個のヘッドがそれぞれ同一のワークを加工する場合、特許文献1のレーザ加工機に比べて加工速度が遅くなる。   However, the laser processing machine disclosed in Patent Document 2 has a lower processing speed than the laser processing machine disclosed in Patent Document 1, for example, when two heads process the same workpiece.

本発明の目的は、レーザ発振器を有効に活用することができ、かつ種々のワークを加工することができるレーザ加工機を提供するにある。   An object of the present invention is to provide a laser processing machine capable of effectively utilizing a laser oscillator and processing various workpieces.

上記課題を解決するため、本発明は、レーザ発振器(1)と、入射する前記レーザ発振器から出力されたレーザを第1の方向(2p)または第1の方向に対して所定の角度偏向した第2の方向(2q)に出射する光路偏向器(20,21)と、第1と第2の2個のレーザ照射部(7a,7b)と、前記光路偏向器(20,21)から出射される第1の方向(2p)の前記レーザを前記第1のレーザ照射部(7a)に導く第1の光学系(22,23)と、前記光路偏向器(20,21)から出射される第2の方向(2q)の前記レーザを前記第2のレーザ照射部(7b)に導く第2の光学系(24,25)(34,25)と、を備え、前記レーザ発振器(1)から出力される前記レーザを前記2個のレーザ照射部(7a,7b)に供給するようにしたレーザ加工機において、入射するレーザを、光軸が入射するレーザの光軸と同軸の第1の分岐レーザと、光軸が入射するレーザの光軸と交差する第2の分岐レーザに分岐して出射させるビームスプリッタ(30)と、このビームスプリッタを、前記レーザ発振器(1)と前記光路偏向器(20,21)との間で、前記レーザ発振器から出力される前記レーザの光軸に交差させる動作位置と前記レーザの光軸から外れる待機位置との間で移動させる移動手段と、動作位置に位置決めされた前記ビームスプリッタから分岐される前記第2の分岐レーザを前記第1の分岐レーザが供給されない方の前記レーザ照射部(7b)に導く第3の光学系(32,33,34)(32,40,24)と、を設け、前記レーザを、前記2個のレーザ照射部のいずれか一方または両方に供給することを選択できるようにしたことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a laser oscillator (1) and a laser beam outputted from the incident laser oscillator, deflected by a predetermined angle with respect to the first direction (2p) or the first direction. 2 is emitted from the optical path deflector (20, 21) that emits in the direction (2q), the first and second laser irradiation units (7a, 7b), and the optical path deflector (20, 21). The first optical system (22, 23) that guides the laser in the first direction (2p) to the first laser irradiation unit (7a) and the first optical system (22, 23) emitted from the optical path deflector (20, 21). And a second optical system (24, 25) (34, 25) for guiding the laser in the two directions (2q) to the second laser irradiation unit (7b), and output from the laser oscillator (1) The laser to be supplied to the two laser irradiation sections (7a, 7b) In the laser processing machine, the incident laser is branched into a first branch laser coaxial with the optical axis of the laser on which the optical axis is incident, and a second branch laser intersecting with the optical axis of the laser on which the optical axis is incident. A beam splitter (30) to be emitted, and this beam splitter intersects the optical axis of the laser output from the laser oscillator between the laser oscillator (1) and the optical path deflector (20, 21). The first branching laser comprises: a moving means for moving between the operating position to be moved and a standby position deviating from the optical axis of the laser; and the second branching laser branched from the beam splitter positioned at the operating position. A third optical system (32, 33, 34) (32, 40, 24) that leads to the laser irradiation unit (7b) that is not supplied, and the laser is applied to the two laser irradiation units Characterized in that to be able to choose to supply to either or both.

なお、上記カッコ内の符号は、図面と対照するためのものであるが、これにより特許請求の範囲に何等影響を及ぼすものではない。   In addition, although the code | symbol in the said parenthesis is for contrast with drawing, it has no influence on a claim by this.

ワークに応じてビームスプリッタの位置および光学系を選択することにより、レーザ発振器を有効に活用することができると共に、種々のワークを加工することができる。   By selecting the position of the beam splitter and the optical system according to the workpiece, the laser oscillator can be used effectively and various workpieces can be processed.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

図1は、本発明に係る第1のレーザ加工機の光学系の構成図であり、図4と同じものまたは同一機能のものは同一の符号を付して重複する説明を省略する。   FIG. 1 is a configuration diagram of an optical system of a first laser beam machine according to the present invention. Components having the same or the same functions as those in FIG.

レーザ発振器1から出力されるレーザビーム2の光軸上には、光路偏向手段である音響光学素子20、21(以下、「光路偏向器」という。)が接近した状態で直列に配置されている。   On the optical axis of the laser beam 2 output from the laser oscillator 1, acoustooptic elements 20 and 21 (hereinafter referred to as “optical path deflectors”) as optical path deflecting means are arranged in series in an approaching state. .

光路偏向器20は、予め定める超音波発生電圧が印加されている場合(以下、「オンの場合」という。)は、レーザビーム2の光軸を角度θ偏向させ、その他の場合(以下、「オフの場合」という。)はレーザビーム2を透過(すなわち直進)させる。また、光路偏向器21は、オンの場合レーザビーム2の光軸を角度−θ偏向させ、オフの場合はレーザビーム2を透過させる。なお、この実施例の場合、光路偏向器20によって偏向されたレーザビーム2は光路偏向器21を透過するように構成されている。   The optical path deflector 20 deflects the optical axis of the laser beam 2 by an angle θ when a predetermined ultrasonic generation voltage is applied (hereinafter referred to as “on”), and otherwise (hereinafter referred to as “ In the case of “off”, the laser beam 2 is transmitted (that is, goes straight). The optical path deflector 21 deflects the optical axis of the laser beam 2 by an angle −θ when turned on, and transmits the laser beam 2 when turned off. In the case of this embodiment, the laser beam 2 deflected by the optical path deflector 20 is configured to pass through the optical path deflector 21.

以下、光路偏向器20により光路を角度θ偏向されたレーザビーム2をレーザビーム2p、光路偏向器21により光路を角度−θ偏向されたレーザビーム2をレーザビーム2qという。   Hereinafter, the laser beam 2 whose optical path is deflected by the angle θ by the optical path deflector 20 is referred to as a laser beam 2p, and the laser beam 2 whose optical path is deflected by an angle −θ by the optical path deflector 21 is referred to as a laser beam 2q.

第1の光学系を構成する全反射ミラー22、23は、レーザビーム2pをガルバノミラー5aに入射させる。なお、全反射ミラー22、23は固定されている。   The total reflection mirrors 22 and 23 constituting the first optical system make the laser beam 2p incident on the galvanometer mirror 5a. The total reflection mirrors 22 and 23 are fixed.

第2の光学系を構成する全反射ミラー24、25は、レーザビーム2qをガルバノミラー5cに入射させる。なお、全反射ミラー24は、図示を省略する全反射ミラー移動装置に保持され、図において実線で示す位置から点線で示す位置に移動されるようになっている。以下、全反射ミラー24の実線で示す位置を「反射位置」、点線で示す位置を「待避位置」という。   The total reflection mirrors 24 and 25 constituting the second optical system cause the laser beam 2q to enter the galvanometer mirror 5c. The total reflection mirror 24 is held by a total reflection mirror moving device (not shown) and is moved from the position indicated by the solid line to the position indicated by the dotted line in the drawing. Hereinafter, the position indicated by the solid line of the total reflection mirror 24 is referred to as “reflection position”, and the position indicated by the dotted line is referred to as “retraction position”.

ビームスプリッタ30は、入射するレーザの50%を透過させ、残りの50%を反射する。図示を省略するビームスプリッタ移動装置はビームスプリッタ30を、レーザ発振器1と光路偏向器20との間で、点線で示すレーザビーム2の光軸上または実線で示すレーザビーム2と干渉しない位置に位置決めする。以下、実線で示すビームスプリッタ30の位置を「待機位置」、点線で示すビームスプリッタ30の位置を「動作位置」という。   The beam splitter 30 transmits 50% of the incident laser and reflects the remaining 50%. In the beam splitter moving device (not shown), the beam splitter 30 is positioned between the laser oscillator 1 and the optical path deflector 20 at a position on the optical axis of the laser beam 2 indicated by a dotted line or at a position that does not interfere with the laser beam 2 indicated by a solid line. To do. Hereinafter, the position of the beam splitter 30 indicated by the solid line is referred to as “standby position”, and the position of the beam splitter 30 indicated by the dotted line is referred to as “operation position”.

ビームスプリッタ30の反射側には、第3の光学系を構成する全反射ミラー32と光路偏向器33と全反射ミラー34が配置されている。   On the reflection side of the beam splitter 30, a total reflection mirror 32, an optical path deflector 33, and a total reflection mirror 34 constituting a third optical system are arranged.

光路偏向器33は、光路偏向器21と同様に、予め定める超音波発生電圧が印加されている場合は、入射する反射ビーム2bの光軸を角度−θ偏向させ、その他の場合は反射ビーム2bを透過させる。   Similarly to the optical path deflector 21, the optical path deflector 33 deflects the optical axis of the incident reflected beam 2b by an angle −θ when a predetermined ultrasonic wave generation voltage is applied, and the reflected beam 2b otherwise. Permeate.

全反射ミラー34は、反射ビーム2bの光軸(図中の点線)が、全反射ミラー24で反射されて全反射ミラー25に入射するレーザビーム2qの光軸(図中の二点鎖線)と同軸になるように、すなわち、第2の光学系の光軸と同軸になるように位置決めされている。   The total reflection mirror 34 has an optical axis (dotted line in the figure) of the reflected beam 2b reflected by the total reflection mirror 24 and incident on the total reflection mirror 25 (two-dot chain line in the figure). It is positioned so as to be coaxial, that is, coaxial with the optical axis of the second optical system.

次に、この実施形態の動作を説明する。
(1)加工ヘッド7aと加工ヘッド7bの加工内容が異なる場合
予め、ビームスプリッタ30を待機位置に、全反射ミラー24を反射位置に、それぞれ位置決めしておく。
Next, the operation of this embodiment will be described.
(1) When the machining contents of the machining head 7a and the machining head 7b are different In advance, the beam splitter 30 is positioned in the standby position and the total reflection mirror 24 is positioned in the reflection position.

そして、レーザビーム2pを加工ヘッド7aに導く場合は、光路偏向器20をオン、光路偏向器21をオフさせた状態でレーザ発振器1にレーザビーム2を出力させる。   When the laser beam 2p is guided to the machining head 7a, the laser oscillator 2 is caused to output the laser beam 2 with the optical path deflector 20 turned on and the optical path deflector 21 turned off.

また、レーザビーム2qを加工ヘッド7bに導く場合は、光路偏向器20をオフ、光路偏向器21をオンさせた状態でレーザ発振器1にレーザビーム2を出力させる。   When the laser beam 2q is guided to the machining head 7b, the laser beam 2 is output to the laser oscillator 1 with the optical path deflector 20 turned off and the optical path deflector 21 turned on.

(2)加工ヘッド7aと加工ヘッド7bの加工内容が同じ場合
予め、ビームスプリッタ30を動作位置に位置決めしておく。また、全反射ミラー24を待避位置に位置決めしておく。
(2) When the machining contents of the machining head 7a and the machining head 7b are the same The beam splitter 30 is positioned in the operating position in advance. Further, the total reflection mirror 24 is positioned at the retracted position.

光路偏向器20、33をオン、光路偏向器21をオフさせた状態でレーザ発振器1にレーザビーム2を出力させる。すると、ビームスプリッタ30を透過した透過ビーム2aは第1の光学系を介して加工ヘッド7aに入射し、ビームスプリッタ30で反射された反射ビーム2bは点線で示す光路を通り、第3の光学系および第2の光学系を介して加工ヘッド7bに入射する。この結果、スキャン領域10a、10b内の加工を同時に行うことができる。   The laser beam 2 is output to the laser oscillator 1 with the optical path deflectors 20 and 33 turned on and the optical path deflector 21 turned off. Then, the transmitted beam 2a that has passed through the beam splitter 30 enters the processing head 7a via the first optical system, and the reflected beam 2b reflected by the beam splitter 30 passes through the optical path indicated by the dotted line to pass through the third optical system. And it injects into the process head 7b via a 2nd optical system. As a result, the processing in the scan areas 10a and 10b can be performed simultaneously.

この実施例では、第1〜第3の総ての光学系に光路偏向器を配置したので、ビームスプリッタ30を用いない場合だけでなくビームスプリッタ30を用いてレーザビーム2を分岐する場合も、スキャン領域10a、10bに入射するレーザビームのエネルギ強度を正確に制御することができる。この結果、加工品質を均一なものとすることができる。   In this embodiment, since the optical path deflectors are arranged in all the first to third optical systems, not only when the beam splitter 30 is not used but also when the laser beam 2 is branched using the beam splitter 30, It is possible to accurately control the energy intensity of the laser beam incident on the scan regions 10a and 10b. As a result, the processing quality can be made uniform.

また、レーザビーム2pが光路偏向器21を透過するように構成したので、レーザビーム2pのエネルギ強度はレーザビーム2qとほぼ同じになり、光路偏向器20と光路偏向器21の制御が容易である。   Further, since the laser beam 2p is transmitted through the optical path deflector 21, the energy intensity of the laser beam 2p is almost the same as that of the laser beam 2q, and the optical path deflector 20 and the optical path deflector 21 can be easily controlled. .

なお、通常、反射ビーム2bのエネルギは透過ビーム2aのエネルギよりも大きくなるので、図2に示すように、光路偏向器33に代えてエネルギ調節手段35(例えば透明なガラス)を設け、反射ビーム2bのエネルギを減衰させて反射ビーム2bのエネルギ強度と透過ビーム2aエネルギ強度がほぼ等しくなるように構成してもよい。   Normally, the energy of the reflected beam 2b is larger than the energy of the transmitted beam 2a. Therefore, as shown in FIG. 2, instead of the optical path deflector 33, energy adjusting means 35 (for example, transparent glass) is provided, and the reflected beam The energy intensity of the reflected beam 2b may be substantially equal to the energy intensity of the transmitted beam 2a by attenuating the energy of 2b.

また、光路偏向器33またはエネルギ調節手段35は設けなくてもよい。   Further, the optical path deflector 33 or the energy adjusting means 35 may not be provided.

図3は、本発明に係る第2のレーザ加工機の光学系の構成図であり、図1と同じものまたは同一機能のものは同一の符号を付して重複する説明を省略する。   FIG. 3 is a block diagram of the optical system of the second laser beam machine according to the present invention. Components having the same or the same functions as those in FIG.

この実施例の場合、光路偏向器20と光路偏向器21は距離を隔てて直列に配置されており、レーザビーム2pは光路偏向器21を透過しないように構成されていると共に、光路偏向器21は出射方向が光路偏向器20の出射方向と平行になるように構成されている。また、全反射ミラー24は図示を省略する全反射ミラー24移動装置により光路偏向器20と光路偏向器21との間に位置決め可能に配置されている。反射位置に配置された全反射ミラー24により反射される反射ビーム2bの光軸は光路偏向器21に入射するレーザビーム2の光軸と同軸である。   In this embodiment, the optical path deflector 20 and the optical path deflector 21 are arranged in series at a distance, and the laser beam 2p is configured not to pass through the optical path deflector 21 and the optical path deflector 21. Is configured such that the emission direction is parallel to the emission direction of the optical path deflector 20. The total reflection mirror 24 is disposed between the optical path deflector 20 and the optical path deflector 21 by a total reflection mirror 24 moving device (not shown). The optical axis of the reflected beam 2 b reflected by the total reflection mirror 24 arranged at the reflection position is coaxial with the optical axis of the laser beam 2 incident on the optical path deflector 21.

全反射ミラー32と反射位置においた全反射ミラー24との間には、全反射ミラー32で反射された反射ビーム2bを全反射ミラー24に入射させる固定の全反射ミラー40が配置されている。そして、この実施例では、全反射ミラー32、全反射ミラー40および全反射ミラー24により第3の光学系が構成されている。   Between the total reflection mirror 32 and the total reflection mirror 24 at the reflection position, a fixed total reflection mirror 40 that causes the reflected beam 2b reflected by the total reflection mirror 32 to enter the total reflection mirror 24 is disposed. In this embodiment, the total reflection mirror 32, the total reflection mirror 40, and the total reflection mirror 24 constitute a third optical system.

次に、この実施形態の動作を説明する。   Next, the operation of this embodiment will be described.

(1)加工ヘッド7aと加工ヘッド7bの加工内容が異なる場合
予め、ビームスプリッタ30を待機位置に、全反射ミラー24を待避位置に、それぞれ位置決めしておく。
(1) When the machining contents of the machining head 7a and the machining head 7b are different: The beam splitter 30 is positioned in the standby position and the total reflection mirror 24 is positioned in the standby position in advance.

そして、レーザビーム2pを加工ヘッド7aに導く場合は、光路偏向器20をオンさせた状態でレーザ発振器1にレーザを出力させる。   When the laser beam 2p is guided to the machining head 7a, the laser is output to the laser oscillator 1 with the optical path deflector 20 turned on.

また、レーザビーム2qを加工ヘッド7bに導く場合は、光路偏向器20をオフ、光路偏向器21をオンさせた状態でレーザ発振器1にレーザを出力させる。   Further, when the laser beam 2q is guided to the machining head 7b, the laser is output to the laser oscillator 1 with the optical path deflector 20 turned off and the optical path deflector 21 turned on.

(2)加工ヘッド7aと加工ヘッド7bの加工内容が同じ場合
予め、ビームスプリッタ30を動作位置に位置決めしておく。また、全反射ミラー24を反射位置に決めしておく。
(2) When the machining contents of the machining head 7a and the machining head 7b are the same The beam splitter 30 is positioned in the operating position in advance. Further, the total reflection mirror 24 is determined as a reflection position.

光路偏向器20、21をオンさせた状態でレーザ発振器1にレーザビーム2を出力させる。すると、ビームスプリッタ30を透過した透過ビーム2aは第1の光学系を介して加工ヘッド7aに入射し、ビームスプリッタ30で反射された反射ビーム2bは点線で示す光路を通り、第3の光学系および第2の光学系を介して加工ヘッド7bに入射する。この結果、スキャン領域10a、10b内の加工を同時に行うことができる。   The laser beam 2 is output to the laser oscillator 1 with the optical path deflectors 20 and 21 turned on. Then, the transmitted beam 2a that has passed through the beam splitter 30 enters the processing head 7a via the first optical system, and the reflected beam 2b reflected by the beam splitter 30 passes through the optical path indicated by the dotted line to pass through the third optical system. And it injects into the process head 7b via a 2nd optical system. As a result, the processing in the scan areas 10a and 10b can be performed simultaneously.

なお、上記実施例1,2では加工ヘッド7a,7bを1個としたが、それぞれに入射する入射光を2分割して4個のヘッドあるいは4個のヘッドのうちの2ヘッドに供給するようにしてもよい。   In the first and second embodiments, the number of the processing heads 7a and 7b is one. However, the incident light incident on each of the processing heads 7a and 7b is divided into two to be supplied to four heads or two of the four heads. It may be.

本発明に係る第1のレーザ加工機の光学系の構成図である。(実施例1)It is a block diagram of the optical system of the 1st laser processing machine concerning this invention. Example 1 本発明に係る第1のレーザ加工機の光学系の変型例である。It is a modification of the optical system of the 1st laser beam machine concerning the present invention. 本発明に係る第2のレーザ加工機の光学系の構成図である。(実施例2)It is a block diagram of the optical system of the 2nd laser processing machine concerning this invention. (Example 2) 従来のレーザ加工機の光学系の構成図である。It is a block diagram of the optical system of the conventional laser beam machine.

符号の説明Explanation of symbols

2 レーザビーム
2b 反射ビーム
2q レーザビーム
7a 加工ヘッド
7b 加工ヘッド
24 全反射ミラー
25 全反射ミラー
30 ビームスプリッタ
34 全反射ミラー
2 Laser beam 2b Reflected beam 2q Laser beam 7a Processing head 7b Processing head 24 Total reflection mirror 25 Total reflection mirror 30 Beam splitter 34 Total reflection mirror

Claims (2)

レーザ発振器と、入射する前記レーザ発振器から出力されたレーザを第1の方向または第1の方向に対して所定の角度偏向した第2の方向に出射する光路偏向器と、第1と第2の2個のレーザ照射部と、前記光路偏向器から出射される第1の方向の前記レーザを前記第1のレーザ照射部に導く第1の光学系と、前記光路偏向器から出射される第2の方向の前記レーザを前記第2のレーザ照射部に導く第2の光学系と、を備え、前記レーザ発振器から出力される前記レーザを前記2個のレーザ照射部に供給するようにしたレーザ加工機において、
入射するレーザを、光軸が入射するレーザの光軸と同軸の第1の分岐レーザと、光軸が入射するレーザの光軸と交差する第2の分岐レーザに分岐して出射させるビームスプリッタと、
このビームスプリッタを、前記レーザ発振器と前記光路偏向器との間で、前記レーザ発振器から出力される前記レーザの光軸に交差させる動作位置と前記レーザの光軸から外れる待機位置との間で移動させる移動手段と、
動作位置に位置決めされた前記ビームスプリッタから分岐される前記第2の分岐レーザを前記第1の分岐レーザが供給されない方の前記レーザ照射部に導く第3の光学系と、を設け、
前記レーザを、前記2個のレーザ照射部のいずれか一方または両方に供給することを選択できるようにしたことを特徴とするレーザ加工機。
A laser oscillator, an optical path deflector for emitting the laser output from the incident laser oscillator in a first direction or a second direction deflected by a predetermined angle with respect to the first direction, and first and second Two laser irradiation units, a first optical system that guides the laser in the first direction emitted from the optical path deflector to the first laser irradiation unit, and a second optical system that is emitted from the optical path deflector And a second optical system for guiding the laser in the direction to the second laser irradiation unit, and supplying the laser output from the laser oscillator to the two laser irradiation units In the machine
A first branch laser coaxial with the optical axis of the laser on which the optical axis is incident, and a beam splitter for branching and emitting the incident laser into a second branch laser that intersects the optical axis of the laser on which the optical axis is incident; ,
The beam splitter is moved between the laser oscillator and the optical path deflector between an operating position intersecting the optical axis of the laser output from the laser oscillator and a standby position deviating from the optical axis of the laser. Moving means to cause
A third optical system for guiding the second branch laser branched from the beam splitter positioned at an operating position to the laser irradiation unit to which the first branch laser is not supplied, and
A laser processing machine, wherein the laser can be selected to be supplied to one or both of the two laser irradiation units.
第2の光路偏向器を設け、この第2の光路偏向器を前記第3の光学系に配置することを特徴とする請求項1に記載のレーザ加工機。
The laser beam machine according to claim 1, wherein a second optical path deflector is provided, and the second optical path deflector is disposed in the third optical system.
JP2005104326A 2005-03-31 2005-03-31 Laser beam machine Pending JP2006281268A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005104326A JP2006281268A (en) 2005-03-31 2005-03-31 Laser beam machine
TW095105909A TW200633807A (en) 2005-03-31 2006-02-22 Laser machining apparatus
CNA2006100573189A CN1840278A (en) 2005-03-31 2006-03-08 Laser processing device
KR1020060028939A KR20060105577A (en) 2005-03-31 2006-03-30 Laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104326A JP2006281268A (en) 2005-03-31 2005-03-31 Laser beam machine

Publications (2)

Publication Number Publication Date
JP2006281268A true JP2006281268A (en) 2006-10-19
JP2006281268A5 JP2006281268A5 (en) 2007-04-12

Family

ID=37029564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104326A Pending JP2006281268A (en) 2005-03-31 2005-03-31 Laser beam machine

Country Status (4)

Country Link
JP (1) JP2006281268A (en)
KR (1) KR20060105577A (en)
CN (1) CN1840278A (en)
TW (1) TW200633807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050414A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Laser beam machining apparatus
JP2008132517A (en) * 2006-11-28 2008-06-12 Sumitomo Heavy Ind Ltd Laser irradiation apparatus and laser beam machining method
TWI406730B (en) * 2007-11-21 2013-09-01 Lpkf Laser & Electronics Ag Vorrichtung zur bearbeitung eines werkstuecks mittels paralleler laserstrahlen
CN112538566A (en) * 2020-11-25 2021-03-23 中国科学院宁波材料技术与工程研究所 Laser shock peening system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE477876T1 (en) * 2008-05-02 2010-09-15 Leister Process Tech METHOD AND LASER DEVICE FOR PROCESSING AND/OR CONNECTING WORKPIECES USING LASER RADIATION WITH POWERFUL AND PILOT LASER AND AT LEAST ONE DIFFRACTIVE OPTICAL ELEMENT
KR101134937B1 (en) * 2009-10-14 2012-04-17 주식회사 한광옵토 Laser irradiation apparatus
JP6430790B2 (en) * 2014-11-25 2018-11-28 株式会社ディスコ Laser processing equipment
JP6851751B2 (en) * 2016-08-30 2021-03-31 キヤノン株式会社 Optical equipment, processing equipment, and article manufacturing methods
JP6844901B2 (en) * 2017-05-26 2021-03-17 株式会社ディスコ Laser processing equipment and laser processing method
WO2020159666A1 (en) * 2019-01-31 2020-08-06 Electro Scientific Industries, Inc. Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050414A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Laser beam machining apparatus
JP2008132517A (en) * 2006-11-28 2008-06-12 Sumitomo Heavy Ind Ltd Laser irradiation apparatus and laser beam machining method
JP4490410B2 (en) * 2006-11-28 2010-06-23 住友重機械工業株式会社 Laser irradiation apparatus and laser processing method
TWI406730B (en) * 2007-11-21 2013-09-01 Lpkf Laser & Electronics Ag Vorrichtung zur bearbeitung eines werkstuecks mittels paralleler laserstrahlen
CN112538566A (en) * 2020-11-25 2021-03-23 中国科学院宁波材料技术与工程研究所 Laser shock peening system

Also Published As

Publication number Publication date
CN1840278A (en) 2006-10-04
KR20060105577A (en) 2006-10-11
TW200633807A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
JP2006281268A (en) Laser beam machine
JP4459530B2 (en) Laser processing equipment
JP4765378B2 (en) Laser processing equipment
JP5555250B2 (en) A method for controlling the dynamic thermal load on a laser beam positioning system to achieve high throughput laser machining of workpieces
JP5133033B2 (en) Laser processing equipment
JP3479878B2 (en) Laser processing method and processing apparatus
US6849824B2 (en) Multibeam laser drilling apparatus
EP2011599B1 (en) Laser processing method and laser processing apparatus
KR100864863B1 (en) Multi laser system
JP2007253203A (en) Optical apparatus for laser beam machining
KR100817825B1 (en) Laser machining apparatus
KR20150126603A (en) Coordination of beam angle and workpiece movement for taper control
JPH02281678A (en) Apparatus and method for multiplexing coherent high energy continuous wave laser beam
JP4490410B2 (en) Laser irradiation apparatus and laser processing method
JP2008279472A (en) Laser marking apparatus
JPH0732183A (en) Co2 laser beam machine
JP3194248B2 (en) Laser drilling apparatus and laser drilling method
JP3682295B2 (en) Laser processing equipment
JP2002011584A (en) Multi-axis laser machining device and method of laser machining
JP2018103199A (en) Laser processing device and laser processing method
JP2010023100A (en) Laser beam machining apparatus and laser beam machining method
JP3642930B2 (en) Multi-axis laser processing method and apparatus
JP2002035979A (en) Laser beam device and laser beam processing device
JP2002346775A (en) Device and method for laser beam machining
JP4948923B2 (en) Beam irradiation apparatus and beam irradiation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929