JP2006248885A - Cutting method of quartz by ultrashort pulse laser - Google Patents

Cutting method of quartz by ultrashort pulse laser Download PDF

Info

Publication number
JP2006248885A
JP2006248885A JP2005095256A JP2005095256A JP2006248885A JP 2006248885 A JP2006248885 A JP 2006248885A JP 2005095256 A JP2005095256 A JP 2005095256A JP 2005095256 A JP2005095256 A JP 2005095256A JP 2006248885 A JP2006248885 A JP 2006248885A
Authority
JP
Japan
Prior art keywords
quartz
laser
cutting
ultrashort pulse
cut surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005095256A
Other languages
Japanese (ja)
Inventor
Takeji Arai
武二 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005095256A priority Critical patent/JP2006248885A/en
Publication of JP2006248885A publication Critical patent/JP2006248885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method of a comparatively large sized quartz. <P>SOLUTION: The quartz is cut by irradiating a cut area 2 of the quartz 1 with the ultrashort pulse laser having a pulse width of 1 picosecond to 100 nanosecond from a laser oscillator 11 and making a plurality of laser irradiation marks over the entire surface of the cut area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、超短パルスレーザによって比較的大寸法の石英を切断する方法に関する。   The present invention relates to a method of cutting a relatively large size quartz by an ultrashort pulse laser.

溶融石英や合成石英ガラスを含む石英ガラスは、高い純度、耐熱性、光の透過性、化学的安定性、電気絶縁性などの優れた特性を多く併せ持ち、光学部品用材料や半導体工業用材料などとして広く利用されている。しかし、こうした優れた特性を持つ反面とても硬く、切断などの加工が極めて難しい。現在は、材料を固定して、先端にダイヤモンドをちりばめた回転円盤または帯状の切断機を用いて切断している。   Quartz glass, including fused silica and synthetic quartz glass, has many excellent properties such as high purity, heat resistance, light transmission, chemical stability, and electrical insulation, and materials for optical components, semiconductor industry, etc. As widely used. However, while having such excellent characteristics, it is very hard and processing such as cutting is extremely difficult. At present, the material is fixed, and cutting is performed using a rotating disk or a band-shaped cutting machine in which a diamond is studded at the tip.

また、石英ガラスの新しい加工方法としてレーザを用いる技術が注目されている。石英ガラスは、光学的に紫外線から近赤外にわたり広く光を透過する。そのため、幅広い波長が、当該ガラス類の加工に適用できないか試みられている。しかし、紫外レーザ光による加工は、現状では出力不足ととも加工深さに限界がある。また、遠赤外線は、石英ガラスに概ね吸収されるため加工が可能であるが、従来の赤外レーザ光による切断方法では、加工深さが数mm(10mmを超えない。)と浅いため、厚板または一定の厚みを有するブロック材の切断加工方法としては難があるとされている。   Further, a technique using a laser is attracting attention as a new processing method for quartz glass. Quartz glass optically transmits light widely from ultraviolet to near infrared. Therefore, it has been tried whether a wide range of wavelengths can be applied to the processing of the glass. However, processing with ultraviolet laser light currently has a shortage of output and a limited processing depth. Further, far-infrared rays can be processed because they are almost absorbed by quartz glass. However, in the conventional cutting method using infrared laser light, the processing depth is as shallow as several millimeters (not exceeding 10 mm), so that it is thick. It is said that there is a difficulty as a cutting method for a plate or a block material having a certain thickness.

こうした中、レーザ光線を利用した被加工物分割方法(特許文献1参照。)が開示されている。
特開2004−343008号公報
Under these circumstances, a workpiece dividing method using a laser beam (see Patent Document 1) is disclosed.
JP 2004-343008 A

上記特許文献1の技術は、レーザによるサファイア基板、炭化珪素基板、リチウムタンタレート基板、ガラス基板、石英基板及びシリコン基板のうちのいずれかを含む薄板部材などの分断方法において、レーザを照射する面(片面)側の反対面(他面)側から所定の深さ(厚さの10〜50%が好適。)まで変質層を作り、その変質した分割ラインにそって曲げモーメント(外力)を加えて分断するものである。なお、石英基板が他の基板と並列に扱われているが、ウエーハの一種として挙げられたものと考えられる。つまり、特許文献1の技術は、石英のレーザに対する特別の性質についての認識に基づくものではないと考えられる。   The technique disclosed in Patent Document 1 is a laser irradiation surface in a method of cutting a thin plate member including any of a sapphire substrate, a silicon carbide substrate, a lithium tantalate substrate, a glass substrate, a quartz substrate, and a silicon substrate. Create an altered layer from the opposite side (other side) side of the (single side) side to a predetermined depth (preferably 10 to 50% of the thickness), and apply a bending moment (external force) along the altered dividing line. It will be divided. In addition, although the quartz substrate is handled in parallel with other substrates, it is thought that it was mentioned as a kind of wafer. That is, it is considered that the technique of Patent Document 1 is not based on the recognition of the special property of quartz laser.

上記の先端にダイヤモンドをちりばめた回転円盤または帯状の切断機を用いた切断方法では、単位時間あたりの切断量が極めて少量なので、膨大な時間を要している。長尺材からの小分けやサイズの変更をする場合には、切断した後に切断面近傍の熱的な歪(ひずみ)をとるための熱処理を行っているので、さらに時間を要する。しかも、切断工具が磨耗し易く頻繁に工具交換を必要とするので、手間と費用もかかる。これは、生産工程上の大きなマイナス要因となっている。   The above-described cutting method using a rotating disk or a band-shaped cutting machine in which diamond is interspersed with the cutting method requires an enormous amount of time because the amount of cutting per unit time is extremely small. When subdividing from a long material or changing the size, since heat treatment is performed to take thermal strain (strain) in the vicinity of the cut surface after cutting, more time is required. In addition, since the cutting tool is easily worn out and requires frequent tool change, it takes time and money. This is a major negative factor in the production process.

また、上記特許文献1の分断方法では、被切断物はウエーハなどの極めて薄い板に限られる。なぜなら、曲げモーメント(外力)を加えるという手段は、ウエーハのような薄い板にしか使えないからであり、厚い板はレーザ照射により変質を起こしても溶融後即座に強力に再溶着してしまうため、曲げモーメント(外力)で分断することは不可能だからである。この方法による分断は、5mm程度の厚さが限界であり、10mm程度になると破断を伴い、これ以上になると分断は不可能となる。   Further, in the dividing method of Patent Document 1, the object to be cut is limited to an extremely thin plate such as a wafer. This is because the means of applying a bending moment (external force) can only be used on thin plates such as wafers, and thick plates will be strongly re-welded immediately after melting even if they are altered by laser irradiation. This is because it is impossible to divide by the bending moment (external force). Dividing by this method is limited to a thickness of about 5 mm. When the thickness is about 10 mm, it is broken, and when it exceeds this, the division is impossible.

このように、石英の加工時間を短くし、工具交換も不要な新しい加工法が求められている。加えて、それは歩留りの点から切断幅が狭く、切断深さも切削工具の歯幅によって制限されないような技術であり、さらに、厚い石英ガラスの切断も可能であることが望まれる。   Thus, there is a need for a new processing method that shortens the processing time of quartz and does not require tool replacement. In addition, it is a technique in which the cutting width is narrow in terms of yield, the cutting depth is not limited by the tooth width of the cutting tool, and it is desirable that thick quartz glass can be cut.

そこで、本願発明は上記の問題点に鑑みて為されたものであり、その目的の一例は、石英を超短パルスレーザにより切断する方法を提供することにある。   The present invention has been made in view of the above problems, and an example of the object is to provide a method of cutting quartz with an ultrashort pulse laser.

本願発明者は、以下の認識の下、本願発明に想到した。その認識とは、超短パルスレーザの照射熱によって石英は膨張・溶融しその後冷やされることで引張応力がはたらき、亀裂が生じる。ここに、大気中または強制供給による水分(HO)などのOH基が、石英の成分Siに反応し、Si−OHを作りさらに亀裂を進行させるというものである。 The inventor of the present application has arrived at the present invention with the following recognition. The recognition is that quartz is expanded and melted by the irradiation heat of the ultrashort pulse laser and then cooled, whereby tensile stress is applied and a crack is generated. Here, OH groups such as moisture (H 2 O) in the atmosphere or by forced supply react with the component Si of quartz to form Si—OH and further progress cracks.

本願発明者は、この認識の下、上記の課題を解決すべく本願発明をした。   Based on this recognition, the present inventor has made the present invention to solve the above-mentioned problems.

本願発明は、パルス幅が1ピコ秒乃至100ナノ秒の超短パルスレーザを石英の切断面に照射し、複数のレーザ照射痕を前記切断面の全面に亘って作ることを特徴とする超短パルスレーザによる石英の切断方法である。   According to the present invention, an ultrashort pulse laser having a pulse width of 1 picosecond to 100 nanoseconds is irradiated on a cut surface of quartz, and a plurality of laser irradiation traces are formed over the entire cut surface. This is a quartz cutting method using a pulse laser.

また、本願発明は、レーザ光線を切断面の一端乃至その近傍に集光せしめて、該一端に沿って複数のレーザ照射痕を並べて変質ラインを作り、次いでレーザ光線の集光点を他端方向に変位せしめて再び変質ラインを作り、かくして切断面の全面に亘って複数のレーザ照射痕による変質ラインを作ることを特徴とする超短パルスレーザによる石英の切断方法である。切断面は、垂直面、水平面あるいは斜面にすることができる。   In the present invention, the laser beam is condensed on one end of the cut surface or in the vicinity thereof, a plurality of laser irradiation traces are arranged along the one end to form an alteration line, and then the condensing point of the laser beam is set in the other end direction. This is a quartz cutting method using an ultra-short pulse laser characterized in that an altered line is formed again and an altered line is formed again, and thus an altered line is formed by a plurality of laser irradiation marks over the entire cut surface. The cutting plane can be a vertical plane, a horizontal plane or a slope.

また、本願発明は、前記切断面がレーザ照射方向に対して垂直面または斜面であることを特徴とする超短パルスレーザによる石英の切断方法である。ここで、切断面がレーザ照射方向に対して垂直面であるとは、例えば図7に示すように、レーザを石英の上方から照射した場合において、切断面が水平(横)になっていることである。   The invention of the present application is a method for cutting quartz by an ultrashort pulse laser, wherein the cutting surface is a surface or an inclined surface perpendicular to the laser irradiation direction. Here, the cut surface is a surface perpendicular to the laser irradiation direction, for example, as shown in FIG. 7, when the laser is irradiated from above quartz, the cut surface is horizontal (horizontal). It is.

また、本願発明は、レーザ光線を石英の片面側から照射し他面側乃至その近傍に集光せしめて、他面側に沿って複数のレーザ照射痕を並べて変質ラインを作り、次いでレーザ光線の集光点を前記石英の厚さ方向内方に変位せしめて再び変質ラインを作り、かくして前記切断面の全面に亘って順次変質ラインを作ることを特徴とする超短パルスレーザによる石英の切断方法である。レーザを石英の上方から照射した場合において、切断面が垂直面(または垂直に近い斜面)であるときには、レーザを石英の下面付近に照射し、下面に沿ってレーザ照射痕を並べて変質ラインを作り、次いで、レーザの集光点を上面方向に変位させ、先の変質ラインの上部に同様の変質ラインを作る必要がある(図4参照)。上面付近から下面方向に変質ラインを並べていくと、既に変質した箇所にレーザが干渉してしまい、順次下部方向に向かって変質ラインを並べることができないからである。なお、切断面が上面から下面までに及ばない場合、つまり、上面から石英中間付近までの切断面をつくる場合には、石英中間付近からレーザ照射を始め、上面側に向かって変質ラインを重ねることとなる。同様に、切断面が石英中間付近から下面側に及ぶ場合には、下面側から中間付近まで変質ラインを重ねることとなる。   Further, the present invention irradiates a laser beam from one side of quartz and condenses it on the other surface side or the vicinity thereof, arranges a plurality of laser irradiation traces along the other surface side, creates an altered line, and then A method for cutting quartz with an ultrashort pulse laser, characterized in that the focal point is displaced inward in the thickness direction of the quartz to create an altered line again, and thus the altered line is successively formed over the entire cut surface. It is. When the laser is irradiated from above the quartz, if the cut surface is a vertical surface (or a nearly vertical slope), the laser is irradiated near the lower surface of the quartz, and the laser irradiation traces are arranged along the lower surface to create an altered line. Then, it is necessary to displace the laser condensing point in the upper surface direction and make a similar alteration line above the previous alteration line (see FIG. 4). This is because if the alteration lines are arranged from the vicinity of the upper surface to the lower surface, the laser interferes with the already altered portions, and the alteration lines cannot be arranged sequentially in the lower direction. When the cut surface does not extend from the upper surface to the lower surface, that is, when creating a cut surface from the upper surface to the vicinity of the quartz middle, start laser irradiation from the middle of the quartz and overlap the alteration line toward the upper surface side. It becomes. Similarly, when the cut surface extends from near the middle of the quartz to the lower surface, the altered line is overlapped from the lower surface to the middle.

また、本願発明は、前記複数のレーザ照射痕のうち隣り合うレーザ照射痕同士を一部重なり合うように作ることを特徴とする超短パルスレーザによる石英の切断方法である。   Further, the present invention is a quartz cutting method using an ultrashort pulse laser, wherein adjacent laser irradiation traces among the plurality of laser irradiation traces are made to partially overlap each other.

また、本願発明は、前記複数のレーザ照射痕を作った後に、前記切断面に温度差を与えることを特徴とする超短パルスレーザによる石英の切断方法である。   Further, the present invention is a method for cutting quartz by an ultrashort pulse laser, wherein a temperature difference is given to the cut surface after forming the plurality of laser irradiation traces.

また、本願発明は、使用する超短パルスレーザが、波長λ=1,064nmのYAG基本波であって、パルス出力は10mJ(ミリジュール)以上であることを特徴とする超短パルスレーザによる石英の切断方法である。   In the present invention, the ultrashort pulse laser to be used is a YAG fundamental wave having a wavelength λ = 1,064 nm, and the pulse output is 10 mJ (millijoule) or more. This is a cutting method.

本願発明によれば、超短パルスレーザによる石英の切断方法を提供することが可能となる。これにより、工具交換が不要となり、また、加工時間も短くすることができる。さらに、切断の幅を狭く、深さもより深くすることができる。また、厚い石英であっても外力を加えることなく切断することが可能となる。現状では、この方法以外に石英ブロックのレーザによる切断はできないと推測される。   According to the present invention, it is possible to provide a quartz cutting method using an ultrashort pulse laser. This eliminates the need for tool replacement and shortens the machining time. Furthermore, the cutting width can be narrowed and the depth can be further increased. Further, even thick quartz can be cut without applying external force. At present, it is presumed that the quartz block cannot be cut by laser other than this method.

次に、本発明を実施するための最良の形態について図を用いて説明する。なお、本発明はこの実施形態に限定されるものではない。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. Note that the present invention is not limited to this embodiment.

図1において、石英1は、XYZテーブル12の上に直接置かれ、または、図示しない治具(ジグ)によって固定されて置かれている。この石英1の上方には、レーザ発振器11が、石英1の切断面2にレーザを発振できるように設けられている。   In FIG. 1, the quartz 1 is placed directly on the XYZ table 12, or is fixed by a jig (not shown). A laser oscillator 11 is provided above the quartz 1 so as to oscillate a laser on the cut surface 2 of the quartz 1.

石英1は、例えば、溶融石英や合成石英ガラスを含む石英ガラスである。また、石英1は切断面2によって切断される。   Quartz 1 is, for example, quartz glass including fused quartz or synthetic quartz glass. Further, the quartz 1 is cut by the cut surface 2.

レーザ発振器11は、超短パルスレーザを発振できるレーザ発振器である。   The laser oscillator 11 is a laser oscillator that can oscillate an ultrashort pulse laser.

XYZテーブル12は、任意の速度でXYZ軸方向の移動が可能なテーブルである。XYZテーブル12が石英1を載せてXYZ軸方向に移動することで、レーザ発振器11は、石英1内の任意の位置に超短パルスレーザを照射することができる。   The XYZ table 12 is a table that can move in the XYZ axis directions at an arbitrary speed. By moving the XYZ table 12 on the quartz 1 and moving in the XYZ axis direction, the laser oscillator 11 can irradiate an arbitrary position in the quartz 1 with an ultrashort pulse laser.

レーザ発振器11が、石英1の上方から石英1内に焦光点を合わせて超短パルスレーザを発振すると、図2に示すようなレーザ照射痕3ができる。このレーザ照射痕3は、物性変化による微小クラック(亀裂)であり、入射方向と逆方向に短く伝播する。また、レーザ照射痕3は縦長の楕円形状であり、レーザ照射痕3の大きさは、通常、楕円短軸方向の長さが約0.3ミリ、楕円長軸方向の長さが約0.6〜約1.5mmである。ただし、この大きさに限定されるものではない。長焦点レンズを用いれば、焦点深度も深まりさらにレーザ照射痕3を楕円長軸方向に長くすることもできる。   When the laser oscillator 11 oscillates an ultrashort pulse laser from the upper side of the quartz 1 with the focal point in the quartz 1, a laser irradiation mark 3 as shown in FIG. 2 is formed. This laser irradiation mark 3 is a micro crack (crack) due to a change in physical properties, and propagates short in the direction opposite to the incident direction. Further, the laser irradiation mark 3 has a vertically long elliptical shape, and the size of the laser irradiation mark 3 is usually about 0.3 mm in the length of the elliptical short axis direction and about 0.2 mm in the length of the elliptical long axis direction. 6 to about 1.5 mm. However, it is not limited to this size. If a long focus lens is used, the depth of focus can be increased and the laser irradiation mark 3 can be elongated in the direction of the ellipse long axis.

図3に示すように、レーザ照射痕3を石英1の切断面2の全面に亘って作ることで、石英を切断することができる。   As shown in FIG. 3, the quartz can be cut by making the laser irradiation marks 3 over the entire cut surface 2 of the quartz 1.

以下、図4を用いて、石英1の切断面2の全面に亘ってレーザ照射痕3を作る方法の一例について説明する。なお、レーザの焦光点は、XYZテーブル2を作動させることにより移動させる。   Hereinafter, an example of a method for forming the laser irradiation trace 3 over the entire cut surface 2 of the quartz 1 will be described with reference to FIG. The focal point of the laser is moved by operating the XYZ table 2.

まず、レーザの焦光点を切断面2の左下隅近傍に合わせ、そこから超短パルスレーザを照射する度に、レーザの焦光点を横方向に移動させる。その際、レーザ照射痕3が互いに接するか、または、一部(例えば10%乃至30%)重なり合うように超短パルスレーザを照射する。ただし、重なりすぎると既に変質した箇所に干渉するのでレーザが投入できなくなる。焦光点は、レーザ照射痕3が石英1の側面に達するまで横方向に移動させる。すると、レーザ照射痕3が短軸方向に並び、レーザ照射痕3による変質ライン4aが構成される。   First, the focal point of the laser is aligned with the vicinity of the lower left corner of the cut surface 2, and the focal point of the laser is moved laterally each time an ultrashort pulse laser is irradiated from there. At that time, the ultrashort pulse laser is irradiated so that the laser irradiation marks 3 are in contact with each other or partially overlap (for example, 10% to 30%). However, if it overlaps too much, the laser beam cannot be turned on because it interferes with the already altered part. The focal spot is moved laterally until the laser irradiation mark 3 reaches the side surface of the quartz 1. Then, the laser irradiation traces 3 are arranged in the minor axis direction, and an altered line 4a is formed by the laser irradiation traces 3.

次いで、レーザの焦光点を切断面に沿って上方(厚さ方向内方)に移動させて、この変質ライン4aの上方に同様の変質ライン4bをつくる。その際、変質ライン4aの上部と変質ライン4bの下部が接するか、または、一部重なり合うように変質ライン4bをつくる。   Next, the focal point of the laser is moved upward (inward in the thickness direction) along the cut surface, and the same altered line 4b is formed above the altered line 4a. At this time, the altered line 4b is formed so that the upper part of the altered line 4a and the lower part of the altered line 4b are in contact with each other or partially overlap.

さらに、同様の変質ラインを4c、4d、・・・、4jと上方(厚さ方向内方)に作っていく。すると、図3で示したように、変質ライン4が並列になって切断面2の全面を埋め尽くす。換言すれば、レーザ照射痕3が、切断面2の全面に亘って作られたこととなる。ここでは、この切断面2を埋め尽くす並列な変質ライン群をまとめて、変質ライン面と呼ぶ。なお、図4の点線矢印は、レーザの焦光点の移動ライン5を示した一例である。   Furthermore, the same altered line is made upward (inward in the thickness direction) 4c, 4d,..., 4j. Then, as shown in FIG. 3, the alteration lines 4 are arranged in parallel to fill the entire cut surface 2. In other words, the laser irradiation mark 3 is formed over the entire cut surface 2. Here, the parallel alteration line group which fills up this cut surface 2 is collectively called an alteration line surface. In addition, the dotted line arrow of FIG. 4 is an example which showed the movement line 5 of the focal point of a laser.

こうしてできた変質ライン面では物性変化が起きているので、時間経過とともに大気中の水分との反応により亀裂が進行する。そして、石英1は変質ライン面で分離される。   Since physical property changes occur on the altered line surface thus formed, cracks progress due to reaction with moisture in the atmosphere over time. And the quartz 1 is isolate | separated by the quality change line surface.

また、変質ライン面を適度に加熱または冷却することによって、亀裂を進行させることができる。したがって、当該変質ライン面近傍に温度差を与えることで、分離時間を制御することもできる。温度差を与える手段は種々考えられるが、自然放置による空冷や、人為的な手法による急速加熱または冷却が挙げられる。具体的には、反応促進のために冷却水や酸素を供給することが考えられる。さらに、変質ライン面に沿って加圧し酸性水溶液などを付加する方法もある。   Moreover, a crack can be advanced by heating or cooling an alteration line surface moderately. Therefore, the separation time can be controlled by giving a temperature difference in the vicinity of the alteration line surface. Various means for giving the temperature difference are conceivable, and examples include air cooling by leaving it alone and rapid heating or cooling by an artificial method. Specifically, it is conceivable to supply cooling water or oxygen to promote the reaction. Further, there is a method in which an acidic aqueous solution or the like is added by applying pressure along the altered line surface.

このような方法によって、従来の集光レーザでは加工が困難とされてきた石英の切断を実現できる。   By such a method, it is possible to realize cutting of quartz, which has been difficult to process with a conventional focused laser.

さらに、他の実施形態について説明する。図7に示すように、石英1の上方からレーザ発振器11でレーザを照射し、水平(レーザ照射方向に対して垂直)な切断面2の全面をレーザ照射痕3で埋めつくすことにより、切断・分離することができる。図4で示した実施形態では、変質ラインを上方(厚さ方向内方)に順次重ねていったが、本実施形態では、変質ラインを水平方向に順次並べることとなる。ここで、切断面2の全面に亘ってレーザ照射痕3を作ることで切断・分離が可能であるが、変質ラインを切断面の一端乃至その近傍から他端方向に順序良く並べると能率がよい。なお、図7では、レーザ照射痕3の列(変質ライン)が水平方向に並べられ、切断面2で1層の変質ライン面を形成しているが、2層以上の変質ライン面を重ねることもできる。そうすることで、亀裂の進行が早まり短時間で切断・分離が可能である。ただし、材料の歩留りは悪くなる。このように、水平面(X−Y平面)で切断・分離することができ、石英ブロックのスライス加工等、部材の切り出しが可能である。   Furthermore, other embodiments will be described. As shown in FIG. 7, a laser is emitted from above the quartz 1 by a laser oscillator 11, and the entire cut surface 2 that is horizontal (perpendicular to the laser irradiation direction) is filled with laser irradiation marks 3. Can be separated. In the embodiment shown in FIG. 4, the altered lines are sequentially stacked upward (inward in the thickness direction), but in this embodiment, the altered lines are sequentially arranged in the horizontal direction. Here, cutting / separation is possible by making the laser irradiation trace 3 over the entire cut surface 2, but it is efficient if the alteration lines are arranged in order from one end of the cut surface to the other end. . In FIG. 7, the rows of laser irradiation traces 3 (altered lines) are arranged in the horizontal direction, and the cut surface 2 forms one layer of altered line surface, but two or more layers of altered line surfaces are overlapped. You can also. By doing so, the progress of cracks is accelerated, and cutting and separation are possible in a short time. However, the yield of the material becomes worse. In this way, cutting and separation can be performed on a horizontal plane (XY plane), and members can be cut out, such as slicing a quartz block.

次に、石英ブロックから部材を切り出す実施形態について説明する。図8で示すように、垂直面(X−Z平面、Y−Z平面)と水平面(X−Y平面)の切断面を組み合わせることで、石英部材7を切り出すことができる。垂直面(X−Z平面、Y−Z平面)で切断するときには、図の矢印6aの方向に変質ラインを重ねるのが好ましい。矢印6aの逆向きに変質ラインを並べると、レーザが既に変質した箇所に干渉してしまうからである。   Next, an embodiment in which a member is cut out from the quartz block will be described. As shown in FIG. 8, the quartz member 7 can be cut out by combining the cut surfaces of the vertical plane (XZ plane, YZ plane) and the horizontal plane (XY plane). When cutting along a vertical plane (XZ plane, YZ plane), it is preferable to superimpose an alteration line in the direction of the arrow 6a in the figure. This is because if the altered lines are arranged in the opposite direction of the arrow 6a, the laser interferes with the already altered part.

さらに、図9に示すように、切断面を傾斜させて石英部材8を切り出すこともできる。石英1を傾斜面で切断するには、石英1の上方からレーザ発振器11でレーザを照射し、切断面上に変質ラインを順次並べ、切断面の全面をレーザ照射痕で埋めつくせばよい。ここで、切断面の傾斜角度が垂直に近い場合には、レーザの干渉を避けるために図の矢印6bの方向に変質ラインを順次重ねていくことが好ましい。一方、切断面の傾斜角度が水平に近い場合には、矢印6bの逆向きに変質ラインを順次並べても切断は可能である。   Furthermore, as shown in FIG. 9, the quartz member 8 can be cut out by inclining the cut surface. In order to cut the quartz 1 along the inclined surface, it is only necessary to irradiate the laser from above the quartz 1 with the laser oscillator 11, arrange the altered lines in order on the cut surface, and fill the entire cut surface with laser irradiation marks. Here, when the inclination angle of the cut surface is close to vertical, it is preferable to sequentially superimpose the altered lines in the direction of the arrow 6b in the figure in order to avoid laser interference. On the other hand, when the inclination angle of the cut surface is close to horizontal, cutting is possible even if the altered lines are sequentially arranged in the reverse direction of the arrow 6b.

このように石英を垂直面、水平面、あるいは斜面で切断することが可能である。これらを組み合わせることで多様な石英加工が可能である。   In this way, quartz can be cut along a vertical plane, a horizontal plane, or a slope. Various quartz processing is possible by combining these.

ここで、本発明で使用する超短パルスレーザには、YAGレーザの基本波(波長λ=1,064nm)を何らかの方法で発振時間を極めて短く出るようにしたものを利用できる。 YAGレーザでは、通常、Qスイッチ法によって超短時間(例えば、パルス幅が数ナノ〜数10ナノ秒。)でパルス発振されたレーザ光を得ることができる。例えば、図5に示すような、Qスイッチ機構(回転シャッタ)によるものがある。レーザ発振器11は、全反射鏡13とレーザ物質14と一部反射鏡15と回転シャッタ16からなる。レーザ発振器11中に発振を妨げる回転シャッタ16を挿入しておき、これを瞬間的に開くことで大電力光パルスを発生させることができる。また、モードロック法によって超短時間(例えば、パルス幅が数ピコ〜数10ピコ秒。)でパルス発振されたレーザ光を得ることができる。さらに、超音波Qスイッチ(Acoustic Q−Switching)やポッケルセルQスイッチ(Pockels cell Q−Switching)など応答性に優れ、出射タイミングやパルス幅を調整できるものもよく使用される。   Here, as the ultrashort pulse laser used in the present invention, a YAG laser fundamental wave (wavelength λ = 1,064 nm) whose oscillation time is made extremely short by any method can be used. In a YAG laser, laser light that is pulse-oscillated in an extremely short time (for example, a pulse width of several nanometers to several tens of nanoseconds) can be usually obtained by a Q switch method. For example, there is a Q switch mechanism (rotary shutter) as shown in FIG. The laser oscillator 11 includes a total reflection mirror 13, a laser substance 14, a partial reflection mirror 15, and a rotary shutter 16. A high-power optical pulse can be generated by inserting a rotary shutter 16 for preventing oscillation into the laser oscillator 11 and opening it momentarily. In addition, laser light that is pulse-oscillated in a very short time (for example, a pulse width of several pico to several tens of pico seconds) can be obtained by the mode lock method. In addition, an ultrasonic Q switch (Acoustic Q-Switching) or a Pockels cell Q-Switching (Pockels cell Q-Switching) that has excellent responsiveness and can adjust the emission timing and pulse width is often used.

図6は、連続発振・パルス発振・Qスイッチパルス発振の発振波形を示している。ここに示されているように、Qスイッチによって高出力でパルス幅(パルス発振時間)の狭いレーザ光を得ることができる。   FIG. 6 shows oscillation waveforms of continuous oscillation, pulse oscillation, and Q switch pulse oscillation. As shown here, laser light having a high output and a narrow pulse width (pulse oscillation time) can be obtained by the Q switch.

なお、超短パルスを発振させるレーザには何を用いてもよい。将来的に、高出力が実現した場合には、波長の異なる超短パルスレーザ(例えば、波長λ=800nm。)によっても目的を達成することができると考えられる。現状、波長λ=532nm及びλ=355nmのレーザでも切断が可能であることが確認されている。   Any laser that oscillates an ultrashort pulse may be used. In the future, when a high output is realized, it is considered that the object can be achieved also by an ultrashort pulse laser having a different wavelength (for example, wavelength λ = 800 nm). At present, it has been confirmed that cutting is possible even with lasers having wavelengths λ = 532 nm and λ = 355 nm.

本実施形態においては、焦光点を適宜ずらす方法として、任意の速度でXYZ軸方向の移動が可能なXYZテーブル12を用いたが、レーザ発振器11を可動式にして焦光点をずらすこともできる。   In the present embodiment, the XYZ table 12 capable of moving in the XYZ axis directions at an arbitrary speed is used as a method for appropriately shifting the focal point. However, the focal point may be shifted by making the laser oscillator 11 movable. it can.

石英に対するレーザの入射角度Θは、0〜15度程度が好ましい(図10参照。)。これより大きい入射角度でレーザを照射すると、レーザが反射してしまい石英内部にレーザを入射できないからである。   The incident angle Θ of the laser with respect to quartz is preferably about 0 to 15 degrees (see FIG. 10). This is because if the laser beam is irradiated at a larger incident angle, the laser beam is reflected and the laser beam cannot enter the quartz.

本発明にかかるレーザによる石英の切断方法の模式図であるである。It is a schematic diagram of the cutting method of the quartz by the laser concerning this invention. 図1で示した切断面のレーザ照射痕を示す図である。It is a figure which shows the laser irradiation trace of the cut surface shown in FIG. 図1で示した切断面を一点鎖線矢印方向からみた断面図である。It is sectional drawing which looked at the cut surface shown in FIG. 1 from the dashed-dotted arrow direction. レーザ照射痕の操作中の状態図である。It is a state diagram in operation of a laser irradiation trace. 回転式シャッタによるQスイッチの例図である。It is an example figure of Q switch by a rotary shutter. 連続発振・パルス発振・Qスイッチパルス発振の発振波形を示す図である。It is a figure which shows the oscillation waveform of continuous oscillation, pulse oscillation, and Q switch pulse oscillation. 水平な切断面にレーザを照射している状態図である。It is a state figure which is irradiating a laser to a horizontal cut surface. 石英ブロックからその一部を切り出した状態図である。It is the state figure which cut out the part from the quartz block. 石英ブロックからその一部を切り出した状態図である。It is the state figure which cut out the part from the quartz block. 石英へのレーザの入射角度を示した図である。It is the figure which showed the incident angle of the laser to quartz.

符号の説明Explanation of symbols

1 石英
2 切断面
3 レーザ照射痕
4a 変質ライン
4b 変質ライン
4c 変質ライン
4d 変質ライン
4e 変質ライン
4f 変質ライン
4g 変質ライン
4h 変質ライン
4i 変質ライン
4j 変質ライン
5 レーザの焦光点の移動ライン
7 石英部材
8 石英部材
11 レーザ発振器
12 XYZテーブル
13 全反射鏡
14 レーザ物質
15 一部反射鏡
16 回転シャッタ
DESCRIPTION OF SYMBOLS 1 Quartz 2 Cut surface 3 Laser irradiation trace 4a Alteration line 4b Alteration line 4c Alteration line 4d Alteration line 4e Alteration line 4f Alteration line 4g Alteration line 4h Alteration line 4i Alteration line 4j Alteration line 5 Laser focal point movement line 7 Member 8 Quartz member 11 Laser oscillator 12 XYZ table 13 Total reflection mirror 14 Laser substance 15 Partial reflection mirror 16 Rotating shutter

Claims (7)

パルス幅が1ピコ秒乃至100ナノ秒の超短パルスレーザを石英の切断面に照射し、複数のレーザ照射痕を前記切断面の全面に亘って作ることを特徴とする超短パルスレーザによる石英の切断方法。   Quartz by an ultrashort pulse laser characterized in that an ultrashort pulse laser having a pulse width of 1 picosecond to 100 nanoseconds is irradiated on the cut surface of the quartz, and a plurality of laser irradiation traces are formed over the entire surface of the cut surface. Cutting method. レーザ光線を切断面の一端乃至その近傍に集光せしめて、該一端に沿って複数のレーザ照射痕を並べて変質ラインを作り、次いでレーザ光線の集光点を他端方向に変位せしめて再び変質ラインを作り、かくして切断面の全面に亘って複数のレーザ照射痕による変質ラインを作ることを特徴とする請求項1の超短パルスレーザによる石英の切断方法。   The laser beam is condensed on one end of the cut surface or in the vicinity thereof, a plurality of laser irradiation traces are arranged along the one end to form an altered line, and then the focal point of the laser beam is displaced in the other end direction to alter again. 2. The method for cutting quartz with an ultrashort pulse laser according to claim 1, wherein a line is formed, and thus an altered line is formed by a plurality of laser irradiation marks over the entire cut surface. 前記切断面がレーザ照射方向に対して垂直面または斜面であることを特徴とする請求項1又は2の超短パルスレーザによる石英の切断方法。   3. The method for cutting quartz with an ultrashort pulse laser according to claim 1 or 2, wherein the cutting plane is a plane or a slope perpendicular to the laser irradiation direction. レーザ光線を石英の片面側から照射し他面側乃至その近傍に集光せしめて、他面側に沿って複数のレーザ照射痕を並べて変質ラインを作り、次いでレーザ光線の集光点を前記石英の厚さ方向内方に変位せしめて再び変質ラインを作り、かくして前記切断面の全面に亘って順次変質ラインを作ることを特徴とする請求項1又は2の超短パルスレーザによる石英の切断方法。   A laser beam is irradiated from one side of the quartz and condensed on the other side or in the vicinity thereof, a plurality of laser irradiation traces are arranged along the other side to create an altered line, and then the focal point of the laser beam is set to the quartz 3. A method for cutting quartz with an ultrashort pulse laser according to claim 1 or 2, wherein a modified line is formed again by displacement inwardly in the thickness direction, and thus a modified line is formed in sequence over the entire cut surface. . 前記複数のレーザ照射痕のうち隣り合うレーザ照射痕同士を一部重なり合うように作ることを特徴とする請求項1乃至4の超短パルスレーザによる石英の切断方法。   5. The method for cutting quartz with an ultrashort pulse laser according to claim 1, wherein adjacent laser irradiation traces of the plurality of laser irradiation traces are made to partially overlap each other. 前記複数のレーザ照射痕を作った後に、前記切断面に温度差を与えることを特徴とする請求項1乃至5の超短パルスレーザによる石英の切断方法。   6. The method for cutting quartz with an ultrashort pulse laser according to claim 1, wherein after the plurality of laser irradiation traces are formed, a temperature difference is given to the cut surface. 使用する超短パルスレーザが、波長λ=1,064nmのYAG基本波であって、パルス出力は10mJ(ミリジュール)以上であることを特徴とする請求項1乃至6の超短パルスレーザによる石英の切断方法。   The ultrashort pulse laser used is a YAG fundamental wave having a wavelength λ = 1,064 nm, and the pulse output is 10 mJ (millijoule) or more. Cutting method.
JP2005095256A 2005-02-08 2005-03-29 Cutting method of quartz by ultrashort pulse laser Pending JP2006248885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095256A JP2006248885A (en) 2005-02-08 2005-03-29 Cutting method of quartz by ultrashort pulse laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005031855 2005-02-08
JP2005095256A JP2006248885A (en) 2005-02-08 2005-03-29 Cutting method of quartz by ultrashort pulse laser

Publications (1)

Publication Number Publication Date
JP2006248885A true JP2006248885A (en) 2006-09-21

Family

ID=37089759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095256A Pending JP2006248885A (en) 2005-02-08 2005-03-29 Cutting method of quartz by ultrashort pulse laser

Country Status (1)

Country Link
JP (1) JP2006248885A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
JP2015119076A (en) * 2013-12-19 2015-06-25 信越ポリマー株式会社 Internal processing layer formation single crystal member and manufacturing method therefor
WO2015095089A3 (en) * 2013-12-17 2015-10-08 Corning Incorporated Edge chamfering methods
CN106029287A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Method of laser cutting sapphire substrate by lasers and an article comprising sapphire with edge having series of defects
CN106029590A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Laser cutting of display glass compositions
CN106029589A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Laser cutting composite glass article and method of cutting
CN106102983A (en) * 2014-01-27 2016-11-09 康宁股份有限公司 Carry out edge by machining cutting glass by laser to cut sth. askew
CN106132886A (en) * 2014-01-27 2016-11-16 康宁股份有限公司 Edge chamfer method
JP2017122046A (en) * 2012-11-14 2017-07-13 ショット アクチエンゲゼルシャフトSchott AG Method for separating transparent workpiece
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
JP2019102688A (en) * 2017-12-05 2019-06-24 株式会社ディスコ Processing method of wafer
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
EP4159357A1 (en) * 2021-10-01 2023-04-05 National University of Ireland Galway Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
JP2017122046A (en) * 2012-11-14 2017-07-13 ショット アクチエンゲゼルシャフトSchott AG Method for separating transparent workpiece
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US20170001900A1 (en) * 2013-12-17 2017-01-05 Corning Incorporated Edge chamfering methods
JP2017511777A (en) * 2013-12-17 2017-04-27 コーニング インコーポレイテッド Edge chamfering method
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
WO2015095089A3 (en) * 2013-12-17 2015-10-08 Corning Incorporated Edge chamfering methods
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
CN106029589A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Laser cutting composite glass article and method of cutting
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
KR102288418B1 (en) 2013-12-17 2021-08-11 코닝 인코포레이티드 Edge Chamfering Methods
CN106029285A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Edge chamfering methods
KR20160098468A (en) * 2013-12-17 2016-08-18 코닝 인코포레이티드 Edge Chamfering Methods
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
TWI661889B (en) * 2013-12-17 2019-06-11 美商康寧公司 Method of laser processing and glass article
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
CN106029287A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Method of laser cutting sapphire substrate by lasers and an article comprising sapphire with edge having series of defects
CN106029590A (en) * 2013-12-17 2016-10-12 康宁股份有限公司 Laser cutting of display glass compositions
JP2015119076A (en) * 2013-12-19 2015-06-25 信越ポリマー株式会社 Internal processing layer formation single crystal member and manufacturing method therefor
CN106102983A (en) * 2014-01-27 2016-11-09 康宁股份有限公司 Carry out edge by machining cutting glass by laser to cut sth. askew
CN106132886A (en) * 2014-01-27 2016-11-16 康宁股份有限公司 Edge chamfer method
CN106132886B (en) * 2014-01-27 2019-05-10 康宁股份有限公司 Edge chamfer method
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10377658B2 (en) 2016-07-29 2019-08-13 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
JP7105058B2 (en) 2017-12-05 2022-07-22 株式会社ディスコ Wafer processing method
JP2019102688A (en) * 2017-12-05 2019-06-24 株式会社ディスコ Processing method of wafer
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
EP4159357A1 (en) * 2021-10-01 2023-04-05 National University of Ireland Galway Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
WO2023052549A3 (en) * 2021-10-01 2023-05-11 National University Of Ireland, Galway Method of and apparatus for cutting a substrate or preparing a substrate for cleaving

Similar Documents

Publication Publication Date Title
JP2006248885A (en) Cutting method of quartz by ultrashort pulse laser
JP4198123B2 (en) Laser processing method
JP4776994B2 (en) Processing object cutting method
JP4322881B2 (en) Laser processing method and laser processing apparatus
JP5101073B2 (en) Laser processing equipment
JP4536407B2 (en) Laser processing method and object to be processed
JP4954653B2 (en) Laser processing method
JP5140198B1 (en) Laser dicing method
JP5432285B2 (en) Method of laser processing glass into a shape with chamfered edges
TWI380867B (en) Laser processing methods and semiconductor wafers
JP5037082B2 (en) Laser processing method and laser processing apparatus
WO2008004394A1 (en) Laser working method
JP5322418B2 (en) Laser processing method and laser processing apparatus
KR20120098869A (en) Laser machining and scribing systems and methods
JP2005179154A (en) Method and apparatus for fracturing brittle material
TWI647187B (en) Method of separating a glass sheet from a carrier
JP2007175961A (en) Laser processing method and semiconductor chip
CN108472765B (en) Laser patterning method for semiconductor workpiece
JP2011091322A (en) Laser dicing method and laser dicing device
TW201329005A (en) Tempered glass plate cutting method
JP2013046924A (en) Laser dicing method
JP2013027887A (en) Laser dicing method
JP2005012203A (en) Laser machining method
JP5827931B2 (en) Laser dicing method
JP5122161B2 (en) Processing object cutting method