JPH01179770A - Method for bonding metal and ceramic - Google Patents

Method for bonding metal and ceramic

Info

Publication number
JPH01179770A
JPH01179770A JP313788A JP313788A JPH01179770A JP H01179770 A JPH01179770 A JP H01179770A JP 313788 A JP313788 A JP 313788A JP 313788 A JP313788 A JP 313788A JP H01179770 A JPH01179770 A JP H01179770A
Authority
JP
Japan
Prior art keywords
metal
ceramic
temp
fluctuating pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP313788A
Other languages
Japanese (ja)
Other versions
JPH0471865B2 (en
Inventor
Kazunori Sasaki
笹木 一憲
Takeshi Miura
毅 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSHIMA DENKI GAKUEN
Japan Steel Works Ltd
Original Assignee
HIROSHIMA DENKI GAKUEN
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSHIMA DENKI GAKUEN, Japan Steel Works Ltd filed Critical HIROSHIMA DENKI GAKUEN
Priority to JP313788A priority Critical patent/JPH01179770A/en
Publication of JPH01179770A publication Critical patent/JPH01179770A/en
Publication of JPH0471865B2 publication Critical patent/JPH0471865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To reduce the residual thermal stress and to improve the bonding strength by superposing a metal and a ceramic on each other, heating the laminate to a specified temp., and simultaneously exerting a fluctuating pressure on the contact surface. CONSTITUTION:A metal 22 and a ceramic 24 are pinched between the opposed end faces of the upper anvil 16 and lower anvil 18 connected through the load cell 14 of a crosshead 12 connected to a strut 10, and a silicon glass tube 26 is inserted into the holes of members 28 and 30 and hermetically sealed with sealing materials 32 and 34 to enclose the peripheries of the anvils 16 and 18. A specified gas is introduced into the glass tube 26 from a gas supply pipe 38 provided on the member 28, and heated by an IR image heating furnace 44 to a temp. lower than the m.p. of the metal and higher than the recrystallization temp. An actuator piston 20 is simultaneously actuated to exert a fluctuating pressure at 10-100Hz frequency in the direction intersecting orthogonally with the contact surfaces of the metal 22 and the ceramic 24, and the gas is cooled under such conditions to a temp. lower than the recrystallization temp.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、金属とセラミックスとの接合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for joining metal and ceramics.

(ロ)従来の技霜 セラミックスを金属に接合する従来の方法として特開昭
59−174582号公報に示されるものがある。これ
に示される接合方法は、金属とセラミックスとを重ね、
その間に金属の酸化層をおいて、真空又は不活性ガス雰
囲気中で金属の融点以下の温度に保持して一定圧力で加
圧することを特徴としている。
(b) Conventional Techniques A conventional method for bonding ceramics to metal is disclosed in Japanese Patent Laid-Open No. 174582/1982. The joining method shown in this paper overlaps metal and ceramics,
It is characterized by placing a metal oxide layer between them, maintaining the temperature below the melting point of the metal in vacuum or an inert gas atmosphere, and pressurizing at a constant pressure.

(ハ)発明が解決しようとする問題点 しかしながら、上記のような従来の金属とセラミックス
との接合方法には、接合強度が十分でないという問題点
がある。すなわち、セラミックスと金属とを接合した後
の冷却過程において、セラミックスと金属との熱膨張係
数差によって大きい熱応力が発生する。このため、接合
部の強度が低下する。また、一定圧力でセラミックスと
金属との接合部を加圧しているたけであるのて、接合部
の拡散が不十分であり、十分な接合強度を得ることかで
きない。本発明は、このような問題点を解決することを
目的としている。
(c) Problems to be Solved by the Invention However, the conventional method of joining metal and ceramics as described above has a problem in that the joining strength is not sufficient. That is, in the cooling process after joining the ceramic and metal, large thermal stress is generated due to the difference in coefficient of thermal expansion between the ceramic and the metal. Therefore, the strength of the joint decreases. Further, since the joint between the ceramic and the metal is merely pressurized with a constant pressure, diffusion in the joint is insufficient, and sufficient joint strength cannot be obtained. The present invention aims to solve these problems.

(ニ)問題点を解決するための手段 本発明は、金属とセラミックスとの接合面に変動圧力を
作用させることにより、上記問題点を解決する。すなわ
ち、本発明による金属とセラミックスとの接合方法は、
金属とセラミックスとを重ね合わせたものを金属の融点
よりも低く再結晶温度よりも高い温度に加熱すると共に
金属とセラミックスとの接触面にこれと直交する方向の
変動圧力を作用させ、次いで冷却3−る際に金属の再結
晶温度以下まで温度が低下するまでは変動圧力の作用を
保持させる。
(d) Means for Solving the Problems The present invention solves the above problems by applying variable pressure to the joint surface between metal and ceramics. That is, the method for joining metal and ceramics according to the present invention is as follows:
A stack of metal and ceramic is heated to a temperature lower than the melting point of the metal and higher than the recrystallization temperature, and a fluctuating pressure is applied in a direction perpendicular to the contact surface between the metal and ceramic, followed by cooling 3. The effect of the fluctuating pressure is maintained until the temperature drops below the recrystallization temperature of the metal.

(ホ)作用 金属とセラミックスとを重ね合わせ、金属の融点以下の
温度に加熱し、接合面に直交する向きの変動圧力を作用
させることにより、接合部の拡散作用を促進することが
できる。これは変動圧力によって転位や原子空孔なとの
格子欠陥か増殖され拡散しやすくなるからである。この
ように拡散作用が促進されることによって、接合面の接
合力が増大する。次いで、変動圧力を加えた状態で冷却
することにより、金属とセラミックスとの熱膨張係数差
によって生ずる熱応力を軽減することがてきる。これは
、繰り返し作用する変動圧力によって、疲労に基つく局
所的な塑性変形か発生する力)らである。このようにし
て残留熱応力を低下することがてきるので、接合強度か
増大する。
(e) Working metal and ceramics are stacked on top of each other, heated to a temperature below the melting point of the metal, and a fluctuating pressure perpendicular to the joint surfaces is applied to promote the diffusion effect at the joint. This is because the fluctuating pressure causes lattice defects such as dislocations and atomic vacancies to multiply and become more likely to diffuse. By promoting the diffusion effect in this way, the bonding force of the bonding surfaces increases. Next, by cooling while applying a fluctuating pressure, it is possible to reduce the thermal stress caused by the difference in coefficient of thermal expansion between the metal and the ceramic. This is due to local plastic deformation caused by fatigue due to repeated fluctuating pressure. In this way, the residual thermal stress can be reduced, thereby increasing the bonding strength.

(へ)実施例 第1図に金属とセラミックスとを接合するための装置を
示す。支柱10に連結されたクロスヘツド12にロード
セル14を介して上アンヒル16か連結されている。上
アンヒル16と同軸に1アンビル18が設けられている
。下アンビル18はこれの下側に配置されたアクチュエ
ータピストン20から加圧力を受けるように構成されて
しAる。
(f) Example FIG. 1 shows an apparatus for joining metal and ceramics. An upper ankle 16 is connected to a crosshead 12 connected to a column 10 via a load cell 14. One anvil 18 is provided coaxially with the upper anvil 16. The lower anvil 18 is configured to receive pressurizing force from an actuator piston 20 disposed below it.

アクチュエータピストン20は図示してなし)油圧源の
油圧により変動荷重を発生する。上アンビル16と下ア
ンビル18との対面する端部間に、後述の互いに接合さ
れるべき金属22及びセラミックス24かはさみ込まれ
る。」下アンヒル16及び下アンヒル18の外周を包囲
するようにシリコンカラス管26が設置されている。シ
リコンカラス管26の上端側が部材28の穴内に挿入さ
れ、またシリコンガラス管26の下端側が部材30の穴
内に挿入される。なお、シリコンガラス管26と、部材
28及び部材30との挿入部はそれぞれシール部材32
及び34によって密封される。部材30は固定されてい
る台36に取付けられている。シリコンガラス管26の
内部には部材28に設けられた送気管38から所定のガ
スを供給可能であり、また部材30に設けられた排気管
40から排気可能である。また、シリコンガラス管26
の内部の金属22及びセラミックス24に隣接する位置
に熱電対42が配置されている。シリコンガラス管26
の外周にこれを包囲するように赤外線イメージ加熱炉4
4が設けられている。赤外線イメージ加熱炉44は台3
6に固定された台46上に支持されている。赤外線イメ
ージ加熱炉44は冷却水管47から供給される冷却水に
よって冷却することも可能である。下アンビル18の下
端側のフランジ状部と部材30との間には、ベローズ4
8か設けられており、これによりシリコンカラス管26
内部の気密状態を保持すると共に部材30と下アンヒル
18との相対移動を可能としている。なお、上アンビル
16は冷却水管50から冷却水を流すことにより冷却可
能としてあり、また同様に下アンビル18も冷却水管5
2から冷却水を流すことにより冷却可能としである。
The actuator piston 20 (not shown) generates a variable load using hydraulic pressure from a hydraulic source. A metal 22 and a ceramic 24 to be joined to each other, which will be described later, are sandwiched between the opposing ends of the upper anvil 16 and the lower anvil 18. A silicon glass tube 26 is installed so as to surround the outer periphery of the lower underhill 16 and the lower underhill 18. The upper end of the silicon glass tube 26 is inserted into the hole of the member 28, and the lower end of the silicon glass tube 26 is inserted into the hole of the member 30. Note that the insertion portions of the silicon glass tube 26 and the members 28 and 30 are respectively sealed by seal members 32.
and sealed by 34. The member 30 is attached to a fixed base 36. A predetermined gas can be supplied to the inside of the silicon glass tube 26 from an air supply pipe 38 provided on the member 28, and can be exhausted from an exhaust pipe 40 provided on the member 30. In addition, the silicon glass tube 26
A thermocouple 42 is placed adjacent to the metal 22 and ceramics 24 inside. Silicon glass tube 26
An infrared image heating furnace 4 surrounds the outer periphery of the infrared image heating furnace 4.
4 is provided. The infrared image heating furnace 44 is on stand 3
It is supported on a stand 46 fixed to 6. The infrared image heating furnace 44 can also be cooled by cooling water supplied from a cooling water pipe 47. A bellows 4 is provided between the flange portion on the lower end side of the lower anvil 18 and the member 30.
8 is provided, which allows the silicon glass tube 26
This allows relative movement between the member 30 and the lower ankle 18 while maintaining an internal airtight state. The upper anvil 16 can be cooled by flowing cooling water from the cooling water pipe 50, and the lower anvil 18 can also be cooled by flowing cooling water from the cooling water pipe 50.
Cooling is possible by flowing cooling water from 2.

次にこの第1図に示す装置を用いて金属22とセラミッ
クス24とを接合した具体例につしAで説明する。金属
22としては純度99.98%の無酸素銅を使用し、ま
たセラミックス24としては純度95.4%のアルミナ
を用いた。金属22及びセラミックス240寸法は共に
直径が10mm及び長さが10mmのものである。シリ
コンカラス管26の内部のふん囲気はアルゴンガス、空
気及び真空の3つの条件を設定した。上記のような条件
で第2図に示すようなパターンに従って赤外線イメージ
加熱炉44によって室温TAから加熱を開始し、温度が
TBを越えた後、アクチュエータピストン20によって
金属22とセラミックス24との接合面に変動圧力を作
用させる。なお、変動圧力を作用させるまでは一定圧力
POを作用させておく。また、上記温度TBは金属22
の再結晶温度T。よりも低い温度である。変動圧力とし
てはP。の基準値に対して±P1の変動値を加算する。
Next, a specific example in which a metal 22 and a ceramic 24 are bonded using the apparatus shown in FIG. 1 will be described with reference to A. Oxygen-free copper with a purity of 99.98% was used as the metal 22, and alumina with a purity of 95.4% was used as the ceramic 24. The metal 22 and ceramic 240 dimensions are both 10 mm in diameter and 10 mm in length. Three conditions were set for the atmosphere inside the silicon glass tube 26: argon gas, air, and vacuum. Under the above conditions, heating is started from room temperature TA using the infrared image heating furnace 44 according to the pattern shown in FIG. Apply fluctuating pressure to the Note that the constant pressure PO is applied until the variable pressure is applied. Further, the temperature TB is the metal 22
recrystallization temperature T. temperature is lower than that of P as a fluctuating pressure. The fluctuation value of ±P1 is added to the reference value of .

ずなわち、Po±P1の変動圧力が作用することになる
。変動圧力の振動数は10〜100Hzである(振動数
を変えた場合の試験結果については後述する)。この状
態て金属22及びセラミックス24の温度を所定値Tc
まで上昇させ所定時間t。の間保持する。なお、温度T
cは金属22の融点よりも低く再結晶温度よりも高い温
度である。所定時間t。経過後、冷却を開始し、金属2
2の再結晶温度T。以下まて温度が低下した時点で変動
圧力の付加を停止にさせる。これにより金属22とセラ
ミックス24とが接合される。なお、図中t1は変動圧
力を作用させた全時間を示す。また、温度TBとなった
時点から変動圧力を作用させるようにしたが、変動圧力
の作用開始はこれより早くてもよく(例えば最初から)
、また遅くてもよい(例えば加熱温度Tcに達してから
)。
That is, a fluctuating pressure of Po±P1 will act. The frequency of the fluctuating pressure is 10 to 100 Hz (test results when changing the frequency will be described later). In this state, the temperature of the metal 22 and the ceramic 24 is set to a predetermined value Tc.
for a predetermined time t. Hold for a while. In addition, the temperature T
c is a temperature lower than the melting point of the metal 22 and higher than the recrystallization temperature. Predetermined time t. After that time, start cooling and metal 2
Recrystallization temperature T of 2. Afterwards, when the temperature drops, the application of the fluctuating pressure is stopped. As a result, the metal 22 and the ceramic 24 are joined. Note that t1 in the figure indicates the total time during which the fluctuating pressure was applied. In addition, although the fluctuating pressure is applied from the moment the temperature reaches TB, the fluctuating pressure may start acting earlier than this (for example, from the beginning).
, or may be delayed (for example, after reaching the heating temperature Tc).

上述のようにして金属22とセラミックス24とを接合
する試験を、加熱温度Tc、変動圧力po +p、、変
動圧力の振動数、加熱温度Tcの保持時間t。、及びふ
ん囲気を変えて行い、接合部の強度の比較を行った。
A test for joining the metal 22 and the ceramic 24 as described above was carried out using heating temperature Tc, fluctuating pressure po +p, frequency of the fluctuating pressure, and holding time t of heating temperature Tc. The strength of the joints was compared by changing the , and ambient atmosphere.

加熱温度及び振動数の影響 加熱温度Tc及び振動数を変えた場合の結果を第3図に
示す。図中の横軸は変動圧力の振動数を取ってあり、ま
た縦軸はアルミナ曲げ強度σ6に対する接合体の曲げ強
度σ、の比を取っである。
Effects of Heating Temperature and Vibration Frequency Figure 3 shows the results when the heating temperature Tc and vibration frequency were varied. The horizontal axis in the figure represents the frequency of the fluctuating pressure, and the vertical axis represents the ratio of the bending strength σ of the bonded body to the alumina bending strength σ6.

なお、作用させた変動圧力は15±2.5MPa(メカ
パスカル)であり、加熱温度Tcの保持時間t。は15
分である。曲げ強度は、接合体の両端を支持しくスパン
15mm)、中央部の接合部に荷重を作用させる3点曲
げ試験により求めた。
Note that the applied fluctuating pressure was 15±2.5 MPa (mechapascal), and the heating temperature Tc was maintained for a time t. is 15
It's a minute. The bending strength was determined by a three-point bending test in which both ends of the joined body were supported (with a span of 15 mm) and a load was applied to the joint at the center.

この第3図に示す結果から、例えば、振動数25Hzに
おける曲げ強度は振動数0、すなわち一定荷重を作用さ
せた場合と比較して大幅に向上していることがわかる。
From the results shown in FIG. 3, it can be seen that, for example, the bending strength at a frequency of 25 Hz is significantly improved compared to the case where the frequency is 0, that is, when a constant load is applied.

例えば、600℃では一定荷重の場合曲げ強度比σt/
σ。が約0.03であったものが、変動圧力を作用させ
ると0.15となり、約5倍となっている。同様に70
0℃では0.11が0.16となり、また800℃では
0.19が0.25に向上している。また、第3図から
れかるように変動荷重の振動数としては、15〜35H
zが最も好ましい。たたし、10〜100Hzであって
も接合強度を向上することができる。また、加熱温度の
影響については、加熱温度の上昇に伴なって接合強度が
向上していることがわかる。ただし、加熱温度の上昇に
供なう強度の増大は約800℃付近で飽和する。このこ
とは加熱温度を変えて引張強度の試験を行った結果を示
す第4図からも理解される。
For example, at 600°C, under constant load, the bending strength ratio σt/
σ. was about 0.03, but when variable pressure is applied, it becomes 0.15, which is about 5 times as large. Similarly 70
At 0°C, 0.11 becomes 0.16, and at 800°C, 0.19 improves to 0.25. Also, as shown in Figure 3, the frequency of the fluctuating load is 15 to 35H.
z is most preferred. However, even if the frequency is 10 to 100 Hz, the bonding strength can be improved. Furthermore, regarding the influence of heating temperature, it can be seen that the bonding strength improves as the heating temperature increases. However, the increase in strength as the heating temperature increases saturates at around 800°C. This can also be understood from FIG. 4, which shows the results of tensile strength tests conducted at different heating temperatures.

加熱温度の保持時間及びふん囲気の影響加熱温度Tcの
保持時間t。を変えて引張強度試験を行フた結果を第5
図に示す。この第5図かられかるように、加熱温度Tc
の保持時間t。は15分前後が好ましく、長くなりすぎ
ると接合強度が次第に低下していく。また、第5図に示
す試験では、シリコンガラス管26内のふん囲気を空気
、アルゴンガス及び真空の3つの場合に変えて行ってみ
た。アルゴンカスの場合が強度が多少高い傾向にあるか
、それほど大きい差は生じない。
Holding time of heating temperature and influence of ambient air Holding time t of heating temperature Tc. The results of a tensile strength test with different
As shown in the figure. As can be seen from FIG. 5, the heating temperature Tc
retention time t. It is preferable that the time is around 15 minutes; if the time is too long, the bonding strength will gradually decrease. In the test shown in FIG. 5, the atmosphere inside the silicon glass tube 26 was changed to three conditions: air, argon gas, and vacuum. In the case of argon gas, the strength tends to be somewhat higher, or there is not a large difference.

変動圧力の影響 変動圧力の基準値P。の大きさを変えた場合の試験結果
を第6図に示す。この試験はP、 −2゜5MPaを一
定とし、Poを変えて曲げ強度を比較したものである。
Effect of fluctuating pressure Reference value P of fluctuating pressure. Figure 6 shows the test results when the size of . In this test, P was kept constant at -2°5MPa, and the bending strength was compared by changing Po.

これから変動圧力の基準値Poか大きいほど接合強度が
犬きくなる傾向にあることがわかる。
It can be seen from this that the larger the reference value Po of the fluctuating pressure is, the stronger the bonding strength tends to be.

(ト)発明の詳細 な説明してきたように、本発明によると、金属及びセラ
ミックスを加熱すると供に両者間に変動圧力を作用させ
るようにしたので、金属がセラミックス中へ効果的に拡
散され、十分な接合強度を得ることができる。また、変
動圧力を作用させつつ冷却することにより、残留熱応力
を軽減することができ、この点からも接合部の強度を向
上することかできる。
(G) As described in detail, according to the present invention, the metal and ceramic are heated and a fluctuating pressure is applied between them, so that the metal is effectively diffused into the ceramic. Sufficient bonding strength can be obtained. Furthermore, by cooling while applying a varying pressure, residual thermal stress can be reduced, and from this point as well, the strength of the joint can be improved.

4、図面の簡単な説明     □ 第1図は金属とセラミックスとを接合するための装置を
示す図、第2図は変動圧力の作用及び温度の時間変化を
示す図、第3図は温度及び変動圧力の振動数を変えた場
合の曲げ強度の変化を示す図、第4図は接合温度と引張
強度との関係を示す図、第5図は加熱温度の保持時間及
びふん囲気と引張強度との関係を示す図、第6図は変動
圧力の振動数と曲げ強度との関係を示す図である。
4. Brief explanation of the drawings □ Figure 1 shows a device for joining metal and ceramics, Figure 2 shows the effect of fluctuating pressure and changes in temperature over time, and Figure 3 shows temperature and fluctuations. Figure 4 shows the relationship between the welding temperature and tensile strength. Figure 5 shows the relationship between the holding time of the heating temperature and the ambient air and the tensile strength. A diagram showing the relationship, FIG. 6 is a diagram showing the relationship between the frequency of the fluctuating pressure and the bending strength.

22・・・金属、24・・・セラミックス。22...Metal, 24...Ceramics.

特許出願人 株式会社日木製鋼所 学校法人 広島電機学園Patent applicant: Nikki Steel Works Co., Ltd. Educational corporation Hiroshima Denki Gakuen

Claims (2)

【特許請求の範囲】[Claims] 1.金属とセラミックスとを重ね合わせたものを金属の
融点よりも低く再結晶温度よりも高い温度に加熱すると
共に金属とセラミックスとの接触面にこれと直交する方
向の変動圧力を作用させ、次いで冷却する際に金属の再
結晶温度以下まで温度が低下するまでは変動圧力の作用
を保持させる金属とセラミックスとの接合方法。
1. A stack of metal and ceramic is heated to a temperature lower than the melting point of the metal and higher than the recrystallization temperature, and a fluctuating pressure is applied in a direction perpendicular to the contact surface between the metal and ceramic, followed by cooling. A method of joining metal and ceramics that maintains the effect of fluctuating pressure until the temperature drops below the recrystallization temperature of the metal.
2.変動圧力の振動数が毎秒10〜100回である特許
請求の範囲第1項記載の金属とセラミックスとの接合方
法。
2. The method for joining metal and ceramics according to claim 1, wherein the frequency of the fluctuating pressure is 10 to 100 times per second.
JP313788A 1988-01-12 1988-01-12 Method for bonding metal and ceramic Granted JPH01179770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP313788A JPH01179770A (en) 1988-01-12 1988-01-12 Method for bonding metal and ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP313788A JPH01179770A (en) 1988-01-12 1988-01-12 Method for bonding metal and ceramic

Publications (2)

Publication Number Publication Date
JPH01179770A true JPH01179770A (en) 1989-07-17
JPH0471865B2 JPH0471865B2 (en) 1992-11-16

Family

ID=11548964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP313788A Granted JPH01179770A (en) 1988-01-12 1988-01-12 Method for bonding metal and ceramic

Country Status (1)

Country Link
JP (1) JPH01179770A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893871B1 (en) * 2004-10-13 2009-04-20 미쓰보시 다이야몬도 고교 가부시키가이샤 Method and apparatus ?for scribing brittle material board and system for breaking brittle material board
JP2015059080A (en) * 2013-09-20 2015-03-30 株式会社デンソー Method of manufacturing assembly
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893871B1 (en) * 2004-10-13 2009-04-20 미쓰보시 다이야몬도 고교 가부시키가이샤 Method and apparatus ?for scribing brittle material board and system for breaking brittle material board
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
JP2015059080A (en) * 2013-09-20 2015-03-30 株式会社デンソー Method of manufacturing assembly
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US11773004B2 (en) 2015-03-24 2023-10-03 Corning Incorporated Laser cutting and processing of display glass compositions
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11542190B2 (en) 2016-10-24 2023-01-03 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness

Also Published As

Publication number Publication date
JPH0471865B2 (en) 1992-11-16

Similar Documents

Publication Publication Date Title
JPH01179770A (en) Method for bonding metal and ceramic
US7441688B2 (en) Methods and device for controlling pressure in reactive multilayer joining and resulting product
US4444352A (en) Method of thermo-compression diffusion bonding together metal surfaces
US4197977A (en) Method of making an actively-cooled titanium structure
JPS5849672A (en) Jointed body comprising metal layer and ceramic layer and manufacture
JPS5835954B2 (en) Method for bonding metal-ceramic multilayer abradable composites to metallic substrates
JPS5920721B2 (en) Method for bonding multilayer metal-ceramic composites to metal substrates
JP6300323B2 (en) BONDED BODY, STRUCTURE, BONDED BODY MANUFACTURING DEVICE, AND BONDED BODY MANUFACTURING METHOD
US9908194B2 (en) Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
JP2013504432A (en) Assembly method using brazing
US5009360A (en) Metal-to-metal bonding method and resulting structure
JPH0393676A (en) Production of combination piston and production device therefor
JPH09142948A (en) Method for joining ceramic structure
JPH0624853A (en) Production of ceramic made closed loop structure
JP2023176794A (en) Manufacturing method for joint body of steel material
JPS62183331A (en) Joining method for filmy member
JPS6037280A (en) Joining member for sintered hard alloy and steel and its production
JPS5886988A (en) Manufacture of diffusion welding rolling clad steel
JPH03112875A (en) Junction of silicon nitride and equipment therefor
RU2009031C1 (en) Method of manufacturing matrix heat exchanger
JP2023039175A (en) Method for producing steel material conjugant
JP2539069B2 (en) Diffusion bonding method for hollow structures
JP2023167628A (en) Method for manufacturing steel material joint body
JPS6234689A (en) Production of clad material
JPH0251478A (en) Method for bonding metal and ceramic