JPH0393676A - Production of combination piston and production device therefor - Google Patents

Production of combination piston and production device therefor

Info

Publication number
JPH0393676A
JPH0393676A JP22897689A JP22897689A JPH0393676A JP H0393676 A JPH0393676 A JP H0393676A JP 22897689 A JP22897689 A JP 22897689A JP 22897689 A JP22897689 A JP 22897689A JP H0393676 A JPH0393676 A JP H0393676A
Authority
JP
Japan
Prior art keywords
silicon nitride
bonded
piston
nitride ceramics
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22897689A
Other languages
Japanese (ja)
Inventor
Katsunori Hirai
克典 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP22897689A priority Critical patent/JPH0393676A/en
Publication of JPH0393676A publication Critical patent/JPH0393676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To firmly bond a thin plate of silicon nitride ceramics to parts to be bonded of silicon nitride ceramics without causing creep deformation of combination piston at high temperature in production of combination piston by bonding the thin plate of silicon nitride ceramics to the parts to be bonded, by locally heating the bonding part at >=a specific temperature. CONSTITUTION:Parts 6 to be bonded of two silicon nitride ceramic plates are heated by a pair of upper and lower pressure shafts 5 equipped in a furnace 2, an N2 gas is introduced from a gas feed pipe 7 to the furnace, the parts to be bonded are pressurized under about <=10kg/cm<2> and heated to 600-900 deg.C. The parts to be bonded are irradiated with laser beam from a laser generator 1 through a condenser 4 from a window 3, locally heated to >=1,250 deg.C and a thin film of silicon nitride ceramics is bonded to a piston head of silicon nitride ceramics to produce a combination piston.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化珪素セラミックスの薄板を窒化珪素セラ
ミックスの被接合物に封着すること社よって形成される
複合ピストンの製造方法、およびこの方法の発明の実施
に直接使用する窒化珪素接合装置に関する. (従来の技術) 従来からセラ暑ツクス材を断熱材又は耐熱材として利用
した断熱ピストン等のエンジン部材を作成するには、窒
化珪素(St,N4)などのセラミックスを金属あるい
はセラ暑ツクスの被接合物に強固に封着する必要が生じ
ている. 例えば、燃焼ガスに晒されて高温になる燃焼室側に面す
るピストンヘッドの表面部の熱容量を可及的に小さく構
成し、かつその断熱性を高度なものとするすれば、エン
ジンの吸入効率およびサイクル効率が向上し、エンジン
の熱ショックを受けても強度上の問題が生じないことか
ら、ピストンヘッドとピストンスカートとの間のシール
機能を向上するようにした断熱ピストンの発明が既に出
願されている(特開昭63−302164号公報). この場合、断熱ピストンの熱容量を小さくするために、
極めて薄く形成したセラミックス薄板が燃mNに面する
ようにピストンヘッド部に断熱材を介して配置されなく
てはならない.そしてこの断熱材は、チタン酸カリウム
ウィスカー ジルコニアファイバ等の材料からなり、断
熱機能を果すとともに、爆発時にセラミックス薄板に作
用する圧力を受け止める構造材として機能する.したが
って、セラミックス薄板は、断熱材を封入した状態でピ
ストンヘッド部に強固に固着されなくてはならない.現
在では、窒化珪素セラミックスを被接合物に封着する際
には、第4図に示す2通りの方法が採用されている. (発明が解決しようとする課題) 第4図(a)に示す方法は、被接合物の接合面にCaO
 − S10 2−^120g系のソルダーをベースト
にして塗布し、加熱炉内の窒素雰囲気中で1400℃に
加熱し、接合面に配置した窒化珪素セラミックスをto
kg/c膳2程度で加圧するものである.この方法では
、接着工程が少なく簡単であるが、接合温度が高いため
、複数部品を複合して構成されたピストンに適用すると
、例えば断熱材などが溶融するという不具合が生じる. 第4図(b)に示す方法は、ソルダーを塗布したあと、
加熱炉内の窒素雰囲気中で1350℃に加熱して、ソル
ダーの成分をセラミックス内に拡散させておき、炉内の
温度を1250℃程度2に下げて接合面を400kg/
c■2程度で加圧する2段接合によるものである.この
方法では、圧力が大きすぎて、複合ピストン等ではその
接合面の内圧が薄く、窒化珪素セラミックスの薄板がク
リープ変形を起すという不都合が生じる. 本発明は、上記課題を解決するためになされたもので、
クリープ変形を生じることなく強固に窒化珪素セラミッ
クスを被接合物に封着することができる窒化珪素接合装
置を提供することを目的としている.また、本発明は、
窒化珪素セラくツクスの薄板を窒化珪素セラよツクスの
被接合物社封着することによって形成される複合ピスト
ンが、高温でのクリープ変形をしないように製造できる
新規な製造方法を提供することを目的にしている. (i!題を解決するための手段) 本発明によれば、窒化珪素セラミックスを被接合物に封
着する窒化珪素接合装置において、所定の接合雰囲気温
度に設定される加熱炉と、この加熱炉に封入される窒化
珪素セラ暑ツクスおよび被接合物の接合部を一定荷重で
加圧する加圧手段と、加圧状態で前記接合部のみを加熱
する加熱手段とを具備することを特徴とする窒化珪素接
合装置を提供できる. (作用) 本発明の窒化珪素接合装置では、加熱炉内に封入される
複合ピストンを600℃乃至900℃の窒素雰囲気中で
加熱し、かつその接合部を局部的に1250℃以上に加
熱して封着することができる. (実施例) 以下、本発明の一実施例を図面に従って詳細に説明する
. 第1図は、レーザ発生装置1を有する窒化珪素接合装置
の概略構成を示す図であり、耐圧形の加熱炉2には、耐
熱性のガラスをはめ込んだ窓3が形成されている.レー
ザ発生装置1は、集光レンズ4を介してこの窓3から加
熱炉2の所定箇所にレーザ光を照射するように配置され
ている.5は、回転式の加圧軸であって、この上下一対
の加圧軸5により加熱炉2の内部で一対の被接合物6に
所定の圧力を加えて扶持し、かつ加熱炉2の外部から回
転駆動力が供給される.この加熱炉2には、ガス導入パ
イブ7が設けられ、ここから例えば窒素(N2)ガスが
導入され、そこに封入される被接合物6が10Kg/c
m ”以下程度にガス加圧されるようになっている. 第2図は、上記加熱炉2のII−II断面を示す図であ
る.上下一対の加圧軸5の先端で、加圧板51.52に
挟まれた被接合物6は、2枚の窒化珪素セラよツクス板
であって、これら板の接合部61のみが窓3から照射さ
れるレーザ光により所定の高温にまで加熱される.なお
、加熱炉2の内壁に沿って内部のガスを加熱するヒータ
8が設けられている. 第3図は、断熱エンジン等に使用される断熱ピストンの
ピストンヘッド部を示す断面図である.この種の断熱ピ
ストンの構造は、例えば特開昭63−302164号公
報に記載されているようC1セラミックスのピストンへ
ッド11の内部に取付けボス部12を嵌合し、その上面
に断熱材13を介して窒化珪素セラミックスの薄板14
を設け、その外周接合部を封着するものである.つまり
、これは窒化珪素セラミックスの薄板14を窒化珪素セ
ラミックスのピストンへッド11に封着することによっ
て、断熱材13を強固に取付けるようにした複合ピスト
ンの一種であり、上記レーザ発生装置1を有する窒化珪
素接合装置により形威される. レーザによって直接に窒化珪素セラミックスの薄板14
を1250℃まで加熱すると、サーマルショックでこの
薄板14が割れるおそれがあり、ここではまず、窒化珪
素がクリープ変形を生じない800℃まで上記加熱炉2
内で加熱するようにしている.そして、外周接合部の封
着&:lll!シては、窓3から照射されるレーザ光に
より部分的に加熱している.こうすることにより、断熱
材13など高温で溶融する部材があっても、不具合なく
封着できる.その際、酸化雰囲気では窒化珪素は部分的
に分解してしまうので、加熱炉内は、ガス圧を加えてN
2の分圧を高くする. このように、上記実施例装置により高温下でクリープ変
形し易い形状の窒化珪素部材であっても、局部的に照射
されるレーザ光により接合することが可能になり、とく
に窒化珪素セラよツクスの薄板を窒化珪素セラミックス
の被接合物に封着することによって形成される複合ピス
トンなど、各種の複合材の接合が容易に行なえる′よう
になる. この発明をある程度詳細にその最も好ましい実施態様に
ついて説明したが、その好ましい実施態様の説明は、封
着される被接合物が金属である場合等の変形をはじめ、
特許請求の範囲に記載された本発明の精神に反しない限
りでの種々な変形、あるいはそれらを組み合わせたもの
に変更することができることは明らかである. (発明の効果) 以上説明したように、本発明によれば、クリープ変形を
生じることなく強固に窒化珪素セラミックスを被接合物
に封着することができる窒化珪素接合装置を提供できる
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a composite piston formed by sealing a silicon nitride ceramic thin plate to a silicon nitride ceramic object, and this method. This invention relates to a silicon nitride bonding device used directly in carrying out the invention. (Prior art) Conventionally, in order to create engine parts such as heat-insulating pistons that use ceramic materials as heat insulating or heat-resistant materials, ceramics such as silicon nitride (St, N4) are coated with metal or ceramic materials. There is a need for strong sealing to the bonded object. For example, if the heat capacity of the surface of the piston head facing the combustion chamber, which is exposed to combustion gas and becomes high temperature, is made as small as possible and its insulation properties are made high, the intake efficiency of the engine can be improved. An invention has already been filed for an insulated piston that improves the sealing function between the piston head and the piston skirt, since it improves cycle efficiency and does not cause strength problems even when subjected to engine thermal shock. (Japanese Unexamined Patent Publication No. 63-302164). In this case, to reduce the heat capacity of the adiabatic piston,
An extremely thin ceramic plate must be placed in the piston head with a heat insulating material in between so that it faces the mN. This insulation material is made of materials such as potassium titanate whiskers and zirconia fibers, and not only performs a heat insulation function, but also functions as a structural material that absorbs the pressure that is applied to the ceramic thin plate in the event of an explosion. Therefore, the ceramic thin plate must be firmly fixed to the piston head while enclosing a heat insulating material. Currently, two methods shown in Figure 4 are used to seal silicon nitride ceramics to objects to be bonded. (Problems to be Solved by the Invention) The method shown in FIG. 4(a) is based on the method shown in FIG.
- S10 2-^120g solder is applied as a base, heated to 1400°C in a nitrogen atmosphere in a heating furnace, and silicon nitride ceramics placed on the joint surface are heated to
It is pressurized at about 2 kg/c. Although this method is simple and requires few bonding steps, the high bonding temperature causes problems such as melting of the heat insulating material when applied to a piston made of multiple parts. The method shown in Figure 4(b) is to apply solder and then
The solder components were heated to 1,350°C in a nitrogen atmosphere in a heating furnace to diffuse the solder components into the ceramics, and the temperature in the furnace was lowered to about 1,250°C.
This is a two-stage bonding process in which pressure is applied at approximately c■2. This method has the disadvantage that the pressure is too high, and the internal pressure at the joint surface of the composite piston is low, causing creep deformation of the silicon nitride ceramic thin plate. The present invention was made to solve the above problems, and
The purpose of this paper is to provide a silicon nitride bonding device that can firmly seal silicon nitride ceramics to objects to be bonded without causing creep deformation. Moreover, the present invention
It is an object of the present invention to provide a new manufacturing method capable of manufacturing a composite piston formed by sealing a thin plate of silicon nitride ceramics to a bonded object of silicon nitride ceramics without creep deformation at high temperatures. I aim for it. (Means for solving the i! problem) According to the present invention, in a silicon nitride bonding apparatus for sealing silicon nitride ceramics to a workpiece, a heating furnace that is set to a predetermined bonding atmosphere temperature, and a heating furnace that is set to a predetermined bonding atmosphere temperature. A nitriding method characterized by comprising: a pressurizing means for pressurizing the bonded portion of the silicon nitride ceramic sealed in the container and the object to be bonded under a constant load; and a heating device for heating only the bonded portion under pressure. We can provide silicon bonding equipment. (Function) In the silicon nitride bonding apparatus of the present invention, a composite piston enclosed in a heating furnace is heated in a nitrogen atmosphere of 600°C to 900°C, and the bonded portion is locally heated to 1250°C or higher. It can be sealed. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a silicon nitride bonding apparatus having a laser generator 1. A pressure-resistant heating furnace 2 has a window 3 fitted with heat-resistant glass. The laser generator 1 is arranged so as to irradiate a predetermined location of the heating furnace 2 with a laser beam from this window 3 via a condensing lens 4. Reference numeral 5 denotes a rotary pressure shaft, which applies a predetermined pressure to a pair of objects 6 to be welded inside the heating furnace 2 and supports them by applying a predetermined pressure to the pair of workpieces 6 inside the heating furnace 2. Rotational driving force is supplied from. This heating furnace 2 is provided with a gas introduction pipe 7 through which, for example, nitrogen (N2) gas is introduced, and the workpiece 6 sealed therein is heated at a rate of 10 kg/cm.
2 is a cross-sectional view taken along the line II-II of the heating furnace 2. At the tips of the pair of upper and lower pressurizing shafts 5, the pressurizing plate 51 The object to be joined 6 sandwiched between . A heater 8 for heating the gas inside is provided along the inner wall of the heating furnace 2. Fig. 3 is a sectional view showing the piston head of an adiabatic piston used in an adiabatic engine or the like. The structure of this type of heat insulating piston is, for example, as described in Japanese Unexamined Patent Publication No. 63-302164, in which a mounting boss part 12 is fitted inside a piston head 11 made of C1 ceramics, and a heat insulating material 13 is attached to the upper surface of the boss part 12. A thin plate 14 of silicon nitride ceramics through
The outer periphery of the joint is sealed. In other words, this is a type of composite piston in which the heat insulating material 13 is firmly attached by sealing a silicon nitride ceramic thin plate 14 to the silicon nitride ceramic piston head 11. This is achieved by using a silicon nitride bonding device. A thin plate 14 of silicon nitride ceramics is directly cut by a laser.
If silicon nitride is heated to 1250°C, there is a risk that the thin plate 14 will crack due to thermal shock.
I try to heat it inside. And seal the outer peripheral joint &:llll! The sheet is partially heated by the laser beam irradiated from the window 3. By doing this, even if there is a member that melts at high temperatures, such as the heat insulating material 13, it can be sealed without any problems. At that time, silicon nitride is partially decomposed in an oxidizing atmosphere, so gas pressure is applied to the inside of the heating furnace.
Increase the partial pressure in step 2. As described above, the above-mentioned embodiment device makes it possible to join even silicon nitride members with shapes that are prone to creep deformation at high temperatures using locally irradiated laser light. This makes it easier to join various composite materials, such as composite pistons formed by sealing thin plates to silicon nitride ceramic objects. This invention has been described in some detail with respect to its most preferred embodiment, but the description of the preferred embodiment includes modifications such as when the object to be sealed is metal, etc.
It is obvious that various modifications or combinations thereof can be made without departing from the spirit of the invention as described in the claims. (Effects of the Invention) As described above, according to the present invention, it is possible to provide a silicon nitride bonding apparatus that can firmly seal silicon nitride ceramics to objects to be bonded without causing creep deformation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の一実施例を示す概略構成図、第
2図は、第1図のII− H断面を示す図、第3図は、
断熱ピストンのピストンヘッド部を示す断面図、第4図
は、窒化珪素セラミックスを被接合物に封着する2通り
の方法を説明する図である.
FIG. 1 is a schematic configuration diagram showing an embodiment of the device of the present invention, FIG. 2 is a cross-sectional view taken along line II-H in FIG. 1, and FIG.
FIG. 4, a cross-sectional view showing the piston head portion of the heat-insulating piston, is a diagram illustrating two methods of sealing silicon nitride ceramics to a workpiece.

Claims (3)

【特許請求の範囲】[Claims] (1)窒化珪素セラミックスの薄板を窒化珪素セラミッ
クスの被接合物に封着することによって形成される複合
ピストンの製造方法において、加熱炉内に封入される複
合ピストンを600℃乃至900℃の窒素雰囲気中で加
熱し、かつその接合部を局部的に1250℃以上に加熱
して封着することを特徴とする複合ピストンの製造方法
(1) In a method for manufacturing a composite piston formed by sealing a thin plate of silicon nitride ceramics to a silicon nitride ceramic object, the composite piston is sealed in a heating furnace in a nitrogen atmosphere at 600°C to 900°C. 1. A method for manufacturing a composite piston, which comprises heating the piston in the piston, and locally heating the joint to 1250° C. or higher to seal the joint.
(2)窒化珪素セラミックスを被接合物に封着する窒化
珪素接合装置において、所定の接合雰囲気温度に設定さ
れる加熱炉と、この加熱炉に封入される窒化珪素セラミ
ックスおよび被接合物の接合部を一定荷重で加圧する加
圧手段と、加圧状態で前記接合部のみを加熱する加熱手
段とを具備することを特徴とする窒化珪素接合装置。
(2) In a silicon nitride bonding apparatus that seals silicon nitride ceramics to objects to be bonded, there is a heating furnace that is set to a predetermined bonding atmosphere temperature, and a joint portion between the silicon nitride ceramics and the objects to be bonded that are sealed in this heating furnace. What is claimed is: 1. A silicon nitride bonding apparatus comprising: a pressurizing means for pressurizing the bonded portion under a constant load; and a heating means for heating only the bonded portion under pressure.
(3)前記加熱手段は、レーザ発生装置であることを特
徴とする請求項(2)に記載の窒化珪素接合装置。
(3) The silicon nitride bonding apparatus according to claim (2), wherein the heating means is a laser generator.
JP22897689A 1989-09-04 1989-09-04 Production of combination piston and production device therefor Pending JPH0393676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22897689A JPH0393676A (en) 1989-09-04 1989-09-04 Production of combination piston and production device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22897689A JPH0393676A (en) 1989-09-04 1989-09-04 Production of combination piston and production device therefor

Publications (1)

Publication Number Publication Date
JPH0393676A true JPH0393676A (en) 1991-04-18

Family

ID=16884822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22897689A Pending JPH0393676A (en) 1989-09-04 1989-09-04 Production of combination piston and production device therefor

Country Status (1)

Country Link
JP (1) JPH0393676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534183A (en) * 2007-07-25 2010-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Joining method and composite comprising at least two joining partners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534183A (en) * 2007-07-25 2010-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Joining method and composite comprising at least two joining partners

Similar Documents

Publication Publication Date Title
JPH01179770A (en) Method for bonding metal and ceramic
JP4426442B2 (en) Method for producing a hermetic and heat-resistant bond of molded parts made of non-oxide ceramics using a laser
RU2005106228A (en) WELDED SEAMS WITH POLYMER SEAL
US4347089A (en) Method for bonding silicon nitride
EP0171230A1 (en) Diffusion bonding by hot isostatic pressure
US5199631A (en) Differential pressure method and apparatus for bonding high temperature structures
JPH0393676A (en) Production of combination piston and production device therefor
US9908194B2 (en) Method for establishing a permanent bond between a ferrous alloy and an aluminium or an aluminium alloy
JP2695076B2 (en) Method for manufacturing beryllium window for X-ray source
JPS6130292A (en) Diffusion-joining method by hot isotropic pressure press
SE9303492D0 (en) Procedures for repairing hollow spaces with recessed parts and applications of the procedure
JPH09142948A (en) Method for joining ceramic structure
JP2000226238A (en) Sealing and bonding of mating surface of glass or the like
SU1397225A1 (en) Method of producing multilayer panels by diffusion welding
SU1106825A1 (en) Method of gluing together heat-resistant materials
JPS62183331A (en) Joining method for filmy member
JPH03112875A (en) Junction of silicon nitride and equipment therefor
RU2094190C1 (en) Method of soldering of telescopic structures
JPH04198069A (en) Bonding of combination body of ceramics and metal
JPS61142024A (en) Shrink-fit of ceramic shaft
SU1745469A1 (en) Laminated aluminum alloy structure
RU2009031C1 (en) Method of manufacturing matrix heat exchanger
JPH03264173A (en) Diffusion joining method for hollow structure
RU2358845C2 (en) Method of soldering heat exchanger
JPS63315890A (en) Method of jointing ceramics heat pipe