JPS6037280A - Joining member for sintered hard alloy and steel and its production - Google Patents

Joining member for sintered hard alloy and steel and its production

Info

Publication number
JPS6037280A
JPS6037280A JP58145553A JP14555383A JPS6037280A JP S6037280 A JPS6037280 A JP S6037280A JP 58145553 A JP58145553 A JP 58145553A JP 14555383 A JP14555383 A JP 14555383A JP S6037280 A JPS6037280 A JP S6037280A
Authority
JP
Japan
Prior art keywords
steel
cemented carbide
joining
hard alloy
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58145553A
Other languages
Japanese (ja)
Other versions
JPH0452181B2 (en
Inventor
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58145553A priority Critical patent/JPS6037280A/en
Publication of JPS6037280A publication Critical patent/JPS6037280A/en
Publication of JPH0452181B2 publication Critical patent/JPH0452181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

PURPOSE:To prevent cracking of a joining member and to improve the life of a forging punch, etc. in joining of a sintered hard alloy and a steel by forming >=1 layer of diffusion layer having a limited thickness between the sintered hard alloy and the steel. CONSTITUTION:A metallic filler 3 having <=0.3mm. thickness is forced into the space between a sintered hard alloy 1 and a steel 2 and while pressurizing force is exerted to the insertion surface, a high energy beam is applied to the sintered hard alloy side to form <=0.5mm. diffusion layer between the two materials, thereby joining the same. The metallic filler having 1,000 deg.C m.p. is preferred in this case. Mechanical strength is low if the m.p. is lower than value. It is also possible to obtain a thin alloy of the joint layer by using >=2 kinds of fillers having different m.p. An electron beam or laser beam is utilized as the high energy beam.

Description

【発明の詳細な説明】 (技術分野) 本発明は超硬合金と鋼を接合した冷間鍛造パンチ、熱間
鍛造パンチ、金型などに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a cold forging punch, a hot forging punch, a mold, etc. in which cemented carbide and steel are joined.

(技術の背景) 一般に超硬合金の接合はAgロウ等を用いたローため2
、ロー材は部よりはずれが起こり、実用化されていない
。これらロー材は方法では、第1には形する、第2には
、鋼と超硬合金の間に熱膨張係数に差があるため、残留
応力が残り繰り返し衝撃時のクランクの発生源となる。
(Technical background) In general, cemented carbide is joined by soldering using Ag soldering etc.2
However, brazing materials tend to come off from the edges, so they are not put to practical use. These brazing materials are shaped firstly, and secondly, because there is a difference in thermal expansion coefficient between steel and cemented carbide, residual stress remains and becomes a source of crankshaft during repeated impact. .

また第3にはロー材自体の圧縮強度が低いために、衝撃
がかかった時点において、ロー材が変形する等の問題点
があったため、この種分野で、超硬合金はなJ−々か使
ガ 用されていなシつた。最近では、高エネルギービームに
よる接合方法も開発され実用化が進んでいるが、繰り返
し数が多い鍛造用パンチの分野では、未だ実用化に至っ
ていない。その理由は、超硬合金は熱衝撃に弱く、鋼は
高温に加熱されると変態を起こす。高エネルギービーム
で接合する場合は超硬合金においては熱衝撃によるクラ
ンク、また鋼においては変態による抗張力低下による亀
裂が発生しやすい。
Thirdly, since the compressive strength of the brazing material itself is low, there are problems such as deformation of the brazing material when an impact is applied. It has not been used. Recently, a joining method using a high-energy beam has been developed and is being put into practical use, but it has not yet been put into practical use in the field of forging punches, which require a large number of repetitions. The reason is that cemented carbide is susceptible to thermal shock, and steel undergoes transformation when heated to high temperatures. When joining with a high-energy beam, cemented carbide tends to crack due to thermal shock, and steel tends to crack due to a decrease in tensile strength due to transformation.

(発生の開示) 本発明はかかる問題点を解決するために鋭意検討した結
果得られたものである。その要旨は、超硬合金と鋼の接
合において両者の間に0.5 ffm以下の拡散層を1
層以上形成してなる超硬合金と鋼の接合部材を提供する
ものである。第2の発明は、超硬合金と鋼の接合におい
て、両者の間に厚さ03關以下の金属フィラーを挿入し
、該挿入面に加圧力を加えかつ超硬合金側に高エネルギ
ービームを加えて接合する超硬合金と鋼の接合部材の製
造方法を提供するものである。該金属フィラーは、10
00°C以上の融点をもっこ七が望捷しく、それ以下で
は通常抗張力等の機械的強度が低い。また高エネルギー
ビームとしては、電子ビーム、またはレーザービームが
一般的で、かつ容易に利用することができる。第1図に
超硬合金1と鋼2を旧關厚さのNi金属箔3を用いて接
合した時のNiの分布状況を示す。4の部分は、超硬合
金側へNiが拡散した巾を示し、本例では約10μ、捷
た鋼部への拡散層は約20μであった。金属フィラーと
してNiを用いた場合には、超硬合金側で脱炭等の現象
は見られなかった。本発明の別の特徴は、0.3 mm
以下の金属フィラーを超硬合金と鋼の間に挿入し、超硬
合金を高エネルギービームで直接的に加熱し、同時に超
鋼合金と鋼を圧接させることにより金属フィラーを超硬
合金と鋼中に拡散接合することを特徴とする接合法であ
る。金属フィラーが03闘を越えると使用時の高荷重下
で金属フィラーが圧縮変形するため、鍛造圧にもたない
。フィラーの厚みは03mm以下が望才しい。0.3 
mm以下であると超硬合金中及び鋼中に拡散が起こるた
め、最終的には厚みは半分以下になる。さらに望ましく
け金属フィラーの厚みは5μ以上+00 t−以下がさ
らに良い。金属フィラー厚みが5μ以下になると、金属
フィラーの製造が難しく、捷た接合強度も弱くなる。拡
散接合の熱源は高エネルギーが良い。高エネルギービー
ムはビーム径を調整し、接合部近傍の狭い部分のみ加熱
することが出来るため、鋼部の変形、変態を最小にする
こ々が出来る。本願発明で用いる、フィラーについては
、融点が1000℃以上の方が良好である。即ち、耐衝
撃性に秀れた、超硬合金と、鋼の接合方法としては、融
点が高く、抗張力の高い材料が望せしい。例えば、純N
iや、NiにB、 Si、 Mn、 Mg等を含有する
材料を用いることができ又、純Caや、Co1Ni等の
多くの合金を用いることができる。この種フィラーの役
割として、例えばNiiたはN1合金を用いた場合には
、炭素の固溶度が小さいため、超硬合金側の固溶炭素や
、結合炭素が鋼部へ拡散することを防止することもでき
る。また別に、複数枚の性質の異るフィラーを用いるこ
とも可能である。例えば融点の異る2種以上のフィラー
を用いることによって、接合層の薄い合金を得ることも
可能である。また前述した通り、接合部にはどうしても
熱履歴が残りやすいし、熱歪に基く、熱応力や捷だ融点
近辺までの昇温のために、超硬合金や、フィラー材、鋼
が変質することもある。このためには例えば、接合後、
熱処理によって、油やき入れ、焼なまし、焼戻し等の熱
処理工程を入れることも可能である。場合によっては、
電子ビーム溶接等の場合は、適切なガスを容器内に導入
することにより接合部材の冷却速度を制御することも可
能である。従来からのロー付は法による接合では、ロー
材自体の強度が弱いことと、加熱部分が広く、鋼の変態
範囲が広いという弱点を持っている。また従来からの溶
接法でも同様の問題点があった。即ち接合時の加熱部分
が極めて広いだめに変質層が広く、接合後の熱処理によ
ってもなかなかもとへは復帰しなかった。本願発明は、
かかる問題点を解決するために熱変質層が薄く、回復も
しやすい。
(Disclosure of Occurrence) The present invention was obtained as a result of intensive studies to solve these problems. The gist of this is that when joining cemented carbide and steel, a diffusion layer of 0.5 ffm or less is created between the two.
The present invention provides a cemented carbide and steel joining member formed of more than one layer. The second invention is to join cemented carbide and steel by inserting a metal filler with a thickness of 0.3 mm or less between the two, applying pressure to the insertion surface, and applying a high-energy beam to the cemented carbide side. The present invention provides a method of manufacturing a joining member of cemented carbide and steel that is joined together using a method of joining. The metal filler contains 10
It is desirable to have a melting point of 00°C or higher; below that, mechanical strength such as tensile strength is usually low. Further, as the high-energy beam, an electron beam or a laser beam is generally used and can be easily used. FIG. 1 shows the distribution of Ni when cemented carbide 1 and steel 2 are joined using Ni metal foil 3 of a similar thickness. The portion 4 indicates the width of Ni diffusion toward the cemented carbide, which in this example was approximately 10 μm, and the diffusion layer into the splintered steel portion was approximately 20 μm. When Ni was used as the metal filler, no phenomena such as decarburization were observed on the cemented carbide side. Another feature of the invention is that 0.3 mm
The following metal filler is inserted between the cemented carbide and the steel, the cemented carbide is directly heated with a high-energy beam, and the metal filler is inserted between the cemented carbide and the steel by simultaneously press-welding the cemented carbide and the steel. This bonding method is characterized by diffusion bonding. If the metal filler exceeds 03 strength, the metal filler will be compressed and deformed under the high load during use, so it will not be able to withstand forging pressure. The thickness of the filler is preferably 0.3 mm or less. 0.3
If it is less than mm, diffusion will occur in the cemented carbide and the steel, so the thickness will ultimately be less than half. More preferably, the thickness of the metal filler is 5μ or more and +00 t- or less. When the thickness of the metal filler is less than 5 μm, it is difficult to manufacture the metal filler, and the bonding strength after cracking becomes weak. A high-energy heat source is preferable for diffusion bonding. Since the high-energy beam can adjust the beam diameter and heat only a narrow area near the joint, deformation and transformation of the steel part can be minimized. It is better for the filler used in the present invention to have a melting point of 1000°C or higher. That is, as a method for joining cemented carbide and steel, which have excellent impact resistance, it is desirable to use a material with a high melting point and high tensile strength. For example, pure N
A material containing B, Si, Mn, Mg, etc. in i or Ni can be used, and many alloys such as pure Ca and Co1Ni can be used. For example, when Nii or N1 alloy is used, the role of this type of filler is to prevent the solid solubility of carbon in the cemented carbide and the bonded carbon from diffusing into the steel part, since the solid solubility of carbon is small. You can also. Alternatively, it is also possible to use a plurality of fillers with different properties. For example, by using two or more types of fillers with different melting points, it is also possible to obtain an alloy with a thin bonding layer. Furthermore, as mentioned above, thermal history tends to remain in the joints, and the cemented carbide, filler material, and steel may deteriorate due to thermal stress caused by thermal strain and temperature rise to near the melting point. There is also. For this purpose, for example, after joining,
It is also possible to perform heat treatment steps such as hardening, annealing, and tempering. In some cases,
In the case of electron beam welding, etc., it is also possible to control the cooling rate of the joining members by introducing an appropriate gas into the container. Conventional brazing joining methods have the disadvantages that the strength of the brazing material itself is weak, the heating area is wide, and the transformation range of the steel is wide. Also, conventional welding methods have similar problems. That is, because the heated area during bonding was extremely wide, the deteriorated layer was wide, and it was difficult to restore the original state even after heat treatment after bonding. The present invention is
In order to solve this problem, the thermally altered layer is thin and recovers easily.

実施例 φ20X150の5KD61の鋼材にφ20X20の超
硬合金の溶接を行った。第2図に真空チャンバー・6I
の内部に鋼材7と超硬合金8をセットし、鋼材と超硬合
金との間に50μのNiフィラーを挿入した。
EXAMPLE A cemented carbide of φ20×20 was welded to a 5KD61 steel material of φ20×150. Figure 2 shows vacuum chamber 6I.
A steel material 7 and a cemented carbide 8 were set inside the steel material, and a 50 μm Ni filler was inserted between the steel material and the cemented carbide.

鋼材は回転治具9で固定し、超硬合金を加圧治具lOに
て圧接した。回転゛冶具9を回転させることにより、鋼
と超硬合金がスリップせず、同時回転する力にて加圧し
た。チャンバー内をI O−” Torrに真空引きを
行い、電子銃より電子ビームを発生させ、超硬合金と鋼
の当接面から2 ym超硬側にビームを当て超硬合金を
加熱した。電子ビームの条件は+ 50 kv15mA
、加熱速度100 mIl/’minであった。
The steel material was fixed with a rotating jig 9, and the cemented carbide was pressed with a pressurizing jig IO. By rotating the rotating jig 9, the steel and cemented carbide were pressurized with the force of simultaneous rotation without slipping. The inside of the chamber was evacuated to I O-'' Torr, an electron beam was generated from an electron gun, and the beam was applied to the carbide side 2 ym from the contact surface of the cemented carbide and steel to heat the cemented carbide. Beam conditions are +50 kv15mA
, and the heating rate was 100 ml/'min.

方法により拡散接合したパンチを5ii5Cの鍛造した
( 300 ky/cr! )に用いたところ寿命はダ
イス鋼ベンチの10倍を示した。
When a punch bonded by diffusion bonding using this method was used in a 5ii5C forged (300 ky/cr!), the life was 10 times longer than that of a die steel bench.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明で得られた接合部材の断面図を示す。 第2図は電子ビーム溶接装置の概略図である。 1・・・超硬合金、2・・・鋼、3・・・金属フィラー
、4・・・拡散層、5・・・拡散層、6・・・真空チャ
ンバー、10・・・第 1 回 □寸 第 2 し j
FIG. 1 shows a sectional view of a joining member obtained by the present invention. FIG. 2 is a schematic diagram of an electron beam welding device. 1... Cemented carbide, 2... Steel, 3... Metal filler, 4... Diffusion layer, 5... Diffusion layer, 6... Vacuum chamber, 10... 1st □ second dimension

Claims (1)

【特許請求の範囲】 +11超硬合金と鋼の接合において、両者の間に厚さ0
.5 am以下の拡散層を1層以上形成してなることを
特徴とする超硬合金と鋼の接合部材。 (2)超硬合金と鋼の接合において、両者の間に厚さ0
3闘以下の金属フィラーを挿入し、該挿入面に加圧力を
加えて接合すれことを特徴とする超硬合金と鋼の接合部
材の製造方法。 (3)金属フィラーの融点が、1000℃以上であるこ
とを特徴とする特許請求の範囲第(2)項記載の超硬合
金と鋼の接合部材の製造方法。 (4)高エネルギービームが、電子ビーム捷たはレザー
ビームであることを特徴とする特許請求の範囲第(3)
項記載の超硬合金と鋼の接合部材の製造方法0
[Claims] +11 In joining cemented carbide and steel, there is no thickness between them.
.. A bonding member for cemented carbide and steel, characterized by forming one or more diffusion layers of 5 am or less. (2) When joining cemented carbide and steel, there is no thickness between the two.
A method for producing a joining member of cemented carbide and steel, which comprises inserting a metal filler of 3 mm or less and joining by applying pressure to the insertion surface. (3) The method for manufacturing a joining member of cemented carbide and steel according to claim (2), wherein the metal filler has a melting point of 1000° C. or higher. (4) Claim No. 3, characterized in that the high-energy beam is an electron beam or a laser beam.
Manufacturing method of cemented carbide and steel joining member described in Section 0
JP58145553A 1983-08-08 1983-08-08 Joining member for sintered hard alloy and steel and its production Granted JPS6037280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145553A JPS6037280A (en) 1983-08-08 1983-08-08 Joining member for sintered hard alloy and steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145553A JPS6037280A (en) 1983-08-08 1983-08-08 Joining member for sintered hard alloy and steel and its production

Publications (2)

Publication Number Publication Date
JPS6037280A true JPS6037280A (en) 1985-02-26
JPH0452181B2 JPH0452181B2 (en) 1992-08-21

Family

ID=15387829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145553A Granted JPS6037280A (en) 1983-08-08 1983-08-08 Joining member for sintered hard alloy and steel and its production

Country Status (1)

Country Link
JP (1) JPS6037280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940214A3 (en) * 1998-02-18 2004-05-06 William Prym GmbH &amp; Co. KG Process for joining two parts consisting of metals differing in hardness by means of laser light
JP2009131917A (en) * 2007-11-29 2009-06-18 Mitsubishi Materials Corp Composite material having high bonding strength between cemented carbide member and steel member, and composite raw material for cutting tool and cutting tool composed of the composite material
JP2010120144A (en) * 2008-11-21 2010-06-03 Union Tool Co Drilling tool and method for manufacturing the same
CN112025123A (en) * 2020-08-25 2020-12-04 昆山铂达峰精密机械有限公司 Punch welding process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890385A (en) * 1981-11-25 1983-05-30 Sumitomo Electric Ind Ltd Manufacture of composite wear resistance member
JPS58128281A (en) * 1982-01-27 1983-07-30 Hitachi Ltd Diffusion bonding method of sintered hard alloy and steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890385A (en) * 1981-11-25 1983-05-30 Sumitomo Electric Ind Ltd Manufacture of composite wear resistance member
JPS58128281A (en) * 1982-01-27 1983-07-30 Hitachi Ltd Diffusion bonding method of sintered hard alloy and steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940214A3 (en) * 1998-02-18 2004-05-06 William Prym GmbH &amp; Co. KG Process for joining two parts consisting of metals differing in hardness by means of laser light
JP2009131917A (en) * 2007-11-29 2009-06-18 Mitsubishi Materials Corp Composite material having high bonding strength between cemented carbide member and steel member, and composite raw material for cutting tool and cutting tool composed of the composite material
JP2010120144A (en) * 2008-11-21 2010-06-03 Union Tool Co Drilling tool and method for manufacturing the same
CN112025123A (en) * 2020-08-25 2020-12-04 昆山铂达峰精密机械有限公司 Punch welding process

Also Published As

Publication number Publication date
JPH0452181B2 (en) 1992-08-21

Similar Documents

Publication Publication Date Title
EP2659993B1 (en) Closed-die forging method and method of manufacturing forged article
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
US9370846B2 (en) Process for producing combustor structural member, and combustor structural member, combustor for gas turbine and gas turbine
US4245769A (en) Laminate bonding method
CN107030367A (en) The dissimilar metal diffusion welding method of titanium alloy and stainless steel
US2820286A (en) Method of making composite plates
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
US4919323A (en) Diffusion bonding nickel base alloys
EP1400300B1 (en) Layered heat-resistant alloy plate and method of producing the same
JPS6037280A (en) Joining member for sintered hard alloy and steel and its production
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JPS58187284A (en) Diffusion welding method for structure element consisting of high heat-resistant metallic material
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
CN101934405A (en) Brazing method
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
JPS58141880A (en) Joining method of sintered hard alloy
JPS63281767A (en) Production of laminated heat resistant alloy plate
JP2693973B2 (en) Diffusion bonding method for tubular laminated materials
CN207205656U (en) Manufacturing clamp for tubular honeycomb body
JP2002248597A (en) High thermal conductive composite material and metallic mold
JPH03185202A (en) Manufacture of cam shaft
JP4358093B2 (en) Method for producing reinforced platinum / platinum composite material, reinforced platinum / platinum composite material produced by the method, and crucible made of reinforced platinum / platinum composite material
JP2693974B2 (en) Diffusion bonding method for tubular laminated materials
US4050620A (en) Method of welding a friction material to a reinforcing member
SU770698A1 (en) Method of manufacturing metallic shaped workpiece by pressure welding