JPH0251478A - Method for bonding metal and ceramic - Google Patents
Method for bonding metal and ceramicInfo
- Publication number
- JPH0251478A JPH0251478A JP20037588A JP20037588A JPH0251478A JP H0251478 A JPH0251478 A JP H0251478A JP 20037588 A JP20037588 A JP 20037588A JP 20037588 A JP20037588 A JP 20037588A JP H0251478 A JPH0251478 A JP H0251478A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- ceramic
- thermal expansion
- bonding
- bonded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 84
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 84
- 239000000919 ceramic Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000005219 brazing Methods 0.000 claims abstract description 12
- 238000009792 diffusion process Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000008602 contraction Effects 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000003292 diminished effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は金属・セラミックス接合法に係り、特に、金属
とセラミックスとをろう付、拡散接合、活性金属等によ
り接合し、セラミックスの耐熱性、絶縁性、耐摩耗性等
と、金属の靭性、電気伝導性、熱伝導性等の特性を併せ
有し、高温エンジン、海洋開発等の分野に使用するのに
好適な接合体を得るための金属・セラミックス接合法に
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a metal/ceramics bonding method, and in particular, to bond metals and ceramics by brazing, diffusion bonding, active metals, etc., and to improve the heat resistance of ceramics. A metal that has properties such as insulation and wear resistance, as well as the toughness, electrical conductivity, and thermal conductivity of metals, and is used to obtain joined bodies suitable for use in fields such as high-temperature engines and offshore development.・Related to ceramic bonding method.
金属とセラミックスとの接合体は、金属の有する特性と
セラミックスの有する特性とを併せ有しており、種々の
分野への適用がなされ、また研究が進められている。Bonded bodies of metal and ceramics have both the characteristics of metals and the characteristics of ceramics, and are being applied and researched in various fields.
金属とセラミックスとの高強度接合体を得るには、第1
には両者の接合面での反応層が界面で結晶接合性、機械
的性質に優れていること、第2には両者の接合操作時、
接合に要する温度に加熱された後に冷却する際、界面に
歪みが発生するため、その応力を緩和させることが重要
な要素である。In order to obtain a high-strength joint between metal and ceramics, the first step is to
The first is that the reaction layer at the bonding surface of the two has excellent crystal bonding properties and mechanical properties at the interface, and the second is that during the bonding operation of the two,
When the materials are heated to the temperature required for bonding and then cooled, strain occurs at the interface, so it is important to alleviate that stress.
従来、上記した第2の0素を達成する方法、すなわち、
応力を緩和させる方法として、+11 金属とセラミ
ックスとの間に両者のそれぞれの熱膨張係数の中間の熱
膨張係数を有する材料(例えば、rt金合金I nva
r等)を介在させて両者を接合する方法、
(2) 金属とセラミックスとの間に両者の接合操作
時、塑性変形する材料(例えば、Cu、A1、Ni5T
i等)を介在させて両者を接合する方法、等がある。Conventionally, a method for achieving the second zero element described above, that is,
As a way to relieve stress, +11 materials with a coefficient of thermal expansion intermediate between their respective coefficients of thermal expansion (e.g., rt gold alloy I nva
(2) A method of joining metal and ceramics by interposing a material (such as Cu, A1, Ni5T, etc.) that plastically deforms during the joining operation of the two.
There is a method of joining the two by intervening (such as i).
しかしながら、上記した従来の方法では、いずれも金属
とセラミックスとの間に第3の金属を挿入するという工
程を要すると共に第3の金属材料とろう材、活性金属等
の結合材等の反応層を制御しなければならない困難を有
するという問題点がある。However, all of the above conventional methods require a step of inserting a third metal between the metal and the ceramic, and a reaction layer of the third metal material and a binder such as a brazing material or an active metal. The problem is that it has difficulties that must be controlled.
本発明は、上記した従来の接合法の課題を解決し、金属
とセラミックスとの間に応力を緩和するための第3の金
属を挿入するという煩雑な工程を要することなく、金属
とセラミックスとを接合する際に両者の間に生じる応力
を著しく緩和でき、これによって、強度等の特性に優れ
た金属・セラミックス接合体を得ることができる金属・
セラミックス接合法を提供することを目的とする。The present invention solves the problems of the conventional bonding method described above, and allows metal and ceramics to be bonded together without the need for the complicated process of inserting a third metal between the metal and ceramics to relieve stress. A metal/ceramic bonded body that can significantly alleviate the stress that occurs between the two during bonding, resulting in a metal/ceramic bonded body with excellent properties such as strength.
The purpose is to provide a ceramic bonding method.
上記の目的を達成するために本発明は、金属とセラミッ
クスをろう付、拡散接合、活性金属等により接合する金
属・セラミックス接合法において、前記セラミックスと
接合される前記金属側の少なくとも接合面付近であって
、該接合面に平行する方向の前記金属の熱膨張を抑制す
る部材を配置すると共に該部材の熱膨張係数が前記金属
の熱膨張係数よりも小さくした手段を採用したものであ
る。In order to achieve the above object, the present invention provides a metal-ceramic bonding method in which a metal and a ceramic are bonded by brazing, diffusion bonding, active metal, etc. In this case, a member is arranged to suppress thermal expansion of the metal in a direction parallel to the joint surface, and the thermal expansion coefficient of the member is made smaller than that of the metal.
本発明は上記の手段を採用したことにより、セラミック
スに接合される金属の少なくとも接合面付近で、接合面
に平行する方向の金属の熱膨張を抑制する部材が配置さ
れるから、金属の熱膨張は、その部材の熱膨張係数に対
応して抑制される。By adopting the above means, the present invention disposes a member that suppresses the thermal expansion of the metal in the direction parallel to the bonding surface at least near the bonding surface of the metal to be bonded to the ceramic. is suppressed in accordance with the coefficient of thermal expansion of the member.
この部材の熱膨張係数5よ、セラミックスに接合される
金属の熱膨張係数よりも小さいのでセラミックスの熱膨
張係数よりも小さくできる。The coefficient of thermal expansion of this member, 5, is smaller than the coefficient of thermal expansion of the metal bonded to the ceramic, so it can be made smaller than the coefficient of thermal expansion of the ceramic.
したがって、接合操作時の加熱によるセラミックスと金
属との熱膨張量の差が少なくなり、接合完了後の金属の
収縮代が小さくなり、接合面付近の残留応力が減少する
。Therefore, the difference in the amount of thermal expansion between the ceramic and the metal due to heating during the bonding operation is reduced, the shrinkage margin of the metal after the bonding is completed is reduced, and the residual stress near the bonding surface is reduced.
以下、図面に示す本発明の実施例について説明する。 Embodiments of the present invention shown in the drawings will be described below.
第1図は本発明の金属・セラミックス接合法を示す説明
図である。FIG. 1 is an explanatory diagram showing the metal-ceramic bonding method of the present invention.
第1図において、円柱体からなるセラミックスlと、こ
のセラミックスlよりも直径の大きい円柱からなる金属
3とをろう材2によって接合する例を示している。FIG. 1 shows an example in which a ceramic 1 made of a cylindrical body and a metal 3 made of a cylindrical body having a diameter larger than that of the ceramic 1 are joined by a brazing filler metal 2.
そして、前記セラミックスlとしてSiCが使用され、
金属3として5US304が使用され、ろう材2として
Ag−Cuが使用される。And SiC is used as the ceramic l,
5US304 is used as the metal 3, and Ag-Cu is used as the brazing material 2.
また、セラミックスlとの接合面付近の金属3の外周囲
には金属3の熱膨張を抑制する部材としての円環状のセ
ラミックス治具4が配置される。Further, an annular ceramic jig 4 as a member for suppressing thermal expansion of the metal 3 is arranged around the outer periphery of the metal 3 near the joint surface with the ceramic 1.
このセラミックス治具4は、金属3の熱膨張係数よりも
小さい熱膨張係数を有する材料からなるものが使用され
る。This ceramic jig 4 is made of a material having a coefficient of thermal expansion smaller than that of the metal 3.
なお、SiCからなるセラミックスlの熱膨張係数αは
3 X 10−’/℃、5US304からなる金属3の
熱膨張係数αは17 X I O−’/℃である。Note that the thermal expansion coefficient α of the ceramic 1 made of SiC is 3×10−′/°C, and the thermal expansion coefficient α of the metal 3 made of 5US304 is 17×IO−′/°C.
このセラミックス1と金属3とをAg−Cuからなるろ
う材2によって接合するためには、ろう材2の反応する
温度、すなわち1000℃まで昇温される。In order to join the ceramic 1 and the metal 3 using the brazing filler metal 2 made of Ag-Cu, the temperature is raised to a temperature at which the brazing filler metal 2 reacts, that is, 1000°C.
この場合、金属3は、セラミックス治具4により接合面
と平行する方向の熱膨張が拘束され、セラミックスlと
の熱膨張差が小さくなる。In this case, the thermal expansion of the metal 3 in the direction parallel to the joint surface is restrained by the ceramic jig 4, and the difference in thermal expansion with the ceramic l becomes small.
したがって、セラミックスlと金属3との界面における
歪み等の発生がなく、金属・セラミックス接合体の機械
的強度等が向上する。Therefore, no distortion occurs at the interface between the ceramic 1 and the metal 3, and the mechanical strength of the metal-ceramic bonded body is improved.
このような金属とセラミックスとの接合法の例を第1図
を基にさらに具体的に説明する。An example of such a method of joining metal and ceramics will be explained in more detail with reference to FIG.
実施例1
セラミックス1として5iC1ろう材2としてAg
Cu、金属3としてSUS 304を用い、環状のセラ
ミックス治具4としてセラミックスlと同材質のSiC
を用いた。Example 1 5iC as ceramic 1 Ag as brazing material 2
Cu, SUS 304 is used as the metal 3, and SiC, which is the same material as the ceramic l, is used as the annular ceramic jig 4.
was used.
そして、円柱体からなる金属3の直径1つと環状のセラ
ミックス治具穐の内径!、との関係を1.=Il、とし
た。And one diameter of the cylindrical metal 3 and the inner diameter of the annular ceramic jig! , the relationship with 1. = Il.
この状態でろう材2の反応に要する温度まで昇温すると
、円柱体からなる金属3は熱膨張するがこの場合、金属
3は環状のセラミックス治具4によってその熱膨張作用
が拘束される。In this state, when the temperature is raised to a temperature required for the reaction of the brazing filler metal 2, the cylindrical metal 3 thermally expands, but in this case, the thermal expansion of the metal 3 is restrained by the annular ceramic jig 4.
このセラミックス治具4はセラミックス1と同材質から
なるので金属3の熱膨張はセラミックス1とほぼ同一の
熱膨張を呈する。Since the ceramic jig 4 is made of the same material as the ceramic 1, the metal 3 exhibits almost the same thermal expansion as the ceramic 1.
したがって、セラミックス】と金属3との間の熱膨張量
の差がほとんどなくなる。Therefore, there is almost no difference in thermal expansion between the ceramic and the metal 3.
実施例2
円柱体からなる金属3の直径12と環状のセラミックス
治具4の内径13との関係を2.<!、とした他は、実
施例1と同様にして接合操作を行った。Example 2 The relationship between the diameter 12 of the cylindrical metal 3 and the inner diameter 13 of the annular ceramic jig 4 is as follows. <! The joining operation was performed in the same manner as in Example 1, except that .
この場合、金属3の熱膨張と同時にセラミックス治具4
自体も熱膨張し、その内径が拡大し、その拡大した範囲
内で金属3が熱膨張する。In this case, at the same time as the metal 3 thermally expands, the ceramic jig 4
The metal 3 itself also thermally expands, its inner diameter expands, and the metal 3 thermally expands within the expanded range.
したがって、1000℃に加熱したときの金属3の熱膨
張は、(l、(αn+t)l/1t−11(但し、α4
はセラミック治具4の熱膨張係数を表わす、)の値で示
される見掛は上の熱膨張係数αまで抑制される。Therefore, the thermal expansion of metal 3 when heated to 1000°C is (l, (αn+t)l/1t-11 (however, α4
represents the thermal expansion coefficient of the ceramic jig 4, and the apparent value indicated by ) is suppressed to the above thermal expansion coefficient α.
このため、セラミックス1と金属3との間の熱膨張量の
差が少なくな(なる。Therefore, the difference in thermal expansion between the ceramic 1 and the metal 3 is reduced.
実施例3
セラミックス治具4として、熱膨張係数αがセラミック
ス■を構成するSiCと金属3を構成するSUS 30
4のそれぞれの熱膨張係数αの中間の値を有するANz
OsC熱膨張係数α: 8 x 10−’/℃)を用い
た他は、実施例1と同様にして接合操作を行った。Example 3 As the ceramic jig 4, SiC whose thermal expansion coefficient α constitutes the ceramic ■ and SUS 30 which constitutes the metal 3 are used.
ANz with intermediate values of the respective thermal expansion coefficients α of 4
The joining operation was performed in the same manner as in Example 1, except that OsC thermal expansion coefficient α: 8 x 10-'/°C) was used.
この場合、金属3はA1.O,からなるセラミックス治
具4の熱膨張に追従するので、金属3の熱膨張係数αは
8 X 10−”/℃に抑制され、セラミックス1と金
属3との間の熱膨張量の差が少なくなくなる。In this case, metal 3 is A1. Since it follows the thermal expansion of the ceramic jig 4 made of O, the thermal expansion coefficient α of the metal 3 is suppressed to 8 x 10-"/°C, and the difference in the amount of thermal expansion between the ceramic 1 and the metal 3 is It will become less.
上記した方法によってセラミックス1と金属3との熱膨
張量の差が小さくなるので接合反応完了後、冷却する過
程での金属3の収縮代は、セラミックス治具4を使用し
ない場合に比較して少なくなる。The above method reduces the difference in thermal expansion between the ceramic 1 and the metal 3, so the amount of shrinkage of the metal 3 during the cooling process after the completion of the bonding reaction is smaller than when the ceramic jig 4 is not used. Become.
したがって、セラミックス1と金属3との接合面付近の
残留応力が減少し、接合強度が向上する。Therefore, the residual stress near the joint surface between the ceramic 1 and the metal 3 is reduced, and the joint strength is improved.
なお、実施例3の方法で接合して得られた接合体は、セ
ラミックス治具4を使用しない従来の接合方法に得られ
た接合体と比較して接合強度が3kg/mm”向上した
。Note that the bonded body obtained by bonding according to the method of Example 3 had a bonding strength 3 kg/mm" higher than that obtained by the conventional bonding method that did not use the ceramic jig 4.
上記した実施例では、金属3の熱膨張を拘束する治具と
してセラミックスの例を示したが、本発明において、治
具は必ずしもセラミックスに制約されるものでなく、金
属3の熱膨張係数αよりも小さい熱膨張係数αを有する
金属を使用してもよい。In the above-mentioned embodiment, an example of ceramics was shown as a jig for restraining the thermal expansion of the metal 3, but in the present invention, the jig is not necessarily limited to ceramics, and the thermal expansion coefficient α of the metal 3 is A metal having a small coefficient of thermal expansion α may also be used.
本発明は前記のように構成したことにより、金属とセラ
ミックスと接合操作時、金属の熱膨張が拘束されてセラ
ミックスの熱膨張量に近くなり、接合反応完了後の金属
の収縮代が極めて少なくなり、残留応力の減少により強
度の高い接合体を得ることができるなどのすぐれた効果
を有するものである。By having the present invention configured as described above, during the joining operation of metal and ceramics, the thermal expansion of the metal is restrained and becomes close to the amount of thermal expansion of the ceramic, and the amount of shrinkage of the metal after the joining reaction is completed is extremely small. , it has excellent effects such as being able to obtain a bonded body with high strength due to the reduction of residual stress.
第1図は本発明は金属・セラミックス接合法を示す説明
図である。
1・・・・・・セラミックス
2・・・・・・ろう材
3・・・・・・金属
4・・・・・・セラミックス治具FIG. 1 is an explanatory diagram showing a metal/ceramic bonding method according to the present invention. 1... Ceramics 2... Brazing metal 3... Metal 4... Ceramics jig
Claims (1)
属等により接合する金属・セラミックス接合法において
、前記セラミックスと接合される前記金属側の少なくと
も接合面付近であって、該接合面に平行する方向の前記
金属の熱膨張を抑制する部材を配置すると共に該部材の
熱膨張係数が前記金属の熱膨張係数よりも小さいことを
特徴とする金属・セラミックス接合法。(1) In a metal-ceramic bonding method in which metal and ceramics are bonded by brazing, diffusion bonding, active metal, etc., at least near the bonding surface on the metal side to be bonded to the ceramic and parallel to the bonding surface. A metal-ceramic bonding method, characterized in that a member is disposed to suppress thermal expansion of the metal in the direction, and the coefficient of thermal expansion of the member is smaller than the coefficient of thermal expansion of the metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20037588A JPH0251478A (en) | 1988-08-11 | 1988-08-11 | Method for bonding metal and ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20037588A JPH0251478A (en) | 1988-08-11 | 1988-08-11 | Method for bonding metal and ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0251478A true JPH0251478A (en) | 1990-02-21 |
JPH055791B2 JPH055791B2 (en) | 1993-01-25 |
Family
ID=16423269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20037588A Granted JPH0251478A (en) | 1988-08-11 | 1988-08-11 | Method for bonding metal and ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0251478A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5946142A (en) * | 1995-12-11 | 1999-08-31 | Hitachi Ltd. | Projection lens system and projection image display apparatus using the same |
-
1988
- 1988-08-11 JP JP20037588A patent/JPH0251478A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5946142A (en) * | 1995-12-11 | 1999-08-31 | Hitachi Ltd. | Projection lens system and projection image display apparatus using the same |
US6046860A (en) * | 1995-12-11 | 2000-04-04 | Hitachi, Ltd. | Projection lens system and projection image display apparatus using the same |
US6243211B1 (en) * | 1995-12-11 | 2001-06-05 | Hitachi, Ltd. | Projection lens system and projection image display apparatus using the same |
US6396641B2 (en) * | 1995-12-11 | 2002-05-28 | Hitachi, Ltd. | Projection lens system and projection image display apparatus using the same |
US6624950B2 (en) * | 1995-12-11 | 2003-09-23 | Hitachi, Ltd. | Projection lens system and projection image display apparatus using the same |
US6801366B2 (en) * | 1995-12-11 | 2004-10-05 | Hitachi, Ltd. | Projection lens system and projection image display apparatus using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH055791B2 (en) | 1993-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5849672A (en) | Jointed body comprising metal layer and ceramic layer and manufacture | |
JPH0251478A (en) | Method for bonding metal and ceramic | |
JPS62182166A (en) | Method of joining ceramics to metal | |
JPH0251477A (en) | Method for bonding metal and ceramic | |
JP3240211B2 (en) | Copper-aluminum dissimilar metal joint material | |
JPS6153174A (en) | Buffer material for bonding ceramic | |
US5855313A (en) | Two-step brazing process for joining materials with different coefficients of thermal expansion | |
JP2568332B2 (en) | Method for producing composite material at least partially composed of an intermetallic compound | |
JPH0328391B2 (en) | ||
WO1998003297A1 (en) | Two-step brazing process for joining materials with different coefficients of thermal expansion | |
JPH0142914B2 (en) | ||
JPS62197361A (en) | Method of joining silicon carbide ceramics | |
JPS61136969A (en) | Method of bonding sialon and metal | |
JPS62256777A (en) | Method of cooling ceramic-metal joined body | |
JPS6177678A (en) | Method of bonding metal cylindrical body for ceramic cylindrical structural member | |
JPH0571544B2 (en) | ||
JPS62113775A (en) | Method of joining ceramic members | |
JPH0240631B2 (en) | ||
JPH01108173A (en) | Thermal stress relaxing structure for bonded part between ceramic member and metallic member | |
JPS63139077A (en) | Method of joining different kind materials of different thermal expansion coefficient | |
JPS62176966A (en) | Method of joining ceramic to metal | |
JPS63201071A (en) | Method of joining ceramic to metal | |
JPS63225585A (en) | Ceramic-metal joined body and joining method | |
JPH01215769A (en) | Production of ceramic-metal coupled body | |
JPH0426569A (en) | Method for joining ceramics and metal |