JPS63201071A - Method of joining ceramic to metal - Google Patents

Method of joining ceramic to metal

Info

Publication number
JPS63201071A
JPS63201071A JP3287087A JP3287087A JPS63201071A JP S63201071 A JPS63201071 A JP S63201071A JP 3287087 A JP3287087 A JP 3287087A JP 3287087 A JP3287087 A JP 3287087A JP S63201071 A JPS63201071 A JP S63201071A
Authority
JP
Japan
Prior art keywords
bonding
strength
metal
brazing agent
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3287087A
Other languages
Japanese (ja)
Inventor
金丸 孝男
敏彦 船橋
良治 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3287087A priority Critical patent/JPS63201071A/en
Publication of JPS63201071A publication Critical patent/JPS63201071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックスと金属の接合体をろう剤を用い
て製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic-metal bonded body using a brazing agent.

〔従来の技術〕[Conventional technology]

窒化珪素、炭化珪素に代表される構造用セラミックスは
、金属材料に比べ高温強度が大きく、耐摩耗性、耐食性
に優れており機械部品への適用が検討されている。この
ような場合セラミックスと金属の強固な接合体を製造す
る方法が必要なことが多く、各種接合法が研究されてい
る。その中で特にろう付は法が有望であるが、両者の熱
膨張係数の違いに起因する残留応力、接合界面に生成さ
れる脆弱な金属間化合物による接合強度の劣化等幾つか
の問題があり、高強度で強度のばらつきの少ないセラミ
ックスと金属の接合法はまだ開発されていない。
Structural ceramics, represented by silicon nitride and silicon carbide, have greater high-temperature strength, wear resistance, and corrosion resistance than metal materials, and are being considered for application to mechanical parts. In such cases, there is often a need for a method for producing a strong bonded body of ceramic and metal, and various bonding methods are being researched. Among these methods, brazing is particularly promising, but there are several problems such as residual stress due to the difference in coefficient of thermal expansion between the two, and deterioration of bonding strength due to brittle intermetallic compounds generated at the bonding interface. However, a method for joining ceramics and metals with high strength and little variation in strength has not yet been developed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般にセラミックスは、ろう剤に対するぬれが悪いため
活性金属を用いたろう付は法が開発されているが、セラ
ミックスと金属とでは、ろう剤に対する化学的反応性が
異なり、セラミックスとろう剤が強固な接合をする温度
域と金属とろう剤が強固な接合をする温度域とは異なる
。そのためにセラミックスと金属の強固な接合体を製造
することが困難であり、特に大型部品の接合時には、両
者の8膨張係数の差に起因する応力により冷却中に剥離
する問題が生じていた。
In general, ceramics have poor wettability to brazing agents, so methods have been developed for brazing using active metals, but ceramics and metals have different chemical reactivity to brazing agents, and ceramics and brazing agents do not have a strong bond. The temperature range in which this occurs is different from the temperature range in which the metal and brazing agent form a strong bond. For this reason, it is difficult to produce a strong joined body of ceramic and metal, and especially when joining large parts, there has been a problem that the two parts will peel off during cooling due to stress caused by the difference in their coefficients of expansion.

例えば、活性金属ろうとしてアルミニウムを用いてセラ
ミックスを接合する方法が知られているが、この場合セ
ラミックスとアルミニウムがぬれる温度では、アルミニ
ウムと金属が反応して脆弱な金属間化合物を作るために
高強度接合体の製造が不可能であった。
For example, a method of joining ceramics using aluminum as an active metal solder is known. It was impossible to manufacture a joined body.

□ 本発明はろう剤を用いてセラミックスと金属の高強
度接合体を製造するものである。
□ The present invention uses a brazing agent to produce a high-strength bonded body of ceramics and metal.

〔問題点を解決するための手段〕[Means for solving problems]

発明者らは、上記問題点を解決すべく鋭意研究した結果
、セラミックスとろう開開および金属とろう開開ともに
強固な接合面を有する接合方法を発見し本発明を完成す
るに至った。
As a result of intensive research aimed at solving the above-mentioned problems, the inventors discovered a bonding method that provides a strong bonding surface for both ceramic and solder joints and metal and solder joints, and completed the present invention.

すなわち本発明は2セラミツクスと金属とをろう剤を用
いて接合する方法において、 (1)  ろう剤の融点以上の温度に加熱してろう剤を
溶融してセラミックスとろう剤を融着させる第1の接合
工程 ■ この温度未満の温度で前記ろう剤と前記金属を接合
する第2の接合工程 とから成る方法である。
That is, the present invention provides a method for bonding ceramics and metal using a brazing agent, which includes: (1) heating to a temperature higher than the melting point of the brazing agent to melt the brazing agent and fusing the ceramic and the brazing agent; This is a method consisting of a second joining step of joining the brazing agent and the metal at a temperature lower than this temperature.

〔作用〕[Effect]

本発明が適用されるセラミックスは、アルミナ、ジルコ
ニア等の酸化物セラミックス、あるいは窒化珪素、炭化
珪素等の非酸化物セラミックスである。これらの焼結体
には、焼結助剤が含まれてもよいが含まれなくてもよい
。製造は常圧焼結、ホットプレス等いずれの方法で製造
したものでもよい。
Ceramics to which the present invention is applied are oxide ceramics such as alumina and zirconia, or non-oxide ceramics such as silicon nitride and silicon carbide. These sintered bodies may or may not contain a sintering aid. The material may be manufactured by any method such as pressureless sintering or hot pressing.

一方金居とは、軟鋼、ステンレス鋼、アルミ合金などの
一般構造用金属材料をさす。
On the other hand, metalwork refers to general structural metal materials such as mild steel, stainless steel, and aluminum alloy.

ろう剤としてはセラミックス同士および金属同士を強固
に接合し得るろう剤であればよく、例えば純An、A!
;L合金、Ag−Cu−Ti等が好ましい。
The brazing agent may be any brazing agent that can firmly bond ceramics and metals together, such as pure An, A!
; L alloy, Ag-Cu-Ti, etc. are preferred.

第1の接合工程では、セラミックスの被接合表面にろう
剤を置き、ろう剤の融点以上に加熱する。より強固な接
合を得るためには、次のようにすればよい、各種温度で
それぞれ数個の接合体を作製した後、強度試験を行い接
合体の曲げ強度を求める。この値が最大値をとる(以後
これを最大強度と呼ぶ)接合温度で第1の接合を行う、
ただし第1の接合は、最大の強度が得られる温度1点に
限られるものでなく、最大強度の90%以上の強度が得
られる温度で接合しても実用上大きな障害はない。
In the first bonding step, a brazing agent is placed on the surfaces of the ceramics to be bonded and heated to a temperature higher than the melting point of the brazing agent. In order to obtain a stronger bond, the following procedure may be used. After producing several bonded bodies at various temperatures, a strength test is conducted to determine the bending strength of the bonded bodies. Performing the first bonding at a bonding temperature at which this value takes the maximum value (hereinafter referred to as maximum strength),
However, the first bonding is not limited to one temperature at which the maximum strength is obtained, and there is no practical problem in bonding at a temperature at which 90% or more of the maximum strength is obtained.

もし被接合表面全体にろう剤が拡がらない場合は、この
面に金属をコーティングしてぬれ性を良くしてもよい、
上記セラミックスのコーティング用金属はいわゆる金属
であればよいが、ぬれ性、接合強度の点からTi 、M
o、Ni 、Cr、C。
If the brazing agent does not spread over the entire surface to be joined, this surface may be coated with metal to improve wettability.
The metal for coating the above-mentioned ceramics may be any so-called metal, but from the viewpoint of wettability and bonding strength, Ti, M
o, Ni, Cr, C.

などがよい、コーティング法としては真空蒸着法、CV
D、イオンブレーティング等いずれでもよい、コーティ
ング層の厚さは1000Å以上であればよいが、ぬれ性
、強度、作業性から2000人程度5実用的である。
Examples of coating methods include vacuum evaporation, CV
D, ion blasting, etc. may be used.The thickness of the coating layer may be 1000 Å or more, but from the viewpoint of wettability, strength, and workability, it is practical for about 2000 people5.

上記第1工程により形成されるろう剤層の厚さは数mm
である。このろう剤層を第2の接合工程に適した形状、
表面粗さおよび厚さに加工した後、第2の接合をする。
The thickness of the brazing agent layer formed by the above first step is several mm.
It is. This brazing agent layer is shaped into a shape suitable for the second bonding process.
After processing to the surface roughness and thickness, a second bonding is performed.

第2の接合は、接合温度がろう剤の融点よりも高いとき
には、ろう付けとなり低い場合は固相拡散接合になる。
The second type of bonding is brazing when the bonding temperature is higher than the melting point of the brazing agent, and solid phase diffusion bonding when the bonding temperature is lower than the melting point of the brazing agent.

また母材金属の被接合表面にメッキ等の表面処理を施す
ことにより脆弱な金属間化合物の生成を抑制し、さらに
強固な接合体を得ることもできる。
Furthermore, by applying surface treatment such as plating to the surfaces of the base metals to be joined, it is possible to suppress the formation of brittle intermetallic compounds and obtain a stronger joined body.

強固な接合を得るためには、次のようにすればよい。各
種温度でそれぞれ数個の金属同士の接合体を作製した後
、強度試験を行い接合体の曲げ強度を求める。この値が
最大値をとる接合温度で第2の接合を行えば強固な接合
体が得られる。ただし第2の接合は、最大強度が得られ
る温度1点に限られるものでなく、最大強度の90%以
上の強度が得られる温度で接合しても実用上大きな障害
はない。
To obtain a strong bond, do the following. After several metals are bonded at various temperatures, a strength test is conducted to determine the bending strength of the bonded bodies. If the second bonding is performed at the bonding temperature at which this value is at its maximum, a strong bonded body can be obtained. However, the second bonding is not limited to one temperature at which the maximum strength is obtained, and there is no practical problem in bonding at a temperature at which 90% or more of the maximum strength is obtained.

以下、本発明を実施例に基づき具体的に説明する。以下
で述べる実施例および比較例で使用したアルミニウムシ
ートは全て融点660℃の純アルミニウムである。
Hereinafter, the present invention will be specifically explained based on Examples. The aluminum sheets used in the Examples and Comparative Examples described below are all pure aluminum with a melting point of 660°C.

実施例−1 アルミニウムシートをろう剤として、窒化珪素同士およ
びステンレス鋼同士(SUS304)を接合する予備試
験を行った。試料間にアルミニウムシートを挟み1O−
5Torrの真空中において、各種の温度で3分間加熱
し接合体を得た。試料の大きさは、いずれも1010X
10X20であった。
Example 1 A preliminary test was conducted in which silicon nitrides and stainless steels (SUS304) were joined together using an aluminum sheet as a brazing agent. An aluminum sheet is sandwiched between the samples and 1O-
A bonded body was obtained by heating at various temperatures for 3 minutes in a vacuum of 5 Torr. The size of each sample is 1010X
It was 10x20.

接合体の接合強度を上部スパン10mm、下部スパン3
0mmの4点曲げ試験により評価した。窒化珪素同士の
接合体の接合温度と接合強度の関係は、第1図の曲線工
となり、最大強度49kg/mrn’であった。また8
50〜1100℃の温度域で最大強度の90%以上の強
度が得られた。
The joint strength of the joined body is determined by setting the upper span to 10 mm and the lower span to 3.
Evaluation was performed by a 4-point bending test at 0 mm. The relationship between the bonding temperature and the bonding strength of the bonded body of silicon nitride was as shown in FIG. 1, and the maximum strength was 49 kg/mrn'. 8 again
A strength of 90% or more of the maximum strength was obtained in the temperature range of 50 to 1100°C.

一方ステンレス鋼(SUS304)同士をアルミニウム
シートを用いて窒化珪素同士の場合と同様に接合した。
On the other hand, stainless steels (SUS304) were joined together using an aluminum sheet in the same manner as in the case of silicon nitrides.

接合温度と接合強度の関係は第1図の曲線■となり、そ
の最大強度は38kg/mm’であった。また540〜
620℃の温度域で最大強度の90%以上の強度が得ら
れた。
The relationship between bonding temperature and bonding strength was shown by curve ◯ in Figure 1, and its maximum strength was 38 kg/mm'. Also 540~
A strength of 90% or more of the maximum strength was obtained in a temperature range of 620°C.

次に、本発明による窒化珪素とステンレス鋼(SUS 
 304)の接合を行った。第2図に示すように、大き
さ1010X10X20の窒化珪素焼結体1と同じ大き
さのステンレス鋼(SUS304)2をろう剤3として
アルミニウムシートを用いて接合した。
Next, silicon nitride and stainless steel (SUS) according to the present invention are
304) was joined. As shown in FIG. 2, a silicon nitride sintered body 1 having a size of 1010×10×20 and a stainless steel (SUS304) 2 having the same size were joined using an aluminum sheet as a brazing agent 3.

まず、厚さ1.0mmのアルミニウムシートを窒化珪素
1の表面に置き、1O−5Torrの真空中で3分間、
950℃に加熱し、アルミニウムを窒化珪素に融着し、
第1の接合を行った。
First, an aluminum sheet with a thickness of 1.0 mm was placed on the surface of silicon nitride 1, and heated in a vacuum of 1 O-5 Torr for 3 minutes.
Heating to 950°C to fuse aluminum to silicon nitride,
A first bond was made.

次にこの融着したアルミニウムの厚さが0.8mmにな
るように研磨した後、接合用ステンレスを載せて1O−
5Torrの真空中で3分間、570℃に加熱し、第2
の接合を行った。
Next, after polishing the fused aluminum to a thickness of 0.8 mm, a bonding stainless steel was placed on it and the 1O-
Heat to 570°C for 3 minutes in a vacuum of 5 Torr, and
The welding was performed.

この接合体の4点曲げ試験をしたところ、平均22kg
/mm’という高い接合強度値を示した。
When this joint was subjected to a 4-point bending test, the average weight was 22 kg.
It showed a high bonding strength value of /mm'.

比較例1 実施例1と同じ種類、大きさの窒化珪素とステンレス鋼
の間にアルミニウムシートを挟み、金属同士で最大強度
の得られる550℃、セラミックス同士で最大強度の得
られる950℃およびその中間の700℃でそれぞれ3
分間熱処理して窒化珪素とステンレス鋼との接合体を得
た。それぞれの平均4点曲げ強度は550℃で接合した
とき10k g / m m″、950℃で接合したと
き4kg/mrn’、700℃で接合したとき11kg
/mtn’となり、いずれの場合も接合のための熱処理
は1回で済むが実施例1に比べ接合強度の小さい接合体
しか得られなかった。
Comparative Example 1 An aluminum sheet was sandwiched between silicon nitride and stainless steel of the same type and size as in Example 1, and the temperature was 550°C, where maximum strength was obtained between metals, 950°C, where maximum strength was obtained between ceramics, and intermediate temperatures. 3 at 700℃
A bonded body of silicon nitride and stainless steel was obtained by heat treatment for a minute. The average 4-point bending strength of each is 10 kg/m m'' when joined at 550°C, 4 kg/mrn' when joined at 950°C, and 11 kg when joined at 700°C.
/mtn', and in both cases, only one heat treatment for bonding was required, but only a bonded body with lower bonding strength than in Example 1 was obtained.

実施例2 実施例1と同様にしてまずアルミナの被接合面に厚さ1
.0 m mのアルミニウムシートを置き10−5T 
o r rrr)真空中で3分間、900℃で加熱しア
ルミニウムをアルミナに融着し第1の接合を行った。
Example 2 In the same manner as in Example 1, a thickness of 1
.. Place a 0 mm aluminum sheet at 10-5T.
o r rrr) The first bonding was performed by heating at 900° C. for 3 minutes in a vacuum to fuse aluminum to alumina.

次にこの融着したアルミニウムを厚さが0.3mmにな
るように研磨した後、接合用の軟鋼板を載せて1O−5
Torrの真空中で3分間550℃で加熱し第2の接合
を行った。
Next, after polishing this fused aluminum to a thickness of 0.3 mm, a mild steel plate for joining was placed on the 1O-5
A second bonding was performed by heating at 550° C. for 3 minutes in a vacuum of Torr.

この接合体の4点曲げ試験をしたところ平均20kg/
mrn’の接合強度を得た。実施例1と同様に本発明に
よって高強度なアルミナ/軟鋼板の高強度接合体が製造
できる。
When this joint was subjected to a 4-point bending test, the average weight was 20 kg/
The bonding strength of mrn' was obtained. As in Example 1, a high-strength alumina/mild steel plate joined body can be manufactured according to the present invention.

また第2の接合において事前に軟鋼板の被接合面に約1
.0gm厚さのNiメッキを施したところ4点曲げ試験
の平均強度は26 k g/mm′に向上した。
In addition, in the second welding, approximately 1
.. When Ni plating was applied to a thickness of 0 gm, the average strength in a 4-point bending test was improved to 26 kg/mm'.

比較例2 10−5T Or r(7)真空中で700℃3分間1
回の熱処理によってアルミナ/軟鋼板接合体を製造した
。しかし、この接合体の平均4点曲げ強度は8kg/m
rn’という低い値であった。
Comparative Example 2 10-5T Or r (7) 700°C for 3 minutes in vacuum 1
An alumina/mild steel plate joint was produced by heat treatment twice. However, the average 4-point bending strength of this joint is 8 kg/m
The value was as low as rn'.

実施例3 外径60mm、内径50mm、高さ30mmの窒化珪素
焼結体と同じ大きさのステンレス鋼(SUS  304
)を厚さ1mmのアルミニウムシートを用い実施例1と
同じ条件で接合した結果、強固な接合体が得られた。
Example 3 A stainless steel (SUS 304
) were joined using an aluminum sheet with a thickness of 1 mm under the same conditions as in Example 1, and a strong joined body was obtained.

比較例3 実施例3と同じ大きさの窒化珪素焼結体とステンレス鋼
(SUS  304)を厚さ1mmc7)アルミニラム
シートを用い拡散接合法により接合した。
Comparative Example 3 A silicon nitride sintered body of the same size as in Example 3 and stainless steel (SUS 304) were joined by a diffusion bonding method using a 1 mm thick aluminum lamb sheet.

具体的接合方法は以下の通りである。The specific joining method is as follows.

窒化珪素焼結体の被接合面にアルミニウムシートを重ね
合せ、10−’Torrの真空中、温度620℃(アル
ミニウムシート融点660℃)で2kg/mrn’の圧
力を60分間加え、窒化珪素とアルミニウムを接合した
後、そのアルミニウムにさらにステンレス鋼(SUS 
 304)を重ね合せ、10−5T o r rノ真空
中、温度570℃で無負荷で3分間熱処理したが、冷却
中に剥離し接合体は得られなかった。
An aluminum sheet was placed on the surface of the silicon nitride sintered body to be joined, and a pressure of 2 kg/mrn' was applied for 60 minutes at a temperature of 620°C (aluminum sheet melting point 660°C) in a vacuum of 10-'Torr to bond silicon nitride and aluminum. After joining the aluminum, stainless steel (SUS
304) and heat-treated in a vacuum of 10-5 Torr at a temperature of 570° C. for 3 minutes without any load, but they peeled off during cooling and no bonded body was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明法を用いることによりセラミックスとろう剤の接
合面、ろう剤と金属の接合面ともに強固な接合強度を有
する接合体を製造することができる。
By using the method of the present invention, it is possible to produce a bonded body having strong bonding strength at both the bonding surface between the ceramic and the brazing agent and the bonding surface between the brazing agent and the metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はろう剤を用いてセラミックス同士および金属同
士を接合したときの接合温度と接合強度との関係を示す
グラフ、第2図は曲げ強度試験用の接合体の側面図であ
る。 1・・・セラミックス 2・・・金属 3・・・ろう剤
FIG. 1 is a graph showing the relationship between bonding temperature and bonding strength when ceramics and metals are bonded together using a brazing agent, and FIG. 2 is a side view of a bonded body for bending strength testing. 1... Ceramics 2... Metals 3... Brazing agent

Claims (1)

【特許請求の範囲】[Claims] 1 セラミックスと金属とをろう剤を用いて接合する方
法において、ろう剤の融点以上の温度に加熱してろう剤
を溶融しセラミックスとろう剤とを融着させる第1の接
合工程と、この温度未満の温度で前記ろう剤と金属とを
加熱接合する第2の接合工程とから成ることを特徴とす
るセラミックスと金属の接合方法。
1. In a method of joining ceramics and metal using a brazing agent, the first joining step involves heating to a temperature higher than the melting point of the brazing agent to melt the brazing agent and fusing the ceramics and the brazing agent, and this temperature. A method for joining ceramics and metal, comprising a second joining step of heating and joining the brazing agent and metal at a temperature below 1.
JP3287087A 1987-02-16 1987-02-16 Method of joining ceramic to metal Pending JPS63201071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287087A JPS63201071A (en) 1987-02-16 1987-02-16 Method of joining ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287087A JPS63201071A (en) 1987-02-16 1987-02-16 Method of joining ceramic to metal

Publications (1)

Publication Number Publication Date
JPS63201071A true JPS63201071A (en) 1988-08-19

Family

ID=12370897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287087A Pending JPS63201071A (en) 1987-02-16 1987-02-16 Method of joining ceramic to metal

Country Status (1)

Country Link
JP (1) JPS63201071A (en)

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
EP0123212B1 (en) Ceramic bonded structure and method of manufacturing the same
JPS6071579A (en) Method of bonding alumina and metal
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
EP0795524B1 (en) A composite article, and a process for producing a composite article by using a brazing agent
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
JPS63201071A (en) Method of joining ceramic to metal
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPS63206365A (en) Joined body of ceramic and metal
JPH0328391B2 (en)
JPS6177676A (en) Silicon nitride bonded body and bonding method
JP2522124B2 (en) Method of joining ceramics to ceramics
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH0142914B2 (en)
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JPS6183684A (en) Method of bonding ceramic and metal
JPS6351994B2 (en)
JPS61146774A (en) Manufacture of bonded body containing non-oxide ceramic member
JPS61132570A (en) Method of bonding ceramic members
JP2522125B2 (en) Method for joining ceramics and metal or ceramics
JPS61215273A (en) Method of bonding ceramic and metal
JPH0725674A (en) Production of joined body of ceramics to metal
JPH0240631B2 (en)
JP3289860B2 (en) Joining method of ceramics and silicon
JPH0571544B2 (en)