JPH0492871A - Ceramic-metal binding body and production thereof - Google Patents

Ceramic-metal binding body and production thereof

Info

Publication number
JPH0492871A
JPH0492871A JP20903290A JP20903290A JPH0492871A JP H0492871 A JPH0492871 A JP H0492871A JP 20903290 A JP20903290 A JP 20903290A JP 20903290 A JP20903290 A JP 20903290A JP H0492871 A JPH0492871 A JP H0492871A
Authority
JP
Japan
Prior art keywords
ceramic
foil
metal
layer
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20903290A
Other languages
Japanese (ja)
Other versions
JP2941382B2 (en
Inventor
Yoji Wada
洋二 和田
Kazumasa Nishio
一政 西尾
Shizuo Mukai
迎 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKIYUU KK
Sankyu Inc
Original Assignee
SANKIYUU KK
Sankyu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKIYUU KK, Sankyu Inc filed Critical SANKIYUU KK
Priority to JP2209032A priority Critical patent/JP2941382B2/en
Publication of JPH0492871A publication Critical patent/JPH0492871A/en
Application granted granted Critical
Publication of JP2941382B2 publication Critical patent/JP2941382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve binding strength between ceramics and metal by putting Ti foil, Cu foil and FeNi alloy foil between a ceramic material and metal material and subjecting the ceramic material to solid phase diffusing and binding to the metal material in vacuum. CONSTITUTION:Metal members 2 are put through a laminate obtained by laminating Ti foil 3, Cu foil 5 and FeNi alloy foil 4 from the surface of ceramic side on the both sides of ceramic material 1 and these materials are inserted into a ram 6 and 0.5-2kgf/mm<2> pressure is applied thereto and these materials are heated in 10<-3> to 10<-4>Torr. vacuum atmosphere at 800-860 deg.C for 15-60min to subject the ceramic material to solid phase diffusion and binding to ceramic material.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、良好な接合強度をもつセラミックス−金属接
合体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic-metal bonded body having good bonding strength and a method for manufacturing the same.

[従来の技術〕 セラミックスは、高温強度、耐食性、耐摩耗性等に優れ
た性質を呈することを利用して、内燃機関等の高温で使
用される各種部品としての用途が検討されている0反面
、セラミックスのもつ脆性が、各種用途にセラミックス
製品を使用する上で大きな欠点となる。そこで、実用化
に際しては、過酷な使用雰囲気にさらされる部分のみを
セラミックスで構成し、他の部分を構成する金属材料と
接合して使用する方法が採用されている。
[Prior Art] Ceramics are being considered for use as various parts used at high temperatures in internal combustion engines, etc., due to their excellent properties such as high-temperature strength, corrosion resistance, and wear resistance. The brittleness of ceramics is a major drawback when using ceramic products for various purposes. Therefore, for practical use, a method has been adopted in which only the parts exposed to the harsh operating atmosphere are made of ceramics, and the other parts are bonded to metal materials.

セラミックスを金属に接合する方法としては、有機接着
剤を使用した接着、メタライジング−ロウ付け、固相拡
散接合等が知られている。
Known methods for bonding ceramics to metal include bonding using an organic adhesive, metallizing brazing, and solid phase diffusion bonding.

たとえば、特開昭63−190773号公報においては
、セラミックス部材の表面にTi、Cu及びAgを物理
蒸着によって積層蒸着又は複合蒸着した後、金属化処理
し、Ag−Cu系ロウ材を挟んで接合することが開示さ
れている。
For example, in Japanese Patent Application Laid-Open No. 63-190773, Ti, Cu, and Ag are layered or compositely deposited on the surface of a ceramic member by physical vapor deposition, then metallized, and bonded using an Ag-Cu brazing material. It is disclosed that

また、特開昭62−176966号公報では、金属母材
の表面部にCu層9次いでNi層を設けて、これらの層
を介し金属母材とセラミックス材料とを固相拡散接合す
る方法が開示されている。
Furthermore, JP-A No. 62-176966 discloses a method in which a Cu layer 9 and a Ni layer are provided on the surface of a metal base material, and solid phase diffusion bonding is performed between the metal base material and a ceramic material through these layers. has been done.

[発明が解決しようとする課題] しかし、有機接着剤を使用した接合方法では、接合部の
高温強度が有機接着剤の耐用温度に支配される。そして
、有機接着剤の耐用温度は一般的に200℃前後である
ことから、この温度以上の高温雰囲気で接合体を使用す
ることができない。
[Problems to be Solved by the Invention] However, in the bonding method using an organic adhesive, the high temperature strength of the bonded portion is controlled by the withstand temperature of the organic adhesive. Furthermore, since the serviceable temperature of organic adhesives is generally around 200° C., the bonded body cannot be used in a high-temperature atmosphere exceeding this temperature.

また、メタライジング−ロウ付けによる場合には、多数
の工程を経て接合体が製造されるため、接合体の製造コ
ストが上昇することは勿論、メタライジング用の蒸着装
置等が必要となる。なお、セラミックス用に開発された
活性金属ロウを使用したロウ付けや液相拡散接合の場合
には、ロウ材としてAu、Ag等の貴金属を含有するも
のを使用するため、製造コストが高くなる。
Furthermore, in the case of metallizing-brazing, the joined body is manufactured through a large number of steps, which not only increases the manufacturing cost of the joined body but also requires a vapor deposition apparatus for metallizing. In addition, in the case of brazing or liquid phase diffusion bonding using an active metal solder developed for ceramics, the manufacturing cost increases because a material containing noble metals such as Au and Ag is used as the brazing material.

他方、固相拡散接合によってセラミックス−金属接合体
を製造する方法は、比較的少ない工数で接合体が得られ
る利点を有する。しかし、この方法によるとき、セラミ
ックス材料と金属母材との間に介在させるインサート如
何によって接合体の特性が大きく変わる。
On the other hand, the method of manufacturing a ceramic-metal bonded body by solid-phase diffusion bonding has the advantage that the bonded body can be obtained with a relatively small number of man-hours. However, when using this method, the characteristics of the joined body vary greatly depending on the type of insert inserted between the ceramic material and the metal base material.

この点、前掲の特開昭62−176986号公報では、
Cu及びNiをインサートとして使用している。しかし
、Niをセラミックス側に配置した場合、Niとセラミ
ックスとの親和性が低いことから、接合強度の小さな接
合体となる。その結果、得られたセラミックス−金属接
合体を実用に供する場合、用途に著しい制約を受ける。
In this regard, in the above-mentioned Japanese Patent Application Laid-open No. 176986/1986,
Cu and Ni are used as inserts. However, when Ni is placed on the ceramic side, the affinity between Ni and the ceramic is low, resulting in a bonded body with low bonding strength. As a result, when the obtained ceramic-metal bonded body is put into practical use, there are significant restrictions on its use.

そこで、本発明は、これらの問題を解消すべく案出され
たものであり、Ti箔、Cu箔及びFeNi合金箔を組
合せてインサートとして使用することにより、簡単な方
法で製造され、しかも優れた接合強度をもったセラミッ
クス−金属接合体を提供することを目的とする。
Therefore, the present invention was devised to solve these problems, and by using a combination of Ti foil, Cu foil, and FeNi alloy foil as an insert, it can be manufactured by a simple method and has excellent properties. The purpose of the present invention is to provide a ceramic-metal bonded body with high bonding strength.

[課題を解決するための手段] 本発明のセラミックス−金属接合体は、その目的を達成
するために、セラミックス材料と金属材料との接合界面
にセラミックス側表面からTi層1次いでCu層及びF
eNi合金層があり、これら各層の間が固相拡散接合さ
れていることを特徴とする。
[Means for Solving the Problems] In order to achieve the object, the ceramic-metal bonded body of the present invention includes a Ti layer 1, a Cu layer and an F layer from the ceramic side surface at the bonding interface between the ceramic material and the metal material.
It is characterized by having an eNi alloy layer and solid phase diffusion bonding between these layers.

また、このセラミックス−金属接合体は、金属材料とセ
ラミックス材料との間に、セラミックス側表面からT 
l 箔+ Cu箔及びFeNi合金箔を挟み、全体に圧
力を加えた状態で真空中で固相拡散接合することによっ
て製造される。
Further, in this ceramic-metal bonded body, there is a T between the metal material and the ceramic material from the ceramic side surface.
l Foil + Manufactured by sandwiching Cu foil and FeNi alloy foil and performing solid-phase diffusion bonding in vacuum while applying pressure to the whole.

C作 用〕 本発明の接合体においては、セラミックス側表面にTi
層が形成される。このTi層は、セラミックスとの親和
性が高く、且つセラミックス表面を接合に遺した活性状
態にするものである。しかも、Ti層は、固相拡散接合
時にセラミックスを構成する原子との間で拡散し、セラ
ミックスに対して強固に接着する。
C action] In the joined body of the present invention, Ti is added to the ceramic side surface.
A layer is formed. This Ti layer has a high affinity with ceramics and makes the ceramic surface active for bonding. Moreover, the Ti layer diffuses with atoms constituting the ceramic during solid-phase diffusion bonding, and is firmly adhered to the ceramic.

他方、FeNi合金は、セラミックスと同等又はそれよ
りも小さい熱膨張係数をもつ材料であって、固相拡散接
合時に金属材料の変形をブロックする作用を呈する。そ
の結果、接合界面に発生する熱応力が緩和され、熱応力
に起因した亀裂1割れ、疲労等の欠陥がない接合体が得
られる。このようなFeNi合金としては、インバー、
パーマロイ等がある。
On the other hand, FeNi alloy is a material having a coefficient of thermal expansion equal to or smaller than that of ceramics, and exhibits the effect of blocking deformation of metal materials during solid phase diffusion bonding. As a result, the thermal stress generated at the bonding interface is alleviated, and a bonded body free of defects such as cracks, fatigue, etc. caused by thermal stress can be obtained. Such FeNi alloys include invar,
Permalloy etc.

また、これらTi及びFeNi合金は、高温強度の優れ
た材料であり、しかもこの性質は固相拡散接合によって
も実質的な変化を受けない。そのため、接合部の高温強
度は、インサートの耐用温度まで保証される。
Furthermore, these Ti and FeNi alloys are materials with excellent high-temperature strength, and these properties are not substantially changed by solid-phase diffusion bonding. Therefore, the high temperature strength of the joint is guaranteed up to the insert's service temperature.

更に、Ti層とFeNi合金層との間に、Cu層を介在
させる。このCu層は、固相拡散接合時及び接合体が高
温雰囲気に長時間晒された際、Ti層とFeNi合金層
との間で有害な金属間化合物が生成されることを防止す
るインヒビターとして働く。この点、Cu層は、少なく
とも100μm程度の厚みをもつことが必要である。し
かし、Cu層の厚みが大きくなり過ぎると、接合体の高
温強度がCuの強度に支配されることになり、高温雰囲
気での使用に制約を受ける。
Furthermore, a Cu layer is interposed between the Ti layer and the FeNi alloy layer. This Cu layer acts as an inhibitor to prevent harmful intermetallic compounds from being generated between the Ti layer and the FeNi alloy layer during solid phase diffusion bonding and when the bonded body is exposed to a high temperature atmosphere for a long time. . In this respect, the Cu layer needs to have a thickness of at least about 100 μm. However, if the thickness of the Cu layer becomes too large, the high-temperature strength of the bonded body will be dominated by the strength of Cu, which will restrict its use in a high-temperature atmosphere.

固相拡散接合は、セラミックス材料と金属材料との間に
Ti箔、Cu箔及びFeNi合金箔を挟んだ積層体を加
圧しながら、10−”〜Ii’h−ルの真空雰囲気中で
800〜860℃に15〜60分間加熱することによっ
て行われる。
Solid-phase diffusion bonding is performed in a vacuum atmosphere of 10" to 1000 hr while pressing a laminate in which a Ti foil, a Cu foil, and a FeNi alloy foil are sandwiched between a ceramic material and a metal material. This is done by heating to 860°C for 15-60 minutes.

このとき、積層体に加える圧力は、0.5〜2kgf/
mm”の範囲に維持される。この圧力が0.5kgf/
mm”未満では、接合面の密着性が十分でなく、良好な
接合強度が得られない。また、圧力が2kgf/mm”
を超えると、拡散接合時に金属側に塑性変形が生じる虞
れがある。
At this time, the pressure applied to the laminate is 0.5 to 2 kgf/
This pressure is maintained within the range of 0.5 kgf/
If the pressure is less than 2 kgf/mm, the adhesion of the joint surfaces will not be sufficient and good joint strength will not be obtained.
If it exceeds this, there is a risk that plastic deformation will occur on the metal side during diffusion bonding.

固相拡散接合は、温度が高いほど拡散反応が迅速に進行
する。そこで、加熱温度を上昇させるとき、加熱時間の
短縮を図ることができる。しかしながら、加熱温度が高
過ぎると、インサート或いは金属母材の一部が溶融し、
インサート金属層の流失が生じる。その結果、ボイド、
亀裂等の欠陥がある接合部となる場合がある。
In solid-phase diffusion bonding, the higher the temperature, the faster the diffusion reaction proceeds. Therefore, when increasing the heating temperature, it is possible to shorten the heating time. However, if the heating temperature is too high, part of the insert or the metal base material will melt,
Washing away of the insert metal layer occurs. As a result, void,
The joint may have defects such as cracks.

そこで、接合温度としてインサートや金属材料が溶融し
ない温度範囲、具体的にはインバーをインサートとして
使用するとき800〜860℃に維持し、加熱時間を拡
散状態に応じて15〜60分間に設定する。
Therefore, the bonding temperature is maintained within a temperature range in which the insert and the metal material do not melt, specifically 800 to 860°C when Invar is used as the insert, and the heating time is set to 15 to 60 minutes depending on the diffusion state.

この方法で接合される金属材料は、特に種類が限定され
るものではないが、−殻構造用鋼、高張力鋼、ステンレ
ス鋼、Ni基合金鋼等がある。他方、金属材料に接合さ
れるセラミックス材料としては、アルミナ、ジルコニア
、窒化珪素、炭化珪素等が具体的に掲げられる。
The metal materials to be joined by this method are not particularly limited in type, but include steel for shell structure, high tensile strength steel, stainless steel, Ni-based alloy steel, and the like. On the other hand, specific examples of ceramic materials to be bonded to metal materials include alumina, zirconia, silicon nitride, and silicon carbide.

[実施例] 以下、実施例によって、本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

セラミックス材料と金属材料とを、第1図に示すように
積層して固相拡散接合した。セラミックス材料1として
は、厚さ3mmのアルミナセラミックスを使用した。そ
して、セラミックス材料lの両面に、金属材料2として
構造用鋼5M50を配置した。また、セラミックス材料
lと金属材料2との間には、セラミック材料1側に厚さ
lumのTi箔3を、金属材料2側に厚さ1mmのFe
Ni合金箔4を配置した。そして、チタン箔3とFeN
i合金箔4との間に、厚さ100LLm100LL箔5
を挟み込んだ。
A ceramic material and a metal material were laminated and solid phase diffusion bonded as shown in FIG. As ceramic material 1, alumina ceramics with a thickness of 3 mm was used. Then, structural steel 5M50 was placed as the metal material 2 on both sides of the ceramic material 1. Further, between the ceramic material 1 and the metal material 2, a Ti foil 3 with a thickness of lum is placed on the ceramic material 1 side, and a Fe foil 3 with a thickness of 1 mm is placed on the metal material 2 side.
Ni alloy foil 4 was placed. Then, titanium foil 3 and FeN
i Between the alloy foil 4, the thickness 100LLm100LL foil 5
was inserted.

この積層体を真空チャンバー内に装入し、積層体全体に
ラム6で1kgf/mm”の圧力を加えながら、真空度
4XIO−’トールの真空雰囲気中で高周波加熱コイル
7によって860”Cに30分間加熱した。
This laminate is placed in a vacuum chamber, and while applying a pressure of 1 kgf/mm" to the entire laminate with a ram 6, the high-frequency heating coil 7 is heated to 860"C at 30°C in a vacuum atmosphere with a vacuum degree of 4 Heated for a minute.

この加熱によって各層の間で拡散が十分に行われ、金属
材料2に対してセラミックス材料1が強固に接合した接
合体が得られた。
This heating caused sufficient diffusion between the layers, and a bonded body in which the ceramic material 1 was firmly bonded to the metal material 2 was obtained.

この接合体から厚さ3mm、幅4mm、長さ40mmの
試験片を切り出し、高温4点曲げ試験によって接合強度
を測定した。その結果、曲げ強度は、200℃及び40
0℃でそれぞれ120MPa及び110MPaであった
A test piece with a thickness of 3 mm, a width of 4 mm, and a length of 40 mm was cut out from this joined body, and the joint strength was measured by a high-temperature four-point bending test. As a result, the bending strength was 200°C and 40°C.
They were 120 MPa and 110 MPa at 0°C, respectively.

なお、比較のため、厚さ2mmのCuiをインサートと
して使用する外は同様な接合条件下で、セラミックス材
料と金属材料とを固相拡散接合した。このとき得られた
接合体の接合強度は、室温で110M P aであった
。また、アルミナセラミックス側から1mm厚のTi箔
及び2mm厚のCuiを介して接合した接合体の強度は
、室温で100 M P aであった。
For comparison, a ceramic material and a metal material were solid-phase diffusion bonded under the same bonding conditions except that Cui with a thickness of 2 mm was used as an insert. The bonding strength of the bonded body obtained at this time was 110 MPa at room temperature. Further, the strength of the joined body joined from the alumina ceramic side via a 1 mm thick Ti foil and a 2 mm thick Cu foil was 100 MPa at room temperature.

この対比から明らかなように、T i / Cu / 
FeNiをインサートとして使用した本実施例の接合体
は、Cu又はT i / Cuをインサートとしたもの
に比較して、接合強度が優れていることが判かる。特に
、接合強度が高温で劣化することがないため、高温雰囲
気の使用に耐える接合体が得られた。
As is clear from this comparison, T i / Cu /
It can be seen that the bonded body of this example using FeNi as the insert has superior bonding strength compared to the bonded body using Cu or Ti/Cu as the insert. In particular, since the bonding strength does not deteriorate at high temperatures, a bonded body that can withstand use in a high-temperature atmosphere was obtained.

[発明の効果] 以上に説明したように、本発明においては、Ti、Cu
及びFeNi合金を組合せてインサートとし、セラミッ
クス材料と金属材料とを固相拡散接合している。そのた
め、インサート又は金属材料の耐用限界までの高温使用
環境に耐える接合体が得られる。また、FeNi合金が
セラミックスと同等或いは小さな熱膨張係数をもつ材料
であることから、セラミックス及び金属との熱膨張差に
起因した熱応力も緩和される。しかも、メタライジング
−ロウ付は法に比較して、接合工程が加圧・加熱という
一つの工程ですむため、製造コストの低減も図られる。
[Effect of the invention] As explained above, in the present invention, Ti, Cu
and FeNi alloy are combined to form an insert, and the ceramic material and the metal material are solid phase diffusion bonded. Therefore, it is possible to obtain a joined body that can withstand high-temperature usage environments up to the durability limits of the insert or metal material. Furthermore, since the FeNi alloy is a material having a coefficient of thermal expansion equal to or smaller than that of ceramics, thermal stress caused by the difference in thermal expansion between ceramics and metals is also alleviated. Furthermore, compared to the metallizing-brazing method, the bonding process requires only one step of pressurization and heating, so manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従ってセラミックス材料と金属材料
とを固相拡散接合している状態を示す。 1:セラミックス材料 2:金属材料 3:Ti箔      4:FeNi合金箔5:Cu箔
      6:ラム 7:高周波加熱コイル 第 図
FIG. 1 shows a state in which a ceramic material and a metal material are solid phase diffusion bonded according to the present invention. 1: Ceramic material 2: Metal material 3: Ti foil 4: FeNi alloy foil 5: Cu foil 6: Ram 7: High frequency heating coil diagram

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス材料と金属材料との接合界面にセラ
ミックス側表面からTi層、次いでCu層及びFeNi
合金層があり、これら各層の間が固相拡散接合されてい
ることを特徴とするセラミックス−金属接合体。
(1) At the bonding interface between the ceramic material and the metal material, there is a Ti layer from the ceramic side surface, then a Cu layer and a FeNi layer.
A ceramic-metal bonded body comprising an alloy layer and solid phase diffusion bonding between these layers.
(2)金属材料とセラミックス材料との間に、セラミッ
クス側表面からTi箔、Cu箔及びFeNi合金箔を挟
み、全体に圧力を加えた状態で真空中で固相拡散接合す
ることを特徴とするセラミックス−金属接合体の製造方
法。
(2) Ti foil, Cu foil, and FeNi alloy foil are sandwiched between the metal material and the ceramic material from the ceramic side surface, and solid phase diffusion bonding is performed in vacuum while applying pressure to the entire material. A method for manufacturing a ceramic-metal bonded body.
JP2209032A 1990-08-07 1990-08-07 Ceramic-metal bonded body and method of manufacturing the same Expired - Lifetime JP2941382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209032A JP2941382B2 (en) 1990-08-07 1990-08-07 Ceramic-metal bonded body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209032A JP2941382B2 (en) 1990-08-07 1990-08-07 Ceramic-metal bonded body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0492871A true JPH0492871A (en) 1992-03-25
JP2941382B2 JP2941382B2 (en) 1999-08-25

Family

ID=16566129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209032A Expired - Lifetime JP2941382B2 (en) 1990-08-07 1990-08-07 Ceramic-metal bonded body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2941382B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519471A (en) * 2003-03-03 2006-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray tube cathode assembly and interfacial reaction bonding process
CN103183520A (en) * 2013-03-01 2013-07-03 西北工业大学 Partial transient liquid phase bonding method for carbon/carbon composite material and nickel-base superalloy
WO2015141295A1 (en) * 2014-03-20 2015-09-24 三菱マテリアル株式会社 Bonded body, substrate for power modules, power module and method for producing bonded body
CN106270882A (en) * 2016-08-19 2017-01-04 哈尔滨工业大学(威海) Titanizing Al in a kind of artificial retina2o3pottery and the method for attachment of titanacycle
CN114211076A (en) * 2022-01-06 2022-03-22 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy
CN115319263A (en) * 2022-10-13 2022-11-11 中山大学 Carbon-based material/metal connection method based on Cu-C/Ti instantaneous liquid phase in-situ reaction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519471A (en) * 2003-03-03 2006-08-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray tube cathode assembly and interfacial reaction bonding process
CN103183520A (en) * 2013-03-01 2013-07-03 西北工业大学 Partial transient liquid phase bonding method for carbon/carbon composite material and nickel-base superalloy
WO2015141295A1 (en) * 2014-03-20 2015-09-24 三菱マテリアル株式会社 Bonded body, substrate for power modules, power module and method for producing bonded body
JP2015193526A (en) * 2014-03-20 2015-11-05 三菱マテリアル株式会社 Joined body, substrate for power module, power module, and method for producing joined body
CN105829266A (en) * 2014-03-20 2016-08-03 三菱综合材料株式会社 Bonded body, substrate for power modules, power module and method for producing bonded body
US9735085B2 (en) 2014-03-20 2017-08-15 Mitsubishi Materials Corporation Bonded body, power module substrate, power module and method for producing bonded body
CN106270882A (en) * 2016-08-19 2017-01-04 哈尔滨工业大学(威海) Titanizing Al in a kind of artificial retina2o3pottery and the method for attachment of titanacycle
CN114211076A (en) * 2022-01-06 2022-03-22 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy
CN114211076B (en) * 2022-01-06 2022-09-13 哈尔滨工业大学 Connection method of silicon nitride ceramic/nickel-based high-temperature alloy
CN115319263A (en) * 2022-10-13 2022-11-11 中山大学 Carbon-based material/metal connection method based on Cu-C/Ti instantaneous liquid phase in-situ reaction
CN115319263B (en) * 2022-10-13 2023-01-17 中山大学 Carbon-based material/metal connection method based on Cu-C/Ti instantaneous liquid phase in-situ reaction

Also Published As

Publication number Publication date
JP2941382B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JPS6071579A (en) Method of bonding alumina and metal
JPS60131874A (en) Method of bonding ceramic and metal
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPS6081071A (en) Metal sheet material for ceramic bonding
JPH0520392B2 (en)
JPS60141681A (en) Ceramic member for adhesion and method therefor
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JP3505212B2 (en) Joint and method of manufacturing joint
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JP2001048670A (en) Ceramics-metal joined body
JPH0328391B2 (en)
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPS63206365A (en) Joined body of ceramic and metal
JPH0580434B2 (en)
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JP2522124B2 (en) Method of joining ceramics to ceramics
JPS62297275A (en) Joined body of non-oxide ceramic and metal
JPH0154304B2 (en)
JPS63225585A (en) Ceramic-metal joined body and joining method
JPS6096583A (en) Ceramic member for bonding and bonding method
JPH0362674B2 (en)
JPS6197175A (en) Bonded body of non-oxide ceramic and metal and manufacture
JPH0659575B2 (en) Method of joining metal and ceramics
JPH0517249A (en) Method for joining ceramics to metal
JPS63210076A (en) Method of joining ceramic to metal and solder therefor