JPH0243704B2 - SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO - Google Patents

SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Info

Publication number
JPH0243704B2
JPH0243704B2 JP5553285A JP5553285A JPH0243704B2 JP H0243704 B2 JPH0243704 B2 JP H0243704B2 JP 5553285 A JP5553285 A JP 5553285A JP 5553285 A JP5553285 A JP 5553285A JP H0243704 B2 JPH0243704 B2 JP H0243704B2
Authority
JP
Japan
Prior art keywords
metal layer
metal
base material
joining
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5553285A
Other languages
Japanese (ja)
Other versions
JPS61215273A (en
Inventor
Kenji Yamane
Masaaki Aoki
Kunihiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP5553285A priority Critical patent/JPH0243704B2/en
Publication of JPS61215273A publication Critical patent/JPS61215273A/en
Publication of JPH0243704B2 publication Critical patent/JPH0243704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、セラミツクスと金属との接合方法
の改良に関し、殊に熱応力緩和体をインサート材
として介在させる接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for joining ceramics and metal, and particularly to a joining method in which a thermal stress relaxation body is interposed as an insert material.

〔従来技術〕[Prior art]

一般にセラミツクスは、耐摩耗性、耐熱性、耐
食性等にすぐれており、機械部品、電子部品等へ
の利用は著しいものがあるが、セラミツクは複雑
な形状の部品の成形、加工が困難であること、お
よび金属に比べて非常に高価であることなどの欠
点がある。そして、前述の成形、加工が困難であ
ることに対しては、成形、加工が容易である金属
を成形、加工して得た部品にセラミツクスを接合
することによつて所望の部品を得ることが行われ
ている。このため、各種の接合方法が発明され、
提案されている。その中には、拡散接合方法を含
む圧接法、ろう付け法があり、強固な接合体が得
られるので、非常に有効な接合方法であるにもか
かわらず接合の際、高温を必要とする。
In general, ceramics have excellent wear resistance, heat resistance, corrosion resistance, etc., and are often used for mechanical parts, electronic parts, etc. However, ceramics are difficult to mold and process into parts with complex shapes. , and that they are very expensive compared to metals. In response to the above-mentioned difficulty in forming and processing, it is possible to obtain desired parts by bonding ceramics to parts obtained by forming and processing metals that are easy to form and process. It is being done. For this reason, various joining methods have been invented,
Proposed. Among them, there are pressure welding methods, including diffusion bonding methods, and brazing methods, which are very effective bonding methods because they produce a strong bonded body, but require high temperatures during bonding.

〔解決しようとする問題点〕[Problem to be solved]

ところが、このような高温の元における接合
後、室温まで冷却したとき、セラミツクスと金属
との接合界面に、熱膨張係数の差による残留応力
が発生し、セラミツクスの破壊または接合界面で
の剥離が起きる。そして、接合体が大形になる
程、この傾向は著しくなると言う問題があつた。
なお、このような問題の解決を図るものとして、
この発明の出願人から特願昭59−43086号、特願
昭59−112689号、特願昭59−214774号などの出願
があることを参考的に示す。
However, after bonding under such high temperatures, when the bond is cooled to room temperature, residual stress occurs at the bond interface between the ceramic and the metal due to the difference in coefficient of thermal expansion, resulting in destruction of the ceramic or peeling at the bond interface. . A problem has arisen in that this tendency becomes more pronounced as the joined body becomes larger.
In addition, in order to solve such problems,
It is shown for reference that the applicant of this invention has filed applications such as Japanese Patent Application No. 59-43086, Japanese Patent Application No. 59-112689, and Japanese Patent Application No. 59-214774.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、セラミツクスと金属との接合に当
り、インサート材としてセラミツクス母材に接す
る側にアルミニウム、アルミニウム合金またはア
ルミニウム複合体による第1金属層を形成し、次
にセラミツクスと同程度の熱膨張係数を有する第
2金属層を形成させる。そして更に第2金属層と
金属母材との間に第1金属層と同じ金属または第
2金属層と金属母材の中間の熱膨張係数を有する
金属の第3金属層を介在させて接合させる。
In this invention, when joining ceramics and metal, a first metal layer made of aluminum, aluminum alloy, or aluminum composite is formed on the side in contact with the ceramic base material as an insert material, and then a first metal layer made of aluminum, an aluminum alloy, or an aluminum composite is formed as an insert material. A second metal layer is formed. Further, a third metal layer of the same metal as the first metal layer or a metal having a coefficient of thermal expansion intermediate between that of the second metal layer and the metal base material is interposed and bonded between the second metal layer and the metal base material. .

〔作用〕[Effect]

セラミツクスと同等の熱膨張係数を有する第2
金属層を介在させることによつて、金属母材から
受ける熱応力を遮断し、セラミツクス母材に伝え
ない。
The second material has a coefficient of thermal expansion equivalent to that of ceramics.
By interposing the metal layer, thermal stress received from the metal base material is blocked and is not transmitted to the ceramic base material.

そして、セラミツクスおよび金属の両方に接合
反応性をもつた第1金属層によつてセラミツクス
母材と第2金属層との接合を容易にする。
The first metal layer, which has bonding reactivity to both ceramics and metals, facilitates bonding between the ceramic base material and the second metal layer.

更に第3金属層を第2金属層と金属母材との間
に介在させて第2金属層と金属母材との接合を容
易にする。第3金属層としてアルミニウム、その
合金またはその複合体を介在させて接合するとき
には第1金属層の接合温度つまりアルミニウムの
融点約660℃以下の温度でよく、この場合はセラ
ミツクス母材、第1金属層、第2金属層、第3金
属層および金属母材は1工程で接合できる。しか
しながら、一般に金属母材としてはステンレス鋼
などの鋼材が使われることが多く、接合温度が
660℃を越えることが多い。このような場合でも、
第2金属層と金属母材とが同系の金属であれば、
その間の接合はしやすく、一般には両者の熱膨張
係数の差が小さい。そこで、第3金属層を介在さ
せずに第2金属層と金属母材を接合したものに、
第1金属層を介してセラミツクス母材を接合する
こともできるが、強固な接合体を得るには第3金
属層を介在させることが望ましい。一方、第2金
属層と金属母材とが異系の金属であれば、一般に
その間の接合はむずかしく、この間に第3金属層
を介在させないと接合困難である。又、一般に両
者の熱膨張係数差は大となり接合後界面に熱応力
が残留する。従つてこの第3金属層を第2金属層
と金属母材との中間の熱膨張係数を有する金属と
することが必要であり、それによつて金属母材の
熱応力を緩和させ、接合を確実にする。そして、
この場合は一般に第2金属層、第3金属層および
金属母材をその接合最適温度約700℃以上で接合
する工程と、その後、第1金属層を介在させて約
650℃以下でセラミツクス母材と接合する工程と
がとられる。
Further, a third metal layer is interposed between the second metal layer and the metal base material to facilitate bonding between the second metal layer and the metal base material. When bonding is performed with aluminum, its alloy, or a composite thereof interposed as the third metal layer, the bonding temperature of the first metal layer, that is, the melting point of aluminum, approximately 660°C or less may be used.In this case, the ceramic base material, the first metal The layers, the second metal layer, the third metal layer and the metal matrix can be joined in one step. However, steel materials such as stainless steel are generally used as the metal base material, and the joining temperature is low.
Temperatures often exceed 660℃. Even in such cases,
If the second metal layer and the metal base material are metals of the same type,
The bonding between them is easy, and the difference in their thermal expansion coefficients is generally small. Therefore, the second metal layer and the metal base material are bonded without intervening the third metal layer.
Although it is possible to join the ceramic base materials through the first metal layer, it is desirable to interpose a third metal layer in order to obtain a strong joined body. On the other hand, if the second metal layer and the metal base material are different metals, it is generally difficult to bond them together, and it is difficult to bond them unless the third metal layer is interposed therebetween. Furthermore, the difference in thermal expansion coefficient between the two is generally large, and thermal stress remains at the interface after bonding. Therefore, it is necessary to make this third metal layer a metal with a thermal expansion coefficient intermediate between that of the second metal layer and the metal base material, thereby relieving the thermal stress of the metal base material and ensuring the bonding. Make it. and,
In this case, there is generally a step of joining the second metal layer, third metal layer, and metal base material at the optimum joining temperature of about 700°C or higher, and then a step of joining the second metal layer, third metal layer, and metal base material at a temperature of about 700°C or higher, and then interposing the first metal layer to about 700°C or higher.
A step is taken to bond it to the ceramic base material at a temperature of 650°C or lower.

実施例 1 セラミツクス母材(炭化ケイ素;外径125mm、
内径113mm、厚さ10mm)1、第1金属層(純アル
ミニウムA1050;外径125mm、内径113mm、厚さ
0.6mm)2、第2金属層(鉄、ニツケル、コバル
ト合金鋳物;3%C、1.8〜2.8%Si、0.3%Mn、
30〜33%Ni、数%Co;外径125mm、内径113mm、
厚さ3mm)3、第3金属層(第1金属と同じ)
4、金属母材(ステンレス鋼SuS304L;外径129
mm、内径103mm、厚さ8mm)5をアセトン中で10
分間超音波洗浄し、第1図の様に積層し、約
10-4Torrの真空中で、1Kg/mm2の加圧、600℃×
30分間、拡散接合した。室温冷却後、セラミツク
ス母材の剥離、破壊は全くおこらず良好な接合体
が得られた。
Example 1 Ceramics base material (silicon carbide; outer diameter 125 mm,
Inner diameter 113mm, thickness 10mm) 1. First metal layer (pure aluminum A1050; outer diameter 125mm, inner diameter 113mm, thickness
0.6mm) 2. Second metal layer (iron, nickel, cobalt alloy casting; 3%C, 1.8~2.8%Si, 0.3%Mn,
30~33%Ni, a few%Co; outer diameter 125mm, inner diameter 113mm,
3. Third metal layer (same as the first metal)
4. Metal base material (stainless steel SuS304L; outer diameter 129
mm, inner diameter 103 mm, thickness 8 mm) 5 in acetone for 10
Ultrasonic cleaning for minutes, stacking as shown in Figure 1, and approx.
In a vacuum of 10 -4 Torr, pressurized at 1Kg/ mm2 , 600℃×
Diffusion bonding was performed for 30 minutes. After cooling to room temperature, no peeling or destruction of the ceramic base material occurred, and a good bonded body was obtained.

実施例 2 実施例1と同様のセラミツクス、金属母材を用
い、この間に実施例1と同様の第1金属層を介在
させて同様の条件で拡散接合して室温に冷却した
ところ、セラミツクスに著しい破壊がおこつた。
Example 2 Using ceramics and a metal base material similar to those in Example 1, diffusion bonding was performed under the same conditions as in Example 1 with a first metal layer interposed between them, and the ceramics were cooled to room temperature. Destruction occurred.

実施例 3 実施例1と同様の第2金属、金属母材と、別の
第3金属層(純チタンJIS2種;外径125mm、内経
113mm、厚さ0.5mm)をアセトン中で10分間超音波
洗浄後、約10-4Torrの真空中で、加圧2Kg/mm2
830℃×30分間拡散接合して、第2金属層/第3
金属層/母材金属層の複合体を得た。これと実施
例1と同様のセラミツクスと第1金属をアセトン
洗浄後、実施例1と同様の条件で拡散接合した。
室温に冷却後、セラミツクス母材に全く異常はお
こらず良好な接合体が得られた。
Example 3 The same second metal and metal base material as in Example 1, and another third metal layer (pure titanium JIS class 2; outer diameter 125 mm, inner diameter
113 mm, thickness 0.5 mm) in acetone for 10 minutes, and then in a vacuum of approximately 10 -4 Torr under a pressure of 2 Kg/mm 2 .
Diffusion bonding was performed at 830°C for 30 minutes to form the second metal layer/third metal layer.
A composite of metal layer/base metal layer was obtained. This and the same ceramics and first metal as in Example 1 were cleaned with acetone and then diffusion bonded under the same conditions as in Example 1.
After cooling to room temperature, no abnormality occurred in the ceramic base material, and a good joined body was obtained.

(他の実施例) 他の実施例としてセラミツクス母材は、アルミ
ナ、ジルコニア、マグネシア、サイアロン等の酸
化物系セラミツクス、炭化ケイ素、窒化ケイ素等
の非酸化物系セラミツクスとすることができ、金
属母材はステンレス鋼、チタン及びチタン合金、
ニツケル及びニツケル合金等とすることができ
る。
(Other Examples) As another example, the ceramic base material may be an oxide ceramic such as alumina, zirconia, magnesia, or sialon, or a non-oxide ceramic such as silicon carbide or silicon nitride. Materials are stainless steel, titanium and titanium alloys,
It can be made of nickel, nickel alloy, etc.

第1金属層はアルミニウム、アルミニウム合
金、アルミニウムをマトリツクスとする複合材、
アルミニウム合金のクラツド板とすることができ
る。第2金属層は、鉄、ニツケル、コバルト系の
合金鋳物…鉄、ニツケル合金」を、「鉄、ニツケ
ル、コバルト系の合金鋳物(片状、粒状及びその
中間的形態の黒鉛鋳鉄などもある)若しくはその
合金、鉄、ニツケル系合金鋳物(片状、粒状及び
その中間的形態の黒鉛鋳鉄などもある)若しくは
その合金、鉄、ニツケル、クロム系合金、鉄、ニ
ツケル、クロム、チタン系合金、鉄、ニツケル、
コバルト、クロム系合金、鉄、リン系合金超硬合
金、燒結合金等の低熱膨張係数の金属とすること
ができる。第3金属層は、前記の第1金属、また
は銀、チタン、ニツケル、ジルコニウム、モリブ
デン、銅、マンガン、クロム、鉄、ニオブ、等の
純金属若しくはその合金とすることができ、ある
いはまたそれらの粉末とすることができる。これ
らの第1金属層および第3金属層は箔、板または
物理的化学的方法で形成した薄膜とすることがで
きる。但し、第2金属層は板状が望ましい。
The first metal layer is aluminum, an aluminum alloy, a composite material containing aluminum as a matrix,
It can be an aluminum alloy clad plate. The second metal layer is made of iron, nickel, and cobalt alloy castings (iron, nickel alloys), and iron, nickel, and cobalt alloy castings (including graphite cast iron in flaky, granular, and intermediate forms). or its alloys, iron, nickel-based alloy castings (including graphite cast iron in flaky, granular, and intermediate forms) or their alloys, iron, nickel, chromium-based alloys, iron, nickel, chromium, titanium-based alloys, iron , nickel,
It can be a metal with a low coefficient of thermal expansion, such as cobalt, chromium alloy, iron, phosphorus alloy, cemented carbide, or sintered alloy. The third metal layer can be the first metal, or a pure metal such as silver, titanium, nickel, zirconium, molybdenum, copper, manganese, chromium, iron, niobium, etc., or an alloy thereof, or an alloy thereof. It can be made into powder. These first metal layer and third metal layer can be foils, plates, or thin films formed by physical and chemical methods. However, the second metal layer is preferably plate-shaped.

更に、第1及び第3金属は、拡散接合または他
の接合方法によつて第2金属とあらかじめ一体化
した後セラミツクス母材と金属母材との間に介在
させて拡散接合してもよい。また、セラミツクス
母材と第1金属層とを接合後、第1金属層と第2
金属層/第3金属層/金属母材との複合体とを接
合してもよい。この様な接合順序は目的に応じ適
宜選ばれる。また更に、接合方法ははんだ付け、
ろう付け摩擦圧接など他の接合方法とすることが
できる。
Further, the first and third metals may be integrated with the second metal in advance by diffusion bonding or other bonding methods, and then interposed between the ceramic base material and the metal base material and diffusion bonded. Further, after bonding the ceramic base material and the first metal layer, the first metal layer and the second metal layer are bonded.
The metal layer/third metal layer/composite with the metal base material may be joined. Such a bonding order is appropriately selected depending on the purpose. Furthermore, the joining method is soldering,
Other joining methods such as brazing and friction welding can be used.

〔発明の効果〕〔Effect of the invention〕

セラミツクスと金属の接合に於いて、熱接合の
際、両者の熱膨張係数の差に起因して発生する残
留応力を吸収し、セラミツクスの破壊または界面
剥離を防止することができる。
When bonding ceramics and metal, it is possible to absorb residual stress generated due to the difference in thermal expansion coefficients between the two during thermal bonding, thereby preventing destruction of the ceramic or interfacial peeling.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の実施例を示すものであり、
第1図は側面図、第2図は上面図である。 図面において、1はセラミツクス母材、2は第
1金属層、3は第2金属層、4は第3金属層、5
は金属母材である。
The drawings illustrate embodiments of the invention,
FIG. 1 is a side view, and FIG. 2 is a top view. In the drawings, 1 is a ceramic base material, 2 is a first metal layer, 3 is a second metal layer, 4 is a third metal layer, 5
is the metal base material.

Claims (1)

【特許請求の範囲】 1 セラミツクスと金属とを、インサート材を介
在させて接合する接合方法において、 前記インサート材は、セラミツクス母材に接す
る側をアルミニウム、アルミニウム合金またはア
ルミニウム複合体の第1金属層とし、次に前記セ
ラミツクス母材と同程度の熱膨張係数を有する第
2金属層とし、更に金属母材に接する側を第3金
属層として形成した熱応力緩和体である前記セラ
ミツクスと金属との接合方法。 2 前記第3金属層は、前記第1金属層と同じ金
属である特許請求の範囲第1項記載のセラミツク
スと金属との接合方法。 3 前記第3金属層は、前記第2金属層と前記金
属母材の中間の熱膨張係数を有する金属である特
許請求の範囲第1項記載のセラミツクスと金属と
の接合方法。 4 前記第1金属層は箔、薄膜または板である特
許請求の範囲第1項ないし第3項記載のセラミツ
クスと金属との接合方法。 5 前記第2金属層は板である特許請求の範囲第
1項ないし第3項記載のセラミツクスと金属との
接合方法。 6 前記第3金属層は箔、薄膜または板である特
許請求の範囲第1項ないし第3項記載のセラミツ
クスと金属との接合方法。 7 前記接合方法は拡散接合方法である特許請求
の範囲第1項ないし第6項記載のセラミツクスと
金属との接合方法。
[Claims] 1. A joining method for joining ceramics and metal with an insert material interposed, wherein the insert material has a first metal layer of aluminum, aluminum alloy, or aluminum composite on the side in contact with the ceramic base material. Then, a second metal layer having a coefficient of thermal expansion comparable to that of the ceramic base material is formed, and a third metal layer is formed on the side in contact with the metal base material. Joining method. 2. The method of joining ceramics and metal according to claim 1, wherein the third metal layer is the same metal as the first metal layer. 3. The method of joining ceramics and metal according to claim 1, wherein the third metal layer is a metal having a coefficient of thermal expansion intermediate between that of the second metal layer and the metal base material. 4. The method of joining ceramics and metal according to claims 1 to 3, wherein the first metal layer is a foil, a thin film, or a plate. 5. The method of joining ceramics and metal according to claims 1 to 3, wherein the second metal layer is a plate. 6. The method of joining ceramics and metal according to any one of claims 1 to 3, wherein the third metal layer is a foil, a thin film, or a plate. 7. The method of joining ceramics and metal according to any one of claims 1 to 6, wherein the joining method is a diffusion joining method.
JP5553285A 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO Expired - Lifetime JPH0243704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5553285A JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5553285A JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Publications (2)

Publication Number Publication Date
JPS61215273A JPS61215273A (en) 1986-09-25
JPH0243704B2 true JPH0243704B2 (en) 1990-10-01

Family

ID=13001336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5553285A Expired - Lifetime JPH0243704B2 (en) 1985-03-18 1985-03-18 SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO

Country Status (1)

Country Link
JP (1) JPH0243704B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610964B2 (en) * 1988-09-30 1997-05-14 ホーヤ 株式会社 Manufacturing method of acousto-optic element
JP4008401B2 (en) 2003-09-22 2007-11-14 日本碍子株式会社 Manufacturing method of substrate mounting table
CN107263035B (en) * 2017-07-12 2019-01-15 大连理工大学 A kind of processing method of high flatness ultra-thin metal plates

Also Published As

Publication number Publication date
JPS61215273A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
CA1268322A (en) Direct liquid phase bonding of ceramics to metals
JPH0249267B2 (en)
JPS60131874A (en) Method of bonding ceramic and metal
GB2134832A (en) Method of etablishing a bond between titanium and an iron-nickel alloy
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
JPH06108246A (en) Diffusion-bond sputtering target assembly and its production
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS63144175A (en) Ceramic to metal joint structure
JPS60141681A (en) Ceramic member for adhesion and method therefor
JPH029779A (en) Production of ceramic-metal composite body
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JPH06172993A (en) Diffusion bonded sputtering target assembled body and its production
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH01308884A (en) Material-bonding process and bonded product
JP4237460B2 (en) Metal-ceramic bonded body and manufacturing method thereof
JPS61117171A (en) Heat stress alleviator
JP3071361B2 (en) Method of forming film on inner surface of pipe
JPH0328391B2 (en)
JPS62227596A (en) Ceramics-metal joining member
JP3522896B2 (en) Sealing material for vacuum hermetic container and vacuum hermetic container
JPH0448754B2 (en)
JPS62265186A (en) Intermediate layer for bonding members
JPH0371393B2 (en)
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal