JPH06108246A - Diffusion-bond sputtering target assembly and its production - Google Patents
Diffusion-bond sputtering target assembly and its productionInfo
- Publication number
- JPH06108246A JPH06108246A JP4282297A JP28229792A JPH06108246A JP H06108246 A JPH06108246 A JP H06108246A JP 4282297 A JP4282297 A JP 4282297A JP 28229792 A JP28229792 A JP 28229792A JP H06108246 A JPH06108246 A JP H06108246A
- Authority
- JP
- Japan
- Prior art keywords
- target
- bonding
- melting point
- backing plate
- target material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、バッキングプレートを
有するスパッタリングターゲット組立体に関するもので
あり、特には1000℃を超える融点を有するターゲッ
ト材を対象として、ターゲット材とバッキングプレート
とをインサート材を介して固相拡散接合させた、密着性
及び接合強度に優れたスパッタリングターゲット組立体
並びにその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target assembly having a backing plate, and particularly for a target material having a melting point of over 1000 ° C., the target material and the backing plate are inserted through an insert material. The present invention relates to a sputtering target assembly that is solid-phase diffusion bonded and has excellent adhesion and bonding strength, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】スパッタリングターゲットは、スパッタ
リングにより各種半導体デバイスの電極、ゲート、配
線、素子、保護膜等を基板上に形成するためのスパッタ
リング源となる、通常は円盤状の板である。加速された
粒子がターゲット表面に衝突するとき運動量の交換によ
りターゲットを構成する原子が空間に放出されて対向す
る基板上に堆積する。スパッタリングターゲットとして
は、Al合金ターゲット、高融点金属及び合金(W、M
o、Ti、Ta、Zr、Nb等及びその合金)ターゲッ
ト、高融点シリサイド(MoSiX 、WSix 等)ター
ゲット等が代表的に使用されており、これは通常支持及
び冷却目的でバッキングプレートと呼ばれる裏当材とボ
ンディングした組立体の状態で使用される。スパッタリ
ング装置にターゲット組立体が取付けられ、バッキング
プレートの裏面が冷却されてターゲット中で発生する熱
を奪い取る。バッキングプレートとしては、OFC(無
酸素銅)、Cu合金、Al合金、SUS(ステンレス
鋼)若しくはTi乃至Ti合金等の熱伝導性の良い金属
及び合金が使用されている。2. Description of the Related Art A sputtering target is usually a disk-shaped plate which serves as a sputtering source for forming electrodes, gates, wirings, elements, protective films, etc. of various semiconductor devices on a substrate by sputtering. When the accelerated particles collide with the target surface, the atoms constituting the target are released into space by the exchange of momentum and are deposited on the facing substrate. As the sputtering target, Al alloy target, refractory metal and alloy (W, M
Targets such as o, Ti, Ta, Zr, Nb and their alloys) and high melting point silicide (MoSi x , WSi x etc.) targets are typically used, which are usually called backing plates for supporting and cooling purposes. Used as an assembly bonded to the backing material. The target assembly is attached to the sputtering apparatus, and the back surface of the backing plate is cooled to remove heat generated in the target. As the backing plate, metals and alloys having good thermal conductivity such as OFC (oxygen-free copper), Cu alloy, Al alloy, SUS (stainless steel), or Ti to Ti alloy are used.
【0003】従来、ターゲットとバッキングプレートと
のボンディングには、In若しくはSn合金系等の低融
点ロウ材を用いたロウ付け法が主として採用されてき
た。Conventionally, a brazing method using a low melting point brazing material such as In or Sn alloy has been mainly used for bonding the target and the backing plate.
【0004】しかしながら、低融点ロウ材を用いたロウ
付け法には、次のような欠点があった: ロウ材の融点がInで158℃そしてSn系合金では
160〜300℃と低いため使用温度が融点近くになる
と接合剪断強度が急激に低下すること、 室温での接合剪断強度がInで1kg/mm2未満でありそ
して比較的強度が高いSn合金系でも2〜4kg/mm2と低
く、しかも低融点ロウ材であるため、使用温度の上昇に
伴って接合剪断強度は急激に低下すること、 ロウ付け法では、ボンディング時のロウ材の凝固収縮
によってターゲットとバッキングプレートとの接合面に
ポア(気孔)が残存し、未接着部のない100%接合率
のボンディングは困難であること。However, the brazing method using a low melting point brazing material has the following drawbacks: The melting point of the brazing material is as low as 158 ° C. for In and 160-300 ° C. for Sn-based alloys, and therefore the operating temperature is low. When the temperature nears the melting point, the joint shear strength sharply decreases, and the joint shear strength at room temperature is less than 1 kg / mm 2 in In and the Sn alloy system having relatively high strength is as low as 2 to 4 kg / mm 2 , Moreover, since it is a low melting point brazing material, the joint shear strength drops sharply as the operating temperature rises.In the brazing method, due to the solidification shrinkage of the brazing material at the time of bonding, there is a pore (Porosity) remains and it is difficult to bond with 100% bonding rate without unbonded parts.
【0005】そのため、スパッタリング時の投入パワー
が低く制限され、また規定以上のスパッタリングパワー
を負荷された場合若しくは冷却水の管理が不十分な場
合、ターゲットの温度上昇に伴う接合強度の低下若しく
はロウ材の融解によってターゲットの剥離が生じる等の
トラブルが発生した。Therefore, the input power during sputtering is limited to a low level, and when the sputtering power exceeding the specified value is applied or the cooling water is insufficiently controlled, the bonding strength decreases or the brazing material increases with the temperature increase of the target. Problems such as the peeling of the target occurred due to the melting of.
【0006】低融点ロウ材に代えて、高融点のロウ材を
用いた場合には、ロウ付け時に高温が必要であるために
ターゲットの品質に悪影響が生じることがあった。When a brazing material having a high melting point is used instead of the brazing material having a low melting point, the quality of the target may be adversely affected because a high temperature is required for brazing.
【0007】近時、スパッタリング成膜時のスループッ
トを改善するため益々大きなスパッタリング時投入パワ
ーの採用の傾向にあり、そのために昇温下でも接合強度
を所定水準以上に維持しうるターゲットが強く要望され
ている。Recently, in order to improve the throughput during sputtering film formation, there is a tendency to use a larger input power during sputtering. Therefore, there is a strong demand for a target capable of maintaining the bonding strength at a predetermined level or higher even at a high temperature. ing.
【0008】こうした中で、特開平4−143268号
及び特開平4−143269号は、スパッター材となる
第1の金属部材とその支持部となる第2の金属部材とを
直接或いは第1の金属部材よりも高融点のスペーサを介
して接合して一体化する工程と関与するターゲット及び
ターゲットの製造方法を開示する。一体化する方法とし
ては、特に爆発接合法(爆着法)が主体的に説明され、
その他にもホットプレス法、HIP法、ホットロール法
が使用できると記載されている。例えば、ホットプレス
法を例にとると、第1金属部材(スパッター材)として
Al−1%Siをそして第2金属部材(支持部)として
無酸素銅を例にとり、第1及び第2金属部材を比較的単
純な形状に加工し、両者を温度が300〜550℃、時
間が60分のホットプレスにより接合すると、2μm程
度の拡散層が形成されるとしている。その後、接合され
た第1及び第2金属部材はそれぞれ最終形状に加工され
る。但し、第1金属部材及び第2金属部材を所定の形状
に加工してから上記爆着法により接合することもできる
旨の記載がある。Under these circumstances, JP-A-4-143268 and JP-A-4-143269 disclose a first metal member as a sputter material and a second metal member as a supporting portion thereof directly or with a first metal member. Disclosed are a target and a method for manufacturing the target, which are involved in a step of joining and integrating through a spacer having a melting point higher than that of a member. As an integration method, the explosive joining method (explosion welding method) is mainly explained,
In addition, it is described that a hot press method, a HIP method, and a hot roll method can be used. Taking the hot pressing method as an example, for example, Al-1% Si is used as the first metal member (sputtering material) and oxygen-free copper is used as the second metal member (supporting portion). Is processed into a relatively simple shape, and the two are bonded by hot pressing at a temperature of 300 to 550 ° C. for 60 minutes, a diffusion layer of about 2 μm is formed. Then, the joined first and second metal members are each processed into a final shape. However, there is a description that the first metal member and the second metal member can be processed into a predetermined shape and then joined by the explosive welding method.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記の
方法は、爆着法、ホットプレス法、HIP法及びホット
ロール法という非常に大きな負荷の下で第1及び第2金
属部材を強圧着するものであり、スパッター材となる第
1金属部材(即ち、ターゲット材)の変形とそれに伴う
内部歪みや組織変化並びに表層部の汚染が激しく、最終
寸法形状に仕上げたターゲット材には適用出来ない。However, the above-mentioned method is one in which the first and second metal members are strongly pressure-bonded to each other under a very large load such as the explosion bonding method, the hot pressing method, the HIP method and the hot roll method. Therefore, the deformation of the first metal member (that is, the target material) to be the sputter material, the internal strain and the structural change accompanying it, and the contamination of the surface layer portion are severe, and it cannot be applied to the target material finished to the final dimension and shape.
【0010】近時、1000℃を超える融点を有する高
融点金属及び合金、例えばW、Mo、Ti、Ta、Z
r、Nb等及びW−Tiのような金属及びその合金ター
ゲット材、高融点シリサイド(MoSiX 、WSiX
等)のような高融点化合物ターゲット材が半導体デバイ
スに使用される例が急増しており、こうしたターゲット
材の多くは非常に高い純度で最終寸法形状に仕上げた形
で供給される。こうした高融点ターゲット材程大きな一
体化圧力が必要と考えられていた。大きな圧力を適用す
る程、ターゲット材の損傷は大きくなる。Recently, refractory metals and alloys having melting points above 1000 ° C., such as W, Mo, Ti, Ta, Z.
Metals such as r, Nb and W-Ti and their alloy target materials, high melting point silicides (MoSi x , WSi x
Increasingly, refractory compound target materials, such as), are used in semiconductor devices, and many of these target materials are supplied in the final dimension and shape with extremely high purity. It has been considered that such a high melting point target material requires a larger integration pressure. The greater the pressure applied, the greater the damage to the target material.
【0011】本発明の課題は、1000℃以上の融点を
有する最終寸法形状に仕上げたターゲット材に、ターゲ
ット材への悪影響なく、バッキングプレートに高強度で
接合する技術を開発することである。An object of the present invention is to develop a technique for joining a target material finished in a final dimension shape having a melting point of 1000 ° C. or higher to a backing plate with high strength without adversely affecting the target material.
【0012】[0012]
【課題を解決するための手段】本発明者は、1000℃
以上の融点を有するターゲット材を対象として、ターゲ
ット材にほとんど変形その他の悪影響を与えない接合方
法を検討した結果、ターゲット材の融点よりも低い融点
を有する金属または合金から選択される1種以上のイン
サート材を使用しての固相拡散接合によりターゲットと
バッキングプレートとの間に予想以上に非常に良好なボ
ンディングが得られることを見出した。真空中で軽い負
荷の下で固相状態を維持して拡散接合することにより、
ターゲット材の変形等を伴うことなく、界面にポア等の
未接着部のない高い密着性と高い接合強度が得られるの
である。ここで、「固相拡散結合」とは、ターゲット材
とバッキングプレートの間にターゲット材より融点の低
いインサート材を挿入して、ターゲットとバッキングプ
レートを溶融せしめることなく固相状態に維持したま
ま、軽度の加熱及び加圧条件下で界面に拡散を生ぜしめ
てターゲット材に悪影響を与えることなく接合をもたら
す方法である。The present inventor has found that
As a result of investigating a bonding method that hardly deforms or otherwise adversely affects the target material having the above melting point, one or more kinds of metals or alloys having a melting point lower than the melting point of the target material are examined. It has been found that solid-state diffusion bonding using an insert material provides a much better bond than expected between the target and the backing plate. By maintaining the solid state in a vacuum under a light load and performing diffusion bonding,
It is possible to obtain high adhesion and high bonding strength without unbonded portions such as pores at the interface without causing deformation of the target material. Here, "solid phase diffusion bonding" means to insert an insert material having a lower melting point than the target material between the target material and the backing plate, while maintaining the solid state without melting the target and the backing plate, It is a method that causes diffusion at the interface under mild heating and pressurization conditions to bring about bonding without adversely affecting the target material.
【0013】この知見に基づいて、本発明は、(1)1
000℃以上の融点を有するターゲット材と、該ターゲ
ット材の融点よりも低い融点を有する金属または合金か
ら選択される1種以上のインサート材と、バッキングプ
レートとを備え、該ターゲット材と該インサート材並び
に該インサート材と該バッキングプレートがそれぞれ固
相拡散接合界面を有することを特徴とする固相拡散接合
スパッタリングターゲット組立体並びに(2)1000
℃以上の融点を有する、所定の最終形状のターゲット材
と所定の最終形状のバッキングプレートとを該ターゲッ
ト材の融点よりも低い融点を有する金属または合金から
選択される1種以上のインサート材を間に挿入して真空
下で200〜600℃の温度及び0.1〜20kg/mm2の
圧力条件で固相拡散接合させることを特徴とするスパッ
タリングターゲット組立体を製造する方法を提供する。Based on this finding, the present invention provides (1) 1
A target material having a melting point of 000 ° C. or more, one or more insert materials selected from metals or alloys having a melting point lower than the melting point of the target material, and a backing plate, the target material and the insert material And a solid phase diffusion bonding sputtering target assembly, wherein the insert material and the backing plate each have a solid phase diffusion bonding interface, and (2) 1000.
A target material having a predetermined final shape and a backing plate having a predetermined final shape, each having a melting point of ℃ or more, and one or more insert materials selected from metals or alloys having a melting point lower than the melting point of the target material. And a solid phase diffusion bonding under vacuum at a temperature of 200 to 600 ° C. and a pressure of 0.1 to 20 kg / mm 2 for producing a sputtering target assembly.
【0014】[0014]
【作用】ターゲットとバッキングプレートとを固相拡散
接合することにより、ターゲットの変質或いは変形を生
じることなく、構成原子が相互に拡散しあうことによっ
て高い密着性と高い接合強度が得られ、使用温度の上昇
による接合強度の急激な低下が生ぜず、固相接合である
ために界面にポア等の未接着部のない100%接合率の
高度に信頼性を有するボンディングが得られる。[Function] By solid-phase diffusion bonding the target and the backing plate, the constituent atoms are diffused with each other without causing alteration or deformation of the target, so that high adhesion and high bonding strength can be obtained. The bonding strength does not drop sharply due to the increase in the bond strength, and since it is solid phase bonding, highly reliable bonding with 100% bonding rate without unbonded portions such as pores at the interface can be obtained.
【0015】[0015]
【実施例】図1は、本発明に従いターゲット材1とバッ
キングプレート2とインサート材3を介して拡散接合し
たスパッタリングターゲット組立体を示す。両者は固相
拡散接合界面4を介して強固にボンディングされてい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows a sputtering target assembly which is diffusion bonded according to the present invention through a target material 1, a backing plate 2 and an insert material 3. Both are firmly bonded via the solid phase diffusion bonding interface 4.
【0016】本発明は、1000℃を超える融点を有す
るターゲット材を対象とする。その例としては、高融点
金属及び合金、例えばW、Mo、Ti、Ta、Zr、N
b等及びW−Tiのような金属及びその合金ターゲット
材、高融点シリサイド(MoSiX 、WSiX 等)のよ
うな高融点化合物ターゲット材である。本発明における
インサート材としては、ターゲット材の融点より低い融
点を有する金属または合金の1種以上が使用される。A
g、Cu、Niまたはこれらの合金がインサート材の代
表例である。固相拡散接合をもたらすには、ターゲット
材の融点より低い融点を有するインサート材の使用が必
要である。The present invention is directed to target materials having a melting point above 1000 ° C. Examples include refractory metals and alloys such as W, Mo, Ti, Ta, Zr, N.
The target materials include metals such as b and W-Ti and alloys thereof, and high melting point compound target materials such as high melting point silicide (MoSi x , WSi x, etc.). As the insert material in the present invention, at least one metal or alloy having a melting point lower than that of the target material is used. A
Typical examples of insert materials are g, Cu, Ni and alloys thereof. Providing solid phase diffusion bonding requires the use of an insert material having a melting point below that of the target material.
【0017】スパッタリングターゲット組立体の作製に
際して、バッキングプレートとターゲットとをアセトン
のような有機溶媒により脱脂及び洗浄した後、好ましく
は10μm以上の厚さのAg、Cu、Niまたはこれら
の合金のうちの1種以上のインサート材を界面に挿入す
る。インサート材も脱脂及び洗浄しておくことが必要で
ある。インサート材として10μm以上の厚さのものを
使用するのが好ましい理由は、ターゲットとバッキング
プレートとの接合面に残存する機械加工時の数μmの凹
凸に起因するマイクロポアが残るために、接合強度が低
下するからである。インサート材の厚さの上限は、固相
拡散接合をもたらしうるに十分であれば特に指定されな
いが、過度に厚いものは無用である。通常的な箔、薄い
シート等が使用されうる。インサート材の材質として
は、固相拡散接合をもたらすに適度に高い融点と拡散能
の点から、上記の通り、Ag、Cu、Niまたはこれら
の合金が適当である。インサート材を1層以上重ねて使
用してもよい。接合面に酸化物等が存在しないようにす
ることが肝要である。In producing the sputtering target assembly, the backing plate and the target are degreased and washed with an organic solvent such as acetone, and then Ag, Cu, Ni or an alloy thereof having a thickness of 10 μm or more is preferably used. Insert one or more inserts at the interface. It is also necessary to degrease and clean the insert material. The reason why it is preferable to use the insert material having a thickness of 10 μm or more is that the micropores due to the unevenness of several μm remaining during the machining during the machining remain on the bonding surface between the target and the backing plate. Is reduced. The upper limit of the thickness of the insert material is not particularly specified as long as it can bring about solid phase diffusion bonding, but an excessively thick material is useless. Conventional foils, thin sheets, etc. can be used. As the material of the insert material, Ag, Cu, Ni, or an alloy thereof is suitable as described above from the viewpoint of a melting point and a diffusivity that are appropriately high to bring about solid phase diffusion bonding. The insert material may be used by stacking one or more layers. It is important to prevent oxides and the like from existing on the joint surface.
【0018】ターゲット材とバッキングプレートとイン
サート材との積層体を一般に0.1Torr以下の真空下で
200〜600℃の接合温度範囲内での一定温度で0.
1〜20kg/mm2の加圧下、好ましくは3〜10kg/mm2に
保持し、固相状態で拡散接合することによりスパッタリ
ングターゲット組立体が得られる。酸化物の形成を防止
するために0.1Torr以下の真空雰囲気中で実施され
る。適用する荷重は、接合温度及び対象とする材質によ
り選択される。界面を拡散が生じるよう圧接するには最
小限0.1kg/mm2の負荷が必要であり、他方20kg/mm2
を超える負荷ではターゲット材の損傷を招く危険性があ
る。また、接合温度を200〜600℃としたのは、2
00℃未満では原子の拡散が不十分で、良好な密着性が
得られないためであり、他方600℃を超えるとターゲ
ット材及び/またはバッキングプレートの結晶組織、機
械的性質等が変質する恐れが生じるためであり、更には
ターゲット材とバッキングプレートとの熱膨張率の差に
よりそりが発生し或いは歪みが生じ、接合不良となりや
すいからである。The laminated body of the target material, the backing plate and the insert material is generally kept under a vacuum of 0.1 Torr or less at a constant temperature within a joining temperature range of 200 to 600 ° C.
A sputtering target assembly can be obtained by holding under a pressure of 1 to 20 kg / mm 2 , preferably 3 to 10 kg / mm 2, and performing diffusion bonding in a solid state. It is carried out in a vacuum atmosphere of 0.1 Torr or less in order to prevent the formation of oxides. The applied load is selected depending on the joining temperature and the target material. A minimum load of 0.1 kg / mm 2 is required to press the interface so that diffusion occurs, while 20 kg / mm 2
There is a risk of damage to the target material if the load exceeds. In addition, the bonding temperature is set to 200 to 600 ° C. is 2
This is because if the temperature is lower than 00 ° C, the diffusion of atoms is insufficient and good adhesion cannot be obtained. On the other hand, if the temperature exceeds 600 ° C, the crystal structure, mechanical properties, etc. of the target material and / or the backing plate may deteriorate. This is because the warpage occurs or warps due to the difference in the coefficient of thermal expansion between the target material and the backing plate, which tends to result in defective joints.
【0019】こうして得られたスパッタリングターゲッ
ト組立体は、ターゲット材の変形や変質を生じるておら
ずそして液相を生じない固相拡散接合により100%接
合率の接合界面を有し、高い投入パワーのスパッタリン
グ装置においてでも良好に使用されうる。ターゲット表
面に吸着した水分及びガス等の低減化を図るために、低
融点ロウ材の場合とは違い、使用前にターゲット自体を
200℃前後でベーキングすることも可能である。The sputtering target assembly thus obtained has a bonding interface of 100% bonding rate due to solid phase diffusion bonding that does not cause deformation or alteration of the target material and does not generate a liquid phase, and has a high input power. It can be used well in a sputtering apparatus. Unlike the case of the low melting point brazing filler metal, the target itself can be baked at around 200 ° C. before use in order to reduce moisture and gas adsorbed on the target surface.
【0020】(実施例1及び比較例1)300mm直径
のTiターゲット材及び同寸のOFC(無酸素銅)製バ
ッキングプレートをアセトンにより超音波脱脂洗浄し
た。インサート材は厚さ100μmのAg箔を使用し
た。アセトンによる超音波脱脂洗浄後、Tiターゲット
材及びOFC製バッキングプレート間にインサート材を
挿入した。(Example 1 and Comparative Example 1) A Ti target material having a diameter of 300 mm and an OFC (oxygen-free copper) backing plate of the same size were ultrasonically degreased and cleaned with acetone. As the insert material, Ag foil having a thickness of 100 μm was used. After ultrasonic degreasing cleaning with acetone, an insert material was inserted between the Ti target material and the OFC backing plate.
【0021】Tiターゲット材、Ag箔インサート材及
びOFC製バッキングプレートの積層材を5×10-5To
rrの真空下で接合温度を250℃そして負荷を8kg/mm2
として拡散接合させた。The Ti target material, Ag foil insert material, and OFC backing plate laminated material were mixed at 5 × 10 -5 To
Bonding temperature of 250 ℃ and load of 8kg / mm 2 under vacuum of rr
Diffusion bonded.
【0022】拡散接合材の直径方向に沿う5つの部位か
ら切り出した試験片の室温での接合剪断強度と従来のS
n−Pb−Ag系低融点ロウ材で同じく接合した同じT
iターゲット材及びOFC(無酸素銅)製バッキングプ
レートの積層材の室温での接合剪断強度とを比較して図
2に示す。図3にはこれら接合材の接合剪断強度の温度
依存性を示す。図2及び3に示されるように、室温での
接合剪断強度はSn−Pb−Ag系低融点ロウ材を使用
したものは約3kg/mm2であるが、本発明に従う固相拡散
接合材では約6kg/mm2と、ほぼ2倍程度高い接合剪断強
度を有し、しかも温度依存性に関してもSn−Pb−A
g系低温ロウ材を使用したものはロウ材の融点である1
80℃近傍では接合剪断強度はゼロとなるが、本発明固
相拡散接合材は200℃以上では3kg/mm2以上の、25
0℃でも2kg/mm2の接合剪断強度を保持している。Bonding shear strength at room temperature of test pieces cut out from five portions along the diameter of the diffusion bonding material and the conventional S
The same T jointed with n-Pb-Ag low melting point brazing material
The i-target material and the laminated material of the OFC (oxygen-free copper) backing plate are compared with the joint shear strength at room temperature and are shown in FIG. FIG. 3 shows the temperature dependence of the bonding shear strength of these bonding materials. As shown in FIGS. 2 and 3, the bonding shear strength at room temperature is about 3 kg / mm 2 using the Sn-Pb-Ag-based low melting point brazing material, but in the solid phase diffusion bonding material according to the present invention. It has a joint shear strength of about 6 kg / mm 2 , which is almost twice as high, and is Sn-Pb-A in terms of temperature dependence.
What uses g-based low temperature brazing material is the melting point of the brazing material 1
The bonding shear strength becomes zero at around 80 ° C, but the solid phase diffusion bonding material of the present invention has a bonding shear strength of 3 kg / mm 2 or more at 25 ° C or more at 200 ° C or higher.
It maintains the bonding shear strength of 2 kg / mm 2 even at 0 ° C.
【0023】(実施例2及び比較例2)直径295mm
の高純度(>99.999%)タングステンターゲット
材を工業純度のチタンバッキングプレートにインサート
材を介して、5×10-5Torrの真空下で接合温度を40
0℃そして負荷を8kg/mm2として拡散接合した。得られ
た接合材の接合界面の顕微鏡写真を図4に示す。写真か
らポア等の未接着部がなく100%接合率の界面が得ら
れていることがわかる。実施例1と同様に直径に沿った
5つの部位からの試験片の室温での接合剪断強度は7kg
/mm2であった。これに対し、Inロウ接接合材の場合に
は接合剪断強度は1kg/mm2の水準にとどまった。固相拡
散接合の優秀性が確認される。(Example 2 and Comparative Example 2) Diameter 295 mm
Of high-purity (> 99.999%) tungsten target material of industrial purity titanium backing plate through insert material and bonding temperature of 40 under vacuum of 5 × 10 −5 Torr.
Diffusion bonding was performed at 0 ° C. and a load of 8 kg / mm 2 . A micrograph of the joint interface of the obtained joint material is shown in FIG. From the photograph, it can be seen that there is no unbonded portion such as pores and an interface having a 100% bonding rate is obtained. Similar to Example 1, the joint shear strength at room temperature of the test piece from 5 sites along the diameter was 7 kg.
It was / mm 2 . On the other hand, in the case of the In brazing material, the joining shear strength remained at the level of 1 kg / mm 2 . The superiority of solid phase diffusion bonding is confirmed.
【0024】(実施例3)実施例1と同様にして銅箔及
びニッケル箔をインサート材として使用して固相拡散接
合によりターゲットを作製したところ、同様の効果が達
成された。Example 3 When a target was produced by solid phase diffusion bonding using copper foil and nickel foil as insert materials in the same manner as in Example 1, the same effect was achieved.
【0025】[0025]
【発明の効果】固相拡散接合するため、 作製時にターゲット材への損傷がないこと、 接合界面でターゲット材とバッキングプレートとイン
サート材との構成原子が相互に拡散しあうことによって
高い密着性と高い接合強度が得られること、 インサート材の融点が高いため低融点系ロウ材と比較
して使用温度の上昇に伴う接合強度の急激な低下がない
こと、 固相接合であるため、ボンディング時のロウ材の凝固
収縮に伴うポア等の未接着部がなく100%接合率の高
い信頼性を有するボンディングが得られることの結果と
して、 (a)最終仕上したターゲット材をその損傷を生じるこ
と無く直接バッキングプレートに接合でき、(b)スパ
ッタリング時の投入パワーを更に大きくすることが可能
であり、スパッタリング成膜時のスループットを改善す
ることができ、更には(c)ターゲット自体を200℃
前後でベーキングすることが可能であり、ターゲット表
面に吸着した水分及びガス等の低減化を実現するという
効果を有する。EFFECTS OF THE INVENTION Since the solid phase diffusion bonding does not damage the target material during fabrication, the constituent atoms of the target material, the backing plate and the insert material mutually diffuse at the bonding interface, resulting in high adhesion. High bonding strength can be obtained, and since the insert material has a high melting point, there is no sudden decrease in bonding strength with the increase in operating temperature compared to low melting point brazing materials. As a result of the fact that there is no unbonded portion such as pores due to the solidification shrinkage of the brazing material and a highly reliable bonding with 100% bonding rate is obtained, (a) the target material that is finally finished is directly contacted without causing any damage. It can be bonded to a backing plate, and (b) the input power during sputtering can be further increased. It can improve, even 200 ° C. (c) a target itself
It can be baked before and after, and has an effect of reducing moisture and gas adsorbed on the target surface.
【図1】本発明に従いターゲット材とバッキングプレー
トとをインサート材を介して固相拡散接合したスパッタ
リングターゲット組立体の斜視図である。FIG. 1 is a perspective view of a sputtering target assembly in which a target material and a backing plate are solid-phase diffusion bonded via an insert material according to the present invention.
【図2】実施例1及び比較例1における本発明に従う固
相拡散接合材及びSn−Pb−Ag系低融点ロウ材を使
用した接合材の室温での接合剪断強度を比較して示すグ
ラフである。FIG. 2 is a graph showing joint shear strengths at room temperature of a solid-phase diffusion bonding material according to the present invention and a bonding material using a Sn-Pb-Ag-based low melting point brazing material in Example 1 and Comparative Example 1 for comparison. is there.
【図3】図2の接合材の接合剪断強度の温度依存性を示
すグラフである。FIG. 3 is a graph showing the temperature dependence of the bonding shear strength of the bonding material of FIG.
【図4】タングステンターゲットをチタンバッキングプ
レートにインサート材を介して固相拡散接合した接合材
の接合界面の近傍の金属組織を示す顕微鏡写真である。FIG. 4 is a micrograph showing a metal structure in the vicinity of a bonding interface of a bonding material in which a tungsten target is solid-phase diffusion bonded to a titanium backing plate via an insert material.
【符号の説明】 1 ターゲット材 2 バッキングプレート 3 インサート材 4 固相拡散接合界面[Explanation of symbols] 1 target material 2 backing plate 3 insert material 4 solid phase diffusion bonding interface
フロントページの続き (72)発明者 中村 賢一郎 東京都港区虎ノ門二丁目10番1号日本鉱業 株式会社内Front page continuation (72) Inventor Kenichiro Nakamura 2-10-1 Toranomon, Minato-ku, Tokyo Nihon Mining Co., Ltd.
Claims (2)
ト材と、該ターゲット材の融点よりも低い融点を有する
金属または合金から選択される1種以上のインサート材
と、バッキングプレートとを備え、該ターゲット材と該
インサート材並びに該インサート材と該バッキングプレ
ートがそれぞれ固相拡散接合界面を有することを特徴と
する固相拡散接合スパッタリングターゲット組立体。1. A target material having a melting point of 1000 ° C. or higher, at least one insert material selected from metals or alloys having a melting point lower than the melting point of the target material, and a backing plate. A solid phase diffusion bonding sputtering target assembly, wherein the material and the insert material, and the insert material and the backing plate each have a solid phase diffusion bonding interface.
最終形状のターゲット材と所定の最終形状のバッキング
プレートとを該ターゲット材の融点よりも低い融点を有
する金属または合金から選択される1種以上のインサー
ト材を間に挿入して真空下で200〜600℃の温度及
び0.1〜20kg/mm2の圧力条件で固相拡散接合させる
ことを特徴とするスパッタリングターゲット組立体を製
造する方法。2. A target material having a predetermined final shape and a backing plate having a predetermined final shape, each having a melting point of 1000 ° C. or higher, selected from metals or alloys having a melting point lower than the melting point of the target material. A method for producing a sputtering target assembly, characterized in that the above-mentioned insert materials are inserted in between and solid phase diffusion bonding is performed under vacuum at a temperature of 200 to 600 ° C. and a pressure of 0.1 to 20 kg / mm 2. .
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28229792A JP3525348B2 (en) | 1992-09-29 | 1992-09-29 | Manufacturing method of diffusion bonded sputtering target assembly |
TW082107645A TW234767B (en) | 1992-09-29 | 1993-09-17 | |
KR1019930019368A KR960010166B1 (en) | 1992-09-29 | 1993-09-23 | Diffusion-bonded sputtering target assembly and method of manufacturing the same |
EP97118420A EP0848080B1 (en) | 1992-09-29 | 1993-09-27 | Method of manufacturing a diffusion-bonded sputtering target assembly |
EP97118493A EP0831155B1 (en) | 1992-09-29 | 1993-09-27 | Method of manufacturing a diffusion-bonded sputtering target assembly |
DE69329124T DE69329124T2 (en) | 1992-09-29 | 1993-09-27 | Process for the production of a diffusion-bound sputter target structure |
DE69329303T DE69329303T2 (en) | 1992-09-29 | 1993-09-27 | Process for the production of a diffusion-bound sputter target structure |
EP93307621A EP0590904B1 (en) | 1992-09-29 | 1993-09-27 | Method of manufacturing a diffusion-bonded sputtering target assembly |
DE69324986T DE69324986T2 (en) | 1992-09-29 | 1993-09-27 | Process for producing a diffusion-bound atomization target component |
US08/306,057 US5693203A (en) | 1992-09-29 | 1994-09-14 | Sputtering target assembly having solid-phase bonded interface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28229792A JP3525348B2 (en) | 1992-09-29 | 1992-09-29 | Manufacturing method of diffusion bonded sputtering target assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06108246A true JPH06108246A (en) | 1994-04-19 |
JP3525348B2 JP3525348B2 (en) | 2004-05-10 |
Family
ID=17650592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28229792A Expired - Lifetime JP3525348B2 (en) | 1992-09-29 | 1992-09-29 | Manufacturing method of diffusion bonded sputtering target assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3525348B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807443A (en) * | 1995-11-30 | 1998-09-15 | Hitachi Metals, Ltd. | Sputtering titanium target assembly and producing method thereof |
JPH1180942A (en) * | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Ta sputtering target, its production and assembled body |
JP2001262331A (en) * | 2000-03-22 | 2001-09-26 | Vacuum Metallurgical Co Ltd | Method for producing solid phase diffusion-joined sputtering target assembly |
JP2002256427A (en) * | 2001-03-01 | 2002-09-11 | Vacuum Metallurgical Co Ltd | Assembly of titanium target for sputtering, and manufacturing method therefor |
JP2003017491A (en) * | 2001-06-28 | 2003-01-17 | Toshiba Corp | Sputter target, gate insulating film and electronic component |
JP2006508239A (en) * | 2002-10-21 | 2006-03-09 | キャボット コーポレイション | Method for forming sputter target assembly and assembly produced by the method |
JP2007255041A (en) * | 2006-03-23 | 2007-10-04 | Azuma Seisakusho:Kk | Embedded delineator light and its connection part waterproofing method |
WO2008096648A1 (en) | 2007-02-09 | 2008-08-14 | Nippon Mining & Metals Co., Ltd. | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for produc |
JP2009149996A (en) * | 1998-06-29 | 2009-07-09 | Toshiba Corp | Sputter target |
JP4594488B2 (en) * | 2000-04-13 | 2010-12-08 | 株式会社東芝 | Sputtering target |
JP2012092451A (en) * | 2000-09-07 | 2012-05-17 | Toshiba Corp | Tungsten spattering target and method of manufacturing the target |
WO2014007151A1 (en) | 2012-07-04 | 2014-01-09 | Jx日鉱日石金属株式会社 | Sputtering target |
JP2014511436A (en) * | 2011-02-14 | 2014-05-15 | トーソー エスエムディー,インク. | Diffusion bonding sputter target assembly and manufacturing method thereof |
US9062371B2 (en) | 2009-11-20 | 2015-06-23 | Jx Nippon Mining & Metals Corporation | Sputtering target-backing plate assembly, and its production method |
CN110366777A (en) * | 2017-03-29 | 2019-10-22 | 三菱综合材料株式会社 | The manufacturing method of flange-cooled insulate electrical substrate |
-
1992
- 1992-09-29 JP JP28229792A patent/JP3525348B2/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807443A (en) * | 1995-11-30 | 1998-09-15 | Hitachi Metals, Ltd. | Sputtering titanium target assembly and producing method thereof |
JPH1180942A (en) * | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Ta sputtering target, its production and assembled body |
JP2009149996A (en) * | 1998-06-29 | 2009-07-09 | Toshiba Corp | Sputter target |
JP2001262331A (en) * | 2000-03-22 | 2001-09-26 | Vacuum Metallurgical Co Ltd | Method for producing solid phase diffusion-joined sputtering target assembly |
JP4560170B2 (en) * | 2000-03-22 | 2010-10-13 | アルバックマテリアル株式会社 | Solid phase diffusion bonding sputtering target assembly and manufacturing method thereof |
JP4594488B2 (en) * | 2000-04-13 | 2010-12-08 | 株式会社東芝 | Sputtering target |
JP2012117149A (en) * | 2000-09-07 | 2012-06-21 | Toshiba Corp | Tungsten sputtering target and method for production thereof |
JP2012122139A (en) * | 2000-09-07 | 2012-06-28 | Toshiba Corp | Tungsten sputtering target and manufacturing method thereof |
JP2012092451A (en) * | 2000-09-07 | 2012-05-17 | Toshiba Corp | Tungsten spattering target and method of manufacturing the target |
JP2002256427A (en) * | 2001-03-01 | 2002-09-11 | Vacuum Metallurgical Co Ltd | Assembly of titanium target for sputtering, and manufacturing method therefor |
JP4615746B2 (en) * | 2001-03-01 | 2011-01-19 | アルバックマテリアル株式会社 | Titanium target assembly for sputtering and manufacturing method thereof |
JP2003017491A (en) * | 2001-06-28 | 2003-01-17 | Toshiba Corp | Sputter target, gate insulating film and electronic component |
JP2006508239A (en) * | 2002-10-21 | 2006-03-09 | キャボット コーポレイション | Method for forming sputter target assembly and assembly produced by the method |
JP4768266B2 (en) * | 2002-10-21 | 2011-09-07 | キャボット コーポレイション | Method for forming sputter target assembly and assembly produced by the method |
JP2007255041A (en) * | 2006-03-23 | 2007-10-04 | Azuma Seisakusho:Kk | Embedded delineator light and its connection part waterproofing method |
JPWO2008096648A1 (en) * | 2007-02-09 | 2010-05-20 | 日鉱金属株式会社 | Target consisting of hard-to-sinter body of refractory metal alloy, refractory metal silicide, refractory metal carbide, refractory metal nitride or refractory metal boride, its manufacturing method, and sputtering target-backing plate assembly and its Production method |
WO2008096648A1 (en) | 2007-02-09 | 2008-08-14 | Nippon Mining & Metals Co., Ltd. | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for produc |
JP2012136779A (en) * | 2007-02-09 | 2012-07-19 | Jx Nippon Mining & Metals Corp | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for producing the same |
EP2806048A2 (en) | 2007-02-09 | 2014-11-26 | JX Nippon Mining & Metals Corporation | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for producing the same |
US9062371B2 (en) | 2009-11-20 | 2015-06-23 | Jx Nippon Mining & Metals Corporation | Sputtering target-backing plate assembly, and its production method |
JP2014511436A (en) * | 2011-02-14 | 2014-05-15 | トーソー エスエムディー,インク. | Diffusion bonding sputter target assembly and manufacturing method thereof |
US9546418B2 (en) | 2011-02-14 | 2017-01-17 | Tosoh Smd, Inc. | Diffusion-bonded sputter target assembly and method of manufacturing |
WO2014007151A1 (en) | 2012-07-04 | 2014-01-09 | Jx日鉱日石金属株式会社 | Sputtering target |
CN110366777A (en) * | 2017-03-29 | 2019-10-22 | 三菱综合材料株式会社 | The manufacturing method of flange-cooled insulate electrical substrate |
US11735434B2 (en) | 2017-03-29 | 2023-08-22 | Mitsubishi Materials Corporation | Method for producing insulating circuit substrate with heat sink |
CN110366777B (en) * | 2017-03-29 | 2024-04-26 | 三菱综合材料株式会社 | Method for manufacturing insulating circuit substrate with radiating fin |
Also Published As
Publication number | Publication date |
---|---|
JP3525348B2 (en) | 2004-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960010166B1 (en) | Diffusion-bonded sputtering target assembly and method of manufacturing the same | |
US5693203A (en) | Sputtering target assembly having solid-phase bonded interface | |
US4869421A (en) | Method of jointing titanium aluminide structures | |
JPH06108246A (en) | Diffusion-bond sputtering target assembly and its production | |
EP0135937B1 (en) | Method of bonding alumina to metal | |
US5102747A (en) | High temperature-resistant composite | |
KR100246682B1 (en) | Sputtering titanium target assembly and producing method thereof | |
JP4594488B2 (en) | Sputtering target | |
JP2000239838A (en) | Sputtering target assembled body subjected to solid phase diffusion joining and its production | |
EP0932472B1 (en) | Method for joining rhenium to columbium | |
WO1992017622A1 (en) | Thermally compatible sputter target and backing plate assembly | |
JP3469261B2 (en) | Diffusion bonded sputtering target assembly and method of manufacturing the same | |
JPH06158296A (en) | Diffusion-bonded sputtering target assembly and its production | |
US4706872A (en) | Method of bonding columbium to nickel and nickel based alloys using low bonding pressures and temperatures | |
JP4615746B2 (en) | Titanium target assembly for sputtering and manufacturing method thereof | |
JPH11350120A (en) | Diffusion joined sputtering target assembly and its production | |
US20040134776A1 (en) | Assemblies comprising molybdenum and aluminum; and methods of utilizing interlayers in forming target/backing plate assemblies | |
JPH07278804A (en) | Pure ti target for formation of sputtering thin film | |
JP2000239837A (en) | Method for separating sputtering target assembled body subjected to solid phase diffusion joining | |
JP4519981B2 (en) | Solid phase diffusion bonding sputtering target assembly and manufacturing method thereof | |
JPH08269704A (en) | Sputtering target | |
JPH11236665A (en) | Backing plate for sputtering target and sputtering target/backing plate assembly | |
JP2854619B2 (en) | Joining method | |
WO2001000899A1 (en) | Sputtering target backing plate and sputtering target/backing plate assembly | |
JPH0222024B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040202 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040202 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 9 |