JPH0448754B2 - - Google Patents

Info

Publication number
JPH0448754B2
JPH0448754B2 JP62057912A JP5791287A JPH0448754B2 JP H0448754 B2 JPH0448754 B2 JP H0448754B2 JP 62057912 A JP62057912 A JP 62057912A JP 5791287 A JP5791287 A JP 5791287A JP H0448754 B2 JPH0448754 B2 JP H0448754B2
Authority
JP
Japan
Prior art keywords
intermediate layer
metal
ceramic
base material
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62057912A
Other languages
Japanese (ja)
Other versions
JPS63225585A (en
Inventor
Takayoshi Izeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KOGYO DAIGAKUCHO
Original Assignee
TOKYO KOGYO DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KOGYO DAIGAKUCHO filed Critical TOKYO KOGYO DAIGAKUCHO
Priority to JP5791287A priority Critical patent/JPS63225585A/en
Publication of JPS63225585A publication Critical patent/JPS63225585A/en
Publication of JPH0448754B2 publication Critical patent/JPH0448754B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はターボチヤージヤー、熱交換器、核融
合炉第一壁あるいは電磁気部品等において、強度
の大きなセラミツクスと金属の接合を必要とする
接合体及びその製造方法に関するものである。 (従来の技術) セラミツクスは金属に比べ一般に熱膨脹係数が
小さく、金属と接合させた部品では両者の熱膨脹
差から熱応力が生じて破壊する。とくに熱サイク
ル下で使われるような部品ではこの影響は極めて
大きい。このためこのような応力を減少させるた
めに熱膨脹係数が接合しようとするセラミツクス
と金属の中間にあるような中間層を入れたり、変
形能が大きく軟かな中間層を入れて接合すること
が多い。 最近、特開昭60−231471号公報において中間層
が層からなり、セラミツクスに接する中間層の熱
膨脹係数が当該セラミツクスに近い金属又は合金
を使い、当該金属に接する中間層の熱膨脹係数が
当該セラミツクスのそれより小さい金属又は合金
であることを特徴とする金属セラミツクスの接合
体が発表されている。この方法は中間層の熱膨脹
係数の順序が単調増加又は単調減少になるように
するという通常の概念を打ち破つたものである。
すなわち、以下のような熱膨脹係数αの関係とす
ることを提案している。 α(セラミツクス)≒α(中間層1)> α(中間層2)<α(金属) この発明の実施例ではAl2O3とステンレス鋼を
接合するのにNb及びMoを選びAl2O3/Nb/
Mo/ステンレス鋼の配列で、接合強度の大きな
接合体を得ている。 (発明が解決しようとする問題点) しかしながら、この例が示すように中間層の
Nb,Moの選択には複雑な考察が必要であり、
又、接合しようとするセラミツクス及び金属とは
異なるので中間層のNb,Moが接合体の性能を左
右することも考えられる。例えばNb,Moを使用
するため高温の空気中での使用ができなくなるな
どの欠点が生じる。 (問題点を解決するための手段) 本発明は上述のような熱応力を緩和する手段と
して中間層を用いるが、従来のように中間層の熱
膨脹係数を順次増加したり、順次減少したりする
のではなく、また特開昭60−231471号公報の如く
中間層材料を高融点金属を複雑に組合せても格別
の解決が得られない点に鑑み、中間層を少なくと
も2層使用することとし、使用する中間層の材質
をそれぞれセラミツクス基材及び金属基材と同材
質としてセラミツクス基材と金属基材とを接合し
ようとするものである。本発明の要旨は次の通り
である。 第1発明 セラミツクス基材と、金属基材との間にこれら
とそれぞれ同材質で熱膨脹係数が同一又は近似し
たセラミツクス中間層と、金属中間層とを介挿し
たものよりなり、セラミツクス中間層は金属中間
層相互又は金属中間層と金属基材との間に挟ま
れ、かつ、金属中間層はセラミツクス中間層相互
又はセラミツクス中間層とセラミツクス基材との
間に挟まれるよう配置して接合されていることを
特徴とするセラミツクスと金属との接合体。 第2発明 セラミツクス基材と金属基材との間に中間層を
少なくとも2層又は2層以上挿入して接合する方
法において、少なくとも材質と熱膨脹係数とが接
合すべきセラミツクス基材と金属基材とにそれぞ
れ同一又は近似したセラミツクス中間層と金属中
間層とを、セラミツクス基材と金属基材との間に
分挿し、前記セラミツクス中間層の両接合界面は
前記金属中間層相互或いは金属中間層と金属基材
とにより挟まれており、前記金属中間層の両接合
界面はセラミツクス中間層相互或いはセラミツク
ス中間層とセラミツクス基材との間に挟まれるよ
う配置して接合することを特徴とするセラミツク
スと金属との接合法。 (作用) 本発明者等はSiCとステンレス鋼を接合するの
に中間層としてTiとMoを選び、SiC/Ti/
Mo/ステンレス鋼の配列で、各界面には銀ろう
箔をはさみ、ろう付することによつて強度の大き
な接合体を得ることについて実験した。 この場合SiC/Mo/Ti/ステンレス鋼という
配列では接合直後に強度を測定すると接合強度は
大きいが、1日程度放置した場合には接合体が自
然に破壊してしまい、中間層の配列順序が重要な
ことがわかつた。このときの熱膨脹係数αの関係
は α(SiC)<α(Ti)>α(Mo)<α(ステンレス
鋼) である。 ここで本発明者は中間層の高融点金属Ti,Mo
の代りに接合すべき基材であるSiC及びステンレ
ス鋼と同材質のものを中間層として使つても熱膨
脹係数の点だけからは α(SiC)<α(ステンレス鋼)>α(SiC)<α(ス
テンレス鋼)であるので、中間層としてステンレ
ス鋼及びSiCそのものを使用すると中間層のステ
ンレス鋼は基材のSiCと中間層のSiCとにより挟
まれ、中間層のSiCは中間層のステンレス鋼と基
材のステンレス鋼とにより挟まれ、介挿する中間
層の両側においては熱膨脹係数が全く同一であ
り、中間層のステンレス鋼の変形を両側のSiCで
拘束し、逆にSiC中間層の変形を両側のステンレ
ス鋼で拘束することになる。例えば金属板の片面
にセラミツクスをコーチングすると熱膨脹係数の
差で板がそるが、金属板の裏面にも同じセラミツ
クスをコーチングすると変形が生じない原理と同
じである。又SiCとステンレス鋼の間はろう付に
よつて接合したが、SiCとステンレス鋼はろう材
を用いないで固相拡散接合により直接接合するこ
とができる。この他の金属−セラミツクスの組合
せでも直接接合できる例が多い。結局、中間層と
して接合しようとするセラミツクスと金属を選び
接合する場合、無機接着剤やフリツトを用いた接
合、反応焼結法による接合なども上記の2方法以
外に使用できる。 本発明のセラミツクスと金属との接合法を図面
をもつて例示し、説明する。 第1A図はセラミツクス基材1と金属基材2と
を接合するために金属中間層3とセラミツクス中
間層4とを交互に介挿し、セラミツクス基材−金
属中間層−セラミツクス中間層−金属基材のよう
に配列して、接合するのであり、このような配列
として接合すると、金属中間層の両側は同材質の
セラミツクスにより挟まれることになるので、金
属中間層の両側の熱膨脹係数が同じであり、何れ
か一方の側に歪を生じてそりかえり破壊すること
がない。セラミツクス中間層も両側より同材質の
金属により挟まれると、中間層の両側で熱膨脹係
数の差が生じないので、金属とセラミツクスとは
それぞれの自由表面の方向に熱膨脹し、接合界面
において剥離又はひび割れ、破壊等が生じない。
第1A図のような接合をする場合にろう材を介挿
して接合して試験したが、接合に際して用いるろ
う材の薄い層は通常延性を有するので、変形能が
あり、中間層両側の熱膨脹係数を総合して実質的
に同一又は近似とすれば破損は生じない。 第1B図は中間層をそれぞれ2層づつ介挿する
例を示したもので、この場合の金属中間層とセラ
ミツクス中間層とはそれぞれセラミツクス基材ま
たはセラミツクス中間層とにより挟まれ、またセ
ラミツクス中間層は金属基材または金属中間層相
互により挟まれる関係に配置される。従つて、こ
れらがろう材によつてそれぞれ接合されて一体と
なつたときも、第1A図の接合法と全く同様で中
間層が複数となつた場合でも何等の支障なく接合
が可能となり、接合後破壊の惧はない。 第1C図及び第1D図は金属中間層を3A,3
Bの如く2つ割りとしたり、セラミツクス中間層
を4A,4Bの如く2つ割りとして接合する場合
を示し、第1C図は第1A図の金属中間層3が2
つ割りとしたものに相当し、第1D図は第1A図
のセラミツクス中間層4が4A,4Bの如く2つ
割りとなつたと同様と見做し得る。第1C図にお
いては2枚の金属中間層3A,3Bがセラミツク
ス基材1とセラミツクス中間層4とで挟まれてい
るので、金属中間層3A,3Bの両側はセラミツ
クスで挟まれている。また第1D図においては、
2枚のセラミツクス中間層4A,4Bとはその両
側が、金属基材2と金属中間層3とで挟まれてい
る。従つて、第1A図の場合と全く同じく、2枚
の金属の合せ材又はセラミツクスの合せ材の両側
はそれぞれセラミツクス及び金属で挟まれること
になり第1A図と同じで、合せ材を一枚の層と同
じように、見做すことができる。 第1E図及び第1F図に示す例は金属基材を2
A,2Bの如く2つ割りとしたり、またセラミツ
クス基材を1A,1Bの如く2つ割りとしても、
その接合原理は変わらないことを示すもので、こ
れらの層の間にろう材を介挿して接合しても全く
同じで、亀裂、剥離等の破壊は生じない。 この理由としては、厚い中間層よりも薄い中間
層の方が発生する熱応力が小さくなるので多層と
することが好ましい場合もあるためである。 以上の如く本発明により、中間層の選択が容易
になり、接合しようとする物質と異なる2種以上
の異なつた中間層を用いる場合に接合条件を各界
面ごとに変える必要はなく、さらにMo,Tiのよ
うな耐酸化性に劣るものが使えない場合にも接合
が可能となり、接合部の特性は損われなくてすむ
大きな効果が期待できる。 実施例 1 縦横10×10(mm)で厚さ4mmの緻密質Si3N4
結体基材11(ホツトプレス品)と厚さ3mmのス
テンレス鋼基材12(SUS316)の間に、第2図
に示すようにSi3N4に接する側に厚さ0.4mmのステ
ンレス鋼薄板13、一方、ステンレス鋼に接する
側に厚さ1.7mmのSi3N4板14を中間層として入
れ、黒鉛型の内に設置した後、温度1090℃、圧力
200Kg/cm2、雰囲気1×10-4torrの真空中でホツ
トプレス接合、すなわち拡散接合を行つた。昇温
速度は25℃/分で、1090℃に到達後50分間加圧
し、圧力を下げてから、さらに10分間、1090℃に
保持し加圧中の歪をとるようにした。さらに降温
時には、降温速度8℃/分で800℃まで下げ、こ
の温度に1時間保持し、再び降温速度8℃/分で
500℃まで下げこの温度に1時間保持した。接合
後、1週間以上経過した後、せん断試験により接
合強度を測定した。接合強度は4.6Kg/mm2であつ
た。 実施例 2 縦横10×10(mm)で厚さ4mmの緻密質SiC焼結
体基材(常圧焼結品)11とステンレス鋼基材
(SUS316)12の間に、第3図に示すように、
SiC基材11に接する側に、厚さ1あるいは0.5mm
のステンレス鋼薄板の中間層13を、一方、ステ
ンレス鋼基材12に接する側に厚さ1あるいは、
1.5mmのSiC板を中間層14として入れ、それぞれ
の間にTi2重量%入り銀ろう15(組成Ag70.5−
Cu27.5−Ti2)の厚さ70μmの箔を入れ、高周波
加熱により2×10-5torrの真空中でろう付を行つ
た。ろう付における昇温速度は50℃/分で、810
℃まで加熱し、810℃に到達後ただちに10℃/分
で降温し、500℃で1時間一定温度に保つた後、
10℃/分で冷却した。500℃で歪除去の熱処理を
行うことは有効で、もしこれを行わないと接合部
のSiC中間層中にき裂が見られることがあつた。
接合後1週間以上経過した後、せん断試験により
接合強度を測定した。 その結果を表1に示す。
(Field of Industrial Application) The present invention relates to a joined body that requires the joining of ceramics and metal with high strength in turbochargers, heat exchangers, first walls of nuclear fusion reactors, electromagnetic parts, etc., and a method for manufacturing the same. It is something. (Prior Art) Ceramics generally have a smaller coefficient of thermal expansion than metals, and parts bonded to metals will break due to thermal stress generated from the difference in thermal expansion between the two. This effect is particularly significant for parts that are used under thermal cycles. Therefore, in order to reduce such stress, an intermediate layer whose thermal expansion coefficient is between that of the ceramics and the metal to be bonded is often inserted, or a soft intermediate layer with large deformability is inserted for bonding. Recently, in Japanese Unexamined Patent Publication No. 60-231471, the intermediate layer is composed of layers, and the intermediate layer in contact with the ceramic is made of a metal or alloy whose thermal expansion coefficient is close to that of the ceramic, and the intermediate layer in contact with the metal has a thermal expansion coefficient similar to that of the ceramic. Metal-ceramic bonded bodies characterized by smaller metals or alloys have been announced. This method breaks away from the usual concept of making the order of the coefficients of thermal expansion of the intermediate layer monotonically increasing or decreasing.
That is, it is proposed that the relationship of the thermal expansion coefficient α is as follows. α (ceramics) ≒ α (intermediate layer 1) > α (intermediate layer 2) < α (metal) In the embodiment of this invention, Nb and Mo are selected to join Al 2 O 3 and stainless steel . /Nb/
The Mo/stainless steel arrangement provides a bonded body with high bonding strength. (Problem to be solved by the invention) However, as this example shows, the middle class
Selection of Nb and Mo requires complex considerations;
Furthermore, since the ceramics and metals to be bonded are different, it is possible that the intermediate layer Nb and Mo may affect the performance of the bonded body. For example, since Nb and Mo are used, there are drawbacks such as the inability to use it in high-temperature air. (Means for Solving the Problems) The present invention uses an intermediate layer as a means for alleviating the thermal stress as described above, but unlike the conventional method, the thermal expansion coefficient of the intermediate layer is sequentially increased or decreased sequentially. In addition, in view of the fact that no special solution can be obtained even if the intermediate layer material is a complex combination of high-melting point metals as in JP-A No. 60-231471, it is decided to use at least two intermediate layers, This method attempts to bond the ceramic base material and the metal base material by using the same material for the intermediate layer as the ceramic base material and the metal base material, respectively. The gist of the invention is as follows. First Invention Consisting of a ceramic base material and a metal base material, and a ceramic intermediate layer and a metal intermediate layer made of the same material and having the same or similar coefficient of thermal expansion, respectively, are interposed between the ceramic base material and the metal base material, and the ceramic intermediate layer is made of metal. The intermediate layers are sandwiched between each other or between the metal intermediate layer and the metal base material, and the metal intermediate layer is arranged and bonded so as to be sandwiched between the ceramic intermediate layers or between the ceramic intermediate layer and the ceramic base material. A bonded body of ceramics and metal characterized by the following. 2nd invention In a method of bonding by inserting at least two or more intermediate layers between a ceramic base material and a metal base material, the ceramic base material and the metal base material to be bonded have at least a material and a coefficient of thermal expansion. A ceramic intermediate layer and a metal intermediate layer, which are the same or similar to each other, are inserted between the ceramic base material and the metal base material, and both bonding interfaces of the ceramic intermediate layer are bonded to each other or to the metal intermediate layer and the metal intermediate layer. and a base material, and both bonding interfaces of the metal intermediate layer are arranged and bonded so as to be sandwiched between the ceramic intermediate layers or between the ceramic intermediate layer and the ceramic base material. joining method. (Function) The present inventors selected Ti and Mo as the intermediate layer to join SiC and stainless steel, and
An experiment was conducted to obtain a bonded body with high strength by sandwiching a silver solder foil at each interface of a Mo/stainless steel array and brazing it. In this case, in the SiC/Mo/Ti/stainless steel arrangement, the bonding strength is high when measured immediately after bonding, but if left for about a day, the bonded structure will spontaneously break and the arrangement order of the intermediate layer will change. I learned something important. The relationship between the coefficient of thermal expansion α at this time is α (SiC) < α (Ti) > α (Mo) < α (stainless steel). Here, the present inventor has developed an intermediate layer of refractory metals such as Ti and Mo.
Even if an intermediate layer made of the same material as SiC and stainless steel, which are the base materials to be bonded, is used instead, from the point of view of thermal expansion coefficient only, α (SiC) < α (stainless steel) > α (SiC) < α (stainless steel), so if stainless steel and SiC itself are used as the intermediate layer, the intermediate layer stainless steel will be sandwiched between the base material SiC and the intermediate layer SiC, and the intermediate layer SiC will be sandwiched between the intermediate layer stainless steel and the intermediate layer SiC. The coefficient of thermal expansion is exactly the same on both sides of the intermediate layer sandwiched between the stainless steel base material, and the deformation of the stainless steel intermediate layer is restrained by the SiC on both sides, and conversely, the deformation of the SiC intermediate layer is restrained. It will be restrained by stainless steel on both sides. For example, if one side of a metal plate is coated with ceramics, the plate will warp due to the difference in coefficient of thermal expansion, but if the same ceramic is coated on the back side of the metal plate, no deformation will occur. Furthermore, although SiC and stainless steel were joined by brazing, SiC and stainless steel can be directly joined by solid phase diffusion bonding without using a brazing material. There are many examples in which other metal-ceramic combinations can also be directly bonded. After all, when selecting and bonding ceramics and metal to be bonded as an intermediate layer, bonding using an inorganic adhesive or frit, bonding by a reaction sintering method, etc. can be used in addition to the above two methods. The method of joining ceramics and metal according to the present invention will be illustrated and explained with reference to the drawings. FIG. 1A shows a structure in which a metal intermediate layer 3 and a ceramic intermediate layer 4 are alternately inserted to bond a ceramic base material 1 and a metal base material 2. When bonded in this arrangement, both sides of the metal intermediate layer are sandwiched between ceramics of the same material, so the coefficient of thermal expansion on both sides of the metal intermediate layer is the same. , distortion will not occur on either side and cause the product to warp and break. When a ceramic intermediate layer is also sandwiched between two metals of the same material from both sides, there is no difference in coefficient of thermal expansion on both sides of the intermediate layer, so the metal and ceramics thermally expand in the direction of their respective free surfaces, causing peeling or cracking at the bonding interface. , no destruction etc. will occur.
In the case of joining as shown in Figure 1A, we inserted a brazing filler metal and tested it, but since the thin layer of the brazing filler metal used for bonding is usually ductile, it has deformability, and the coefficient of thermal expansion on both sides of the intermediate layer If they are substantially the same or similar in total, no damage will occur. FIG. 1B shows an example in which two intermediate layers are inserted, and in this case, the metal intermediate layer and the ceramic intermediate layer are each sandwiched between a ceramic base material or a ceramic intermediate layer, and the ceramic intermediate layer are arranged in a sandwiched relationship between the metal substrates or the metal intermediate layer. Therefore, even when these are joined together using brazing filler metal to form a single body, the joining method is exactly the same as the joining method shown in Fig. 1A, and even if there are multiple intermediate layers, the joining is possible without any problem, and the joining is possible. There is no fear of subsequent destruction. Figures 1C and 1D show metal intermediate layers 3A, 3
The case is shown in which the metal intermediate layer 3 in FIG.
1D can be considered to be the same as if the ceramic intermediate layer 4 of FIG. 1A was divided into two parts as shown in 4A and 4B. In FIG. 1C, the two metal intermediate layers 3A and 3B are sandwiched between the ceramic base material 1 and the ceramic intermediate layer 4, so both sides of the metal intermediate layers 3A and 3B are sandwiched between ceramics. Also, in Figure 1D,
The two ceramic intermediate layers 4A and 4B are sandwiched between a metal base material 2 and a metal intermediate layer 3 on both sides. Therefore, just as in the case of Fig. 1A, both sides of the two metal or ceramic laminates are sandwiched between ceramics and metal, respectively. It can be viewed in the same way as layers. In the example shown in Figures 1E and 1F, two metal substrates are used.
It can be divided into two parts like A and 2B, or even if the ceramic base material is divided into two parts like 1A and 1B.
This shows that the bonding principle remains the same; even if a brazing material is inserted between these layers, the bonding will be exactly the same and no damage such as cracking or peeling will occur. The reason for this is that a thin intermediate layer generates less thermal stress than a thick intermediate layer, so it may be preferable to have multiple layers. As described above, according to the present invention, it is easy to select the intermediate layer, and there is no need to change the bonding conditions for each interface when using two or more different intermediate layers different from the materials to be bonded. This enables bonding even when materials with poor oxidation resistance, such as Ti, cannot be used, and is expected to have a significant effect in that the properties of the bonded portion will not be impaired. Example 1 A second plate was placed between a dense Si 3 N 4 sintered base material 11 (hot pressed product) measuring 10×10 (mm) in length and width and 4 mm thick and a stainless steel base material 12 (SUS316) having a thickness of 3 mm. As shown in the figure, a stainless steel thin plate 13 with a thickness of 0.4 mm is placed on the side in contact with Si 3 N 4 , and a Si 3 N 4 plate 14 with a thickness of 1.7 mm is placed as an intermediate layer on the side in contact with the stainless steel, and a graphite type After installation within the temperature 1090℃, pressure
Hot press bonding, that is, diffusion bonding, was performed in a vacuum of 200 Kg/cm 2 and an atmosphere of 1×10 −4 torr. The temperature was raised at a rate of 25°C/min, and after reaching 1090°C, pressure was applied for 50 minutes, the pressure was lowered, and the temperature was maintained at 1090°C for an additional 10 minutes to remove strain during pressurization. When the temperature is further lowered, the temperature is lowered to 800°C at a cooling rate of 8°C/min, held at this temperature for 1 hour, and then again at a cooling rate of 8°C/min.
The temperature was lowered to 500°C and held at this temperature for 1 hour. One week or more after the bonding, the bonding strength was measured by a shear test. The bonding strength was 4.6Kg/ mm2 . Example 2 Between a dense SiC sintered body base material (normal pressure sintered product) 11 with length and width of 10×10 (mm) and a thickness of 4 mm and a stainless steel base material (SUS316) 12, as shown in FIG. To,
On the side in contact with the SiC base material 11, the thickness is 1 or 0.5 mm.
An intermediate layer 13 of a stainless steel thin plate of
A 1.5 mm SiC plate is inserted as the intermediate layer 14, and a silver solder 15 containing Ti2 wt% (composition Ag70.5-
A 70 μm thick foil of Cu27.5−Ti2) was inserted, and brazing was performed in a vacuum of 2×10 −5 torr by high-frequency heating. The temperature increase rate during brazing is 50℃/min, 810
℃, and immediately after reaching 810℃, the temperature was lowered at a rate of 10℃/min, and after keeping the temperature constant at 500℃ for 1 hour,
Cooled at 10°C/min. It is effective to perform heat treatment at 500°C to remove strain; if this was not done, cracks could be seen in the SiC intermediate layer at the joint.
After one week or more had passed after the bonding, the bonding strength was measured by a shear test. The results are shown in Table 1.

【表】 実施例 3 縦横10×10(mm)で厚さ4mmの緻密質Si3N4
結体基材11とステンレス鋼基材12との間に第
4図に示すようにSi3N4に接する側に厚さ0.5mmの
ステンレス鋼板よりなる中間層13を、ステンレ
ス鋼に接する側に厚さ1mmのSi3N4板を中間層1
4として入れ、実施例2に従つてろう材15をそ
れぞれ介挿しろう付けを行つた。ただし、この場
合810℃までの昇温速度は30℃/分とした。得ら
れた接合体のせん断強度は26.5Kg/mm2であつた。 実施例 4 実施例3と同じ接合を行つたが、中間層として
第5図に示すように、0.5mm厚さのSi3N414A,
14Bとステンレス鋼板13A,13Bとを交互
に2枚ずつ計4枚入れて、Si3N4基材11−ステ
ンレス鋼中間層13A−Si3N4中間層14A−ス
テンレス鋼中間層13B−Si3N4中間層14B−
ステンレス鋼基材12の順序に配列し、これらの
間にそれぞれTi入りろう材15を介挿して高周
波加熱により接合して接合体を得た。得られた接
合体のせん断強度は18.6Kg/mm2であつた。 実施例 5 実施例3と同じSi3N4焼結体基材11とステン
レス鋼12Aの間に、第6図に示すように、Si3
N4基材11側から厚さ1mmのステンレス鋼板1
3、厚さ1.5mmのSi3N4板14、厚さ0.15mmのステ
ンレス鋼板12Bを中間層としてステンレス鋼基
材12に接するよう配列し、これらの間にろう材
15を介挿し、実施例2に従つてろう付けを行つ
た。ただし昇温速度は40℃/分、加熱最高温度を
850℃とした。得られた接合体のせん断強度は5.4
Kg/mm2であつた。 (発明の効果) (1) 本発明によると、セラミツクス基材と金属基
材との間に中間層を少なくとも2層又は2層以
上挿入して接合する場合に、中間層の材質を基
材と同一又は近似の組成のものを使用し、セラ
ミツクス中間層は金属基材と金属中間層或いは
金属中間層相互により挟まれると共に、金属中
間層はセラミツクス基材とセラミツクス中間層
或いはセラミツクス中間層相互によりその両面
を挟まれる配置とし、これらを直接接合する
か、ろう材を介挿して接合するようにしたの
で、中間層の両側面における熱膨脹率が殆んど
或いは全く変わらないので、接合後、セラミツ
クス中間層の亀裂、剥離が生じない工業上大な
る利益がある。 (2) セラミツクス中間層と金属中間層又はこれら
とセラミツクス基材或いは金属基材との間の接
合には加熱による拡散接合又は反応焼結法によ
る接合或いはろう材による接合などの何れでも
よく、接合法を自由に選択することができる利
点がある。何れの接合法によつても中間層の両
側面には基材と同一又は近似の材質のものによ
り挟まれるように配置して接合するので、接合
後、中間層の両側の材料の熱膨脹係数の差によ
り剥離、亀裂等の破損が生ずる惧がない利点が
ある。 (3) 中間層相互または中間層と基材との間の接合
にろう材を使用しても、接合したろう材の層は
基材又は中間層と比して極めて薄く、またろう
材自体に延性が有り変形能があるので、熱応力
を緩和することができ、ろう材を介挿して接合
したためにその接合界面で剥離、亀裂等の破損
が生じない。 (4) 本発明によると、中間層の選択が容易とな
り、従来法(特開昭60−231471号)の如く、接
合しようとするセラミツクス及び金属と異なる
2種以上の異なつた中間層を用いる場合の如
く、接合条件を各界面ごとに変える必要なく、
かつ、接合部の特性は損なわれなくてすむこと
が期待できる工業上大なる利点がある。 本発明の方法による接合体は高温ガス送風器、
タービンブレード、ターボチヤージヤー、粉砕機
内張り、熱交換器、核融合炉第1壁等に使用して
有用である。
[Table] Example 3 As shown in FIG. 4, Si 3 N was placed between the dense Si 3 N 4 sintered base material 11 and the stainless steel base material 12, each measuring 10×10 (mm in length and width) and 4 mm in thickness. The intermediate layer 13 made of a stainless steel plate with a thickness of 0.5 mm is placed on the side in contact with the intermediate layer 1 , and the Si 3 N 4 plate with a thickness of 1 mm is placed on the side in contact with the stainless steel.
4, and according to Example 2, a brazing material 15 was inserted and brazing was performed. However, in this case, the temperature increase rate up to 810°C was 30°C/min. The shear strength of the resulting joined body was 26.5 Kg/mm 2 . Example 4 The same bonding as in Example 3 was performed, but as the intermediate layer, as shown in FIG. 5, 0.5 mm thick Si 3 N 4 14A,
14B and stainless steel plates 13A and 13B are placed alternately, two each for a total of four, to form a Si 3 N 4 base material 11 - stainless steel intermediate layer 13A - Si 3 N 4 intermediate layer 14A - stainless steel intermediate layer 13B - Si 3 N 4 intermediate layer 14B-
Stainless steel base materials 12 were arranged in this order, a Ti-containing brazing filler metal 15 was inserted between them, and they were joined by high frequency heating to obtain a joined body. The shear strength of the resulting joined body was 18.6 Kg/mm 2 . Example 5 As shown in FIG. 6 , Si 3
N 4 Stainless steel plate 1 with a thickness of 1 mm from the base material 11 side
3. A Si 3 N 4 plate 14 with a thickness of 1.5 mm and a stainless steel plate 12B with a thickness of 0.15 mm are arranged as an intermediate layer so as to be in contact with the stainless steel base material 12, and a brazing material 15 is inserted between them. Brazing was performed according to 2. However, the heating rate is 40℃/min, and the maximum heating temperature is
The temperature was 850℃. The shear strength of the resulting joint was 5.4
It was Kg/ mm2 . (Effects of the Invention) (1) According to the present invention, when at least two or more intermediate layers are inserted and bonded between a ceramic base material and a metal base material, the material of the intermediate layer is the same as that of the base material. Those having the same or similar composition are used, and the ceramic intermediate layer is sandwiched between the metal base material and the metal intermediate layer or between the metal intermediate layers, and the metal intermediate layer is sandwiched between the ceramic base material and the ceramic intermediate layer or between the ceramic intermediate layers. Since both sides are sandwiched and these are joined directly or by interposing a brazing material, the coefficient of thermal expansion on both sides of the intermediate layer is little or no different, so after joining, the ceramic intermediate layer There is a great industrial advantage in that layer cracking and peeling do not occur. (2) Bonding between the ceramic intermediate layer and the metal intermediate layer or between them and the ceramic base material or the metal base material may be performed by diffusion bonding by heating, bonding by a reactive sintering method, bonding by a brazing material, etc. It has the advantage of being able to freely choose what is legal. Regardless of the bonding method, the intermediate layer is sandwiched between two sides of the same or similar material as the base material, so after bonding, the coefficient of thermal expansion of the material on both sides of the intermediate layer is There is an advantage that there is no risk of damage such as peeling or cracking due to differences. (3) Even if a brazing filler metal is used to bond the intermediate layers to each other or between the intermediate layer and the base material, the bonded brazing filler metal layer is extremely thin compared to the base material or the intermediate layer, and the brazing filler metal itself is Since it is ductile and deformable, thermal stress can be alleviated, and since it is bonded with a brazing filler metal inserted, damage such as peeling and cracking does not occur at the bonding interface. (4) According to the present invention, it is easy to select the intermediate layer, and when using two or more different intermediate layers different from the ceramics and metals to be bonded, as in the conventional method (Japanese Patent Application Laid-Open No. 60-231471). As shown in the figure, there is no need to change the bonding conditions for each interface.
In addition, there is a great industrial advantage in that the properties of the bonded portions do not need to be impaired. The joined body according to the method of the present invention is a hot gas blower,
It is useful for use in turbine blades, turbochargers, crusher linings, heat exchangers, the first wall of nuclear fusion reactors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図、第1B図、第1C図、第1D図、第
1E図、第1F図は本発明のセラミツクスと金属
との接合法の各種の中間層の接合配列を示す説明
図、第2図ないし第6図は本発明のセラミツクス
と金属との中間層の具体的配列及びろう材を介挿
した場合の実施例を示す図面である。 1……セラミツクス基材、2……金属基材、3
……金属中間層、4……セラミツクス中間層、1
1……SiC又はSi3N4のセラミツクス基材、12
……ステンレス鋼の金属基材、13A,13B…
…ステンレス鋼の金属中間層、14,14A,1
4B……Si3N4のセラミツクス中間層、15……
銀ろう箔。
1A, 1B, 1C, 1D, 1E, and 1F are explanatory diagrams showing bonding arrangements of various intermediate layers in the ceramic-metal bonding method of the present invention, and FIG. 6 to 6 are drawings showing a specific arrangement of the ceramic-metal intermediate layer of the present invention and an embodiment in which a brazing material is inserted. 1...Ceramics base material, 2...Metal base material, 3
...Metal intermediate layer, 4...Ceramics intermediate layer, 1
1... SiC or Si 3 N 4 ceramic base material, 12
...Stainless steel metal base material, 13A, 13B...
...Stainless steel metal intermediate layer, 14, 14A, 1
4B...Ceramics intermediate layer of Si 3 N 4 , 15...
Silver wax foil.

Claims (1)

【特許請求の範囲】 1 セラミツクス基材と、金属基材との間にこれ
らとそれぞれ同材質で熱膨脹係数が同一または近
似したセラミツクス中間層と、金属中間層とを介
挿したものよりなり、セラミツクス中間層は金属
中間層相互又は金属中間層と金属基材との間に挟
まれ、かつ金属中間層はセラミツクス中間層相互
又はセラミツクス中間層とセラミツクス基材との
間に挟まれるよう配置して接合されていることを
特徴とするセラミツクスと金属との接合体。 2 セラミツクス中間層と金属中間層とはそれぞ
れ複数の中間層よりなる特許請求の範囲第1項記
載のセラミツクスと金属との接合体。 3 セラミツクス基材又は金属基材はそれぞれセ
ラミツクス中間層又は金属中間層と接して接合さ
れている特許請求の範囲第1項又は第2項の何れ
かに記載のセラミツクスと金属との接合体。 4 セラミツクス基材と金属基材との間に中間層
を少なくとも2層又は2層以上挿入して接合する
方法において、少なくとも材質と熱膨脹係数とが
接合すべきセラミツクス基材と金属基材とにそれ
ぞれ同一又は近似したセラミツクスス中間層と金
属中間層とを、セラミツクス基材と金属基材との
間に介挿し、前記セラミツクス中間層と金属基材
とにより挟まれており、前記金属中間層の両接合
界面はセラミツクス中間層相互或いはセラミツク
ス中間層とセラミツクス基材との間に挟まれるよ
うに配置して接合することを特徴とするセラミツ
クスと金属との接合法。 5 セラミツクス中間層と金属中間層とはそれぞ
れ複数中間層よりなる特許請求の範囲第4項記載
のセラミツクスと金属との接合法。 6 セラミツクス基材又は金属基材はそれぞれセ
ラミツクス中間層又は金属中間層と接している特
許請求の範囲第4項又は第5項の何れかに記載の
セラミツクスと金属との接合法。 7 セラミツクス基材とセラミツクス中間層、金
属中間層、金属基材との各接合界面にろう材介し
ててろう付けする特許請求の範囲第4項ないし第
6項の何れかに記載のセラミツクスと金属との接
合法。
[Scope of Claims] 1. A ceramic intermediate layer and a metal intermediate layer made of the same material and having the same or similar coefficient of thermal expansion are interposed between a ceramic base material and a metal base material, respectively. The intermediate layer is sandwiched between the metal intermediate layers or between the metal intermediate layer and the metal base material, and the metal intermediate layer is arranged and bonded between the ceramic intermediate layers or between the ceramic intermediate layer and the ceramic base material. A bonded body of ceramics and metal characterized by: 2. The ceramic-metal bonded body according to claim 1, wherein the ceramic intermediate layer and the metal intermediate layer each consist of a plurality of intermediate layers. 3. The ceramic-metal bonded body according to claim 1 or 2, wherein the ceramic base material or the metal base material is bonded in contact with a ceramic intermediate layer or a metal intermediate layer, respectively. 4. In a method of bonding by inserting at least two or more intermediate layers between a ceramic base material and a metal base material, at least the material and the coefficient of thermal expansion are different for the ceramic base material and the metal base material to be bonded, respectively. A ceramic intermediate layer and a metal intermediate layer that are the same or similar are interposed between the ceramic base material and the metal base material, and are sandwiched between the ceramic intermediate layer and the metal base material, and both of the metal intermediate layer A method for bonding ceramics and metal, characterized in that the bonding interface is arranged and bonded so as to be sandwiched between ceramic intermediate layers or between a ceramic intermediate layer and a ceramic base material. 5. The method of joining ceramics and metal according to claim 4, wherein the ceramic intermediate layer and the metal intermediate layer each include a plurality of intermediate layers. 6. The method of joining ceramics and metal according to claim 4 or 5, wherein the ceramic base material or the metal base material is in contact with a ceramic intermediate layer or a metal intermediate layer, respectively. 7. Ceramics and metal according to any one of claims 4 to 6, which are brazed to each bonding interface between the ceramic base material, the ceramic intermediate layer, the metal intermediate layer, and the metal base material through a brazing material. joining method.
JP5791287A 1987-03-14 1987-03-14 Ceramic-metal joined body and joining method Granted JPS63225585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5791287A JPS63225585A (en) 1987-03-14 1987-03-14 Ceramic-metal joined body and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5791287A JPS63225585A (en) 1987-03-14 1987-03-14 Ceramic-metal joined body and joining method

Publications (2)

Publication Number Publication Date
JPS63225585A JPS63225585A (en) 1988-09-20
JPH0448754B2 true JPH0448754B2 (en) 1992-08-07

Family

ID=13069202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5791287A Granted JPS63225585A (en) 1987-03-14 1987-03-14 Ceramic-metal joined body and joining method

Country Status (1)

Country Link
JP (1) JPS63225585A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556307B2 (en) * 2000-08-11 2010-10-06 三菱マテリアル株式会社 Power module and method for manufacturing power module cushioning material
JP6790945B2 (en) * 2017-03-17 2020-11-25 三菱マテリアル株式会社 Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226464A (en) * 1984-04-20 1985-11-11 日本特殊陶業株式会社 Joint structure of ceramic and metal
JPS6191073A (en) * 1984-10-06 1986-05-09 日本特殊陶業株式会社 Structure for bonding ceramic axis and metal axis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226464A (en) * 1984-04-20 1985-11-11 日本特殊陶業株式会社 Joint structure of ceramic and metal
JPS6191073A (en) * 1984-10-06 1986-05-09 日本特殊陶業株式会社 Structure for bonding ceramic axis and metal axis

Also Published As

Publication number Publication date
JPS63225585A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPH0454825B2 (en)
JPH0448754B2 (en)
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JP5275224B2 (en) Method for forming large dimension bonds using reactive multilayer bonding processes
JPH0328391B2 (en)
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPH0776137B2 (en) High thermal shock resistance joining method of ceramics and metal and joining product
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPS61136969A (en) Method of bonding sialon and metal
JPS5935074A (en) Ceramic sheet
JPH0292873A (en) Bonded material of member having different coefficient of thermal expansion
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPH0240631B2 (en)
JPH0776138B2 (en) High thermal shock resistance joining method of ceramics and metal and joining product
JP2522124B2 (en) Method of joining ceramics to ceramics
JPH01208374A (en) Conjugate of sic ceramics member and metallic member
JPS62130843A (en) Metallic ceramics joining body
JPH0371393B2 (en)
JPH0469594B2 (en)
JPH0547514B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term