JP2797020B2 - Bonded body of silicon nitride and metal and method for producing the same - Google Patents

Bonded body of silicon nitride and metal and method for producing the same

Info

Publication number
JP2797020B2
JP2797020B2 JP2184442A JP18444290A JP2797020B2 JP 2797020 B2 JP2797020 B2 JP 2797020B2 JP 2184442 A JP2184442 A JP 2184442A JP 18444290 A JP18444290 A JP 18444290A JP 2797020 B2 JP2797020 B2 JP 2797020B2
Authority
JP
Japan
Prior art keywords
metal
silicon nitride
weight
copper
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2184442A
Other languages
Japanese (ja)
Other versions
JPH0474773A (en
Inventor
正美 木村
尚之 金原
幸雄 平岡
健治 一箭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2184442A priority Critical patent/JP2797020B2/en
Publication of JPH0474773A publication Critical patent/JPH0474773A/en
Application granted granted Critical
Publication of JP2797020B2 publication Critical patent/JP2797020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、窒化珪素部材と金属部材とが金属ペースト
材により接合された接合体およびその製造方法に関し、
より詳しくは、ばらつきの少ない強い接合強度を有し、
接合された部材に繰り返し熱衝撃が加えられた時にも強
い接合強度を維持する接合体およびその製造法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a joined body in which a silicon nitride member and a metal member are joined by a metal paste material, and a method for manufacturing the same.
More specifically, it has a strong bonding strength with little variation,
The present invention relates to a joined body that maintains a strong joining strength even when a thermal shock is repeatedly applied to joined members, and a method for manufacturing the joined body.

[従来の技術] 従来、セラミックス部材と金属部材とを接合する方法
としては、セラミックス部材の表面を何らかの方法で金
属化した後、通常の金属同士の接合と同じようにろう付
けする方法がある。金属化(メタライズ)の方法として
は、活性金属(Ti、Zr等)や高融点金属(Mo、W等)を
セラミックスに蒸着したり、その金属粉末のペーストを
塗布し焼成するやり方がある他、非酸化物系セラミック
スのメタライズ法としては、硫化銅法による方法が知ら
れている。
[Related Art] Conventionally, as a method for joining a ceramic member and a metal member, there is a method in which the surface of the ceramic member is metallized by some method and then brazed in the same manner as ordinary joining of metals. As a method of metallization (metallization), there is a method in which an active metal (Ti, Zr, etc.) or a high melting point metal (Mo, W, etc.) is deposited on ceramics, or a paste of the metal powder is applied and fired. As a metallization method for non-oxide ceramics, a method using a copper sulfide method is known.

また、1回の熱処理で直接接合する方法としては、固
相接合法、活性金属接合法等が知られている。この場
合、固相接合法としては、高温加熱を併用する高圧接合
法、摩擦圧接法、電圧印加法等が挙げられる。一方、活
性金属接合法としては、活性金属(Ti、Zr等)を含んだ
銀ろう、ニッケルろう等を介してセラミックスと金属を
直接接合する方法が知られている。この方法は特開昭49
−81252号公報「黒鉛のろう付法」に記載されているよ
うに黒鉛と金属との接合にも利用できるので広い範囲で
使用されている。
Further, as a method of directly joining by one heat treatment, a solid phase joining method, an active metal joining method, and the like are known. In this case, examples of the solid-phase joining method include a high-pressure joining method using high-temperature heating, a friction welding method, and a voltage application method. On the other hand, as an active metal joining method, there is known a method of directly joining a ceramic and a metal via a silver solder, a nickel solder, or the like containing an active metal (Ti, Zr, or the like). This method is disclosed in
As described in JP-A-81252, "Brazing method of graphite", it can be used for bonding graphite and metal, so that it is widely used.

さらに、物理的に接合を行う機械的接合法も知られ、
これらの手段としてボルト締め、嵌合、鋳ぐるみ等が行
われている。
Furthermore, a mechanical joining method for physically joining is also known.
As these means, bolting, fitting, casting, and the like are performed.

これらの接合法に用いられるセラミックスとしてアル
ミナ等の酸化物セラミックスの他、非酸化物系セラミッ
クスもより用いられている。特に代表的な非酸化物系セ
ラミックスとして窒化珪素部材が挙げられ、この部材の
有する耐熱性、耐摩耗性、耐腐食性等の優れた特性を生
かして、ターボチャージャーロータ、グロープラグ等の
自動車用部品や、熱風炉用耐摩耗送風機のライニング材
等の構造部材として使用されており、この場合、窒化珪
素部材は金属と接合されて、これらの用途に用いられて
いる。
Non-oxide ceramics as well as oxide ceramics such as alumina are used as the ceramics used in these joining methods. In particular, a typical non-oxide ceramic is a silicon nitride member, which is used for automobiles such as turbocharger rotors and glow plugs, taking advantage of the excellent properties of this member such as heat resistance, abrasion resistance and corrosion resistance. It is used as a component or a structural member such as a lining material of a wear-resistant blower for a hot stove. In this case, a silicon nitride member is bonded to a metal and used for these applications.

[発明が解決しようとする課題] しかしながら、従来法によって窒化珪素部材等のセラ
ミックスと金属とを接合した場合、両者の熱膨張係数に
違いによる接合時または接合体使用時に生じる熱応力
が、セラミックス部材の破壊、接合強度の劣化等の問題
を引き起こしていた。
[Problems to be Solved by the Invention] However, when a ceramic such as a silicon nitride member and a metal are joined by a conventional method, a thermal stress generated at the time of joining or at the time of using the joined body due to a difference in the thermal expansion coefficient between the two is caused by the ceramic member. This causes problems such as destruction of the steel and deterioration of the bonding strength.

これらを解決する手段として、特開昭62−216972号公
報「セラミックスと金属との高耐熱衝撃性接合方法およ
び接合製品」に開示されてるように活性金属ろうを用い
たメタライズ法において、セラミックスと金属との間
に、Cu、Alなどの延性金属を熱応力緩衝層として挿入す
る方法や、Mo、Wなどの熱膨張率の小さい金属を同じく
熱応力緩衝層として挿入するなどの方法が採られてい
た。
As a means for solving these problems, a metallization method using an active metal braze as disclosed in Japanese Patent Application Laid-Open No. In between, a method of inserting a ductile metal such as Cu and Al as a thermal stress buffer layer, and a method of inserting a metal having a small coefficient of thermal expansion such as Mo and W as a thermal stress buffer layer are also employed. Was.

しかし、これらの改良法を用いた場合においても、な
お以下のような欠点があること判明した。
However, it has been found that even when these improved methods are used, the following disadvantages still remain.

(1)セラミックス部材上にメタライズする方法におい
ては、多くの工程を要し、製造コストが上昇する他、活
性金属ろうを用いる直接接合法の場合も熱応力緩衝材と
してCu、Moなどを挿入すると部材間の位置の調整問題等
があって製造が難しくなり、その分コストも上昇する。
(1) In the method of metallizing on ceramic members, many steps are required and the manufacturing cost is increased. In addition, in the case of the direct joining method using active metal brazing, if Cu, Mo, or the like is inserted as a thermal stress buffer material. Manufacturing becomes difficult due to problems such as adjustment of the position between members, and the cost increases accordingly.

(2)活性金属ろうによる直接接合において、アルミナ
等酸化物系セラミックスで使用されるペーストろう材を
そのまま窒化珪素部材の非酸化物系セラミックスに適用
すると接合強度がばらつき、信頼性の高い部品が製造で
きない。
(2) In direct joining using active metal brazing, if the paste brazing material used for oxide ceramics such as alumina is directly applied to non-oxide ceramics of silicon nitride members, the bonding strength will vary, and highly reliable parts will be manufactured. Can not.

このため、活性金属ろうを使用し、窒化珪素セラミッ
クスと金属を直接接続する方法であって、熱応力緩衝層
としてCu等の金属箔を挿入しなくても、接合時の加熱や
接合体使用時の繰り返し熱衝撃によるセラミックスへの
クラックがなく、かつ接合強度の劣化もほとんどない接
合体とその接合方法や、あるいは窒化珪素部材に適した
活性金属ろう材を開発することがさらに望まれていた。
For this reason, this method uses an active metal braze to directly connect the silicon nitride ceramics to the metal. It has been further desired to develop a joined body which has no cracks in ceramics due to repeated thermal shock and has almost no deterioration in joining strength and a joining method thereof, or an active metal brazing material suitable for a silicon nitride member.

本発明の目的は、耐熱性、耐摩耗性など優れた特性を
有する窒化珪素部材と金属部材を直接接合する際、該窒
化珪素部材に適した活性金属ろう材を使用して、熱応力
緩衝層としてCu箔などを挿入しなくても、接合後の繰り
返し耐熱衝撃性に優れ、かつばらつきの少ない高い強度
を有する接合体およびその製造法を提供することにあ
る。
An object of the present invention is to provide a heat stress buffer layer using an active metal brazing material suitable for a silicon nitride member when the silicon nitride member having excellent properties such as heat resistance and wear resistance is directly joined to a metal member. It is an object of the present invention to provide a joined body having excellent repeated thermal shock resistance after joining and having high strength with little variation without inserting a Cu foil or the like.

[課題を解決するための手段] 本発明者らは、先に金属部材とセラミックス部材とを
接合する方法において前述のような問題点を解決する一
手段として、特願平2−59890号に開示した「セラミッ
クスと金属との接合体およびその製造法」の発明を完成
した。この発明は、活性金属ろう材として銀60〜90重量
%、銅3〜38重量%およびチタン1〜5重量%を合計10
0重量%となるように配合した金属粉末80〜90重量部と
ビヒクル10〜20重量部とを合計100重量部となるように
配合した組成からなる金属ペーストろう材を用い、金属
部材の縁部からはみ出したろう材の露出部材(フィレッ
ト)が少なくとも0.25mm以上のはみ出し幅で金属部材の
周囲を取り囲んでセラミックス部材上に存在する状態に
する点に特徴があり、このようにして得られた製品は接
合体の耐熱衝撃性が大幅に向上することを明らかにし
た。
[Means for Solving the Problems] The present inventors have disclosed in Japanese Patent Application No. 2-59890 as a means for solving the above-mentioned problems in a method of first joining a metal member and a ceramic member. The invention of the "joined body of ceramics and metal and a method of manufacturing the same" has been completed. According to the present invention, 60 to 90% by weight of silver, 3 to 38% by weight of copper, and 1 to 5% by weight of titanium
Using a metal paste brazing material having a composition in which 80 to 90 parts by weight of a metal powder and 10 to 20 parts by weight of a vehicle are blended so as to be 0% by weight, so that a total of 100 parts by weight is used. The feature is that the exposed member (fillet) of the protruding brazing material surrounds the metal member with a protrusion width of at least 0.25 mm or more and is present on the ceramic member, and the product obtained in this manner is It was clarified that the thermal shock resistance of the joined body was greatly improved.

本発明者らは、前記目的を達成すべく、さらに信頼性
の高い部品として使用できる窒化珪素と金属部材との接
合体を得るべき鋭意研究を進めた結果、前述の金属ペー
ストろう材のチタンの量を4〜10重量%にすることによ
り、さらにばらつきの少ない強度接合強度を有する窒化
珪素と金属の接合体を製造することが十分に可能である
ことを見い出し、本発明に到達した。
The present inventors have conducted intensive research to achieve a bonded body of silicon nitride and a metal member that can be used as a more reliable component in order to achieve the above object. It has been found that by setting the amount to 4 to 10% by weight, it is sufficiently possible to manufacture a bonded body of silicon nitride and metal having a stronger bonding strength with less variation, and reached the present invention.

すなわち、本発明は第1に、焼成された活性金属ペー
ストの層を介して相互に接続された窒化珪素部材と銅ま
たは銅合金の金属部材とからなる接合体であって、接合
面における窒化珪素部材の面積は金属部材の面積より少
なくとも一回り大きく、該接合面における金属部材外周
線の周囲かつ窒化珪素部材面上には、少なくとも0.25mm
以上の帯幅で金属部材の周囲を包囲するフィレットが前
記焼成ペーストによって形成され、熱衝撃後のせん断強
度が5kg/mm2以上であることを特徴とする窒化珪素と金
属の接合体;第2に、窒化珪素部材に銅または銅合金の
金属部材を、スクリーン印刷された実質的に銀60〜95重
量%、銅3〜38重量%およびチタン4〜10重量%を合計
100重量%になるように配合した金属粉末80〜90重量部
とビヒクル10〜20重量部とを合計100重量部となるよう
に配合した組成を持つ活性金属ペースト材を介して接触
配置し、該構成体を実質的に真空または非酸化性雰囲気
中で加熱した後冷却することからなり、前記配置に際
し、金属部材の縁部からはみ出した金属ペーストによっ
て形成されるフィレット部が0.25mm以上の帯幅で、製品
接合体の窒化珪素部材上金属部材周囲に露出して存在す
る仕上上がりとなるように金属ペースト材を配置し、熱
衝撃後のせん断強度が5kg/mm2以上の接合体とすること
特徴とする窒化珪素と金属の接合体の製造方法を提供す
るものである。
That is, the present invention firstly provides a joined body composed of a silicon nitride member and a copper or copper alloy metal member interconnected via a fired active metal paste layer, The area of the member is at least one size larger than the area of the metal member, and at least 0.25 mm
A fillet surrounding the periphery of the metal member with the above band width formed by the baked paste, and having a shear strength after thermal shock of 5 kg / mm 2 or more; In addition, a silicon member is made of a copper or copper alloy metal member, and screen-printed substantially 60-95% by weight of silver, 3-38% by weight of copper and 4-10% by weight of titanium are added.
80 to 90 parts by weight of a metal powder and 100 to 20 parts by weight of a vehicle, which are blended to be 100% by weight, are placed in contact with each other via an active metal paste material having a composition of 100 parts by weight in total. The method comprises substantially heating the structure in a vacuum or a non-oxidizing atmosphere, followed by cooling. The metal paste material is arranged so as to have a finish that is exposed around the metal member on the silicon nitride member of the product bonded body, and the bonded body has a shear strength after thermal shock of 5 kg / mm 2 or more. An object of the present invention is to provide a method for manufacturing a bonded body of silicon nitride and a metal, which is a feature.

また上記接合体およびその製造法において、活性金属
ペーストとしつ、実質的に銀60〜95重量%、銅3〜39重
量%およびチタン4〜10重量%を合計100重量%となる
ように配合した金属粉末80〜90重量部とビヒクル10〜20
重量部とを合計100重量部となるように配合した組成か
らなるペーストろう材を用いるのが好ましい。
In the above-mentioned joined body and the method for producing the same, an active metal paste was used, and substantially 60 to 95% by weight of silver, 3 to 39% by weight of copper and 4 to 10% by weight of titanium were blended so as to be 100% by weight in total. 80 to 90 parts by weight of metal powder and vehicle 10 to 20
It is preferable to use a paste brazing material having a composition of 100 parts by weight in total.

[作 用] 本発明法で製造される接合体の耐熱衝撃性が上記フィ
レット部の形成により向上する理由は未だ十分に解明さ
れていないが、形成されたフィレット部の存在により、
金属部材と窒化珪素部材との熱膨張差により発生する応
力が金属部材外周線直下に対応する窒化珪素部材の表面
に集中的に作用する代りに窒化珪素とフィレットとの接
する広い面において、これらの面を互いにスライドさせ
ようとする応力に変るため応力が分散され、金属部材縁
部(外周線)直下の位置における窒化珪素部材の垂直断
面に生じる水平方向の応力が小さくなるためであると考
えられる。
[Operation] The reason why the thermal shock resistance of the joined body manufactured by the method of the present invention is improved by the formation of the above-described fillet portion has not been sufficiently elucidated yet, but due to the presence of the formed fillet portion,
Instead of the stress generated due to the difference in thermal expansion between the metal member and the silicon nitride member acting intensively on the surface of the silicon nitride member corresponding directly below the outer peripheral line of the metal member, these stresses are formed on a wide surface in contact with the silicon nitride and the fillet. It is considered that the stress is dispersed because the stress changes into a stress that causes the surfaces to slide with each other, and the horizontal stress generated in the vertical cross section of the silicon nitride member at a position immediately below the metal member edge (peripheral line) is reduced. .

本発明法において使用される活性金属ペーストろう材
の好ましい例は前述の通りであるが、この場合、チタン
含有量によって窒化珪素部材と金属部材との接合に大き
な影響があることが本発明者らの実験によって確認され
た。すなわち、チタン量が金属粉重量に対して4重量%
未満のときは、接合時にろう材が凝固収縮したり、ある
いはろう材中の銀の銅への拡散スピードが大きいために
ろう材中にボイドが発生し、その数や大きさの違いによ
り接合強度がばらつくため好ましくなく、逆にチタン量
が10重量%を超えるものは、窒化珪素とろう材中のチタ
ンの反応が過剰に進み反応層が脆くなるため好ましくな
い。従って本発明の製造法における好ましいチタンの添
加量としては4〜10重量%とした。
Preferred examples of the active metal paste brazing material used in the method of the present invention are as described above. In this case, the present inventors have found that the titanium content has a great effect on the joining between the silicon nitride member and the metal member. Confirmed by experiments. That is, the amount of titanium is 4% by weight based on the weight of the metal powder.
If it is less than 3, the brazing material will solidify and shrink at the time of joining, or voids will occur in the brazing material due to the high diffusion speed of silver in the brazing material to copper. On the other hand, when the amount of titanium exceeds 10% by weight, the reaction between silicon nitride and titanium in the brazing material excessively proceeds, and the reaction layer becomes unfavorable. Therefore, the preferable addition amount of titanium in the production method of the present invention is 4 to 10% by weight.

本発明法に従って、フィレット部を形成するためには
次の2点に注意すべきである。
In order to form a fillet according to the method of the present invention, two points should be noted.

先ず第1に、接合工程を真空または非酸化性雰囲気で
行う必要がある。理由はフィレット部を形成する都合
上、金属ペースト材が金属部材の周囲にはみ出すように
塗布して使用するため、加熱時にペースト材、特に窒化
珪素との反応に寄与するチタンの酸化があってはならな
いからである。もしチタンが酸化すればペーストは窒化
珪素と反応せず、フィレット部を役割を果たさない。特
にフィレット部となるペースト材は加熱前から雰囲気に
接するため窒化珪素部材と金属部材に挟まれているペー
スト材よりも酸化されやすいので雰囲気の選定は重要で
ある。
First, the bonding process must be performed in a vacuum or non-oxidizing atmosphere. The reason is that the metal paste material is applied so as to protrude around the metal member for the purpose of forming the fillet portion, so that there is oxidation of titanium that contributes to the reaction with the paste material, especially silicon nitride, when heated. Because it does not become. If the titanium oxidizes, the paste does not react with the silicon nitride and does not serve the fillet. In particular, the selection of the atmosphere is important because the paste material to be the fillet portion is in contact with the atmosphere before heating and is more easily oxidized than the paste material sandwiched between the silicon nitride member and the metal member.

第2に、冷却中も真空あるいは非酸化性雰囲気中に置
かれている必要がある。これは冷却時においても高温で
あればチタンが酸化してしまい良好な接合界面が得られ
ないからである。一方冷却速度は接合体の大きさ等によ
って適切に選ぶ必要はあるが特に厳密に規定する必要は
ないことが確認されている。
Second, it must be placed in a vacuum or non-oxidizing atmosphere during cooling. This is because even at the time of cooling, if the temperature is high, titanium is oxidized and a good bonding interface cannot be obtained. On the other hand, it has been confirmed that the cooling rate needs to be appropriately selected depending on the size of the joined body, but does not need to be strictly specified.

次に、本発明を実施例に基づき詳細に説明する。 Next, the present invention will be described in detail based on examples.

[実施例] 第1図は本発明の方法によって製造された接合体の構
成を示す図(同図(a)は平面図、同図(b)は断面
図)であって、これらを参照して説明する。
Example FIG. 1 is a view showing the structure of a joined body manufactured by the method of the present invention (FIG. 1 (a) is a plan view, and FIG. 1 (b) is a cross-sectional view). Will be explained.

金属部材として直径10mm、厚さ1mmの銅円板を用意し
た。活性金属ペースト材として、チタン2、4、6、8
重量%の4通りとし、残部の銀と胴がそれぞれ92〜86重
量%、6重量%からなる組成の4種類の金属混合粉90重
量部とビヒクル10重量部とを混合し、自動乳鉢と3本ロ
ールミルを用いて混練しスクリーン印刷が可能なペース
ト状の混合物を作製した。窒化珪素部材1として14mm×
16mm×5mm(厚さ)の直方体の窒化珪素板20個用意し
た。
A copper disk having a diameter of 10 mm and a thickness of 1 mm was prepared as a metal member. Titanium 2, 4, 6, 8 as an active metal paste material
90 parts by weight of four kinds of metal mixed powders having a composition of 92 to 86% by weight and 6% by weight, respectively, and 10 parts by weight of a vehicle. Using this roll mill, the mixture was kneaded to prepare a paste-like mixture that could be screen printed. 14mm × as silicon nitride member 1
Twenty rectangular silicon nitride plates of 16 mm × 5 mm (thickness) were prepared.

次いで窒化珪素板の片面に、スクリーン印刷で直径1
2.0mmの円形に上記4種のペーストろう材を各5個ずつ
印刷した。次いで、その上に円形銅板2の中心が印刷さ
れたペーストろう材3の中心と一致するように重ねて前
記フィレット部4が1.0mmになるように調整して配置し
た後、熱処理炉で接合した。接合に用いた炉は、油拡散
ポンプを持った抵抗加熱式真空加熱処理炉で、加熱、温
度保持、冷却は1×10-4Torr以下の真空中で行った。
Then, one side of the silicon nitride plate was screen-printed to a diameter of 1
Five each of the above four kinds of paste brazing materials were printed in a 2.0 mm circle. Then, the center of the circular copper plate 2 was overlapped thereon so as to coincide with the center of the paste brazing material 3 printed thereon, and the fillet portion 4 was adjusted and arranged so as to be 1.0 mm, and then joined in a heat treatment furnace. . The furnace used for the joining was a resistance heating type vacuum heating furnace having an oil diffusion pump, and heating, temperature holding and cooling were performed in a vacuum of 1 × 10 −4 Torr or less.

炉と温度条件は10℃/分で600℃まで昇温させ、30分
間この温度に保持した後、5℃/分で970℃まで昇温さ
せて40分間保持し、次いで5℃/分で室温まで冷却して
第1図(a)、(b)に示す接合体を取り出した。
Furnace and temperature conditions were to raise the temperature to 600 ° C at 10 ° C / minute, hold at this temperature for 30 minutes, then raise the temperature to 970 ° C at 5 ° C / minute and hold for 40 minutes, then room temperature at 5 ° C / minute. After cooling, the joined body shown in FIGS. 1A and 1B was taken out.

さらに該接合体の銅板面上に、通常の銀ろう(BAg−
8)を介して鋼板を重ね、85℃(炉の設定温度)で接合
した。
Further, a normal silver solder (BAg-
8) The steel sheets were overlapped and joined at 85 ° C (set temperature of the furnace).

先ず熱衝撃試験にかける前の接合体の剪断強度を測定
し、次に、接合体を250℃に予熱されたオーブン(大気
中)中に15分間保持後、オーブンから取り出して室温に
戻すまでを1サイクルとして30サイクルの熱衝撃処理を
行った後、剪断強度を測定し熱衝撃を加える前と比較し
て繰り返し耐熱衝撃性を評価した。
First, measure the shear strength of the joined body before subjecting it to the thermal shock test. Then, hold the joined body in an oven (atmosphere) preheated to 250 ° C for 15 minutes. After 30 cycles of thermal shock treatment as one cycle, the shear strength was measured, and the thermal shock resistance was repeatedly evaluated as compared to before applying thermal shock.

熱衝撃試験にかける前の剪断強度とチタン量の関係を
第2図にまとめたところ、チタン量が2重量%のペース
トろうで接合したものの剪断強度についての最低値が約
2kg/mm2であり、逆に最高値は約14kg/mm2であった。そ
してチタンの量が4、6、8重量%と増えるに従い、剪
断強度の最低値も約5kg/mm2、7kg/mm2、10kg/mm2と大き
くなったが最高値はいずれも約14kg/mm2であった。この
結果、チタン量が2重量%のときの剪断強度のばらつき
は約12kg/mm2もあり、試料によって接合状態がかなり違
い、信頼性の要求される部品には不適であることが判明
した。これに対し、チタン量が4重量%以上の接合体
は、5kg/mm2以上の剪断強度の接合体が安定して得ら
れ、実用上信頼のおける部分が製造できることが判明し
た。
FIG. 2 shows the relationship between the shear strength and the amount of titanium before being subjected to the thermal shock test.
The value was 2 kg / mm 2 , and the highest value was about 14 kg / mm 2 . As the amount of titanium increased to 4, 6, and 8% by weight, the minimum value of the shear strength also increased to about 5 kg / mm 2 , 7 kg / mm 2 , and 10 kg / mm 2 , but the maximum value was about 14 kg / mm 2. It was mm 2. As a result, when the titanium content was 2% by weight, the variation in the shear strength was about 12 kg / mm 2, and it was found that the joining state was considerably different depending on the sample, and it was not suitable for a part requiring reliability. On the other hand, it was found that a bonded body having a titanium content of 4% by weight or more can stably obtain a bonded body having a shear strength of 5 kg / mm 2 or more, and can produce a practically reliable portion.

同様に熱衝撃試験後の剪断強度を第3図に示すが、こ
の図より、強度の低下は確認できず、耐熱衝撃性の高い
ことが確認され、実用上問題がないことがわかった。
Similarly, the shear strength after the thermal shock test is shown in FIG. 3. From this figure, a decrease in the strength was not confirmed, and it was confirmed that the thermal shock resistance was high, indicating that there was no practical problem.

また、本実施例のように銀−銅の共晶から大幅にずれ
た高融点組成の活性金属ペーストろう材を用いることに
より、その接合体と他の金属部材とを通常の銀ろう(例
えばBAg−8)で後付けできることもわかった。
Further, by using an active metal paste brazing material having a high melting point composition which is largely deviated from the eutectic of silver-copper as in the present embodiment, the joined body and other metal members can be connected to a normal silver brazing material (for example, BAg). It was also found that -8) can be added later.

[発明の効果] 上述のように、本発明の方法によれば、非酸化物系セ
ラミックスとして窒化珪素部材を用いて金属部材との接
合体を得る際に、チタン量を4〜10重量%含有する活性
金属ペーストろう材を使用し、金属部材の縁部からはみ
出したペースト材のフィレット部を所定幅以上設けるこ
とにより、接合後の繰り返し耐熱衝撃性に優れかつばら
つきの少ない高い強度を有する接合体の製造が可能とな
るので、電子部品その他の部品として信頼性の高い接合
体を提供することができる。
[Effects of the Invention] As described above, according to the method of the present invention, when obtaining a joined body with a metal member using a silicon nitride member as the non-oxide ceramic, the titanium content is 4 to 10% by weight. By using an active metal paste brazing material and providing a fillet portion of the paste material protruding from the edge of the metal member to a predetermined width or more, a joined body having excellent repeated thermal shock resistance after joining and high strength with little variation Therefore, it is possible to provide a joined body having high reliability as an electronic component or other components.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例によって製造された接合体の構成を示
す図であって、同図(a)は平面図、(b)は断面図で
ある。 第2図は、実施例によって製造された接合体の熱衝撃試
験前の剪断強度とチタン量との関係を示すグラフであ
る。 第3図は、実施例によって製造された接合体の熱衝撃試
験後の剪断強度とチタン量との関係を示すグラフであ
る。 符号の説明 1……窒化珪素部材 2……銅板 3……活性金属ペーストろう材 4……フィレット部
FIG. 1 is a view showing the structure of a joined body manufactured according to an embodiment, wherein FIG. 1 (a) is a plan view and FIG. 1 (b) is a sectional view. FIG. 2 is a graph showing the relationship between the shear strength before the thermal shock test and the amount of titanium of the joined body manufactured according to the example. FIG. 3 is a graph showing the relationship between the shear strength after the thermal shock test and the amount of titanium of the joined body manufactured according to the example. DESCRIPTION OF SYMBOLS 1 silicon nitride member 2 copper plate 3 active metal paste brazing material 4 fillet portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一箭 健治 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 昭63−251127(JP,A) 特開 昭60−200868(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/02────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kenji Ichiya 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-63-251127 (JP, A) JP-A Sho 60-200868 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 37/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼成された活性金属ペーストの層を介して
相互に接合された窒化珪素部材と銅または銅合金の金属
部材とからなる接合体であって、接合面における窒化珪
素部材の面積は金属部材の面積より少なくとも一回り大
きく、該接合面における金属部材外周線の周囲かつ窒化
珪素部材面上には、少なくとも0.25mm以上の帯幅で金属
部材の周囲を包囲するフィレットが前記焼成ペーストに
よって形成され、熱衝撃後のせん断強度が5kg/mm2以上
であることを特徴とする窒化珪素と金属の接合体。
1. A joined body comprising a silicon nitride member and a copper or copper alloy metal member joined to each other via a fired active metal paste layer, wherein the area of the silicon nitride member at the joint surface is At least one size larger than the area of the metal member, a fillet surrounding the metal member with a band width of at least 0.25 mm or more around the metal member outer peripheral line and the silicon nitride member surface at the bonding surface is formed by the firing paste. A bonded body of silicon nitride and a metal, which is formed and has a shear strength after thermal shock of 5 kg / mm 2 or more.
【請求項2】窒化珪素部材に銅または銅合金の金属部材
を、スクリーン印刷された実質的に銀60〜95重量%、銅
3〜38重量%およびチタン4〜10重量%を合計100重量
%になるように配合した金属粉末80〜90重量部とビヒク
ル10〜20重量部とを合計100重量部となるように配合し
た組成を持つ活性金属ペースト材を介して接触配置し、
該構成体を実質的に真空または非酸化性雰囲気中で加熱
した後冷却することからなり、前記配置に際し、金属部
材の縁部からはみ出した金属ペーストによって形成され
るフィレット部が0.25mm以上の帯幅で、製品接合体の窒
化珪素部材上金属部材周囲に露出して存在する仕上がり
となるように金属ペースト材を配置し、熱衝撃後のせん
断強度が5kg/mm2以上の接合体とすることを特徴とする
窒化珪素と金属の接合体の製造方法。
2. A silicon nitride member and a metal member of copper or a copper alloy, substantially screen-printed silver of 60 to 95% by weight, copper of 3 to 38% by weight, and titanium of 4 to 10% by weight in total of 100% by weight. 80 to 90 parts by weight of a metal powder and 10 to 20 parts by weight of a vehicle are arranged in contact with each other via an active metal paste material having a composition of 100 parts by weight.
Heating the component in a substantially vacuum or non-oxidizing atmosphere followed by cooling, and in the arrangement, the fillet formed by the metal paste protruding from the edge of the metal member has a band of 0.25 mm or more. wide, by placing a metal paste material so that the finished present exposed silicon nitride around the metal member member of product assembly, shear strength after thermal shock to 5 kg / mm 2 or more conjugates A method for producing a bonded body of silicon nitride and a metal, characterized by comprising:
JP2184442A 1990-07-12 1990-07-12 Bonded body of silicon nitride and metal and method for producing the same Expired - Lifetime JP2797020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2184442A JP2797020B2 (en) 1990-07-12 1990-07-12 Bonded body of silicon nitride and metal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2184442A JP2797020B2 (en) 1990-07-12 1990-07-12 Bonded body of silicon nitride and metal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0474773A JPH0474773A (en) 1992-03-10
JP2797020B2 true JP2797020B2 (en) 1998-09-17

Family

ID=16153222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2184442A Expired - Lifetime JP2797020B2 (en) 1990-07-12 1990-07-12 Bonded body of silicon nitride and metal and method for producing the same

Country Status (1)

Country Link
JP (1) JP2797020B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712778B2 (en) * 1990-07-16 1998-02-16 昭和電工株式会社 Manufacturing method of metal / ceramic composite substrate
JP3692623B2 (en) * 1996-05-20 2005-09-07 株式会社デンソー Ceramic laminate and manufacturing method thereof
KR100493298B1 (en) * 2002-11-20 2005-06-07 엘지전자 주식회사 Magnetron, and bonding method for bonding parts of magnetron
JP5757453B2 (en) 2010-10-12 2015-07-29 Nok株式会社 Oil seal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200868A (en) * 1984-03-22 1985-10-11 東京工業大学長 Method of bonding silicon carbide or silicon nitride sintered body
JPS63251127A (en) * 1987-04-06 1988-10-18 Ngk Insulators Ltd Combined construction of members with different thermal expansion and combining method thereof

Also Published As

Publication number Publication date
JPH0474773A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US4764435A (en) Metalizing or bonding composition for non-oxide ceramics
JPH0247428B2 (en)
JPH0367985B2 (en)
US4598025A (en) Ductile composite interlayer for joining by brazing
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JP3095490B2 (en) Ceramic-metal joint
JP2797011B2 (en) Joint of ceramics and metal and method for producing the same
JPS59137373A (en) Ceramic bonding method
JPS62289396A (en) Joining method for ceramics
JPS6077177A (en) Ceramic bonded body
JPH02175674A (en) Joined body of ceramics and metallic body and method for joining thereof
JPH05163078A (en) Joint form made up of ceramic and metal
JPS5891088A (en) Method of bonding ceramic and metal
JPH024553B2 (en)
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JP2771810B2 (en) Method of joining ceramic and metal body and joined body
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JPH0362674B2 (en)
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0240631B2 (en)
JP2001048670A (en) Ceramics-metal joined body
JPS62171979A (en) Nonoxide type ceramics metallization and joining method
JPS58135183A (en) Metallized ceramic resistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12