JPH05163078A - Joint form made up of ceramic and metal - Google Patents

Joint form made up of ceramic and metal

Info

Publication number
JPH05163078A
JPH05163078A JP33531191A JP33531191A JPH05163078A JP H05163078 A JPH05163078 A JP H05163078A JP 33531191 A JP33531191 A JP 33531191A JP 33531191 A JP33531191 A JP 33531191A JP H05163078 A JPH05163078 A JP H05163078A
Authority
JP
Japan
Prior art keywords
metal
ceramic
powder
brazing
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33531191A
Other languages
Japanese (ja)
Inventor
Akira Okamoto
晃 岡本
Tsuneo Enokido
恒夫 榎戸
Naoki Hirai
直樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33531191A priority Critical patent/JPH05163078A/en
Publication of JPH05163078A publication Critical patent/JPH05163078A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To easily improve the impact resistance of the subject joint form by incorporating a specified amount of ceramic fine powder in a brazing filler metal at the interface between a ceramic and metal constituting the joint form. CONSTITUTION:Firstly, active metal (e.g. Ag-Cu-Ti)-contg. metallic powder is incorporated with ceramic (e.g. alumina) fine powder so that the ceramic fine powder account for 5-20vol.% of the brazing filler metal at the interface of the final joint form, followed by kneading together with an organic binder into a pasty product (A). The component A is then applied on the surface of a ceramic (e.g. silicon nitride ceramic) (B) followed by heating under a vacuum to produce a metallized product (C). Thence, the component C and a metal (D) is mutually brazed with a Ag-Cu-based brazing filler metal powder through e.g. vacuum brazing technique, thus obtaining the objective joint form made up of the silicon nitride ceramic 1, the brazing filler metal 2, the alumina fine powder 3 and the metal 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックスと金属の活
性金属ろうによる接合体、特に耐衝撃性に優れた接合体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of ceramics and a metal with an active metal braze, and more particularly to a joined body excellent in impact resistance.

【0002】[0002]

【従来の技術】セラミックスは耐摩耗性や耐熱性等に優
れた特性を有し、積極的に利用が進められている。しか
しながら優れた特性を持つ反面、靭性に乏しいという欠
点を有しているため、構造材として使用する場合には、
高い靭性を持つ金属に接合して使用することが多い。こ
のセラミックスと金属の接合方法としては多くの方法が
提案されているが、実用的にはろう付け法、つまり活性
金属ろうによる直接ろう付け法あるいは活性金属メタラ
イズ後ろう付けする方法が一般的である。
2. Description of the Related Art Ceramics have excellent properties such as wear resistance and heat resistance and are actively used. However, while it has excellent properties, it has the drawback of poor toughness, so when used as a structural material,
It is often used by joining to a metal having high toughness. Many methods have been proposed as a method for joining the ceramics and the metal, but in practice, a brazing method, that is, a direct brazing method using an active metal braze or a method of brazing after active metal metallization is generally used. ..

【0003】一般にセラミックスと金属は熱膨張率が大
きく異なるため、セラミックスと金属をろう付けする場
合、ろう材が凝固し接合が完了した後の冷却過程で、両
者の熱膨張率の違いに起因する熱応力が発生し、セラミ
ックスを破壊したり、破壊に至らないまでも接合界面近
傍のセラミックスに大きな熱歪を残すことになり、接合
強度を低下させる。このようにセラミックスと金属のろ
う付けにおける最大の問題は、セラミックスと金属の接
合界面に発生する熱応力問題である。セラミックスのな
かでも窒化硅素質セラミックスは低膨張率であるため、
特にこの問題は顕著である。
Generally, ceramics and metals have large differences in thermal expansion coefficient. Therefore, when brazing ceramics and metals, the difference in thermal expansion coefficient between the ceramics and metal is caused in the cooling process after the brazing material is solidified and the joining is completed. Thermal stress is generated to destroy the ceramics, or large thermal strain is left in the ceramics in the vicinity of the bonding interface even if the ceramics are not destroyed, thereby lowering the bonding strength. Thus, the biggest problem in brazing ceramics and metals is the thermal stress problem that occurs at the joint interface between ceramics and metal. Among the ceramics, silicon nitride ceramics have a low expansion coefficient,
This problem is particularly noticeable.

【0004】セラミックスと金属のろう付け接合面に発
生する応力の緩和方法としては、セラミックスと金属の
間に、主として金属からなる一層以上の中間材を介在さ
せる方法が最も一般的である。しかしこの熱応力緩和方
法では、熱応力緩和用中間材ならびにろう材をセラミッ
クスと金属の間に正確に配置する必要があり、もしずれ
て接合されるとセラミックス接合面に局所的に応力が集
中し、セラミックスが破壊する場合があった。さらに中
間材を何層も積層することは製造コストの面からも問題
であった。
The most general method for relaxing the stress generated in the brazing joint surface of ceramics and metal is to interpose one or more intermediate materials mainly made of metal between ceramics and metal. However, in this thermal stress relaxation method, the intermediate material for thermal stress relaxation and the brazing filler metal must be accurately placed between the ceramic and the metal. However, there were cases where ceramics were destroyed. Further, stacking multiple layers of the intermediate material has been a problem in terms of manufacturing cost.

【0005】これらの問題点を解決するため、中間材は
使用せずにろう材の熱膨張率を制御することにより熱応
力を緩和させる方法が提案されている(特開平3−20
5389号公報)。この方法は活性金属ろう材に、被接
合セラミックス微粉末あるいは被接合セラミックスと熱
膨張率が類似するセラミックス微粉末を混合することに
より、ろう材の熱膨張率をセラミックスの熱膨張率に近
づける方法であり、ろう材層は薄い中間層と見なせるの
で、思想的には中間材を介在させる方法の範囲にはい
る。
In order to solve these problems, a method has been proposed in which the thermal stress is relaxed by controlling the coefficient of thermal expansion of the brazing material without using an intermediate material (JP-A-3-20).
5389 publication). This method is a method of bringing the thermal expansion coefficient of the brazing material close to that of the ceramic by mixing the active metal brazing material with the fine ceramic powder to be joined or the fine ceramic powder having a thermal expansion coefficient similar to that of the ceramic to be joined. However, since the brazing material layer can be regarded as a thin intermediate layer, it is conceptually within the scope of the method of interposing the intermediate material.

【0006】[0006]

【発明が解決しようとする課題】前項後者の方法は簡便
で効率的な熱応力緩和方法であるが、改善対象の接合強
度が静的な剪断強度であり、耐衝撃強度のような動的な
接合強度に対する効果は不明である。さらに熱応力緩和
の思想は、セラミックスと金属の間に中間層を介在させ
る方法と同じく、残留熱応力を解放するのではなく、減
少させるという思想である。したがって減少したとはい
え依然として熱応力は存在するので、応力の集中しやす
い衝撃力に対しては脆いという欠陥がある。
The latter method of the preceding paragraph is a simple and efficient method for relaxing thermal stress, but the joint strength to be improved is static shear strength and dynamic strength such as impact resistance strength. The effect on bond strength is unknown. Further, the idea of thermal stress relaxation is the idea of reducing residual thermal stress instead of releasing it, as in the method of interposing an intermediate layer between ceramics and metal. Therefore, although reduced, thermal stress still exists, so that there is a defect that it is brittle with respect to an impact force in which stress is easily concentrated.

【0007】本発明は耐衝撃力は残留熱応力に逆比例す
る。即ち残留熱応力を小さくすればするほど耐衝撃力は
向上するという考えのもとに、耐衝撃性の優れたセラミ
ックスと金属の接合体を提供することを課題とするもの
である。
In the present invention, impact resistance is inversely proportional to residual thermal stress. That is, it is an object of the present invention to provide a joined body of ceramic and metal having excellent impact resistance under the idea that the smaller the residual thermal stress, the higher the impact resistance.

【0008】[0008]

【課題を解決するための手段】残留熱応力を極力小さく
し耐衝撃性に優れたセラミックスと金属の接合体を提供
するため本発明は、セラミックスを活性金属を含む銀−
銅系金属粉末ろうによってメタライズしたのち、金属に
銀−銅系金属ろうによってろう付けした接合体、または
セラミックスと金属を活性金属を含む銀−銅系金属粉末
ろうによって直接ろう付けした接合体において、該接合
体界面の金属ろうの中にセラミックス微粉末が体積比率
で5〜20%含まれていることを構成要件とする。
SUMMARY OF THE INVENTION In order to provide a ceramic-metal joined body which has a minimal residual thermal stress and is excellent in impact resistance, the present invention provides a ceramic containing silver containing active metal.
After metallizing with a copper-based metal powder braze, the metal is brazed to the metal with a silver-copper-based metal braze, or a joined body in which ceramics and a metal are directly brazed with a silver-copper-based metal powder braze containing an active metal, The constituent requirement is that the fine metal powder is contained in the brazing metal at the interface of the bonded body in a volume ratio of 5 to 20%.

【0009】以下、本発明を詳細に説明する。図1は本
発明の基本構成を示す断面構造図であり、1はセラミッ
クス、2は金属ろう層、3は金属ろう層に含まれるセラ
ミックス微粉末、4は金属である。図1に示す本発明接
合体の達成方法にはメタライズろう付け法と直接ろう付
け法がある。
The present invention will be described in detail below. FIG. 1 is a sectional structural view showing the basic structure of the present invention, in which 1 is ceramics, 2 is a metal brazing layer, 3 is ceramic fine powder contained in the metal brazing layer, and 4 is metal. The method for achieving the joined body of the present invention shown in FIG. 1 includes a metallizing brazing method and a direct brazing method.

【0010】メタライズろう付け法では、活性金属を含
む銀−銅系金属粉末ろう(混合金属粉末ろうまたは合金
粉末ろう)にセラミックス微粉末を混合し、これによっ
てセラミックスをメタライズした後、金属に銀−銅系金
属粉末ろうによってろう付けする。メタライズ方法とし
てはセラミックスの表面にAg−Cu−Ti系金属ろ
う、例えばAg:71wt%、Cu:27wt%、Ti:2
wt%の組成の金属粉末に、セラミックス微粉末を配合
し、有機バインダーで混練してペースト状としたもの
(以下単にペーストと言う)をセラミックス表面に塗布
した後、780〜890℃の温度域、10-4Torr以上の
真空に制御された雰囲気中で所定時間、加熱処理をして
メタライズする方法をとる。
In the metallizing brazing method, fine ceramic powder is mixed with silver-copper-based metal powder solder (mixed metal powder solder or alloy powder solder) containing an active metal, and the ceramic is metallized by this, and then silver is added to the metal. Brazing is performed using a copper-based metal powder braze. As a metallizing method, an Ag-Cu-Ti-based metal brazing material such as Ag: 71 wt%, Cu: 27 wt%, Ti: 2 on the surface of the ceramic is used.
A fine powder of ceramics is mixed with a metal powder having a composition of wt%, and the mixture is kneaded with an organic binder to form a paste (hereinafter simply referred to as a paste), which is applied to the surface of the ceramic, and then a temperature range of 780 to 890 ° C. The metallization is performed by heating for a predetermined time in an atmosphere controlled to a vacuum of 10 −4 Torr or more.

【0011】次に銀−銅系金属粉末ろうによる金属への
ろう付け方法は、板ろう材あるいは粉末ろう材を用い
て、真空ろう付け、雰囲気ろう付け、大気中高周波ろう
付けなどの種々のろう付け方法をとることができる。こ
の最終ろう付け時には上記メタライズ層は再溶解して最
終ろう材と一体化し、図1の金属ろう層2を形成する。
Next, the method of brazing to a metal with a silver-copper-based metal powder brazing material uses various brazing materials such as vacuum brazing, atmospheric brazing, and high-frequency brazing in the air, using a plate brazing material or a powder brazing material. You can choose the attachment method. During this final brazing, the metallized layer is redissolved and integrated with the final brazing material to form the metal brazing layer 2 of FIG.

【0012】ここで上記メタライズ時のペースト中のセ
ラミックス微粉末の配合量は、図1の金属ろう層2にお
いて体積比率が5〜20%と成るように、即ち最終のろ
う付けによる希釈分を見込んで設定しなければならな
い。
Here, the compounding amount of the ceramic fine powder in the paste at the time of the metallization is such that the volume ratio in the metal brazing layer 2 in FIG. 1 becomes 5 to 20%, that is, the dilution amount by the final brazing is taken into consideration. Must be set in.

【0013】直接ろう付け法では、上記ペーストをセラ
ミックスと金属の間に挿入し、上記メタライズと同じ加
熱条件でろう付けする。このペースト中のセラミックス
微粉末の配合量は有機バインダーを除いた固形物、即ち
金属粉末とセラミックス微粉末の合計に対する体積比率
で5〜20%とする。
In the direct brazing method, the above-mentioned paste is inserted between ceramics and metal, and brazing is performed under the same heating conditions as for the metallization. The compounding amount of the ceramic fine powder in this paste is 5 to 20% by volume ratio with respect to the solid substance excluding the organic binder, that is, the total of the metal powder and the ceramic fine powder.

【0014】耐衝撃性に優れたセラミックスと金属の接
合体を提供する本発明の思想は、耐衝撃力は残留熱応力
に逆比例する。即ち、残留熱応力を小さくすればするほ
ど耐衝撃力は向上するという認識のもとに、接合部に微
小な欠陥を導入して残留熱応力を解放することにより接
合体の耐衝撃性を向上させるというものである。金属ろ
う層へのセラミックス微粉末の配合は微小欠陥導入の効
果的な手段である。
The idea of the present invention to provide a ceramic-metal joined body having excellent impact resistance is that the impact resistance is inversely proportional to the residual thermal stress. That is, with the recognition that the smaller the residual thermal stress is, the higher the impact resistance is, and the impact resistance of the joined body is improved by releasing the residual thermal stress by introducing minute defects in the joint. It is to let. Mixing fine ceramic powder into the metal brazing layer is an effective means for introducing fine defects.

【0015】本発明の思想を実験で確認した結果を図2
で説明する。図2は上記メタライズろう付け法によって
作成した窒化硅素セラミックスと鋼との接合体の強度に
対する金属ろう層中のアルミナ微粉末体積比率の影響を
示す。接合に使用したセラミックスと鋼は板状で、セラ
ミックスは1辺20mm、厚さ4mm、鋼は25×30mm、
厚さ12mmであった。
FIG. 2 shows the result of experimental confirmation of the idea of the present invention.
Described in. FIG. 2 shows the influence of the alumina fine powder volume ratio in the metal brazing layer on the strength of the joined body of silicon nitride ceramics and steel produced by the metallizing brazing method. Ceramics and steel used for joining are plate-shaped, ceramics 20 mm on a side, thickness 4 mm, steel 25 x 30 mm,
The thickness was 12 mm.

【0016】強度は本発明の目的である耐衝撃強度と比
較のための剪断強度を測定した。耐衝撃強度の測定は、
接合体のセラミックスの上面に、セラミックスとの接触
面が刃状となった治具を置き、この治具の上に4kgの荷
重を高さを変えて落下させて行った。耐衝撃強度はセラ
ミックスが破壊に至ったときの高さによって示す。
The strength was determined by measuring the impact strength, which is the object of the present invention, and the shear strength for comparison. Impact strength measurement is
A jig having a blade-shaped contact surface with the ceramic was placed on the upper surface of the ceramic of the joined body, and a load of 4 kg was dropped on the jig while changing the height. Impact strength is indicated by the height at which ceramics break down.

【0017】図2からわかるように静的強度である剪断
強度は、アルミナ微粉末の体積比率が増加すると共に初
めはほとんど変わらないが、5%を超すと徐々に強度低
下を示す。これは金属ろう層に異物であるアルミナ微粉
末が入ると、5%程度まではほとんど影響が現れない
が、やはり金属ろう層の強度を下げるためと考えられ
る。
As can be seen from FIG. 2, the shear strength, which is static strength, hardly changes at first as the volume ratio of the alumina fine powder increases, but gradually exceeds 5%, the strength gradually decreases. It is considered that this is because if the fine alumina powder, which is a foreign substance, enters the metal brazing layer, it has almost no effect up to about 5%, but it also reduces the strength of the metal brazing layer.

【0018】これに対し荷重落下高さで示す動的強度で
ある耐衝撃強度は剪断強度とは異なった挙動を示す。耐
衝撃強度はアルミナ微粉末の体積比率の増加と共に顕著
に向上し、11%で最大強度を示した後減少に転ずる。
アルミナ微粉末の配合による耐衝撃強度の向上は、ろう
付け後の冷却過程でアルミナ微粉末と他の材料(金属ろ
う層、セラミックスおよび金属)との間のズレ、あるい
はアルミナ微粉末内の微小破壊などが発生し、残留熱応
力が解放されたことを示すと判断され、本発明思想が実
験で確認された。
On the other hand, the impact strength, which is the dynamic strength indicated by the load drop height, behaves differently from the shear strength. The impact strength is remarkably improved with an increase in the volume ratio of the fine alumina powder, reaches a maximum strength at 11%, and then decreases.
Improving the impact strength by blending the fine alumina powder is due to the deviation between the fine alumina powder and other materials (metal brazing layer, ceramics and metal) during the cooling process after brazing, or the fine fracture in the fine alumina powder. It was judged that the above phenomenon occurred and the residual thermal stress was released, and the idea of the present invention was confirmed by experiments.

【0019】アルミナ微粉末体積比率11%で最大強度
を示した後減少に転ずるのは、11%で残留熱応力のす
べてが解放され、以降は異物であるアルミナ微粉末の影
響で金属ろう層の強度が低下するためと考えられる。経
験上、耐衝撃強度は荷重落下高さで30cm以上あれば実
用的に十分と考えられるので、最適なアルミナ微粉末体
積比率の範囲は図2から5〜20%であることがわか
る。
At the alumina fine powder volume ratio of 11%, the maximum strength was exhibited and then it started to decrease. At 11%, all of the residual thermal stress was released, and thereafter, the influence of the alumina fine powder which was a foreign substance caused the metal braze layer to be reduced. It is considered that the strength is reduced. From the experience, it is considered that the impact resistance strength is practically sufficient if the load drop height is 30 cm or more. Therefore, it is understood from FIG. 2 that the range of the optimum alumina fine powder volume ratio is 5 to 20%.

【0020】金属ろう層へのセラミックス微粉末の配合
は窒化硅素、サイアロン、炭化硅素、アルミナおよびジ
ルコニアなどのいわゆるエンジニアリングセラミックス
と金属の接合体のいずれについても効果が認められる。
なかでも窒化硅素とサイアロン(以下窒化硅素質セラミ
ックスと総称する)と金属の接合体の耐衝撃強度が大き
い。ジルコニアはセラミックスのなかでは靭性が最も高
く、最高の耐衝撃強度が期待されたが、窒化硅素質セラ
ミックスより低い強度であった。これは接合強度そのも
のが窒化硅素質セラミックスより低レベルであることに
起因すると推定される。
The addition of the ceramic fine powder to the metal brazing layer is effective in any of the so-called engineering ceramics-metal joints such as silicon nitride, sialon, silicon carbide, alumina and zirconia.
Above all, the joint strength of silicon nitride and sialon (hereinafter collectively referred to as silicon nitride ceramics) and metal is high in impact strength. Zirconia has the highest toughness among the ceramics and the highest impact strength was expected, but it was lower than that of silicon nitride ceramics. It is estimated that this is because the bonding strength itself is lower than that of the silicon nitride ceramics.

【0021】金属ろう層へ配合するセラミックス微粉末
の粒度は、金属ろう層の厚みによってその最適値は影響
を受けるが、通常金属ろう層の厚みを50μmとみる
と、粒度は50μm以下が望ましい。これより粒度が大
きいと耐衝撃強度のばらつきが大きくなり実用的ではな
い。またセラミックス微粉末の種類は窒化硅素、サイア
ロン、炭化硅素、アルミナおよびジルコニアの微粉末に
ついて評価実験を実施し、いずれも効果のあることが確
認された。
The optimum value of the particle size of the ceramic fine powder to be mixed into the metal brazing layer is affected by the thickness of the metal brazing layer, but normally, assuming that the thickness of the metal brazing layer is 50 μm, the particle size is preferably 50 μm or less. If the particle size is larger than this, the variation in impact strength becomes large, which is not practical. As for the types of ceramics fine powder, evaluation experiments were conducted on fine powders of silicon nitride, sialon, silicon carbide, alumina and zirconia, and it was confirmed that all were effective.

【0022】ただ効果の大きさについてはセラミックス
微粉末の種類によって差があり、総じて接合体のセラミ
ックスより熱膨張率の大きいセラミックスの微粉末を使
用したときの効果が顕著である。窒化硅素質セラミック
スと金属の接合体の場合は、アルミナ微粉末を使用した
ときに最高の耐衝撃強度が得られる。
However, the magnitude of the effect depends on the type of the ceramic fine powder, and the effect is remarkable when the fine ceramic powder having a thermal expansion coefficient larger than that of the ceramic of the joined body is used as a whole. In the case of a joined body of silicon nitride ceramics and a metal, the highest impact strength can be obtained when alumina fine powder is used.

【0023】[0023]

【作用】本発明は、セラミックスと金属の活性金属ろう
付け法において、金属ろう層にセラミックス微粉末を配
合し、ろう付け接合部に微小欠陥を導入して残留熱応力
を解放することにより、従来の活性金属ろう付け法より
も格段に優れた耐衝撃性を有するセラミックスと金属の
接合体を提供するものであり、製品の用途としては耐衝
撃性と耐摩耗性が要求されるディーゼルエンジン用のタ
ペット、鉄鋼圧延用のガイドなど数多くの用途がある。
According to the present invention, in the active metal brazing method of ceramics and metal, the fine metal powder is blended in the metal brazing layer and micro defects are introduced into the brazing joint to release the residual thermal stress. It provides a joined body of ceramics and metal that has impact resistance far superior to that of the active metal brazing method, and is used for diesel engines that require impact resistance and wear resistance as product applications. It has many uses such as tappets and guides for steel rolling.

【0024】[0024]

【実施例】本発明により、鉄鉱石のシュートライナーを
製作した。厚鋼板の上に多数のセラミックス板をろう付
けによって貼り付けたものである。鉄鋼石はシュートラ
イナーへ落下した後、下部のホッパーに装入されるの
で、厚鋼板にろう付けされたセラミックスは高い耐衝撃
性と耐摩耗性が要求される。セラミックスはサイアロン
を使用し1枚の寸法は1辺40mm、厚さ7mmである。
EXAMPLE An iron ore shoot liner was produced according to the present invention. A large number of ceramics plates are attached to a thick steel plate by brazing. Since iron ore falls into the chute liner and is loaded into the lower hopper, ceramics brazed to thick steel plates are required to have high impact resistance and wear resistance. Sialon is used as the ceramic, and the size of one sheet is 40 mm on a side and 7 mm in thickness.

【0025】Ag:70wt%、Cu:26wt%、Ti:
4wt%の組成の金属粉末と体積比率16%のアルミナ微
粉末からなるペーストをサイアロン板に塗布した後、1
-4Torr,840℃の真空炉中で30分間、加熱処理し
てメタライズした。このメタライズ処理したサイアロン
板を厚鋼板(2m×1m)に板状銀ろう(BAg−4)
によって高周波ろう付けした。このようにして製作した
シュートライナーは十分な耐久性を示し、実用製品にお
ける本発明の有効性が確認できた。
Ag: 70 wt%, Cu: 26 wt%, Ti:
After applying a paste composed of a metal powder having a composition of 4 wt% and an alumina fine powder having a volume ratio of 16% to a sialon plate, 1
0 -4 Torr, 840 ℃ 30 minutes in a vacuum furnace of metallized heat treated to. This metallized sialon plate was applied to a thick steel plate (2 m x 1 m) with a plate-shaped silver solder (BAg-4).
High frequency brazed by. The shoot liner thus manufactured exhibited sufficient durability, and the effectiveness of the present invention in practical products was confirmed.

【0026】[0026]

【発明の効果】本発明によると、従来のセラミックスと
金属の活性金属ろう付け接合体よりも格段に優れた耐衝
撃性を有する接合体が、極めて簡便な操作によって得ら
れ、セラミックスの新しい用途を拓くという効果があ
る。
EFFECTS OF THE INVENTION According to the present invention, a joined body having impact resistance far superior to that of the conventional active metal brazing joined body of ceramics and metals can be obtained by an extremely simple operation, and a new application of ceramics can be obtained. It has the effect of opening up.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すセラミックスと金属の
接合体の断面図である。
FIG. 1 is a cross-sectional view of a bonded body of ceramics and metal showing a basic configuration of the present invention.

【図2】窒化硅素セラミックスと鋼の接合体における荷
重落下高さ(耐衝撃強度の指標)および剪断強度と金属
ろう層中のアルミナ微粉末体積比率の関係を示す図表で
ある。
FIG. 2 is a table showing a relationship between a load drop height (index of impact strength) and a shear strength of a bonded body of silicon nitride ceramics and steel, and a volume ratio of fine alumina powder in a metal brazing layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスを活性金属を含む銀−銅系
金属粉末ろうによってメタライズしたのち、金属に銀−
銅系金属ろうによってろう付けした接合体、またはセラ
ミックスと金属を活性金属を含む銀−銅系金属粉末ろう
によって直接ろう付けした接合体において、該接合体界
面の金属ろう中にセラミックス微粉末が体積比率で5〜
20%含まれていることを特徴とするセラミックスと金
属の接合体。
1. A method of metallizing a ceramic with a silver-copper-based metal powder braze containing an active metal, and then silver-metalizing the metal.
In a joined body brazed with a copper-based metal braze or a joined body in which ceramics and a metal are directly brazed with a silver-copper-based metal powder braze containing an active metal, the fine ceramic powder is contained in the metal braze at the interface of the joined body. 5 to 5
A ceramic-metal joined body characterized by containing 20%.
【請求項2】 セラミックスが窒化硅素質セラミックス
であり、かつ金属ろう中のセラミックス微粉末がアルミ
ナ微粉末である請求項1に記載のセラミックスと金属の
接合体。
2. The bonded body of ceramic and metal according to claim 1, wherein the ceramic is a silicon nitride ceramic and the fine ceramic powder in the brazing metal is fine alumina powder.
JP33531191A 1991-12-18 1991-12-18 Joint form made up of ceramic and metal Withdrawn JPH05163078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33531191A JPH05163078A (en) 1991-12-18 1991-12-18 Joint form made up of ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33531191A JPH05163078A (en) 1991-12-18 1991-12-18 Joint form made up of ceramic and metal

Publications (1)

Publication Number Publication Date
JPH05163078A true JPH05163078A (en) 1993-06-29

Family

ID=18287107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33531191A Withdrawn JPH05163078A (en) 1991-12-18 1991-12-18 Joint form made up of ceramic and metal

Country Status (1)

Country Link
JP (1) JPH05163078A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390354B1 (en) 1998-02-18 2002-05-21 Ngk Insulators, Ltd. Adhesive composition for bonding different kinds of members
KR100420243B1 (en) * 2001-04-30 2004-03-04 김태우 Joining method of silicon nitride and metal using in-situ buffer-layer
US20080217382A1 (en) * 2007-03-07 2008-09-11 Battelle Memorial Institute Metal-ceramic composite air braze with ceramic particulate
JP2010215419A (en) * 2009-03-13 2010-09-30 Taiheiyo Cement Corp SiC JOINED BODY
CN102275022A (en) * 2011-07-08 2011-12-14 中国科学院金属研究所 Connecting method of C/C composite material and copper or copper alloy
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390354B1 (en) 1998-02-18 2002-05-21 Ngk Insulators, Ltd. Adhesive composition for bonding different kinds of members
US6742700B2 (en) 1998-02-18 2004-06-01 Ngk Insulators, Ltd. Adhesive composition for bonding different kinds of members
KR100420243B1 (en) * 2001-04-30 2004-03-04 김태우 Joining method of silicon nitride and metal using in-situ buffer-layer
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials
US20080217382A1 (en) * 2007-03-07 2008-09-11 Battelle Memorial Institute Metal-ceramic composite air braze with ceramic particulate
JP2010215419A (en) * 2009-03-13 2010-09-30 Taiheiyo Cement Corp SiC JOINED BODY
CN102275022A (en) * 2011-07-08 2011-12-14 中国科学院金属研究所 Connecting method of C/C composite material and copper or copper alloy

Similar Documents

Publication Publication Date Title
JPH0573714B2 (en)
JP3495051B2 (en) Ceramic-metal joint
JP3095490B2 (en) Ceramic-metal joint
JPH05163078A (en) Joint form made up of ceramic and metal
JP3302714B2 (en) Ceramic-metal joint
JP3370060B2 (en) Ceramic-metal joint
JPS63256291A (en) Material for adhesion
JPH0930870A (en) Bonded material of ceramic metal and accelerating duct
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP2797020B2 (en) Bonded body of silicon nitride and metal and method for producing the same
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JPS6228067A (en) Joining method for ceramics
JPS6351994B2 (en)
JPH0317793B2 (en)
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0648852A (en) Ceramic-metal joined body
JPS6351993B2 (en)
JPH0292875A (en) Formation of thermal stress relaxing layer in bonding between ceramic and metal
JP2005139057A (en) Method for metallizing powder sintered ceramics
JPH0257652A (en) Metallic material for joining
JPS61291943A (en) Alloy for metallizing
JPS63210076A (en) Method of joining ceramic to metal and solder therefor
JPS6065774A (en) Ceramic-metal bonded body and manufacture
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311