JPH0292875A - Formation of thermal stress relaxing layer in bonding between ceramic and metal - Google Patents

Formation of thermal stress relaxing layer in bonding between ceramic and metal

Info

Publication number
JPH0292875A
JPH0292875A JP24526888A JP24526888A JPH0292875A JP H0292875 A JPH0292875 A JP H0292875A JP 24526888 A JP24526888 A JP 24526888A JP 24526888 A JP24526888 A JP 24526888A JP H0292875 A JPH0292875 A JP H0292875A
Authority
JP
Japan
Prior art keywords
metal
ceramic
copper
thermal stress
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24526888A
Other languages
Japanese (ja)
Inventor
Masahiro Kawahara
正弘 川原
Kikuo Takahashi
高橋 幾久雄
Hisaaki Ota
太田 久昭
Shuichi Tachibana
橘 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Prefectural Government
Original Assignee
Iwate Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Prefectural Government filed Critical Iwate Prefectural Government
Priority to JP24526888A priority Critical patent/JPH0292875A/en
Publication of JPH0292875A publication Critical patent/JPH0292875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To bond ceramic to metal readily and firmly by flame spraying copper on the surface of a metal to be bonded to ceramic to form a coating film, heating the coating film in a hydrogen gas atmosphere and forming fine voids in the coating film to form a thermal stress relaxing layer. CONSTITUTION:The surface of a metal 1 to be bonded to ceramic is flame sprayed with copper or a mixture of copper and ceramic to form a coating film of flame spraying containing copper 2, voids 3 and copper oxide 4. Then the coating film is heated in a hydrogen gas atmosphere, the copper oxide 4 in the coating film of flame spraying is reduced, ductility of the coating film is improved and fine voids 5 are formed to form a nonrigid, porous thermal stress relaxing layer having the voids 3 and the voids 5. Then the metal 1 is bonded to ceramic 7 through a brazing material 6 (e.g., titanium-containing silver braze). Consequently, the metal is readily bonded to the ceramic even if a bond interface has a curved face.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はセラミックスと金属を接合する場合の溶射を
用いた熱応力緩和層の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a thermal stress relaxation layer using thermal spraying when joining ceramics and metals.

[従来の技術] セラミックスは耐熱性、耐摩耗性、耐食性などに優れる
反面、脆いので衝撃に弱い欠点がるため、構造材として
用いる場合は、靭性の大きい金属材料と接合して用いる
のが適当である。接合方法としては高温に加熱する固相
拡散接合や液相拡散を含めたろう付などが用いられてい
る。
[Prior art] Although ceramics have excellent heat resistance, wear resistance, and corrosion resistance, they have the disadvantage of being brittle and susceptible to impact. Therefore, when used as structural materials, it is appropriate to use them in conjunction with metal materials with high toughness. It is. As a bonding method, solid phase diffusion bonding using high temperature heating and brazing including liquid phase diffusion are used.

この時、接合時の高温からの冷却に伴い、金属とセラミ
ックスの熱膨張係数の差によって発生する高い熱応力が
最大の課題であり、このことが接合強度を低下させたり
、接合界面で剥離を引き起す原因となっている。
At this time, the biggest issue is the high thermal stress generated due to the difference in thermal expansion coefficient between the metal and ceramics as they cool down from the high temperature during bonding, and this can reduce the bonding strength and cause peeling at the bonding interface. It is the cause that causes it.

このため、この熱応力の発生を押える方法として熱膨張
係数の差の小さなセラミックスと金属の接合の組合仕を
選ぶとか、セラミックスと金属の中間に熱応力緩和層を
設置するなどの方法がとられている。
For this reason, methods to suppress the generation of thermal stress include choosing a combination of ceramic and metal bonding with a small difference in thermal expansion coefficients, and installing a thermal stress relaxation layer between the ceramic and metal. ing.

熱応力緩和層の設置としては、接合界面に銅板やアルミ
ニウム板などの軟質材料を挿入する方法が採られている
ものの、いまだ熱応力緩和能力か低いため、接合強度が
低く、高い接合強度の技術開発が望まれている。
The method of installing a thermal stress relaxation layer is to insert a soft material such as a copper plate or an aluminum plate into the joint interface, but the thermal stress relaxation capacity is still low and the joint strength is low. Development is desired.

[発明が解決しようとする課題] 本発明はセラミックスと金属を接合する時に、接合部に
高い熱応力緩和能力を有する熱応力緩和層の形成方法を
得ることを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for forming a thermal stress relaxation layer having a high thermal stress relaxation ability at a joint portion when ceramics and metal are joined.

[課題を解決するための手段] 熱応力緩和層の熱応力緩和能力を高める方法としては、
第一に、この緩和層の熱膨張係数を接合するセラミック
スと金属の中間の膨張係数にしたり、あるいは、段階的
に熱膨張係数を変化させることによって、セラミックス
と金属の熱膨張係数の差を小さくする方法である。
[Means for solving the problem] As a method for increasing the thermal stress relaxation ability of the thermal stress relaxation layer,
First, the difference in thermal expansion coefficient between the ceramic and metal can be reduced by setting the thermal expansion coefficient of this relaxation layer to an intermediate expansion coefficient between the ceramic and metal to be joined, or by changing the thermal expansion coefficient in stages. This is the way to do it.

第二の方法は変形し易い、いわゆるヤング率の小さい柔
質金属や有孔材料を熱応力緩和層として用いる方法であ
る。
The second method is to use a soft metal or porous material that is easily deformed and has a so-called small Young's modulus as the thermal stress relaxation layer.

このため、本発明では第一と第二の方法を兼ね備えた熱
応力緩和層の形成を成すものである。
Therefore, in the present invention, a thermal stress relaxation layer is formed by combining the first and second methods.

この方法は軟質材料である銅または銅とセラミックスの
混合材料を溶射材料として、接合する金属に溶射し、次
に、この溶射皮膜を水素ガス雰囲気で約300℃に加熱
し、溶射皮膜中の酸化銅を還元して空孔を生成し溶射時
に皮膜中に散在して生じた微小空孔と相俟って、高性能
な熱応力緩和層とするものである。さらに、銅とセラミ
ックスの混合の場合による熱膨張係数の減少に伴って熱
応力緩和はより一層助長されることになる。
In this method, a soft material such as copper or a mixed material of copper and ceramics is thermally sprayed onto the metals to be joined, and then this thermally sprayed coating is heated to approximately 300°C in a hydrogen gas atmosphere to eliminate the oxidation in the thermally sprayed coating. Copper is reduced to generate pores, which together with the fine pores scattered throughout the coating during thermal spraying, create a high-performance thermal stress relaxation layer. Furthermore, as the coefficient of thermal expansion decreases in the case of mixing copper and ceramics, thermal stress relaxation is further facilitated.

なお、特記すべきこととして、溶射による薄層の作成は
平面のみならず、曲面を有する金属製品に対しても、は
ぼ均等に、且つ容易になし得るものであって、他の方法
に比べて熱応力緩和層としてはるかに優れたものである
It should be noted that thermal spraying can be used to create thin layers not only on flat surfaces, but also on metal products with curved surfaces, and can be applied more evenly and easily than other methods. Therefore, it is far superior as a thermal stress relaxation layer.

[作用] 溶射材料に銅を用いた場合の熱応力緩和層の組織は、銅
の基地に溶射時に形成した空孔と溶射時に生成した酸化
銅が水素還元によりて形成した微細な空孔を併せ持つ変
形能の高い軟質の有孔材料ある。
[Function] When copper is used as the thermal spraying material, the structure of the thermal stress relaxation layer has both pores formed in the copper base during thermal spraying and fine pores formed by hydrogen reduction of copper oxide generated during thermal spraying. It is a soft porous material with high deformability.

このため、接合時に高い熱応力緩和能力を示し、セラミ
ックスと金属の接合強度を高くするものである。
Therefore, it exhibits high thermal stress relaxation ability during bonding and increases the bonding strength between ceramic and metal.

又、溶射材料に銅とセラミックスとの混合材料を用いた
場合の熱応力緩和層は銅の基地に、セラミックスと上記
の銅の場合と同様に空孔が分散したものとなるが、セラ
ミックスが混在するため、銅のみのものより塑性変形能
は幾分低下するも、熱膨張係数が小さくなるため、極め
て高い熱応力緩和能力を有するものになる。
In addition, when a mixed material of copper and ceramics is used as the thermal spraying material, the thermal stress relaxation layer will have pores dispersed in the copper base as in the case of ceramics and copper above, but if ceramics is mixed. Therefore, although the plastic deformability is somewhat lower than that of copper only, the coefficient of thermal expansion is smaller, so it has an extremely high thermal stress relaxation ability.

かくて、高温からの冷却時に、熱膨張係数の大きな金属
部による収縮によって、低熱膨張係数のセラミックスに
大きな引張残留応力を及ぼすことに伴う接合力の低下に
対して、本発明の熱応力緩和層の存在することが、他の
方法による緩和層に比べ、接合強度の向上にはるかに優
れた効果をもたらしていることは明白である。
In this way, the thermal stress relaxation layer of the present invention can be used to reduce bonding strength due to a large tensile residual stress exerted on ceramics with a low coefficient of thermal expansion due to contraction by the metal part with a large coefficient of thermal expansion during cooling from a high temperature. It is clear that the presence of this has a far superior effect on improving the bonding strength compared to relaxation layers created by other methods.

[実施例] 接合するセラミックスをアルミナ、金属を鋳鉄とした接
合実施例について図面を参照して説明する。
[Example] A joining example in which the ceramic to be joined is alumina and the metal is cast iron will be described with reference to the drawings.

第一図に示すように、接合する鋳鉄(1)に銅をプラズ
マ溶射し、銅(2)と空孔(3)および酸化銅(4)か
らなる溶射皮膜を形成する。
As shown in Figure 1, copper is plasma sprayed onto cast iron (1) to be joined to form a sprayed coating consisting of copper (2), voids (3), and copper oxide (4).

次に第2図に示しているように、溶射した鋳鉄を水素ガ
ス雰囲気中で300℃に加熱し、溶射皮膜中の酸化銅を
還元し、皮膜の延性を向上させるとともに、これによっ
て形成した微細な空孔(5)と溶射時に形成された空孔
(3)からなる軟質、且つ夛孔質の熱応力緩和層を形成
する。
Next, as shown in Figure 2, the sprayed cast iron is heated to 300°C in a hydrogen gas atmosphere to reduce the copper oxide in the sprayed coating, improve the ductility of the coating, and reduce the fine particles formed thereby. A soft and porous thermal stress relaxation layer is formed by the pores (5) and the pores (3) formed during thermal spraying.

これに、第3図に示しているように、接合するアルミナ
(7)との間にチタン含有銀ろう(6)を挿入し、真空
中(l O’Torr)、840℃、20分保持の条件
でろう付を行った。
As shown in Figure 3, a titanium-containing silver solder (6) was inserted between the alumina (7) to be joined, and the temperature was maintained at 840°C for 20 minutes in a vacuum (1 O'Torr). Brazing was performed under these conditions.

接合試験片の形状寸法はアルミナは直径27ml111
厚さ8ff1mの円盤状、鋳鉄は直径16mm。
The shape and dimensions of the bonded test piece are 27ml in diameter for alumina111
Disc-shaped, 8ff1m thick, cast iron 16mm in diameter.

長さ40mmの棒状であり、これらを第3図に示したよ
うに突き合せ接合したものである。
It has a rod shape with a length of 40 mm, and these are butt-jointed as shown in FIG.

接合引張強度は3・4kgf/mm”と比較的低い値を
示したが、これは、引張試験片の形状に基づく切欠係数
の影響であるから、これに実測した切欠係数7を剰じて
、実際の接合引張強度は23・8kg「/+nm″程度
となり、高強度となっている。
The joint tensile strength showed a relatively low value of 3.4 kgf/mm'', but this was due to the influence of the notch coefficient based on the shape of the tensile test piece, so by adding the actually measured notch coefficient of 7, The actual bonding tensile strength is approximately 23.8 kg/+nm, which is high strength.

又、引張破断部の状況は、ろう材で破断し、セラミック
スの剥離もほとんど無く、残留熱応力がほとんどない高
強度な接合状態であることを示している。
Furthermore, the condition of the tensile fracture part shows that the fracture occurs at the brazing material, there is almost no peeling of the ceramic, and the joint is in a high-strength state with almost no residual thermal stress.

[発明の効果コ セラミックスは金属材料を凌駕する高機能材料として、
その応用範囲が極めて広い新素材として期待されている
ものの、靭性に乏しく、難加工性であるなどの欠点を有
しており、これらの欠点を補うことが必要となっている
[Effects of the invention Coceramics are highly functional materials that surpass metal materials.
Although it is expected to be a new material with an extremely wide range of applications, it has drawbacks such as poor toughness and difficulty in processing, and it is necessary to compensate for these drawbacks.

この発明はこの欠点を補う一つの方策であす、セラミッ
クスと金属を容易に、しかも、強固に接合し得ることは
、セラミックスの応用分野の拡大に大きな力となる。
This invention is one way to compensate for this drawback. Being able to easily and firmly join ceramics and metals will have a great impact on expanding the fields of application of ceramics.

しかも、本発明による接合界面の形状は、従来の方式で
は平面以外は困難であったが、溶射の特性から、曲面で
も容易となっており、応用範囲がさらに広がることは明
らかである。
Moreover, the shape of the bonded interface according to the present invention was difficult to form on surfaces other than flat surfaces using conventional methods, but due to the characteristics of thermal spraying, it is easy to form curved surfaces, and it is clear that the range of application will further expand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属に銅の溶射皮膜を形成した模式図、第2図
は溶射皮膜中の酸化銅を水素還元して熱応力緩和層を形
成した模式図、第3図はセラミックスと熱応力緩和層の
間にろう材を挿入し、真空ろう付を行った模式図。 l・・・・・・接合する金属、2・・・・・・溶射皮膜
の銅基地、 3・・・・・・溶射時に形成された空孔、4・・・・・
・溶射時に形成された酸化銅、5・・・・・・溶射皮膜
中の酸化銅の還元に伴って形成された空孔。 6・・・・・・ろう材、7・・・・・・接合するセラミ
ックス、
Figure 1 is a schematic diagram of a thermally sprayed copper coating formed on metal, Figure 2 is a schematic diagram of a thermal stress relaxation layer formed by reducing copper oxide in the sprayed coating with hydrogen, and Figure 3 is a diagram of ceramics and thermal stress relaxation. A schematic diagram of vacuum brazing with a brazing material inserted between the layers. l...Metal to be joined, 2...Copper base of thermal spray coating, 3...Vacancies formed during thermal spraying, 4...
- Copper oxide formed during thermal spraying, 5... Vacancies formed as a result of reduction of copper oxide in the thermal sprayed coating. 6... Brazing metal, 7... Ceramics to be joined,

Claims (1)

【特許請求の範囲】[Claims] 1、セラミックスと接合する金属の表面に銅、あるいは
銅とセラミックスの混合材料を溶射して溶射皮膜を形成
し、ついで水素ガス雰囲気中で加熱することにより、該
皮膜中に微細な空孔を生成保有せしめることを特徴とす
るセラミックスと金属の接合における熱応力緩和層の形
成方法。
1. Copper or a mixed material of copper and ceramics is thermally sprayed onto the surface of the metal to be bonded to the ceramic to form a thermally sprayed coating, and then heated in a hydrogen gas atmosphere to generate fine pores in the coating. 1. A method for forming a thermal stress relaxation layer in bonding ceramics and metal, characterized in that the thermal stress relaxation layer is retained.
JP24526888A 1988-09-28 1988-09-28 Formation of thermal stress relaxing layer in bonding between ceramic and metal Pending JPH0292875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24526888A JPH0292875A (en) 1988-09-28 1988-09-28 Formation of thermal stress relaxing layer in bonding between ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24526888A JPH0292875A (en) 1988-09-28 1988-09-28 Formation of thermal stress relaxing layer in bonding between ceramic and metal

Publications (1)

Publication Number Publication Date
JPH0292875A true JPH0292875A (en) 1990-04-03

Family

ID=17131155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24526888A Pending JPH0292875A (en) 1988-09-28 1988-09-28 Formation of thermal stress relaxing layer in bonding between ceramic and metal

Country Status (1)

Country Link
JP (1) JPH0292875A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822736A1 (en) * 1995-04-19 1998-02-04 Komatsu Ltd. Electrode for plasma arc torch
JP2007518575A (en) * 2004-01-23 2007-07-12 ロールス・ロイス・ピーエルシー Joining method of components
EP1951927A1 (en) * 2005-10-27 2008-08-06 The University of British Columbia Fabrication of electrode structures by thermal spraying

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822736A1 (en) * 1995-04-19 1998-02-04 Komatsu Ltd. Electrode for plasma arc torch
EP0822736A4 (en) * 1995-04-19 1998-05-06 Komatsu Mfg Co Ltd Electrode for plasma arc torch
US5908567A (en) * 1995-04-19 1999-06-01 Komatsu Ltd. Electrode for plasma arc torch
JP2007518575A (en) * 2004-01-23 2007-07-12 ロールス・ロイス・ピーエルシー Joining method of components
JP4907361B2 (en) * 2004-01-23 2012-03-28 ロールス・ロイス・ピーエルシー Joining method of components
US9061363B2 (en) 2004-01-23 2015-06-23 Rolls- Royce Plc Brazed joining with electrical deposition
EP1951927A1 (en) * 2005-10-27 2008-08-06 The University of British Columbia Fabrication of electrode structures by thermal spraying
EP1951927A4 (en) * 2005-10-27 2010-12-08 Univ British Columbia Fabrication of electrode structures by thermal spraying

Similar Documents

Publication Publication Date Title
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
JP3495051B2 (en) Ceramic-metal joint
JP3095490B2 (en) Ceramic-metal joint
JPS60235773A (en) Ceramic body bonding method
JPH0292875A (en) Formation of thermal stress relaxing layer in bonding between ceramic and metal
JPS5918184A (en) Ceramic metallization
JPH05163078A (en) Joint form made up of ceramic and metal
JPH02108493A (en) Ceramics joining material
JP3505212B2 (en) Joint and method of manufacturing joint
JPH05201777A (en) Ceramic-metal joined body
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method
JPH0460946B2 (en)
WO2023243225A1 (en) Bonded material of crystalline graphite material and metallic material, and production method therefor
JPH01224280A (en) Ceramic-metal conjugate form
JPS6351994B2 (en)
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JP2017098520A (en) Laminate, power module and method of manufacturing laminate
JP2001048670A (en) Ceramics-metal joined body
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPH08169778A (en) Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JP3289860B2 (en) Joining method of ceramics and silicon
JP3293964B2 (en) Joining method of ceramics and silicon plate
JPH0369866B2 (en)