JPS59184778A - Pressure welding of ceramic member to metal member - Google Patents

Pressure welding of ceramic member to metal member

Info

Publication number
JPS59184778A
JPS59184778A JP5963083A JP5963083A JPS59184778A JP S59184778 A JPS59184778 A JP S59184778A JP 5963083 A JP5963083 A JP 5963083A JP 5963083 A JP5963083 A JP 5963083A JP S59184778 A JPS59184778 A JP S59184778A
Authority
JP
Japan
Prior art keywords
metal
joined
pressure welding
ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5963083A
Other languages
Japanese (ja)
Inventor
出川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP5963083A priority Critical patent/JPS59184778A/en
Publication of JPS59184778A publication Critical patent/JPS59184778A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミック部材と金属部材との圧接方法に係り
、特に金属の超微粒子を接合材の一部として用いる上記
圧接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of press-welding a ceramic member and a metal member, and particularly to the above-mentioned press-welding method using ultrafine metal particles as part of the bonding material.

〔従来技術〕[Prior art]

近年、高温高強度構造材料として、窒化珪素、炭化珪素
、サイアロン等の非酸化物セラミックス、あるいは酸化
アルミニウム、酸化ジルコニウム等いわゆるニューセラ
ミックスが急速にクローズアンプされ、多くの研究や開
発がなされている。これらのセラミックスの用途は、ガ
スタービンのブレードや燃焼器、ディーゼルエンジンの
シリンダやピストン、その他高温用機械部品として数多
くある。
In recent years, non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as so-called new ceramics such as aluminum oxide and zirconium oxide, have rapidly become popular as high-temperature, high-strength structural materials, and much research and development is being carried out. These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

しかしながらこれらのセラミックスの物性は、組成、粒
径、微構造、熱処理などの要因に極めて敏感に影響され
ると共に、強靭化の機構そのものについても理論的及び
実験的検討が精力的に実施されているが現状ではまだ統
一的解釈には至っておらず機械構造用部品材料として用
いるにはさらに一段の研究開発を必要としているのが実
情である。
However, the physical properties of these ceramics are extremely sensitively affected by factors such as composition, grain size, microstructure, and heat treatment, and the mechanism of toughening itself is also being extensively studied theoretically and experimentally. However, the current situation is that a unified interpretation has not yet been reached, and further research and development is required before it can be used as a material for mechanical structural parts.

一方、セラミック部材を金属部材と接合した複合材によ
り、セラミックスの上記短所を補おうとする試みがなさ
れているが、金属とセラミックスとの接合は技術的難度
の極めて高い分野の1つである。
On the other hand, attempts have been made to compensate for the above-mentioned disadvantages of ceramics by using composite materials in which ceramic members are joined to metal members, but joining metals and ceramics is one of the fields in which the technical difficulty is extremely high.

しかしてセラミックスと金属との接合強度の高い接合方
法の1つとしてろう付方法がある。し〃菖るに従来のろ
う付方法によって接合されたものはセラミック部材と金
属部材との少なくともろう付予定部近傍部分を全体的に
加熱する必要がおるところから、接合部に両者の熱膨張
差に帰因する残留応力が負荷され、これがために接合部
の破壊75ヨ生じやすいという問題がある。まだ加熱装
置等の設備が必要であるなど不都合があった。
However, brazing is one of the methods of joining ceramics and metal with high bonding strength. However, when joining a ceramic member and a metal member using the conventional brazing method, it is necessary to heat the entire part of the ceramic member and the metal member, at least in the vicinity of the area to be brazed. There is a problem in that residual stress due to this is applied, and this makes it easy for the joint to break. There were still some inconveniences, such as the need for equipment such as a heating device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来の問題点を解7肖し、残留応力
が極めて小さく接合強度が高いと共に、力q熱装置等の
設備投資が極めて小さくて足り工業的に極めて有利な接
合方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned conventional problems and provide a bonding method that has extremely low residual stress and high bonding strength, and requires only a small investment in equipment such as a force/q heating device, which is extremely advantageous from an industrial perspective. It's about doing.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明の圧接方法は、セラ
ミック部材と金属部材の接合予定面の間に、金属の超微
粒子を含む金属粉末を介在せしめた後、該セラミック部
材と金属部材とを従来より低い温度で圧接することを特
徴とするセラミック部材と金属部材との接合方法、を要
旨とするものである。
In order to achieve this object, the pressure welding method of the present invention involves interposing a metal powder containing ultrafine metal particles between the surfaces of the ceramic member and the metal member to be joined, and then bonding the ceramic member and the metal member. The gist of the present invention is a method of joining a ceramic member and a metal member, which is characterized by pressure-welding at a lower temperature than the conventional method.

金属の超微粒子は、周知の如く極めて活性なものであり
、例えばlQnm以下の銀の粒子は接着しただけで室温
で融合する。そのため通常の粒度の金属粉末に超微粒子
をわずかな量でも添加した場合にはこの金属粉末の焼結
温度が格段に低下されるのである。
As is well known, ultrafine metal particles are extremely active; for example, silver particles of 1 Q nm or less fuse at room temperature just by adhering to them. Therefore, when even a small amount of ultrafine particles is added to metal powder of normal particle size, the sintering temperature of this metal powder is significantly lowered.

本発明はこのような金属の超微粒子が有する極めて活性
であるという特性を利用して、従来より低い温度で圧接
するようにしたものであり、これによシ接合時に発生す
る残留応力を格段に減少せしめると共に、設備、装着面
における簡易化を図るようにしだものでおる。以下本発
明を更に詳細に説明する。
The present invention utilizes the extremely active property of these ultrafine metal particles to perform pressure welding at a lower temperature than conventional methods, thereby significantly reducing the residual stress that occurs during bonding. In addition to reducing the amount of damage, we are also trying to simplify the equipment and mounting aspects. The present invention will be explained in more detail below.

本発明においてセラミックスとしてはその材質は特に限
定されるものではない。また緻密質、多孔質いずれのも
のも適用できるが、少なくともその接合予定面は多孔質
化されているものが好適である。これはセラミック部材
の接合予定面を多孔質化しておくと、金属とのなじみが
よくなると共に、投錨効果が十分に発揮され接合強度が
高められるからである。またこの多孔質部分が接合後に
おいては熱応力を緩衝する応力緩衝層として作用するか
らでもある。セラミック部材の接合予定面を多孔質化す
る方法としてはレーザビームを照射する方法又は同質の
粉末を表面に焼結させる方法、酸で一部を溶解させる方
法など種々の手段が採用可能である。
In the present invention, the material of the ceramic is not particularly limited. Further, either dense or porous materials can be used, but it is preferable that at least the surface to be joined is made porous. This is because if the surface of the ceramic member to be joined is made porous, it will not only be compatible with the metal, but also have a sufficient anchoring effect and increase the joining strength. This is also because this porous portion acts as a stress buffer layer that buffers thermal stress after bonding. Various methods can be used to make the surface of the ceramic member to be joined porous, such as irradiating the surface with a laser beam, sintering homogeneous powder onto the surface, or dissolving a portion of the surface with acid.

このようなセラミックスの表面はそのままでも十分本発
明の方法によって接合されうるのであるが、予め金属の
薄膜を形成する金属化処理を施しておくと、金属部材と
の接合強度が高められるから有利である。このような金
属化処理の方法としては、金属粉末を用いた各種のメタ
ライズ法、溶射法、CVD法、PVD法等すでに公知の
各種の方法が採用可能である。
Although the surfaces of such ceramics can be bonded as is by the method of the present invention, it is advantageous to perform a metallization treatment to form a thin metal film in advance, as this increases the bonding strength with metal members. be. As methods for such metallization treatment, various known methods such as various metallization methods using metal powder, thermal spraying methods, CVD methods, and PVD methods can be employed.

また金属部材としては各種の金属あるいは合金部材が接
合可能である。これらの金属部材の表面は清浄化等の通
常の処理あるいは接合強度を高めるだめの多孔化処理を
施すようにしてもよい。
Moreover, various metals or alloy members can be joined as the metal members. The surfaces of these metal members may be subjected to normal treatments such as cleaning or porous treatment to increase bonding strength.

しかして本発明においてセラミックスと金属との間に介
在される金属粉末としては、超微粒子と、通常粒度の金
属の粉末との混合粉末が用いられる。
In the present invention, the metal powder interposed between the ceramic and the metal is a mixed powder of ultrafine particles and metal powder of normal particle size.

超微粒子としては銀、銅、ニッケル、鉄、金・コバルト
、アルミニウム力どの超微粒子がすでに市販されている
が、本発明はこれに限定されるものではなく各種の材質
のものが採用可能である。
As ultrafine particles, ultrafine particles such as silver, copper, nickel, iron, gold/cobalt, and aluminum are already commercially available, but the present invention is not limited to these, and particles made of various materials can be adopted. .

その粒径は5000^以下が効果的であるが、特に10
0〜1000^のものが好適である。また超微粒子の通
常の金属粉末への添加量は0.05%〜2%(%は重量
%を示す)程度で十分であり、特に0.1〜0.5%程
度のものが好適に採用される。
A particle size of 5000^ or less is effective, but especially 1000^ or less is effective.
0 to 1000^ is suitable. In addition, the amount of ultrafine particles added to ordinary metal powder is sufficient at about 0.05% to 2% (% indicates weight%), and in particular, about 0.1 to 0.5% is preferably adopted. be done.

壕だ本発明において、超微粒子ではない通常粒度の金属
粉末としては特に限定されるものではないが、次のよう
な各種の特性を備えたものが好適に採用される。即ちま
ず第1に超塑性金属と呼ばれる塑成変形能の大きい金属
の粉末が好適である。
In the present invention, the metal powder having a normal particle size that is not an ultrafine particle is not particularly limited, but those having the following various characteristics are preferably employed. That is, first of all, powders of metals with high plastic deformability called superplastic metals are suitable.

一般に圧接は塑性変形による接合であるので、このよう
に塑性変形能の高い金属の粉末を用いると接合が容易に
なるという効果がある。またいわゆる超弾性合金と呼ば
れる合金の粉末も採用可能である。このような超弾性合
金の粉末は従来は圧接には使えなかったが、本発明では
この粉末に超微粒子が混合されているので圧接が可能と
なっている。しかしてこのような超弾性合金の粉末を使
用すると弾性変形能が大きいので繰返し応力に対する抵
抗性が高いという効果が奏される。又ろう材としても銀
ろうを始めとした各種の展延性のあるろう材もそのまま
粉末にして使用出来る。
In general, pressure welding is joining by plastic deformation, so the use of metal powder with high plastic deformability has the effect of facilitating joining. Further, powder of an alloy called a so-called superelastic alloy can also be used. Conventionally, such superelastic alloy powder could not be used for pressure welding, but in the present invention, since ultrafine particles are mixed with this powder, pressure welding is possible. However, when powder of such a superelastic alloy is used as a lever, the elastic deformability is large, so that the effect of high resistance to repeated stress is achieved. Furthermore, various malleable brazing materials such as silver solder can also be used as a powder as they are.

捷だ本発明においては超微粒子の金属粉末と通常粒度の
金属粉末とは同質又は同系統のものが好捷しい。即ち例
えば銅の超微粒子に対して銅合金の通常粒径の金属粉末
を用いるが如きである。
In the present invention, it is preferable that the ultrafine metal powder and the normal particle size metal powder are of the same quality or of the same type. That is, for example, a metal powder of a copper alloy having a normal particle size may be used for ultrafine copper particles.

また超微粒子の金属と通常の金属の粉末とは固溶可能な
ものが好ましい。これは有害な金属間化合物を作ると脆
化しやすくカリ接合部の強度が低下するからである。
Further, it is preferable that the ultrafine metal particles and the normal metal powder can be solid-dissolved. This is because the formation of harmful intermetallic compounds tends to cause embrittlement and decrease the strength of the potash joint.

また本発明の方法においては、セラミック部材と金属部
材とは加圧することによって接合されるのであるが、こ
の接合に際して接合面近傍部分を適度に加熱するように
してもよい。但しこの加熱温度が過度に高くなると熱膨
張による残留熱応力が大きく力る虞れがあるので、この
ような残留熱応力が過度に大きくならない温度に加熱す
るのが好ましい。
Further, in the method of the present invention, the ceramic member and the metal member are joined by applying pressure, but the portion near the joint surface may be appropriately heated during this joining. However, if this heating temperature becomes too high, there is a risk that residual thermal stress due to thermal expansion will become large, so it is preferable to heat to a temperature at which such residual thermal stress does not become excessively large.

〔発明の実施例〕[Embodiments of the invention]

以下実施例について説明するが本発明はその要旨を越え
ない限り次の実施例に限定されるものでは々い。
Examples will be described below, but the present invention is not limited to the following examples unless the gist of the invention is exceeded.

実施例 密度83%の窒化珪素板と炭素鋼(002%)とを本発
明方法によって接合した。即ち寸ず窒化珪素板の表面に
銅の薄膜をスパッタリングにより形成した。この薄膜の
厚さは1〜2μmである。
EXAMPLE A silicon nitride plate with a density of 83% and carbon steel (002%) were joined by the method of the present invention. That is, a thin copper film was formed on the surface of a silicon nitride plate by sputtering. The thickness of this thin film is 1-2 μm.

次いで粒径500^の銅の超微粒子0.5重量部と銅合
金粉末(組成鋼585%、亜鉛38.5%、鉄3%、粒
度300メツシユアンダー)99.5重量部との混合粉
末を上記窒化珪素板と炭素鋼板との間に1 f / c
il見当で挾んで加圧して接合した。このときの加圧力
は15kf/πJ1また温度は500℃とした。その結
果窒化珪素板と炭素鋼板とが強固に接合することが認め
られた。
Next, a mixed powder of 0.5 parts by weight of ultrafine copper particles with a particle size of 500^ and 99.5 parts by weight of copper alloy powder (composition: 585% steel, 38.5% zinc, 3% iron, particle size 300 mesh under) was prepared. 1 f/c between the silicon nitride plate and the carbon steel plate.
They were joined by sandwiching them in register and applying pressure. At this time, the pressing force was 15 kf/πJ1 and the temperature was 500°C. As a result, it was confirmed that the silicon nitride plate and the carbon steel plate were firmly bonded.

比較例 窒化珪素板と炭素鋼板との間に挾まれる粉末として上記
超微粒子粉末を含まない合金粉末を用いた以外は上記実
施例と同様の方法により窒化珪素板と炭素鋼板とを接合
しようとした。しかしながら加圧時間を長くとっても窒
化珪素板と炭素鋼板とは接合しなかった。
Comparative Example An attempt was made to join a silicon nitride plate and a carbon steel plate using the same method as in the above example except that an alloy powder not containing the ultrafine powder was used as the powder sandwiched between the silicon nitride plate and the carbon steel plate. did. However, even if the pressurization time was extended, the silicon nitride plate and the carbon steel plate were not bonded.

〔発明の効果〕〔Effect of the invention〕

以上の通υ本発明によれば超微粒子を用いてセラミック
部材と金属部材とを圧接することができる。しかしてセ
ラミック部材や金属部材の全体を加熱することなく接合
でき接合部の残留応力が緩和される。また本発明方法に
よれば数100℃程度の加熱ですみ高価な加熱装置が不
要であり、設備投資が小さくて足シ、シかも取扱いが容
易であシ、工業的に極めて有利である。
According to the present invention, a ceramic member and a metal member can be pressure-welded using ultrafine particles. Therefore, the ceramic member or the metal member can be joined without heating the entire part, and the residual stress at the joint part is alleviated. Further, according to the method of the present invention, only heating is required at a temperature of about several hundred degrees Celsius, no expensive heating equipment is required, and the equipment investment is small and the handling is easy, making it extremely advantageous industrially.

代理人  鵜 沼 辰 之 (ほか1名)Agent Tatsuyuki Unuma (1 other person)

Claims (4)

【特許請求の範囲】[Claims] (1)セラミック部材と金属部材の接合予定面の間に、
全域の超微粒子を含む金属粉末を介在せしめた後、該セ
ラミック部材と金属部材とを圧接することを特徴とする
セラミック部材と金属部材との圧接方法。
(1) Between the surfaces to be joined between the ceramic member and the metal member,
A method for press-welding a ceramic member and a metal member, which comprises interposing metal powder containing ultrafine particles over the entire area and then press-welding the ceramic member and the metal member.
(2)  セラミック部材は、少なくともその接合予定
面は多孔質であることを特徴とする特許請求の範囲第1
項記載の圧接方法。
(2) The ceramic member is characterized in that at least the surface to be joined is porous.
Pressure welding method described in section.
(3)  セラミック部材の接合予定面が金属化処理さ
れていることを特徴とする特許請求の範囲第1項又は第
2項記載の圧接方法。
(3) The pressure welding method according to claim 1 or 2, wherein the surfaces of the ceramic members to be joined are metallized.
(4)圧接に際し、少なくとも接合予定面乞加熱するこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれか1項に記載の圧接方法。
(4) The pressure welding method according to any one of claims 1 to 3, characterized in that during the pressure welding, at least the surface to be joined is heated.
JP5963083A 1983-04-05 1983-04-05 Pressure welding of ceramic member to metal member Pending JPS59184778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5963083A JPS59184778A (en) 1983-04-05 1983-04-05 Pressure welding of ceramic member to metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5963083A JPS59184778A (en) 1983-04-05 1983-04-05 Pressure welding of ceramic member to metal member

Publications (1)

Publication Number Publication Date
JPS59184778A true JPS59184778A (en) 1984-10-20

Family

ID=13118741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5963083A Pending JPS59184778A (en) 1983-04-05 1983-04-05 Pressure welding of ceramic member to metal member

Country Status (1)

Country Link
JP (1) JPS59184778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193474A (en) * 1987-02-26 1989-04-12 Ulvac Corp Bonding of ceramic
JPH03103369A (en) * 1989-09-13 1991-04-30 Eagle Ind Co Ltd Production of cemented body of ceramic-metal
JP2005197334A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Joining structure and joining method for member
JP2010517626A (en) * 2007-02-14 2010-05-27 ザ ジレット カンパニー Safety razor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193474A (en) * 1987-02-26 1989-04-12 Ulvac Corp Bonding of ceramic
US4844323A (en) * 1987-02-26 1989-07-04 Nihon Sinku Gijutsu Kabusiki Kaisha Method for joining ceramics
JPH03103369A (en) * 1989-09-13 1991-04-30 Eagle Ind Co Ltd Production of cemented body of ceramic-metal
JP2005197334A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Joining structure and joining method for member
JP2010517626A (en) * 2007-02-14 2010-05-27 ザ ジレット カンパニー Safety razor

Similar Documents

Publication Publication Date Title
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPS60131874A (en) Method of bonding ceramic and metal
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPH0729859B2 (en) Ceramics-Metal bonding material
JP3302714B2 (en) Ceramic-metal joint
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JPH0672779A (en) Method for joining carbon member
JPS6077181A (en) Ceramic-metal bonded body
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPS63190768A (en) Ceramic-metal bonded body
JPS60145972A (en) Ceramic-metal bonded body
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPS62187183A (en) Method of joining ceramic to metal
JPH0240631B2 (en)
JPS62151581A (en) Treating material for metallic surface
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPS59184777A (en) Pressure welding of ceramic member to metal member
JPH0337166A (en) Adhesion between ceramics and metal
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPS6090878A (en) Ceramic and matal bonding method
JPS62171970A (en) Member for joining ceramic to metal
JPH0571544B2 (en)
JPS59184775A (en) Pressure welding of ceramic member to metal member