JPH0337166A - Adhesion between ceramics and metal - Google Patents

Adhesion between ceramics and metal

Info

Publication number
JPH0337166A
JPH0337166A JP17256989A JP17256989A JPH0337166A JP H0337166 A JPH0337166 A JP H0337166A JP 17256989 A JP17256989 A JP 17256989A JP 17256989 A JP17256989 A JP 17256989A JP H0337166 A JPH0337166 A JP H0337166A
Authority
JP
Japan
Prior art keywords
metal
melting point
heat treatment
plate
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17256989A
Other languages
Japanese (ja)
Other versions
JPH0547513B2 (en
Inventor
Yoshihiro Tejima
芳博 手嶋
Shoji Katayama
片山 彰治
Haruhiro Osada
晴裕 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP17256989A priority Critical patent/JPH0337166A/en
Publication of JPH0337166A publication Critical patent/JPH0337166A/en
Publication of JPH0547513B2 publication Critical patent/JPH0547513B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sound bonded material having a high strength of adhesive bonding by carrying out adhesion partially in two steps using an adhesion method where an active metal plate and a stress relaxation material are used and using soldering fluxes respectively having different melting points in the respective steps. CONSTITUTION:An adhesive material 5 prepared by laminating an active metal 3 and a high melting soldering flux 4 is inserted between a ceramics member 1 and a metallic plate 2 with a low thermal expansion coefficient and the first heat treatment is carried out. In spite of generation of residual stress in the member 1 during the above-mentioned process, the generated residual stress is as low as almost negligible in comparison with the strength thereof because of the low difference between thermal expansion of the plate 2 and that of the member 1. Between the resultant composite material 7 prepared by bonding the member 1 to the plate 2 through the reactive layers 6 of the adhesive material 5 and a metallic member 8, a soft metal 10 showing a plastic deformation due to heat treatment higher than those of the plate 2 and the member 8 sandwiched between other soldering fluxes 9a and 9b having a melting point lower than that of the soldering fluxes 4 is then inserted and the second heat treatment is carried out. By this process, the above-mentioned residual stress can be released and the highest main stress generated in the member 1 can be reduced at the same time, thus carrying out the objective strong adhesion through an inserted metallic layer 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックスと金属との接合方法に関し、更
に詳しくは残留応力が小さく、かつ、接合強度が大きい
セラミックス金属接合体を得るための方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for joining ceramics and metal, and more specifically, a method for obtaining a ceramic-metal joined body with low residual stress and high joint strength. Regarding.

〔従来の技術〕[Conventional technology]

従来、セラミックスと金属とを接合する方法としては、
活性金属法、高融点金属法等の金属ソルダー法が知られ
ている。
Conventionally, the methods for joining ceramics and metals are as follows:
Metal solder methods such as the active metal method and the high melting point metal method are known.

これらの方法の中で活性金属法は、Ti、Zr、Be等
の金属単体またはそれらの合金の活性金属をセラミック
・スと金属との間に介在させ、それによりセラミックス
表面の濡れ性を向上させ、セラミックスと金属とを接合
する方法である。
Among these methods, the active metal method involves interposing active metals such as Ti, Zr, Be, etc. or their alloys between the ceramic and the metal, thereby improving the wettability of the ceramic surface. , a method for joining ceramics and metals.

この活性金属法を使用した例として、活性金属であるT
iと共にAg−Cuロウ材を、セラミックスであるSi
Cと金属であるステンレス鋼との間に介在させて、両者
を接合する方法が提案されている。〔矢野豊彦他:窯業
協会誌、95 (3)(1987)、P357〜362
]ところで、上記のように熱膨張係数差の大きいセラミ
ックスと金属とを接合する場合、接合後の冷却過程にお
いて、両者の熱膨張の差に起因する残留応力のうち引張
応力が接合界面近傍のセラミックス自由表面に働き、セ
ラミックスにクランクが入る問題がある。
As an example using this active metal method, the active metal T
Ag-Cu brazing material is used together with i, and Si, which is a ceramic,
A method has been proposed in which carbon is interposed between carbon and stainless steel, which is a metal, and the two are joined. [Toyohiko Yano et al.: Journal of the Ceramics Association, 95 (3) (1987), P357-362
] By the way, when joining ceramics and metals that have a large difference in coefficient of thermal expansion as described above, during the cooling process after joining, tensile stress among the residual stress caused by the difference in thermal expansion between the two is absorbed by the ceramic near the joining interface. There is a problem of working on the free surface and cranking into the ceramics.

上記残留応力を緩和する方法として、第1にAn、Cu
等の軟質金属をセラミックスと金属との間に挿入し、軟
質金属の塑性変形によってセラミックスと金属との間の
熱膨張差を吸収する方法、第2に前記軟質金属が一般に
熱膨張係数が大きいため、この軟質金属と金属またはセ
ラミックスとの間に、W、WC,Mo等の低熱膨張率の
金属を挿入し、前記軟質金属の収縮を抑制し、熱膨張差
の低減を図る方法〔岩本信也;工学材料、36 (9)
(198B)、P54〜P57)があるが、前記両者の
方法においても強固な接合が実現できなかった。
As a method of alleviating the above residual stress, the first method is to use An, Cu,
A method of inserting a soft metal such as a metal between a ceramic and a metal and absorbing the difference in thermal expansion between the ceramic and the metal through plastic deformation of the soft metal.Secondly, the soft metal generally has a large coefficient of thermal expansion. , A method of inserting a metal with a low coefficient of thermal expansion, such as W, WC, or Mo, between the soft metal and metal or ceramic to suppress the contraction of the soft metal and reduce the difference in thermal expansion [Shinya Iwamoto; Engineering materials, 36 (9)
(198B), P54 to P57), but even with both of the above methods, a strong bond could not be realized.

また、活性金属法と応力緩和材とを用いてセラミックス
と金属とを接合する前記矢野豊彦他の報告〔窯業協会誌
、95 (3)(1987)、P357〜362〕によ
れば、セラミックスであるSiCと金属であるステンレ
ス鋼とを接合するため、第2図に示すように、接合する
セラミックス(SiC)21と金属(ステンレス鋼)2
5との間に、3層のAg−Cuoつ23.23.23を
配設するとともに、セラ6 +7クス21例のAg−C
uロウ23.23間にTi22をインサートし、金属2
2側のAg−Cuロウ23.23間に応力緩和材層(M
o)24をインサートして、810℃の温度の熱処理に
より接合している。
Furthermore, according to the report by Toyohiko Yano et al. [Ceramic Industry Association Journal, 95 (3) (1987), pp. 357-362], which describes bonding ceramics and metals using the active metal method and stress relaxation materials, ceramics. In order to join SiC and metal stainless steel, as shown in Fig. 2, the ceramic (SiC) 21 and metal (stainless steel) 2 to be joined are
5, 3 layers of Ag-Cuo 23, 23, 23 are arranged between Cera 6 + 7 and 21 examples of Ag-C.
Insert Ti22 between u rows 23 and 23, and metal 2
A stress relaxation material layer (M
o) 24 was inserted and bonded by heat treatment at a temperature of 810°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記の方法においては、ろう付は温度が
高融点ろう材(Ag−Cu)の液相線の800℃以上で
行われるため、セラミックス21と金属25とを接合し
た場合、セラミックス21中に発生する残留応力の緩和
が未だ不充分であった。
However, in the above method, brazing is performed at a temperature of 800°C or higher, which is the liquidus line of the high melting point brazing filler metal (Ag-Cu). Relaxation of the generated residual stress was still insufficient.

本発明の目的は、上記した従来技術の課題を解決し、セ
ラミックスと金属と接合に際して、両者間の熱膨張の差
に起因する残留応力をさらに抑制し、セラミックスにク
ラックが発生するのを防止し、健全で強固な接合体を得
ることができるセラミックスと金属との接合方法を提供
することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, to further suppress residual stress caused by the difference in thermal expansion between ceramics and metals, and to prevent cracks from occurring in the ceramics. The object of the present invention is to provide a method for joining ceramics and metal that can produce a sound and strong joined body.

(11題を解決するための手段〕 上記した目的は、セラミックス部材と金属部材とを接合
する方法において、前記セラミックス部材を活性金属と
高融点ロウ材とを有する接合材を介して前記金属部材よ
りも熱膨張係数が小さい金属板と第1の熱処理工程によ
り接合し、次いで、前記金属板と前記金属部材との間に
、金属板および金属部材よりも熱処理による塑性変形が
大きい軟質金属を挟んだ前記高融点ろう材の融点よりも
低い融点を有する低融点ろう材を挿入し、前記第1の熱
処理工程よりも低い温度の第2の熱処理工程により接合
することによって達成される。
(Means for Solving Problem 11) The above object is to provide a method for bonding a ceramic member and a metal member, in which the ceramic member is bonded to the metal member via a bonding material containing an active metal and a high melting point brazing material. A metal plate having a small coefficient of thermal expansion is joined by a first heat treatment step, and then a soft metal whose plastic deformation is larger due to heat treatment than the metal plate and the metal member is sandwiched between the metal plate and the metal member. This is achieved by inserting a low melting point brazing material having a melting point lower than the melting point of the high melting point brazing material, and bonding by a second heat treatment step at a temperature lower than the first heat treatment step.

〔作用〕[Effect]

本発明は上記の手段を採用したことにより、高融点ろう
材のろう付は温度で加熱処理される第1の熱処理工程で
は、セラミックス部材と熱膨張率の小さい金属板との間
の熱膨張差が少なく、セラミックス部材に発生する残留
応力はセラミックス強度に対して無視し得る程度に小さ
いものとなり、次の低融点ろう材のろう付は温度で加熱
処理される第2の熱処理工程では、加熱温度が低くセラ
ミックス部材側と金属部材側との熱膨張差が少なく、ま
た、前記第1の熱処理工程時における残留応力を焼鈍し
効果により緩和できることとなる。
In the present invention, by adopting the above means, in the first heat treatment step in which the high melting point brazing filler metal is heat-treated at a temperature, the difference in thermal expansion between the ceramic member and the metal plate with a small coefficient of thermal expansion is achieved. The residual stress generated in the ceramic member is negligible with respect to the strength of the ceramic material. This means that the difference in thermal expansion between the ceramic member side and the metal member side is small, and the residual stress during the first heat treatment step can be alleviated by the annealing effect.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図(A)(B)(C)(D)は本発明のセラミック
スと金属との接合方法の一実施例を示す工程図である。
FIGS. 1A, 1B, 1C, and 1D are process diagrams showing an embodiment of the method of joining ceramics and metal according to the present invention.

第1図(A)において、まず、セラミックス部材1と低
熱膨張率の金属板2との間に、活性金属3と高融点ろう
材4とを積層状態とした接合材5を挿入して第1の熱処
理工程■を施す。
In FIG. 1(A), first, a bonding material 5 in which an active metal 3 and a high melting point brazing filler metal 4 are laminated is inserted between a ceramic member 1 and a metal plate 2 with a low coefficient of thermal expansion. Apply the heat treatment step ■.

セラミックス部材1としては、SiC,SiN等の炭化
物、窒化物等を採用することができる。
As the ceramic member 1, carbides such as SiC and SiN, nitrides, etc. can be used.

また、低熱膨張率の金属板2としては、セラミックス部
材1と接合されるべき金属部材7の熱膨張率よりも小さ
い金属、望ましくは、熱膨張係数8 X 10−6/℃
以下の金属、例えば、W、WCSMo等が好ましい。
The metal plate 2 with a low coefficient of thermal expansion is preferably a metal with a coefficient of thermal expansion smaller than that of the metal member 7 to be joined to the ceramic member 1, preferably a metal with a coefficient of thermal expansion of 8 x 10-6/°C.
The following metals, such as W and WCSMo, are preferred.

前記接合材5としては、活性金属3と高融点ろう材4と
が上記のように積層状態あるものの他、高融点ろう材4
中に塊状の活性金属3が含有されて存在する形態等、活
性金属3と高融点ろう材4とを有するものであればその
形態に制限はない。
As the bonding material 5, in addition to the one in which the active metal 3 and the high melting point brazing material 4 are in a laminated state as described above, the high melting point brazing material 4 may be used.
There is no restriction on the form as long as it has the active metal 3 and the high melting point brazing filler metal 4, such as a form in which the active metal 3 in the form of a lump is contained therein.

前記活性金属3としては、TL、Zr、Beおよびこれ
らの合金等を挙げることができる。
Examples of the active metal 3 include TL, Zr, Be, and alloys thereof.

前記高融点ろう材4としては、後段の第1図(C)の工
程で使用されるろう材よりも高い融点を有するろう材、
例えば融点750℃以上のろう材が使用される。このよ
うな高融点ろう材としては、Ag−Cuロウ、A g 
oつ、Niロウ、Pdロウ等が挙げられる。
The high melting point brazing filler metal 4 includes a brazing filler metal having a higher melting point than the brazing filler metal used in the subsequent step of FIG. 1(C);
For example, a brazing filler metal with a melting point of 750° C. or higher is used. Such high melting point brazing materials include Ag-Cu wax, Ag
For example, aluminum, Ni wax, Pd wax, etc.

上記第1の熱処理工程■では、前記高融点ろう材4の液
相線よりも高い温度でろう付に必要な雰囲気で所定時間
加熱される。
In the first heat treatment step (2), the high melting point brazing material 4 is heated at a temperature higher than the liquidus line in an atmosphere necessary for brazing for a predetermined period of time.

この第1の熱処理工程■によって、セラミックス部材l
中に残留応力が発生するが、低熱膨張率の金1+@2と
セラミックス部材1との熱膨張の差が小さく、セラミッ
クス部材1に発生する残留応力はその強度に対して無視
できる程度である。
Through this first heat treatment step (■), the ceramic member l
Although residual stress is generated in the ceramic member 1, the difference in thermal expansion between gold 1+@2, which has a low coefficient of thermal expansion, and the ceramic member 1 is small, and the residual stress generated in the ceramic member 1 is negligible compared to its strength.

この第1の熱処理工程のによって、第1図(B)に示す
ようなセラミックス部材1と低熱膨張率の金属板2との
間に接合材5の反応層6が形成されて、両者が接合した
セラミックス金属複合体7が形成される。
Through this first heat treatment step, a reaction layer 6 of the bonding material 5 is formed between the ceramic member 1 and the metal plate 2 with a low coefficient of thermal expansion as shown in FIG. 1(B), and the two are bonded. A ceramic-metal composite 7 is formed.

次に第1図(C)に示すようにセラミックス金属複合体
7とステンレス鋼等の金属部材8との間に、前記第1図
(A)におけるろう材よりも融点の低い271の低融点
ろう材9a、9b間に前記金属板2および金属部材8よ
り熱処理による塑性変形が大きい軟質金属lOを挟持し
たものを挿入し、第2の熱処理工程■を施す。
Next, as shown in FIG. 1(C), between the ceramic-metal composite 7 and the metal member 8 such as stainless steel, a low melting point brazing material 271 having a melting point lower than that of the brazing filler metal in FIG. 1(A) is used. A soft metal lO, which undergoes greater plastic deformation due to heat treatment than the metal plate 2 and metal member 8, is inserted between the materials 9a and 9b, and a second heat treatment step (2) is performed.

上記の低融点ろう材9a、9bとしては、例えば融点7
00℃以下のAg−Cu−Zn−Cdロウ等が挙げられ
、また、軟質金WA10としては、Al、Cu等が挙げ
られる。
For example, the low melting point brazing filler metals 9a and 9b have a melting point of 7
Examples of the soft gold WA10 include Ag-Cu-Zn-Cd wax having a temperature of 00°C or lower, and examples of the soft gold WA10 include Al, Cu, and the like.

上記第2の熱処理工程■では、前記低融点ろう材9a、
9bの液相線付近の温度でろう付に必要な雰囲気で所定
時間加熱される。
In the second heat treatment step (2), the low melting point brazing material 9a,
It is heated for a predetermined time in an atmosphere necessary for brazing at a temperature near the liquidus line of 9b.

この第2の熱処理工程■においては、必要に応じてフラ
ックスを用いることが望ましい。
In this second heat treatment step (2), it is desirable to use flux if necessary.

フラックスを使用することによって、フラックスの酸化
膜除去作用により、低熱膨張率の金属板2、軟質金属1
0およびステンレス鋼等の金属部材8のろう付けする面
を活性化させ、これらの金属に対する低融点ろう材9a
、9bの濡れを良好にすることができる。
By using flux, the metal plate 2 with a low coefficient of thermal expansion, the soft metal 1
The brazing surface of the metal member 8 such as 0 and stainless steel is activated, and the low melting point brazing material 9a for these metals is activated.
, 9b can be better wetted.

また、この第2の熱処理工程■においては、前記第1の
熱処理工程ので発生したセラミックス部材lと低熱膨張
率の金属板2と間の残留応力が焼鈍の作用によ1り緩和
できるとともに、第1の熱処理工程■のろう付けの熱処
理温度に比べて低い温度で熱処理されるために、前記セ
ラミックス金属接合体7と金属部材8との熱膨張の差が
、従来法の如く、高融点ろう材のろう付は温度で一度に
加熱してセラミックス部材とステンレス鋼等の金属部材
とを接合する方法の場合に比べて、セラミックス部材中
に発生する最大主応力を最大50%程度まで減少させる
ことができる。
In addition, in this second heat treatment step (1), the residual stress generated in the first heat treatment step between the ceramic member (1) and the metal plate (2) with a low coefficient of thermal expansion can be alleviated by the action of annealing. Since the heat treatment is performed at a lower temperature than the heat treatment temperature for brazing in the first heat treatment step Compared to the method of joining ceramic parts and metal parts such as stainless steel by heating them all at once, brazing can reduce the maximum principal stress generated in ceramic parts by up to about 50%. can.

したがって、第1の熱処理工程■および第2の熱処理工
程■を経てセラミックス部材1とステンレス鋼等の金属
部材8との間が、上記のような種々の金属が2段階の熱
処理により形成される挿入金属層11を介して強固に接
合されるとともに、セラミックス部材1側には、残留応
力によるクラックの発生しないものとなる。
Therefore, through the first heat treatment step (1) and the second heat treatment step (2), the gap between the ceramic member 1 and the metal member 8 such as stainless steel is formed by the two-step heat treatment of various metals as described above. They are firmly joined via the metal layer 11, and no cracks will occur on the ceramic member 1 side due to residual stress.

以下、さらに具体例で説明する。This will be further explained below using specific examples.

実施例−1 第1図(A)において、 セラミックス部材1  :SiC 低熱膨張率の金属板2:タングステン (W)板 800 am 接合材5の活性金属3:チタン(Ti)Pil、5μm 接合材5の 高融点ろう材4:BAg80つ板 10 μ m 液相線 780℃ を用い、真空炉にてろう付温度820℃、保持時間3分
の条件で第1の熱処理工程■を施した。
Example-1 In FIG. 1(A), Ceramic member 1: SiC Metal plate with low coefficient of thermal expansion 2: Tungsten (W) plate 800 am Active metal 3 of bonding material 5: Titanium (Ti) Pil, 5 μm Bonding material 5 Using a high melting point brazing material 4: BAg 80 plates, 10 μm, liquidus line 780°C, the first heat treatment step (2) was performed in a vacuum furnace at a brazing temperature of 820°C and a holding time of 3 minutes.

次に第1図(C)において、 低融点ろう材9a、9b:BAgloつ板10μm 液相線 620℃ 軟  質  金  属 l O: 銅 (Cu)  板
200μm を用い、フラックスを使用して高周波加熱によりろう付
は温度620℃、保持時間3分の条件で第2の熱処理工
程■を施した。
Next, in Fig. 1 (C), low melting point brazing filler metals 9a and 9b: BAglo plates 10 μm, liquidus line 620°C, soft metal lO: copper (Cu) plates 200 μm, and high frequency heating using flux. For brazing, a second heat treatment step (2) was performed at a temperature of 620° C. and a holding time of 3 minutes.

この結果、セラミックス部材1にクラックのない健全で
強固なセラミックスと金属との接合体が得られた。
As a result, a healthy and strong ceramic-metal bonded body with no cracks in the ceramic member 1 was obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、セラミックス部材を活性
金属と高融点ロウ材とを有する接合材を介して前記金属
部材よりも熱膨張係数が小さい金属板と第1の熱処理工
程により接合し、次いで、前記金属板と前記金属部材と
の間に、金属板および金属部材よりも熱処理による塑性
変形が大きい軟質金属を挟んだ前記高融点ろう材の融点
よりも低い融点を有する低融点ろう材を挿入し、前記第
1の熱処理工程よりも低い温度の第2の熱処理工程によ
り接合するので、熱膨張係数差の大きいセラミックス部
材と金属部材とを接合する際、セラミックス部材側に発
生する熱膨張差に起因する残留応力を確実に抑制できる
とともに、健全で強固なセラミックス金属接合体を製造
することができるものである。
As described above, according to the present invention, a ceramic member is bonded to a metal plate having a coefficient of thermal expansion smaller than that of the metal member through a bonding material having an active metal and a high melting point brazing material in a first heat treatment step, Next, a low melting point brazing filler metal having a melting point lower than that of the high melting point brazing filler metal is sandwiched between the metal plate and the metal member, and a soft metal that undergoes a larger plastic deformation due to heat treatment than the metal plate and the metal member. Since the ceramic member and the metal member, which have a large difference in coefficient of thermal expansion, are joined together, the difference in thermal expansion that occurs on the ceramic member side is reduced. It is possible to reliably suppress the residual stress caused by the process, and also to produce a healthy and strong ceramic-metal bonded body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)(B)(C)(D)は本発明のセラミック
スと金属との接合方法の一実施例を示す工程図、第2図
は従来の接合方法の一例を示す説明図である。 l・・・・・・セラミックス部材 2・・・・・・金属板(低熱膨張率) 3・・・・・・活性金属 4・・・・・・高融点ろう材 5・・・・・・接合材 6・・・・・・反応層 7・・・・・・セラミックス金属複合体8・・・・・・
金属部材(ステンレス鋼)9a、9b・・・・・・低融
点ろう材 10・・・・・・軟質金属 11・・・・・・挿入金属層 特 許  出  願  人 イーグル工業株式会社 第2 図 第1 図 (A) (C)
Figures 1 (A), (B), (C), and (D) are process diagrams showing an example of the method of joining ceramics and metal of the present invention, and Figure 2 is an explanatory diagram showing an example of a conventional joining method. be. l... Ceramic member 2... Metal plate (low coefficient of thermal expansion) 3... Active metal 4... High melting point brazing filler metal 5... Bonding material 6... Reaction layer 7... Ceramic metal composite 8...
Metal members (stainless steel) 9a, 9b...Low melting point brazing filler metal 10...Soft metal 11...Insert metal layer patent Applicant Hito Eagle Industries Co., Ltd. Figure 2 1 Figure (A) (C)

Claims (9)

【特許請求の範囲】[Claims] (1)セラミックス部材と金属部材とを接合する方法に
おいて、前記セラミックス部材を活性金属と高融点ロウ
材とを有する接合材を介して前記金属部材よりも熱膨張
係数が小さい金属板と第1の熱処理工程により接合し、
次いで、前記金属板と前記金属部材との間に、金属板お
よび金属部材よりも熱処理による塑性変形が大きい軟質
金属を挟んだ前記高融点ろう材の融点よりも低い融点を
有する低融点ろう材を挿入し、前記第1の熱処理工程よ
りも低い温度の第2の熱処理工程により接合することを
特徴とするセラミックスと金属との接合方法。
(1) In a method of joining a ceramic member and a metal member, the ceramic member is bonded to a first metal plate having a coefficient of thermal expansion smaller than that of the metal member via a bonding material having an active metal and a high melting point brazing material. Joined by heat treatment process,
Next, a low melting point brazing filler metal having a melting point lower than that of the high melting point brazing filler metal is sandwiched between the metal plate and the metal member, and a soft metal that undergoes a larger plastic deformation due to heat treatment than the metal plate and the metal member. A method for joining ceramics and metal, characterized in that the ceramics and metal are inserted and joined by a second heat treatment step at a temperature lower than the first heat treatment step.
(2)前記高融点ろう材が、融点750℃以上のろう材
であり、前記低融点ろう材が、融点700℃以下のろう
材である請求項1記載のセラミックスと金属との接合方
法。
(2) The method of joining ceramics and metal according to claim 1, wherein the high melting point brazing material is a brazing material with a melting point of 750°C or higher, and the low melting point brazing material is a brazing material with a melting point of 700°C or less.
(3)前記金属板が、熱膨張係数8×10^−^6/℃
以下の金属からなる請求項1記載のセラミックスと金属
との接合方法。
(3) The metal plate has a thermal expansion coefficient of 8 x 10^-^6/℃
The method for joining ceramics and metals according to claim 1, which comprises the following metals.
(4)前記融点750℃以上のろう材がAg−Cuロウ
、Agロウ、NiロウおよびPdロウから選ばれる少な
くとも1種であり、前記融点700℃以下のろう材がA
g−Cu−Zn−Cdロウである請求項2記載のセラミ
ックスと金属との接合方法。
(4) The brazing material with a melting point of 750°C or higher is at least one selected from Ag-Cu wax, Ag wax, Ni wax, and Pd wax, and the brazing material with a melting point of 700°C or lower is A
3. The method of joining ceramics and metal according to claim 2, wherein the bonding method is g-Cu-Zn-Cd wax.
(5)前記セラミックス部材がSiC系セラミックスで
あり、前記金属部材がステンレス鋼である請求項1記載
のセラミックスと金属との接合方法。
(5) The method for joining ceramics and metal according to claim 1, wherein the ceramic member is SiC ceramic and the metal member is stainless steel.
(6)前記活性金属が、Ti、ZrおよびBeから選ば
れる少なくとも1種である請求項1記載のセラミックス
と金属との接合方法。
(6) The method for joining ceramics and metal according to claim 1, wherein the active metal is at least one selected from Ti, Zr, and Be.
(7)前記金属板が、W、WCおよびMoから選ばれる
少なくとも1種である請求項1記載のセラミックスと金
属との接合方法。
(7) The method for joining ceramics and metal according to claim 1, wherein the metal plate is at least one selected from W, WC, and Mo.
(8)前記軟質金属が、CuまたはAlである請求項1
記載のセラミックスと金属との接合方法。
(8) Claim 1 wherein the soft metal is Cu or Al.
The described method for joining ceramics and metal.
(9)前記活性金属と高融点ろう材とを有する接合材が
、高融点ロウ材層に活性金属層を積層したものである請
求項1記載のセラミックスと金属との接合方法。
(9) The method of joining ceramics and metal according to claim 1, wherein the bonding material having the active metal and high melting point brazing material is a layer of active metal laminated on a high melting point brazing material layer.
JP17256989A 1989-07-04 1989-07-04 Adhesion between ceramics and metal Granted JPH0337166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17256989A JPH0337166A (en) 1989-07-04 1989-07-04 Adhesion between ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17256989A JPH0337166A (en) 1989-07-04 1989-07-04 Adhesion between ceramics and metal

Publications (2)

Publication Number Publication Date
JPH0337166A true JPH0337166A (en) 1991-02-18
JPH0547513B2 JPH0547513B2 (en) 1993-07-16

Family

ID=15944269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17256989A Granted JPH0337166A (en) 1989-07-04 1989-07-04 Adhesion between ceramics and metal

Country Status (1)

Country Link
JP (1) JPH0337166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728918A (en) * 2012-06-13 2012-10-17 陕西渭河煤化工集团有限责任公司 Method for connecting WC (Wolfram Carbide) valve core with stainless steel valve rod through thermal bonding
CN102924109A (en) * 2012-10-18 2013-02-13 北京科技大学 Cf/SiC ceramic matrix composite connecting method
CN103273155A (en) * 2013-05-10 2013-09-04 山东大学 Diffusion bonding method of silicon carbide ceramics and ferritic stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728918A (en) * 2012-06-13 2012-10-17 陕西渭河煤化工集团有限责任公司 Method for connecting WC (Wolfram Carbide) valve core with stainless steel valve rod through thermal bonding
CN102728918B (en) * 2012-06-13 2014-06-25 陕西渭河煤化工集团有限责任公司 Method for connecting WC (Wolfram Carbide) valve core with stainless steel valve rod through thermal bonding
CN102924109A (en) * 2012-10-18 2013-02-13 北京科技大学 Cf/SiC ceramic matrix composite connecting method
CN103273155A (en) * 2013-05-10 2013-09-04 山东大学 Diffusion bonding method of silicon carbide ceramics and ferritic stainless steel
CN103273155B (en) * 2013-05-10 2015-07-08 山东大学 Diffusion bonding method of silicon carbide ceramics and ferritic stainless steel

Also Published As

Publication number Publication date
JPH0547513B2 (en) 1993-07-16

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPS60131874A (en) Method of bonding ceramic and metal
JPH02196074A (en) Production of ceramics-metal joined body
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JPH0337166A (en) Adhesion between ceramics and metal
JPH0337165A (en) Adhesion between ceramics and metal
WO1998033620A1 (en) Composite bonding material of beryllium, copper alloy and stainless steel and composite bonding method
JPH0520392B2 (en)
JPH0222024B2 (en)
JPH0672779A (en) Method for joining carbon member
JP2522124B2 (en) Method of joining ceramics to ceramics
JPS59174581A (en) Method of bonding aluminum to alumina
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPH035073A (en) Method for joining cemented carbide and steel and joined body thereof
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPH0142914B2 (en)
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPH09300104A (en) Complex tool material of super-hard alloy system
JPS60166275A (en) Bonding of ceramic and metal
JPS6081070A (en) Bonded structure of sic sintered body and metal member
JP2522125B2 (en) Method for joining ceramics and metal or ceramics
JPH04158994A (en) Cold joining method by superfine particles
JP3100022B2 (en) Solid phase diffusion bonding using insert material
JPH01179769A (en) Method for bonding ceramic material and metallic material
JPH08119760A (en) Soldering of sic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees