JPH0672779A - Method for joining carbon member - Google Patents

Method for joining carbon member

Info

Publication number
JPH0672779A
JPH0672779A JP4223815A JP22381592A JPH0672779A JP H0672779 A JPH0672779 A JP H0672779A JP 4223815 A JP4223815 A JP 4223815A JP 22381592 A JP22381592 A JP 22381592A JP H0672779 A JPH0672779 A JP H0672779A
Authority
JP
Japan
Prior art keywords
carbon
joining
joined
thickness
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223815A
Other languages
Japanese (ja)
Inventor
Hisanobu Okamura
久宣 岡村
Hiroshi Akiyama
秋山  浩
Masahiko Sakamoto
征彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4223815A priority Critical patent/JPH0672779A/en
Publication of JPH0672779A publication Critical patent/JPH0672779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a joining method for obtaining a sound joined body of an isotropic graphite member or a carbon fiber-carbon composite member and other member of a metal, etc. CONSTITUTION:A metallic sheet having <=12X10<3>kgf/mm<2> modulus of longitudinal elasticity at room temp. is interposed between an isotropic graphite member or a carbon fiber-carbon composite member and an opposite member to be joined and the members are joined. By this method, thermal stress produced in the joining layer and the carbon member can be relieved, the cracking of the carbon member due to thermal stress is prevented and a sound joined body can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空宇宙機器及び核融合
装置用や高温ガス炉用の炉壁体をはじめ、炭素部材を使
用する工業製品全般に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to general industrial products using carbon members, including furnace wall bodies for aerospace equipment and nuclear fusion devices and high temperature gas reactors.

【0002】[0002]

【従来の技術】従来、炭素部材を金属部材などの熱膨張
率の異なる部材に接合する方法として、特願昭62−2176
8 号明細書では炭素部材と金属部材との間にMoまたは
Moを含む合金を介して接合する方法を開示している。
また、特願平2−74574号明細書では、炭素部材と金属部
材との間に炭素繊維強化グラファイトを配置してろう付
けする方法を開示している。さらに、特願昭63−310778
号明細書では、両者の間にNiを介して接合する方法を
開示している。
2. Description of the Related Art Conventionally, as a method for joining a carbon member to a member having a different coefficient of thermal expansion, such as a metal member, Japanese Patent Application No. 62-2176.
No. 8 discloses a method of joining a carbon member and a metal member via Mo or an alloy containing Mo.
Further, Japanese Patent Application No. 2-74574 discloses a method of arranging carbon fiber reinforced graphite between a carbon member and a metal member and brazing. Furthermore, Japanese Patent Application No. Sho 63-310778
In the specification, a method of joining the two via Ni is disclosed.

【0003】従来の接合方法では、接合の過程で炭素部
材及び接合層に発生する熱応力の減少には限界がある。
このため、特に、接合層近傍の炭素部材にクラックが発
生し、健全な接合体が得られないと言う問題がある。
In the conventional joining method, there is a limit in reducing the thermal stress generated in the carbon member and the joining layer during the joining process.
Therefore, in particular, there is a problem that cracks occur in the carbon member in the vicinity of the bonding layer and a sound bonded body cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】炭素部材を金属部材な
どの熱膨張率の異なる部材に接合する場合に両者の熱膨
張差によって接合過程で熱応力が生じ、接合層及び炭素
部材中にクラックが発生するという問題がある。特に、
炭素繊維強化炭素部材は繊維の配向方向によって熱膨張
率が小さい面で金属部材などの熱膨張率の大きい部材と
接合する場合がある。このため、特に、炭素繊維強化炭
素部材は熱膨張率差による熱応力やクラックの発生が問
題となる。
When a carbon member is joined to a member such as a metal member having a different coefficient of thermal expansion, thermal stress is generated in the joining process due to the difference in thermal expansion between the two, and cracks occur in the joining layer and the carbon member. There is a problem that it occurs. In particular,
The carbon fiber reinforced carbon member may be joined to a member having a large coefficient of thermal expansion such as a metal member on the surface having a small coefficient of thermal expansion depending on the orientation direction of the fibers. For this reason, in particular, the carbon fiber reinforced carbon member has a problem that thermal stress and cracks are generated due to a difference in thermal expansion coefficient.

【0005】本発明の目的は等方性炭素部材または炭素
繊維強化炭素複合部材と金属等の熱膨張率の異なる部材
を接合した場合に接合層または炭素部材に発生するクラ
ックを防止し、健全な接合体を得ることにある。
The object of the present invention is to prevent the occurrence of cracks in the joining layer or the carbon member when joining an isotropic carbon member or a carbon fiber reinforced carbon composite member and a member such as a metal having different coefficients of thermal expansion, thereby ensuring soundness. To obtain a zygote.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は炭素部材を金属部材などの熱膨張率の異な
る部材に接合する方法において、両者の間に室温におけ
る縦弾性率が12×103kgf/mm2 以下の特性を有する
金属板を介して接合する。この特性をもつ金属板とし
て、Cu,Ag,Al,Nbなどが室温における縦弾性
率が12×103kgf/mm2 以下で、前記金属板を介して
接合する。縦弾性率が12×103kgf/mm2以上の金属
板の場合は本発明の目的を十分に達成できない。なお、
前記金属板は純度が高いほど弾性率をより小さくできる
ため、純度の高い方が望ましい。さらに、前記金属板の
厚さは0.4mm以下ではその効果が小さく、0.5mm以上
の厚さが望ましい。
In order to achieve the above object, the present invention is a method for joining a carbon member to a member having a different coefficient of thermal expansion, such as a metal member, in which the longitudinal elastic modulus at room temperature is 12 ×. Bonding is performed through a metal plate having a characteristic of 10 3 kgf / mm 2 or less. As a metal plate having this characteristic, Cu, Ag, Al, Nb or the like has a longitudinal elastic modulus at room temperature of 12 × 10 3 kgf / mm 2 or less, and is joined through the metal plate. In the case of a metal plate having a longitudinal elastic modulus of 12 × 10 3 kgf / mm 2 or more, the object of the present invention cannot be sufficiently achieved. In addition,
The higher the purity of the metal plate, the smaller the elastic modulus, and therefore the higher the purity is, the more desirable. Further, if the thickness of the metal plate is 0.4 mm or less, its effect is small, and a thickness of 0.5 mm or more is desirable.

【0007】[0007]

【作用】本発明は炭素部材と接合する相手材との間に、
室温における縦弾性率が12×103kgf/mm2以下のC
u,Ag,Al,Nbなどの軟質の金属板を介して接合
することにより、金属板の塑性変形によって接合の過程
または使用中に生じる熱応力が減少できる。したがっ
て、熱応力によって接合層並びに炭素部材に発生するク
ラックが防止され、健全な炭素部材の接合体が得られ
る。
The present invention has the following advantages:
C with a longitudinal elastic modulus of 12 × 10 3 kgf / mm 2 or less at room temperature
By joining via a soft metal plate such as u, Ag, Al, Nb, the thermal stress generated during the joining process or during use due to the plastic deformation of the metal plate can be reduced. Therefore, cracks generated in the bonding layer and the carbon member due to thermal stress are prevented, and a sound carbon member bonded body is obtained.

【0008】[0008]

【実施例】【Example】

〈実施例1〉厚さ5mm,30mm角の等方性黒鉛及び炭素
繊維炭素複合部材とステンレス鋼との接合において、両
者の間に厚さが0.1 〜10mmの無酸素銅板を介して接
合する。接合は該等方性黒鉛及び炭素繊維炭素複合部材
の接合面に銀ろう中に2%のTiを添加したペースト状
のろう材により、予め、メタライズ層を形成する。この
炭素部材とステンレス鋼との間に銅板を介して融点が7
80℃の共晶銀ろうによって接合する。この方法によっ
て接合された接合体について剪断試験を行った結果、銅
板の厚さが0.5mm 以上の場合に炭素部材と同様の剪断
強度が得られ、接合体にクラックが発生していないこと
が確認された。
<Example 1> In the joining of isotropic graphite and carbon fiber-carbon composite member having a thickness of 5 mm and 30 mm square to stainless steel, the two members are joined together through an oxygen-free copper plate having a thickness of 0.1 to 10 mm. To do. For the joining, a metallized layer is previously formed on the joining surface of the isotropic graphite and the carbon fiber-carbon composite member with a paste-like brazing material in which 2% of Ti is added to silver brazing. A melting point of 7 is obtained through a copper plate between the carbon member and stainless steel.
Bonded with eutectic silver solder at 80 ° C. As a result of performing a shearing test on the joined body joined by this method, when the thickness of the copper plate is 0.5 mm or more, the same shear strength as that of the carbon member is obtained, and it is found that the joined body is not cracked. confirmed.

【0009】〈実施例2〉厚さ5mm,50mm角の等方性
黒鉛及び炭素繊維炭素複合部材とアルミ合金との接合に
おいて、両者の間に厚さが0.1 〜10mmの純Al板を
介して接合する。接合は等方性黒鉛及び炭素繊維炭素複
合部材の接合面に予め蒸着法により炭素部材側からTi
−Pd−Alの順にメタライズ層を形成する。炭素部材
とAl合金との間にAl板を介してAl−Siろうによ
って接合する。この方法によって接合された接合体につ
いて剪断試験を行った結果、Al板の厚さが1mm以上の
場合に炭素部材と同様の剪断強度が得られ、接合体にク
ラックが発生していないことが確認された。
Example 2 In the joining of isotropic graphite and carbon fiber-carbon composite member having a thickness of 5 mm and 50 mm square and an aluminum alloy, a pure Al plate having a thickness of 0.1 to 10 mm is provided therebetween. Join through. Bonding is performed on the bonding surface of the isotropic graphite and carbon fiber-carbon composite member in advance by vapor deposition from the carbon member side to Ti
A metallization layer is formed in the order of -Pd-Al. The carbon member and the Al alloy are joined by Al-Si brazing through the Al plate. As a result of performing a shear test on the joined body joined by this method, it was confirmed that when the thickness of the Al plate was 1 mm or more, the same shear strength as that of the carbon member was obtained and that the joined body was not cracked. Was done.

【0010】〈実施例3〉厚さ10mm,50mm角の等方
性黒鉛及び炭素繊維炭素複合部材と炭素鋼との接合にお
いて、両者の間に厚さが0.1 〜10mmの銀板並びにニ
オブ板を介して銀ろうにより接合する。接合前に炭素部
の接合面に蒸着法により炭素部材側からTi−Pd−N
iの順にメタライズ層を形成する。また、銀板及びニオ
ブ板の表面にはNiめっきを施してある。
<Example 3> In joining isotropic graphite and carbon fiber-carbon composite members having a thickness of 10 mm and 50 mm square to carbon steel, a silver plate having a thickness of 0.1 to 10 mm and niobium are provided therebetween. Bond with silver solder through the plate. Before joining, a Ti-Pd-N layer was formed on the joint surface of the carbon portion from the carbon member side by vapor deposition
A metallized layer is formed in the order of i. The surfaces of the silver plate and the niobium plate are plated with Ni.

【0011】この方法によって接合された接合体につい
て剪断試験を行った結果、銀板及びニオブ板の厚さが
0.5mm 以上の場合に炭素部材と同様の剪断強度が得ら
れ、接合体にクラックが発生していないことが確認され
た。
As a result of performing a shear test on the joined body joined by this method, when the thickness of the silver plate and the niobium plate is 0.5 mm or more, the same shear strength as that of the carbon member is obtained and the joined body is cracked. It was confirmed that the above did not occur.

【0012】〈実施例4〉厚さ3mm,50mm角の等方性
黒鉛及び炭素繊維炭素複合部材と同形状のアルミナセラ
ミックスとの接合において、両者の間に厚さが0.1 〜
10mmの純銅板を介して銀ろうにより接合した。接合は
予め等方性黒鉛及び炭素繊維炭素複合部材の接合面に蒸
着法により炭素部材側からTi−Pd−Niの順にメタ
ライズ層を形成する。また、セラミックスの接合面には
Mo−Mnメタライズ法により金属化層を形成する。こ
の方法によって接合された接合体について剪断試験を行
った結果、銅板の厚さが0.5mm 以上の場合に炭素部材
と同様の剪断強度が得られ、接合体にクラックの発生が
ないことが確認された。接合体を半導体用の絶縁冷却基
板とした。
<Embodiment 4> In the bonding of isotropic graphite and carbon fiber-carbon composite members having a thickness of 3 mm and 50 mm square to alumina ceramics having the same shape, a thickness of 0.1 to 0.5 is provided between them.
Bonding was performed with silver brazing through a 10 mm pure copper plate. For the bonding, a metallized layer is formed in advance on the bonding surfaces of the isotropic graphite and the carbon fiber-carbon composite member from the carbon member side in the order of Ti-Pd-Ni by the vapor deposition method. Further, a metallized layer is formed on the bonded surface of the ceramics by the Mo-Mn metallization method. As a result of performing a shear test on the joined body joined by this method, it was confirmed that when the thickness of the copper plate was 0.5 mm or more, the same shear strength as that of the carbon member was obtained and no crack was generated in the joined body. Was done. The bonded body was used as an insulating cooling substrate for semiconductors.

【0013】〈実施例5〉30mm角,厚さ5mmの炭素繊
維強化炭素材の接合面にAgとCuとの共晶合金粉末中
にTi粉末を2wt%、さらに、これに有機溶剤を添加
してペースト状にしたろう材を200μmの厚さに塗付
する。これを真空炉中850℃に加熱することにより、
炭素質体の表面に接合用の金属化層を形成する。なお、
炭素繊維強化炭素複合材は、炭素繊維の配向方向に対し
て直角方向の面に金属化層を設ける。この方法により表
面が金属化された炭素部材100個を内部に水冷の冷却
構造を有するステンレス製の冷却構造体に厚さ1mmの無
酸素銅箔を介してタイル状にろう付する。ろう付は銀ろ
うを用いてAr雰囲気中で行った。
Example 5 2 wt% of Ti powder in a eutectic alloy powder of Ag and Cu was added to the joint surface of a carbon fiber reinforced carbon material of 30 mm square and 5 mm in thickness, and an organic solvent was added thereto. Then, a brazing material in paste form is applied to a thickness of 200 μm. By heating this to 850 ° C. in a vacuum furnace,
A metallization layer for bonding is formed on the surface of the carbonaceous body. In addition,
The carbon fiber reinforced carbon composite material is provided with a metallization layer on a surface perpendicular to the orientation direction of the carbon fibers. 100 carbon members whose surfaces are metallized by this method are brazed to a cooling structure made of stainless steel having a water-cooling cooling structure in a tile shape via an oxygen-free copper foil having a thickness of 1 mm. Brazing was carried out in an Ar atmosphere using silver solder.

【0014】この方法により接合された冷却構造体を核
融合装置用の受熱板として適用するため、構造体の冷却
通路に流速3m/sの冷却水で流しながら炭素部材の表
面に熱流束20MW/m2 の水素イオンビームを連続的
に照射し、冷却構造体の健全性を確認した。この結果、
炭素部材及び接合層にはクラックや剥離は見られず、健
全であることが確認された。
In order to apply the cooling structure joined by this method as a heat receiving plate for a nuclear fusion device, a heat flux of 20 MW / is applied to the surface of the carbon member while flowing cooling water having a flow rate of 3 m / s in the cooling passage of the structure. The soundness of the cooling structure was confirmed by continuously irradiating the hydrogen ion beam of m 2 . As a result,
It was confirmed that the carbon member and the bonding layer were sound without cracks or peeling.

【0015】〈実施例6〉厚さ10mm,50mm角の炭素
繊維強化炭素複合材の接合表面にCuの粉末中に30m
ass%のTi粉末を、さらに、これに有機溶剤を添加
してペースト状にしたろう材を200μmの厚さに塗付
する。これを真空炉中で1000℃に加熱することによ
り、炭素複合材の両表面に接合用の金属化層を形成す
る。なお、炭素繊維強化炭素複合材は、炭素繊維の配向
方向に対して直角方向の面に金属化層を設ける。この方
法により接合面が金属化された炭素部材50個を冷却構
造を有するMo製の冷却構造体に接合するにあたり、両
者の間に厚さ2mmの無酸素銅板を介して接合した。接合
は厚さ50μmの銀ろう箔を用いて真空炉中でタイル状
にろう付した。
<Embodiment 6> On the bonding surface of a carbon fiber reinforced carbon composite material having a thickness of 10 mm and a size of 50 mm, 30 m of Cu powder was added.
An as% Ti powder is further added with an organic solvent to form a paste-like brazing material having a thickness of 200 μm. By heating this to 1000 ° C. in a vacuum furnace, a metallization layer for bonding is formed on both surfaces of the carbon composite material. In the carbon fiber reinforced carbon composite material, a metallized layer is provided on the surface perpendicular to the carbon fiber orientation direction. When 50 carbon members whose bonding surfaces were metallized by this method were bonded to a cooling structure made of Mo having a cooling structure, they were bonded via an oxygen-free copper plate having a thickness of 2 mm. The joining was brazed in tile form in a vacuum furnace using a silver brazing foil having a thickness of 50 μm.

【0016】この方法により接合された冷却構造体を核
融合装置用の受熱板として適用するため、この構造体の
冷却通路に流速5m/sの冷却水で流しながら炭素部材
の表面に熱流束20MW/m2 の水素イオンビームを連
続的に照射し、冷却構造体の健全性を確認した。この結
果、炭素部材及び接合層にはクラックや剥離は見られ
ず、健全であることが確認された。
Since the cooling structure joined by this method is applied as a heat receiving plate for a nuclear fusion device, a heat flux of 20 MW is applied to the surface of the carbon member while flowing cooling water having a flow rate of 5 m / s in the cooling passage of this structure. The soundness of the cooling structure was confirmed by continuously irradiating a hydrogen ion beam of / m 2 . As a result, it was confirmed that the carbon member and the bonding layer were sound without any cracks or peeling.

【0017】〈実施例7〉厚さ5mm,50mm角の等方性
黒鉛及び炭素繊維炭素複合部材と銅マトリックス中にA
23粉末を分散したアルミナ分散合金との接合におい
て、両者の間に厚さが0.1 〜10mmの純銅板を介して
接合する。接合前に等方性黒鉛及び炭素繊維炭素複合部
材の接合面に予め銀ろう中に2%のTiを添加したペー
スト状のろう材により、メタライズ層を形成する。この
方法によって接合された接合体について剪断試験を行っ
た結果、Cuの厚さが1mm以上の場合に炭素部材と同様
の剪断強度が得られ、接合体にクラックが発生していな
いことが確認された。
<Embodiment 7> A in a 5 mm, 50 mm square isotropic graphite and carbon fiber-carbon composite member and a copper matrix.
In the joining with the alumina dispersion alloy in which the l 2 O 3 powder is dispersed, the two are joined through a pure copper plate having a thickness of 0.1 to 10 mm. Before joining, a metallized layer is formed on the joining surface of the isotropic graphite and the carbon fiber-carbon composite member with a paste-like brazing material in which 2% of Ti is added in silver brazing in advance. As a result of performing a shear test on the joined body joined by this method, it was confirmed that when the Cu thickness was 1 mm or more, the same shear strength as that of the carbon member was obtained, and that the joined body was not cracked. It was

【0018】[0018]

【発明の効果】本発明によれば、金属板の塑性変形によ
って接合層及び炭素部材に発生する熱応力を減少でき
る。したがって、熱応力によって炭素部材に生じるクラ
ックが防止され、健全な接合体を得ることができる。こ
のため、融合装置用炉壁体などの大型構造物の接合も容
易に製作できる。
According to the present invention, the thermal stress generated in the joining layer and the carbon member due to the plastic deformation of the metal plate can be reduced. Therefore, cracks generated in the carbon member due to thermal stress are prevented, and a sound bonded body can be obtained. Therefore, it is possible to easily manufacture a large structure such as a furnace wall for a fusion device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素部材を熱膨張率の異なる部材に接合す
る方法において、前記部材との間に室温における縦弾性
係数が12×103kgf/mm2以下からなる金属板を介し
て接合することを特徴とする炭素部材の接合方法。
1. A method of joining a carbon member to a member having a different coefficient of thermal expansion, wherein the carbon member is joined to the member via a metal plate having a longitudinal elastic modulus of 12 × 10 3 kgf / mm 2 or less at room temperature. A method for joining carbon members, comprising:
【請求項2】請求項1において、縦弾性係数が12×1
3kgf/mm2以下からなる前記金属板は、Cu,AgA
l,Nbのいずれかである炭素部材の接合方法。
2. The modulus of longitudinal elasticity according to claim 1, which is 12 × 1.
The metal plate consisting of 0 3 kgf / mm 2 or less is Cu, AgA
A method for joining carbon members which are either 1 or Nb.
【請求項3】請求項1において、前記炭素部材は、炭素
繊維強化炭素部材である炭素部材の接合方法。
3. The method for joining carbon members according to claim 1, wherein the carbon member is a carbon fiber reinforced carbon member.
JP4223815A 1992-08-24 1992-08-24 Method for joining carbon member Pending JPH0672779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223815A JPH0672779A (en) 1992-08-24 1992-08-24 Method for joining carbon member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223815A JPH0672779A (en) 1992-08-24 1992-08-24 Method for joining carbon member

Publications (1)

Publication Number Publication Date
JPH0672779A true JPH0672779A (en) 1994-03-15

Family

ID=16804157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223815A Pending JPH0672779A (en) 1992-08-24 1992-08-24 Method for joining carbon member

Country Status (1)

Country Link
JP (1) JPH0672779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791686A (en) * 1995-03-24 1998-08-11 Nsk Ltd. Energy absorbing intermediate steering shaft
JP2008507465A (en) * 2004-07-20 2008-03-13 エンテ ペル レ ヌオベ テクノロジィ、レネルジア エ ラムビエンテ(エネア) Joining process for ceramic and metallic materials with transition materials
KR100966059B1 (en) * 2001-01-16 2010-06-28 다피모 코.비.브이.,엘엘씨 Method, System, Transceiver, and Information Stroage Device for Fast Initialization Using Seamless Rate Adaptation
JP2014205609A (en) * 2013-03-20 2014-10-30 ジョンソン エレクトリック ソシエテ アノニム Method for manufacturing commutator using brazing and soldering process
JP2014224030A (en) * 2013-03-20 2014-12-04 シェンジェン ジョイント ウェルディング マテリアル カンパニー リミテッド Method for applying metallic sheet to graphite structure using brazing and soldering step

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791686A (en) * 1995-03-24 1998-08-11 Nsk Ltd. Energy absorbing intermediate steering shaft
KR100966059B1 (en) * 2001-01-16 2010-06-28 다피모 코.비.브이.,엘엘씨 Method, System, Transceiver, and Information Stroage Device for Fast Initialization Using Seamless Rate Adaptation
JP2008507465A (en) * 2004-07-20 2008-03-13 エンテ ペル レ ヌオベ テクノロジィ、レネルジア エ ラムビエンテ(エネア) Joining process for ceramic and metallic materials with transition materials
JP2014205609A (en) * 2013-03-20 2014-10-30 ジョンソン エレクトリック ソシエテ アノニム Method for manufacturing commutator using brazing and soldering process
JP2014224030A (en) * 2013-03-20 2014-12-04 シェンジェン ジョイント ウェルディング マテリアル カンパニー リミテッド Method for applying metallic sheet to graphite structure using brazing and soldering step

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
CN113478040B (en) Active brazing method for improving performance of graphite/copper dissimilar material joint
JPS60131874A (en) Method of bonding ceramic and metal
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH0672779A (en) Method for joining carbon member
JPS63310778A (en) Bonding method of carbon material and metal
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JPS6213258A (en) Joining structure of cooling panel
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
CN110695565B (en) Indium-based active brazing filler metal for brazing quartz and kovar alloy and brazing process
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPS59184778A (en) Pressure welding of ceramic member to metal member
JP2954850B2 (en) Bonding materials for carbon-based materials and carbon-based materials with hard surface layers
JPS63190788A (en) Metallization of ceramics
JPS6250073A (en) Joined graphite-metal structural body
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPH0371393B2 (en)
JPS62227596A (en) Ceramics-metal joining member
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JPH0223501B2 (en)
JPH0337166A (en) Adhesion between ceramics and metal
JPS60239373A (en) Alumina and metal bonding method
JPS60166275A (en) Bonding of ceramic and metal
JPS60145972A (en) Ceramic-metal bonded body
CN115446407A (en) Brazing method of high-volume-fraction SiCp/Al-based composite material and AlN ceramic