JPS62171970A - Member for joining ceramic to metal - Google Patents

Member for joining ceramic to metal

Info

Publication number
JPS62171970A
JPS62171970A JP1386886A JP1386886A JPS62171970A JP S62171970 A JPS62171970 A JP S62171970A JP 1386886 A JP1386886 A JP 1386886A JP 1386886 A JP1386886 A JP 1386886A JP S62171970 A JPS62171970 A JP S62171970A
Authority
JP
Japan
Prior art keywords
metal
ceramic
based alloy
thermal stress
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1386886A
Other languages
Japanese (ja)
Inventor
白兼 誠
中橋 昌子
山崎 達雄
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1386886A priority Critical patent/JPS62171970A/en
Publication of JPS62171970A publication Critical patent/JPS62171970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、接合強さに優れた。セラミックスと金属の
接合部材に関し、更に詳しくは熱応力緩衝層にNi基合
金あるいはCo基合金またはFe基合金を用い優れた接
合強さが得られるセラミックー金属接合部材に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention has excellent bonding strength. The present invention relates to a ceramic-to-metal bonding member, and more particularly to a ceramic-to-metal bonding member that uses a Ni-based alloy, Co-based alloy, or Fe-based alloy for the thermal stress buffering layer and provides excellent bonding strength.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

窒化ケイ素、炭化ケイ素、アルミナ等の各種セラミック
スは、夫々が備えた特異な性質を生かすことにより構造
部材、各種機能部材として広く利用され始めている。そ
の多くの場合は、セラミックスそれ自体を単独で利用す
るという態様である。
Various ceramics such as silicon nitride, silicon carbide, and alumina have begun to be widely used as structural members and various functional members by taking advantage of their unique properties. In many cases, ceramics themselves are used alone.

こうしたセラミックスに金属を接合できるとすれば、得
られた部材は新たな機能を備えた部材として一層広い分
野での利用が可能になるものと考えられる。
If it is possible to bond metal to such ceramics, it is thought that the resulting members will be able to be used in an even wider range of fields as members with new functions.

」二連したセラミックス−金属接合部材において、それ
が構造部品である場合にはセラミックスと金属の接合強
度は充分に高いことが要求され、特に、セラミックスの
最も優れた特徴である高温域までの、優れた機械的特性
を生かすには高温域までの高い接合強度が要求される。
"In the case of a double series ceramic-metal bonded member, if it is a structural component, the bonding strength between the ceramic and the metal is required to be sufficiently high. In particular, it is required that the bonding strength between the ceramic and the metal be sufficiently high. High bonding strength up to high temperatures is required to take advantage of its excellent mechanical properties.

しかしながら、セラミックと金属を直接、接合すると冷
却する過程においてセラミックスにクラックが頻発する
、あるいは、クラックが発生しなくとも、熱疲労に対し
非常に弱い、または、接合強度が著しく低いという問題
がある。これは、セラミックスと金属との間に発生する
熱応力に基づく現象である。例えば、セラミックスがア
ルミナ、窒化ケイ素の場合、夫々の線熱膨張係数は8.
8X10−”/℃、 2.5X10−’/℃であり、 
Cu、Ni、Feなどに比べてその値は約1桁小さいも
ので、両者の接合部に発生する熱応力は大きくなる。し
かも、熱応力は接合時の温度と冷却時の温度(室温)と
の差が大きければ大きいほど増大する。従って、熱応力
を減するためには接合時の温度を低めることが求められ
、そのことは接合時に低融点のろう材の使用が要求され
ることになる。
However, when ceramic and metal are directly bonded, there is a problem that cracks frequently occur in the ceramic during the cooling process, or even if no cracks occur, the ceramic is extremely susceptible to thermal fatigue or the bond strength is extremely low. This is a phenomenon based on thermal stress generated between ceramics and metal. For example, when the ceramic is alumina or silicon nitride, the linear thermal expansion coefficient of each is 8.
8X10-''/℃, 2.5X10-''/℃,
The value is about one order of magnitude smaller than that of Cu, Ni, Fe, etc., and the thermal stress generated at the joint between the two becomes large. Furthermore, the thermal stress increases as the difference between the temperature during bonding and the temperature during cooling (room temperature) increases. Therefore, in order to reduce thermal stress, it is required to lower the temperature during bonding, which requires the use of a brazing material with a low melting point during bonding.

上述した問題点に対して特開昭56−163093号の
接合方法の提案や活性金属を含むろう材をセラミックス
と金属の両者に拡散せしめて構成した接合部材の開発が
なされている。しかしながら、これらの方法は複雑な工
程、長時間の熱処理が不可避であるため、生産性等の点
で問題があり、しかもセラミックスと金属間の熱応力の
緩和には必ずしも有効ではない。
In order to address the above-mentioned problems, a bonding method has been proposed in Japanese Patent Application Laid-Open No. 163093/1983, and a bonding member has been developed in which a brazing filler metal containing an active metal is diffused into both ceramics and metal. However, these methods have problems in terms of productivity, etc., because they require complicated steps and long-term heat treatment, and are not necessarily effective in alleviating thermal stress between ceramics and metals.

上記手法の適用時における応力緩和を果すための方法と
しては、セラミックスと金属の間に軟質金属層を介在さ
せ、その塑性変形及び弾性変形によって熱応力を緩和す
る方法(特開昭56−41879号)、セラミックスと
金属の間に線膨張率が両者の中間の値を有する材料の層
を介在させる方法(特開昭55−1.13678号)、
セラミックスから金属にかけて線膨張率が小から大へと
変化する複数の層を順次積層して介在させる方法(特開
昭55−75/14号)などが開示されている。
As a method for achieving stress relaxation when applying the above method, there is a method in which a soft metal layer is interposed between the ceramic and the metal, and the thermal stress is alleviated by the plastic deformation and elastic deformation (Japanese Patent Laid-Open No. 56-41879). ), a method in which a layer of a material having a coefficient of linear expansion between the ceramic and metal is interposed between the two (Japanese Patent Application Laid-open No. 1.13678/1983);
A method has been disclosed in which a plurality of layers whose linear expansion coefficients vary from small to large from ceramic to metal are successively laminated and interposed (Japanese Patent Application Laid-Open No. 1983-75/14).

しかしながら、活性金属を含むろう材での上記接合方法
の場合、接合面にかかる圧力によって、しばしば溶融ろ
う材が接合部からはみ出すことがある。このはみ出した
溶融ろう材の量が多くなると、凝固冷却する過程におい
て、セラミックスとろう材の熱膨張係数の差に基づく熱
応力によりセラミックスにクラックが生じることがある
。この現象を防止するためには、はみ出しがなく、かつ
接合部全面をろう材がぬらすのに必要な最適なろう材の
量(厚さ)を決めればよいが、用いる接合材料、接合圧
力、接合温度、雰囲気等の条件により、ろう材の最適量
を決めるのは非常に困難である。さらに、熱応力緩衝層
を介在させた場合、セラミックスおよび熱応力緩衝層と
、ろう材との相互作用が複雑となり接合に至らない場合
がある。
However, in the case of the above-described joining method using a brazing material containing an active metal, the pressure applied to the joining surface often causes the molten brazing material to protrude from the joint. If the amount of the molten brazing filler metal that protrudes increases, cracks may occur in the ceramic during the solidification and cooling process due to thermal stress due to the difference in coefficient of thermal expansion between the ceramic and the brazing filler metal. In order to prevent this phenomenon, it is necessary to determine the optimum amount (thickness) of brazing filler metal necessary to prevent any protrusion and to wet the entire surface of the joint, but it is necessary to It is very difficult to determine the optimum amount of brazing filler metal depending on conditions such as temperature and atmosphere. Furthermore, when a thermal stress buffering layer is interposed, the interaction between the ceramics, the thermal stress buffering layer, and the brazing material becomes complicated, and bonding may not be achieved.

例えば、熱応力緩衝層に、Ni基、Co基、Fe基の各
合金を用いた場合、ろう材に活性金属ろうを用いると、
ろう材中の活性元素がセラミックスの他に熱応力緩衝層
との反応にも大幅に消費され十分な接合強度が得られな
い場合がしばしばあった。
For example, if a Ni-based, Co-based, or Fe-based alloy is used for the thermal stress buffer layer, and an active metal brazing material is used for the brazing material,
In many cases, the active elements in the brazing filler metal are consumed to a large extent by reactions with the thermal stress buffering layer as well as the ceramics, making it impossible to obtain sufficient bonding strength.

〔発明の目的〕[Purpose of the invention]

本発明は、高温での接合強度が高く、しかも熱影響によ
るセラミックスのクラック発生および接合部界面での剥
離を防止したセラミックー金属接合部材を提供しようと
するものである。
The present invention aims to provide a ceramic-metal bonding member that has high bonding strength at high temperatures and prevents cracking of the ceramic and peeling at the interface of the bonded portion due to thermal effects.

〔発明の概要〕[Summary of the invention]

本発明者らは、セラミックと金属との間に応力緩衝層を
介在せしめて全体を活性金属ろう材で接合した、接合部
材について鋭意研究を重ねた結果、応力緩衝層としてN
i基合金、あるいはCO基合金、またはFe基合金を用
い接合用ろう材として、後述の活性金属ろう材を用いる
ことによって、記述の如く高温での接合強度が高く、シ
かも熱影響によるセラミックスのクラック発生を防止し
たセラミックー金属接合部材を見い出した。
The inventors of the present invention have conducted extensive research on bonding members in which a stress buffer layer is interposed between ceramic and metal, and the entire body is bonded using an active metal brazing filler metal.
By using I-based alloy, CO-based alloy, or Fe-based alloy and the active metal brazing material described below as a joining brazing material, the joining strength at high temperatures is high as described above, and it is possible to prevent ceramics from being affected by heat. We have discovered a ceramic-metal bonding member that prevents cracking.

上記セラミックスとしては1例えばA Qz OB g
 ZrO□などの酸化物系セラミックス、 SiC,T
iCなどの炭化物系セラミックス、5iaN、 、 A
βNなどの窒化物系セラミックス等を挙げることができ
る。
The above ceramics include 1, for example, A Qz OB g
Oxide ceramics such as ZrO□, SiC, T
Carbide ceramics such as iC, 5iaN, , A
Examples include nitride ceramics such as βN.

上記金属としては1例えばFe、Ni、Co、Ti、M
o、V。
Examples of the above metals include Fe, Ni, Co, Ti, M
o, V.

Nb、Ta、Zr又はこれらの合金等を挙げることがで
きる。
Examples include Nb, Ta, Zr, and alloys thereof.

上記熱応力緩衝層としては、Ni基合金あるいはCo基
合金またはFe基合金を挙げることができる。
Examples of the thermal stress buffering layer include Ni-based alloy, Co-based alloy, and Fe-based alloy.

これらの合金は溶解材の他、焼結体であって真密度が1
00%に達していなくても良く、さらに粒子分散強化型
合金であって、真密度が100%に達していないもので
あっても良い。これらの合金は一般に高温強度が優れて
おり、接合強度の向上が期待出来る。これら、熱応力緩
衝層の厚さは、0.3m以]−にすることが望ましい。
In addition to melting materials, these alloys are sintered bodies with a true density of 1.
The true density does not have to reach 100%, and furthermore, it may be a particle dispersion strengthened alloy with a true density of less than 100%. These alloys generally have excellent high-temperature strength and can be expected to improve bonding strength. The thickness of these thermal stress buffer layers is preferably 0.3 m or more.

この理由は、該複合層の厚さを0.3mm未満にすると
、セラミックスと金属との間に発生する熱応力を有効に
吸収することが難しくなり、接合部の強度が著しく低下
したり、セラミックスにクラックが発生する恐れがある
The reason for this is that if the thickness of the composite layer is less than 0.3 mm, it will be difficult to effectively absorb the thermal stress generated between the ceramic and the metal, and the strength of the joint will drop significantly, and the ceramic Cracks may occur.

本発明の特徴の1つである接合用ろう材は、Tiろう材
組成の選択は熱応力緩衝層の成分により決定される。つ
まり、熱応力緩衝層がNi基合金の場合、ろう材組成は
Fj−CuあるいはTj−Cu−Nj、 C。
In the joining brazing material, which is one of the features of the present invention, the selection of the composition of the Ti brazing material is determined by the components of the thermal stress buffering layer. In other words, when the thermal stress buffer layer is a Ni-based alloy, the brazing material composition is Fj-Cu or Tj-Cu-Nj, C.

基合金の場合、T i−CuあるいはTi−Cu−Co
、 Fe基合金の場合、Tj、−Cu−Feから選択す
るのが好ましい。
In the case of base alloys, Ti-Cu or Ti-Cu-Co
, In the case of Fe-based alloys, it is preferable to select from Tj, -Cu-Fe.

しかしながら必ずしもこれらの組合せでなくとも接合は
可能である。ろう相成分はTi−Cu、Ti−Cu−N
i。
However, joining is possible without necessarily using these combinations. Wax phase components are Ti-Cu, Ti-Cu-N
i.

Ti−Cu−Co 、 Ti−Cu−Fe合金の共晶成
分および共晶成分より低T1成分が良い、共晶成分より
高Ti成分になるとセラミックスと熱応力緩衝層のNi
基合金、Co基合金、Fe基合金との反応が複雑になる
。つまり熱応力緩衝層とTi5との反応に多くのTjが
消費され、セラミックスとの反応が十分になされず、高
い接合強度が得られない。また、ろう材は、合金層ある
いは各元素ごと金属箔として配してもいかなる方法であ
っても良い。ろう材の厚さは、6声以下になると、セラ
ミックスと熱応力緩衝層の接合面、全体をぬらすのが困
難となり、非常に平滑な接合面および接合圧力を必要と
し、生産性等の点で問題がある。また厚さが20庫以上
になると接合は容易になるが、接合強度におよぼするう
材層の影響が顕著に現われる。つまり上記のような、ろ
う相成分は、一般的に脆性であり、厚さが増すにつれ、
ろう材層からの剥離破断が生じやすく、低い接合強度と
なる。
The eutectic component of Ti-Cu-Co and Ti-Cu-Fe alloys and the lower T1 component than the eutectic component are better, and the higher the Ti component than the eutectic component, the higher the Ni content in ceramics and thermal stress buffering layer.
Reactions with base alloys, Co-based alloys, and Fe-based alloys become complicated. In other words, a large amount of Tj is consumed in the reaction between the thermal stress buffer layer and Ti5, and the reaction with the ceramics does not take place sufficiently, making it impossible to obtain high bonding strength. Further, the brazing material may be disposed in an alloy layer or as a metal foil for each element, or by any other method. If the thickness of the brazing filler metal is less than 6 tones, it will be difficult to wet the entire bonding surface between the ceramic and the thermal stress buffer layer, which will require a very smooth bonding surface and bonding pressure, which will reduce productivity. There's a problem. Furthermore, when the thickness is 20 mm or more, joining becomes easier, but the effect of the filler layer on the joining strength becomes noticeable. In other words, the waxy phase component described above is generally brittle, and as the thickness increases,
Peeling and breakage from the brazing filler metal layer is likely to occur, resulting in low bonding strength.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば高温での接合強度が
高く、しかも熱影響によるセラミックスのクラック発生
を防止でき、ひいては各種の構造部材、機能部材として
有用な高信頼性のセラミックス−金属接合部材を提供で
きる。
As detailed above, according to the present invention, the bonding strength at high temperatures is high, and it is possible to prevent the occurrence of cracks in ceramics due to the influence of heat, and in turn, the highly reliable ceramic-metal bonding that is useful as various structural members and functional members. We can provide parts.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例 まず、直径13nm、厚さ5mnの窒化ケイ素円柱体、
直径1.3 +nn、厚さ51W+の構造用炭素鋼(、
TIS、S次いで、前記窒化ケイ素円柱体と炭素鋼円板
の間に前記複合板を介在させ、該窒化ケイ素円柱体と複
合板の間及び複合板と炭素鋼円板の間にろう材を挟んで
重ね合せた後、10kH/dの圧力を加えなから5 X
 IF” Torr、950℃×4分間の条件で保持し
、ひきつづきアルゴンガス中で冷却して窒化ケイ素−炭
素鋼接合部材を得た。
Example First, a silicon nitride cylinder with a diameter of 13 nm and a thickness of 5 mm,
Structural carbon steel with diameter 1.3 +nn and thickness 51W+ (,
TIS,S Next, the composite plate is interposed between the silicon nitride cylinder and the carbon steel disc, and the brazing material is sandwiched between the silicon nitride cylinder and the composite plate and between the composite plate and the carbon steel disc, and then the composite plate is stacked. Do not apply a pressure of 10kHz/d5
It was held under the conditions of IF'' Torr and 950° C. for 4 minutes, and then cooled in argon gas to obtain a silicon nitride-carbon steel bonded member.

第1表に、熱応力緩衝板の材質、ろう相成分および厚さ
をさらに、接合部材、接合面に600℃でせん断路力を
加え、高温せん断強さを測定した。
Table 1 shows the material, wax phase component, and thickness of the thermal stress buffer plate, and high-temperature shear strength was measured by applying a shear path force at 600° C. to the joint members and joint surfaces.

その結果を同第1表に併記した。なお、第1表中には、
実施例1〜4を記しさらに比較例1〜4を併記した。
The results are also listed in Table 1. In addition, in Table 1,
Examples 1 to 4 are written, and Comparative Examples 1 to 4 are also written together.

第1表 上記第1表より明らかな如く、本実施1〜4の接合部材
の600℃における、せん断強さは、ろう材の厚さが8
〜13虜であり、かつ、それは全てTi−Cuの共晶成
分であるTi −Cu72vt%より高Cu成分領域と
なっており、せん断強さは、全て13kg / am 
”以上の強さが得られたにれに対し、比較5〜8の接合
部材の600℃における、せん断強さは比較例1〜3の
ろう相成分がTi −Cuの共晶成分より高T1成分で
あるため実施例に比べ低いせん断強度となっている。特
に、比較例1では、ろう材厚さが25μsもあるため非
常に低い値になっていた。また比較例4ではTi −C
u共共成成分り高Cu成分であったが、ろう材厚さが6
1tnと薄いため実施例に比べ低い値となっていた。
Table 1 As is clear from Table 1 above, the shear strength at 600°C of the bonded members of Examples 1 to 4 is as follows:
~13%, and all of them are in the higher Cu content region than Ti-Cu72vt%, which is the eutectic component of Ti-Cu, and the shear strength is all 13kg / am
``In contrast, the shear strength at 600°C of the joining members of Comparative Examples 1 to 8 was higher than that of the Ti-Cu eutectic component in Comparative Examples 1 to 3. The shear strength is lower than that of the examples because it is a Ti-C component.In particular, in Comparative Example 1, the brazing material thickness was 25 μs, so the value was very low.
Although the u co-composition component was high in Cu component, the brazing material thickness was 6
Since it was as thin as 1 tn, the value was lower than that of the example.

代理人 弁理士 則 近 憲 佑 同  竹花票久男Agent: Patent Attorney Noriyuki Chika Same Takehanasho Hisao

Claims (1)

【特許請求の範囲】 1、セラミックス−金属接合部に介在させる、熱応力緩
衝層をNi基合金およびCo基合金またはFe基合金と
し、少なくとも、該セラミックスと熱応力緩衝層との接
合用ろう材に、厚さ7〜19mmのTi−Cu、Ti−
Cu−Ni、Ti−Cu−Co、Ti−Cu−Feのい
ずれかの組成を用いて、接合されたことを特徴とするセ
ラミックと金属の接合部材。 2、Ni基合金およびCo基合金またはFe基合金から
なる熱応力緩衝層が真密度に達していない、焼結材また
は、粒子分散強化型合金であることを特徴とする特許請
求の範囲第1項記載のセラミックと金属の接合部材。 3、Ti−Cu、Ti−Cu−Ni、Ti−Cu−Co
、Ti−Cu−Fe接合用ろう材の成分が各々の共晶成
分および共晶成分より低Ti成分であることを特徴とす
る特許請求の範囲第1項記載のセラミックと金属の接合
部材。
[Claims] 1. The thermal stress buffering layer interposed in the ceramic-metal joint is made of a Ni-based alloy, a Co-based alloy, or an Fe-based alloy, and at least a brazing material for bonding the ceramic and the thermal stress buffering layer. , Ti-Cu, Ti- with a thickness of 7 to 19 mm.
A joining member of ceramic and metal, characterized in that the joining member is made of one of Cu-Ni, Ti-Cu-Co, and Ti-Cu-Fe. 2. Claim 1, characterized in that the thermal stress buffer layer made of a Ni-based alloy and a Co-based alloy or a Fe-based alloy is a sintered material or a particle dispersion-strengthened alloy whose true density has not been reached. Ceramic-metal bonding member described in Section 1. 3. Ti-Cu, Ti-Cu-Ni, Ti-Cu-Co
The ceramic-metal joining member according to claim 1, wherein the components of the brazing filler metal for Ti-Cu-Fe joining are each eutectic component and a Ti component lower than the eutectic component.
JP1386886A 1986-01-27 1986-01-27 Member for joining ceramic to metal Pending JPS62171970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1386886A JPS62171970A (en) 1986-01-27 1986-01-27 Member for joining ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1386886A JPS62171970A (en) 1986-01-27 1986-01-27 Member for joining ceramic to metal

Publications (1)

Publication Number Publication Date
JPS62171970A true JPS62171970A (en) 1987-07-28

Family

ID=11845216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1386886A Pending JPS62171970A (en) 1986-01-27 1986-01-27 Member for joining ceramic to metal

Country Status (1)

Country Link
JP (1) JPS62171970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290567A (en) * 1988-05-16 1989-11-22 Toru Yoshida Method for bonding carbon materials
JPH03174370A (en) * 1989-11-30 1991-07-29 Isuzu Motors Ltd Method for joining ceramics and metal
CN1059418C (en) * 1997-04-10 2000-12-13 陈铮 Ceramic and metal part instant liquid phase connecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290567A (en) * 1988-05-16 1989-11-22 Toru Yoshida Method for bonding carbon materials
JPH0521870B2 (en) * 1988-05-16 1993-03-25 Tooru Yoshida
JPH03174370A (en) * 1989-11-30 1991-07-29 Isuzu Motors Ltd Method for joining ceramics and metal
CN1059418C (en) * 1997-04-10 2000-12-13 陈铮 Ceramic and metal part instant liquid phase connecting method

Similar Documents

Publication Publication Date Title
JPS60127271A (en) Method of bonding non-oxide ceramics and metal
US3795041A (en) Process for the production of metal-ceramic bond
JPS62220299A (en) Solder for brazing and coupling method using said solder
JPS62171970A (en) Member for joining ceramic to metal
JPS6256380A (en) Ceramic-metal joined member
JPH0737346B2 (en) Joined body of ceramic body and metal body and joining method thereof
JPS63239166A (en) Ceramic joined body
JPH01224280A (en) Ceramic-metal conjugate form
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPS62227596A (en) Ceramics-metal joining member
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
JPH0469035B2 (en)
JPS63206365A (en) Joined body of ceramic and metal
JPS61215272A (en) Method of bonding ceramic member and metal member
JPS62171969A (en) Method of joining ceramics to metal
JPS63185870A (en) Ceramic-metal joined member
JPH0328391B2 (en)
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPS61227973A (en) Silicon carbide ceramics-metal joined body
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS6256379A (en) Ceramic-metal joined member
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPH0571544B2 (en)
JPS6077181A (en) Ceramic-metal bonded body