JPS63185870A - Ceramic-metal joined member - Google Patents

Ceramic-metal joined member

Info

Publication number
JPS63185870A
JPS63185870A JP1731387A JP1731387A JPS63185870A JP S63185870 A JPS63185870 A JP S63185870A JP 1731387 A JP1731387 A JP 1731387A JP 1731387 A JP1731387 A JP 1731387A JP S63185870 A JPS63185870 A JP S63185870A
Authority
JP
Japan
Prior art keywords
metal
ceramic
ceramics
bonding
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1731387A
Other languages
Japanese (ja)
Inventor
白兼 誠
中橋 昌子
山崎 達雄
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1731387A priority Critical patent/JPS63185870A/en
Publication of JPS63185870A publication Critical patent/JPS63185870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、セラミックスと金属の接合部材に関し、更
に詳しくは、接合強さが高くかつセラミックスにクラッ
クを発生させることのないセラミックスと金属の接合部
材に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a bonding member between ceramics and metal, and more specifically, to a bonding member that has high bonding strength and does not cause cracks in ceramics. It relates to a joining member between ceramics and metal.

(従来の技術) セラミックスと金属の接合部材はセラミックスと金属の
特性が大きく異なるため、接合に際し種々の問題がある
(Prior Art) There are various problems in joining members of ceramics and metals because the characteristics of the ceramics and metals are greatly different.

重要な問題の1つに、接合に伴う熱応力の発生によるセ
ラミックス母材のクラック発生と、接合強さの低下があ
る。熱応力は、セラミックスと金属の熱膨張差に起因す
るものである。すなわち、セラミックスと金属は、熱膨
張係数の異なるものが多く、たとえば窒化珪素(約2゜
5 X 10−@/k)あるいは窒化アルミニウム(約
4 X 10−’/k)のようなセラミックスと比較し
て、鉄鋼(約12 X 10−1/k)やN1(約14
 X 10”″”/k)のような金属の熱膨張係数は、
大きく両者の差が大きい、そのため接合時の温度の上昇
、下降に伴い接合部に熱応力が発生しセラミックス母材
のクラック発生を引き起こし易い。
One of the important problems is the occurrence of cracks in the ceramic base material due to the generation of thermal stress during bonding, and a decrease in bonding strength. Thermal stress is caused by the difference in thermal expansion between ceramics and metals. In other words, ceramics and metals often have different coefficients of thermal expansion; for example, compared to ceramics such as silicon nitride (approximately 2°5 Then, steel (approximately 12 x 10-1/k) and N1 (approximately 14
The coefficient of thermal expansion of a metal is
There is a large difference between the two, and as a result, as the temperature rises and falls during bonding, thermal stress occurs in the bonded portion, which tends to cause cracks in the ceramic base material.

さらに、セラミックス母材にクラック発生を引き起こさ
ない場合でも、接合部には、大きな残留応力が生ずる。
Furthermore, even if cracks do not occur in the ceramic base material, large residual stress is generated at the joint.

この残留応力は、セラミックス母材に引張応力として存
在することが多い、一般的にセラミックスの引張強さは
、圧縮強さに比べかなり低い、従って、引張の残留応力
が存在するセラミックスと金属の接合部材は、外部から
の応力、つまり破壊強さが低くなる。そのため接合部に
は、種々の応力緩和方法が考えられている。しかしなが
ら、発生する熱応力を完全に吸収することは困難であり
、相当量の応力が、室温に冷却された時点で接合部に残
留する。そのため、接合材の使用時に温度変化が生じる
と、残留応力との相乗効果により、大きな熱応力が発生
し、セラミックスにクラックが発生するか、あるいは接
合強さが低下する問題があった。
This residual stress often exists as tensile stress in the ceramic base material. Generally, the tensile strength of ceramics is much lower than the compressive strength. Therefore, tensile residual stress exists in the bond between ceramic and metal. The member has a low external stress, that is, a low fracture strength. Therefore, various stress relaxation methods have been considered for the joint. However, it is difficult to completely absorb the generated thermal stress, and a significant amount of stress remains in the joint once cooled to room temperature. Therefore, when a temperature change occurs when the bonding material is used, a large thermal stress is generated due to a synergistic effect with residual stress, which causes the problem that cracks occur in the ceramic or the bonding strength decreases.

こうしたセラミックスと金属の接合時に生ずる熱応力を
緩和する方法としては、■セラミックスと金属の間に軟
質金属層を介在させ、その塑性変形及び弾性変形によっ
て熱応力を緩和する方法(特開昭56−41879号)
、■セラミックスと金属の間に線膨張率が両者の中間の
値を有する材料の層を介在させる方法(特開昭55−1
13678号)、■セラミツクスから金属にかけて線膨
張率が小から大へと変化する複数の層を順次積層して介
在させる方法(特開昭55−7544号)などが開示さ
れている。
Methods for alleviating the thermal stress that occurs when joining ceramics and metals include: (1) a method in which a soft metal layer is interposed between the ceramics and the metal, and the thermal stress is alleviated through plastic deformation and elastic deformation (Japanese Unexamined Patent Application Publication No. 1983-1992); No. 41879)
, ■ A method of interposing a layer of material having a coefficient of linear expansion intermediate between the ceramics and metals (Japanese Unexamined Patent Publication No. 55-1
13678) and (2) a method in which a plurality of layers whose linear expansion coefficients vary from small to large from ceramics to metals are successively laminated and interposed (Japanese Patent Application Laid-open No. 7544/1983).

しかしながら、■の場合セラミックスの持つ優れた特性
の一つである高強度を活用しようとした場合、接合体の
強度が前記軟質金属の特性に支配されて十分にセラミッ
クスの特性を活すことができなかった。特に、高温にお
いては軟質金属の特性低下が著しく、接合体の活用を図
ることが不可能であった。
However, in the case of (2), when trying to utilize the high strength that is one of the excellent properties of ceramics, the strength of the bonded body is dominated by the properties of the soft metal, and the properties of the ceramics cannot be fully utilized. There wasn't. In particular, at high temperatures, the properties of soft metals deteriorate significantly, making it impossible to utilize the joined body.

また■■の場合は、ある程度の熱応力の緩和および接合
強さが期待されるが、熱応力の緩和には限界がある。さ
らに、これらの熱応力緩和層の選定および作製には、困
難が伴なう。
In the case of ■■, a certain degree of relaxation of thermal stress and bonding strength are expected, but there is a limit to the relaxation of thermal stress. Furthermore, selection and fabrication of these thermal stress relaxation layers are accompanied by difficulties.

(発明が解決しようとする問題点) 本発明は、セラミックスと金属の接合部材に生ずる熱応
力に起因するセラミックスへのクランクの発生あるいは
、接合強さ、熱疲労等の低下を解決するための、新規の
熱応力緩衝層を具備した、セラミックス−金属接合部材
の提供を目的としている。
(Problems to be Solved by the Invention) The present invention solves problems such as the occurrence of cranks in ceramics caused by thermal stress occurring in the joining members of ceramics and metals, and the reduction in joint strength, thermal fatigue, etc. The object of the present invention is to provide a ceramic-metal bonding member equipped with a novel thermal stress buffering layer.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明者らは、セラミックスと金属の接合面に熱応力緩
衝層を介せしめた接合部材に関し、鋭意研究を重ねた結
果、後述の熱応力緩衝層を用いた接合部材が、前記問題
点の解決を達成し得るとの事実を見出し本発明を開発す
るに到った。
(Means for Solving the Problems) As a result of extensive research into bonding members in which a thermal stress buffer layer is interposed between the bonding surfaces of ceramics and metals, the present inventors have discovered that a thermal stress buffer layer described below can be used. The present invention was developed based on the discovery that the above-mentioned problems can be solved by the conventional joining member.

すなわち本発明はセラミックスと金属との接合面に溶射
法により形成された金属−酸化物の複合層が介在されて
いることを特徴とするセラミックス−金属接合部材にあ
る。
That is, the present invention resides in a ceramic-metal bonding member characterized in that a metal-oxide composite layer formed by thermal spraying is interposed on the bonding surface of the ceramic and metal.

まず1本発明部材を適用し得るセラミックスとしては1
例えば、i、O,、ZrO,のような酸化物系セラミッ
クス、 SiC,TiCのような炭化物系セラミックス
、Si、N、、 iNのような窒化物系セラミックスを
あげることができる。また金属としては、Fe。
First of all, there are 1 ceramics to which the members of the present invention can be applied.
Examples include oxide ceramics such as i, O, ZrO, carbide ceramics such as SiC, TiC, and nitride ceramics such as Si, N, iN. Further, as a metal, Fe is used.

Ni、 Co、 Tl、 No、 Ti、 Nb、 T
a、 Zr* Cup AQのような金属、若しくは、
これら金属の適宜な合金をあげることができる。
Ni, Co, Tl, No, Ti, Nb, T
a, metal such as Zr* Cup AQ, or
Appropriate alloys of these metals can be mentioned.

本発明の熱応力緩衝層は、溶射法で形成された、金属−
酸化物の複合層であるが、この金属としては、Fe、 
Ni、 Co、 Cu、 iなどが好ましいが、他の高
純度金属又は軟質金属であってもかまわない。
The thermal stress buffer layer of the present invention is a metal-based material formed by a thermal spraying method.
It is a composite layer of oxides, and the metals include Fe,
Ni, Co, Cu, i, etc. are preferable, but other high purity metals or soft metals may be used.

酸化物としてはAらO,、ZrO,、The、、 Si
n、、 Coo、。
As oxides, AraO,, ZrO,, The,, Si
n,, Coo,.

TiO□、 V、O,粉などあるいはこれらの混合粉が
好ましい、これらの粒径は1.0−以下が好ましい、複
合層に占める酸化物の量としては2〜12体積%が好ま
しい、2%未満では、接合強さの向上が期待出来ず、ま
た12%を越えると、複合層が硬くなり過ぎて、応力緩
和作用が十分になされなくなる恐れがある。また溶射後
の空孔率は1〜10体積%が好ましい、1%未満では、
応力緩和作用を十分に発揮し難くなり、かといって10
%を越えると、接合強さの低下を招く恐れがある。また
、この複合層の厚さは0.3mm以上にすることが好ま
しい。この理由は、該複合層の厚さを0.3mm未満に
すると、セラミックスと金属との間に発生する熱応力を
有効に吸収することが難しくなり、接合強さが著しく低
下したり、セラミックスにクラックが発生する恐れがあ
るからである。
TiO□, V, O, powder, etc. or a mixed powder thereof is preferable, the particle size of these is preferably 1.0- or less, the amount of oxide in the composite layer is preferably 2 to 12% by volume, 2% If it is less than 12%, no improvement in bonding strength can be expected, and if it exceeds 12%, the composite layer may become too hard and the stress relaxation effect may not be sufficient. In addition, the porosity after thermal spraying is preferably 1 to 10% by volume, and if it is less than 1%,
It becomes difficult to fully exert the stress relaxation effect, and on the other hand,
%, there is a risk that the bonding strength will decrease. Moreover, it is preferable that the thickness of this composite layer is 0.3 mm or more. The reason for this is that if the thickness of the composite layer is less than 0.3 mm, it becomes difficult to effectively absorb the thermal stress generated between the ceramic and the metal, resulting in a significant decrease in bonding strength and This is because cracks may occur.

この溶射法で形成された金属−酸化物の複合層は、セラ
ミックスと金属の接合面に介在させ接合する方法あるい
は、セラミックス又は金属の接合面に溶射付着させてお
き接合する方法のいかなる方法であっても1本発明のセ
ラミックス−金属接合部材の特徴を損なうことはない、
しかし好ましくは、金属の接合面に複合層を溶射付着さ
せておき、セラミックスと接合する方法が簡便かつ安定
した特性が得ら易い。
The metal-oxide composite layer formed by this thermal spraying method can be bonded by interposing it on the bonding surface of ceramics and metal, or by spraying it on the bonding surface of ceramics or metal. However, the characteristics of the ceramic-metal bonding member of the present invention are not impaired.
However, preferably, the composite layer is thermally sprayed onto the metal joint surface and joined to the ceramic, which is simple and easy to obtain stable characteristics.

本発明のセラミックス−金属接合部材は前述まで記載し
た、セラミックスと金属の接合部に溶射法で形成された
金属−酸化物の複合層を介在させて接合し、得ることが
出来る。
The ceramic-metal bonding member of the present invention can be obtained by interposing a metal-oxide composite layer formed by a thermal spraying method on the ceramic-metal bonded portion described above.

(作  用) 本発明のセラミックス−金属接合部材はセラミックスと
金属の接合面に溶射法で形成された金属−酸化物の複合
層を介在させることで、セラミックスと金属の熱膨張係
数の差から生ずる、熱ひずみが緩和される。この熱応力
の緩和によりセラミックスへのクラックの発生あるいは
接合強さ、熱疲労等に優れたセラミックス−金属接合部
材となる。
(Function) The ceramic-metal bonding member of the present invention has a metal-oxide composite layer formed by a thermal spraying method on the bonding surface of the ceramic and metal, thereby reducing the thermal expansion coefficient caused by the difference in coefficient of thermal expansion between the ceramic and the metal. , thermal strain is alleviated. This relaxation of thermal stress results in a ceramic-metal bonded member with excellent resistance to cracks in the ceramic, bonding strength, thermal fatigue, etc.

(実 施 例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1 第1図を用いて説明すると、まず直径13■閣厚さ5■
の窒化ケイ素円柱体1と、直径15mm厚さ5■の構造
用炭素鋼(JIS、 345G)の円柱体2とを用意し
た。そして熱応力緩和層は、炭素鋼円柱体2の接合面に
N1−Al2. O□6.5体積%(AQ、O粒径3μ
s)を厚さlll11まで溶射付着させ、その後厚さ0
.8+m+mまで研摩してなる複合層を用いた。このN
1−AQ、O,複合層3の空孔率は約3〜5体積%存在
することが、比重測定により判かっている。
Example 1 To explain using Fig. 1, first, the diameter is 13 cm and the thickness is 5 cm.
A silicon nitride cylindrical body 1 and a cylindrical body 2 made of structural carbon steel (JIS, 345G) having a diameter of 15 mm and a thickness of 5 cm were prepared. A thermal stress relaxation layer is formed on the joint surface of the carbon steel cylindrical body 2 with N1-Al2. O□6.5 volume% (AQ, O particle size 3μ
s) to a thickness of lll11, and then a thickness of 0
.. A composite layer polished to 8+m+m was used. This N
It has been determined by specific gravity measurement that the 1-AQ, O, composite layer 3 has a porosity of about 3 to 5% by volume.

次に、該窒化ケイ素円柱体1とNi−A1. O,複合
層3が溶射付着された炭素鋼円柱体2の間に夫々。
Next, the silicon nitride cylindrical body 1 and the Ni-A1. O, respectively between carbon steel cylinders 2 to which a composite layer 3 is spray deposited.

厚さ5趨のTi箔とCu箔のろう材4を挟んで重ね合わ
せた後1 kg/dの圧力を加えながら、5X10″″
5Torr950℃×6分間の条件に保持し、ひきつづ
きアルゴンガス中で冷却して、窒化ケイ素−炭素鋼接合
部材を得た。
After sandwiching and stacking 5 thick Ti foil and Cu foil brazing filler metal 4, 5×10'' was applied while applying a pressure of 1 kg/d.
It was held at 5 Torr at 950° C. for 6 minutes and then cooled in argon gas to obtain a silicon nitride-carbon steel bonded member.

得られた接合部材について接合面にせん断路力を加え、
室温でのせん断強さを測定した。その結果せん断強さは
10.9kg/mm”であった、また比較例として、熱
応力緩衝層に外径15mm、厚さ0・81IIIのN1
圧延材を用い、窒化ケイ素、炭素鋼、ろう材接合条件を
上記例と同一として窒化ケイ素−炭素鋼接合部材を得、
室温でのせん断試験を行なった。
Applying a shear path force to the joint surface of the obtained joint member,
The shear strength at room temperature was measured. As a result, the shear strength was 10.9 kg/mm''.As a comparative example, the thermal stress buffer layer had an outer diameter of 15 mm and a thickness of 0.81III N1.
A silicon nitride-carbon steel bonded member was obtained by using a rolled material and using the same silicon nitride, carbon steel, and brazing metal bonding conditions as in the above example,
A shear test was performed at room temperature.

その結果、せん断強さは1〜2 kg / am”と低
い値であった。
As a result, the shear strength was as low as 1 to 2 kg/am''.

実施例2 実施例1と同様の窒化ケイ素円柱体と、構造用炭素鋼円
柱体を用意した。熱応力緩衝層には、炭素鋼円柱体にC
u−AQ、0,6.5体積%(Ajl、 0.粒径3−
)を厚さ1m閣まで溶射付着させ、その後厚さ0.8o
uiまで研摩したものを用いた。空孔率は約2〜4体積
%存在する0次に、該窒化ケイ素円柱体とCu −Aら
O3複合層が溶射付着された、炭素鋼円柱体の間に3μ
s厚のTi、 10μs厚のAg箔を挟んで重ね合わせ
た後1kg/、−jの圧力を加えなから5×10″″’
 Torr850℃×6分間の条件で保持し、ひきつづ
きアルゴンガス中で冷却して、窒化ケイ素−炭素鋼接合
部材を得た。
Example 2 A silicon nitride cylinder similar to Example 1 and a structural carbon steel cylinder were prepared. The thermal stress buffer layer is made of carbon steel cylindrical body.
u-AQ, 0.6.5% by volume (Ajl, 0. particle size 3-
) was thermally sprayed to a thickness of 1m, and then 0.8o thick.
The one polished to ui was used. The porosity is approximately 2 to 4% by volume. Next, a 3μ porosity is formed between the silicon nitride cylinder and the carbon steel cylinder to which the Cu-A et al. O3 composite layer is thermally sprayed.
After stacking s-thick Ti and 10μs-thick Ag foil, apply a pressure of 1kg/-j to 5×10''''.
It was maintained at Torr of 850° C. for 6 minutes and then cooled in argon gas to obtain a silicon nitride-carbon steel bonded member.

得られた接合部材について、600℃でのせん断強さを
求めた。その結果、せん断強さは、 8.1kg/l1
11″であった。また比較例として、熱応力緩衝層に外
径15mm、厚さ0.8■のCu圧延材を用い上記接合
条件で接合を行ない、窒化ケイ素−炭素鋼接合部材を得
た06次に600℃のせん断強さを求めたところ、4−
8kg/am”と低い値であった。
The shear strength at 600°C was determined for the obtained bonded member. As a result, the shear strength was 8.1 kg/l1
As a comparative example, a silicon nitride-carbon steel bonded member was obtained by using a rolled Cu material with an outer diameter of 15 mm and a thickness of 0.8 cm for the thermal stress buffer layer and performing bonding under the above bonding conditions. 06 Next, we calculated the shear strength at 600℃ and found that it was 4-
The value was as low as 8 kg/am.

〔発明の効果〕〔Effect of the invention〕

セラミックスと金属の接合面に、溶射法で形成された金
属−酸化物の複合層を介在させて接合することで、セラ
ミックスと金属の熱膨張係数の差から生ずる熱ひずみが
緩和され、セラミックスへのクラックの発生あるいは、
接合強さ、熱疲労等に優れたセラミックス−金属接合部
材が得られる。
By interposing a metal-oxide composite layer formed by thermal spraying on the bonding surface of ceramic and metal, the thermal strain caused by the difference in thermal expansion coefficient between ceramic and metal is alleviated, and the Occurrence of cracks or
A ceramic-metal bonded member with excellent bonding strength, thermal fatigue, etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における接合部材の模擬図であ
る。 1・・・窒素ケイ素円柱体  2・・・炭素鋼円柱体3
・・・N1−Aら03複合層   4・・・ろう材代理
人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第  1  図
FIG. 1 is a schematic diagram of a joining member in an embodiment of the present invention. 1... Nitrogen silicon cylindrical body 2... Carbon steel cylindrical body 3
...N1-A et al.03 composite layer 4...Brazing material agent Patent attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1

Claims (1)

【特許請求の範囲】 (1、)セラミックスと金属との接合面に、溶射法によ
り形成された金属−酸化物の複合層が介在されているこ
とを特徴とするセラミックス−金属接合部材 (2、)複合層が1〜10体積%の空孔率及び2〜12
体積%の酸化物粒子から構成されていることを特徴とす
る特許請求範囲第1項記載のセラミックス−金属接合部
材 (3、)複合層があらかじめ金属接合面に溶射されてな
るものであることを特徴とする特許請求範囲第1項、第
2項のいずれかに記載のセラミックス−金属接合部材
[Claims] (1.) A ceramic-metal bonding member (2, ) The composite layer has a porosity of 1 to 10% by volume and a porosity of 2 to 12
The ceramic-metal bonding member (3) according to claim 1, characterized in that the composite layer is made of oxide particles of vol. Ceramic-metal bonding member according to any one of claims 1 and 2 characterized by:
JP1731387A 1987-01-29 1987-01-29 Ceramic-metal joined member Pending JPS63185870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1731387A JPS63185870A (en) 1987-01-29 1987-01-29 Ceramic-metal joined member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1731387A JPS63185870A (en) 1987-01-29 1987-01-29 Ceramic-metal joined member

Publications (1)

Publication Number Publication Date
JPS63185870A true JPS63185870A (en) 1988-08-01

Family

ID=11940521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1731387A Pending JPS63185870A (en) 1987-01-29 1987-01-29 Ceramic-metal joined member

Country Status (1)

Country Link
JP (1) JPS63185870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283274A (en) * 1988-09-20 1990-03-23 Showa Aircraft Ind Co Ltd Joining method
JPH02183909A (en) * 1989-01-09 1990-07-18 Sumitomo Electric Ind Ltd Insulated wire
WO2006016588A1 (en) * 2004-08-10 2006-02-16 Asahi Glass Company, Limited Window glass for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283274A (en) * 1988-09-20 1990-03-23 Showa Aircraft Ind Co Ltd Joining method
JPH02183909A (en) * 1989-01-09 1990-07-18 Sumitomo Electric Ind Ltd Insulated wire
WO2006016588A1 (en) * 2004-08-10 2006-02-16 Asahi Glass Company, Limited Window glass for vehicle
JPWO2006016588A1 (en) * 2004-08-10 2008-05-01 旭硝子株式会社 Vehicle window glass
US7588819B2 (en) 2004-08-10 2009-09-15 Asahi Glass Company, Limited Window glass for vehicle

Similar Documents

Publication Publication Date Title
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS63185870A (en) Ceramic-metal joined member
JPH01224280A (en) Ceramic-metal conjugate form
JPS62171969A (en) Method of joining ceramics to metal
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JPH0328391B2 (en)
JPS62171970A (en) Member for joining ceramic to metal
JP3394844B2 (en) Heat resistant material
JPH0469035B2 (en)
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS62187183A (en) Method of joining ceramic to metal
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPS5860680A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS59197393A (en) Adhesion of ceramic parts
JPS62130843A (en) Metallic ceramics joining body
JPS63182267A (en) Ceramic-metal joined member
JPH0130791B2 (en)
JPS63206365A (en) Joined body of ceramic and metal
JPH0419182B2 (en)
JPH01103966A (en) Ceramic-metal bonded body
JPS63179733A (en) Joining structure of ceramics and metal and manufacture thereof
JPH0723268B2 (en) Ceramics-Metal bonding material
JPS61106467A (en) Bonded body of non-oxide ceramic and metal and manufacture