JPH01103966A - Ceramic-metal bonded body - Google Patents

Ceramic-metal bonded body

Info

Publication number
JPH01103966A
JPH01103966A JP25961687A JP25961687A JPH01103966A JP H01103966 A JPH01103966 A JP H01103966A JP 25961687 A JP25961687 A JP 25961687A JP 25961687 A JP25961687 A JP 25961687A JP H01103966 A JPH01103966 A JP H01103966A
Authority
JP
Japan
Prior art keywords
alloy
ceramic
metal
bonded body
deformation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25961687A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25961687A priority Critical patent/JPH01103966A/en
Publication of JPH01103966A publication Critical patent/JPH01103966A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the title bonded body having sufficiently relieved residual stress and excellent high-temp. strength, etc., by hot-bonding a ceramic member and a metallic member through a stress relieving layer consisting of an alloy having a pseudoelastic deformation region. CONSTITUTION:The ceramic member (e.g., silicon nitride member) and the metallic member (e.g., steel) are hot-bonded through the stress relieving layer consisting of an alloy having a pseudoelastic deformation region to produce a ceramic-metal bonded body. An Ni-Ti based alloy is preferably used as the alloy having a pseudoelastic deformation region, and a Cu-Zn-Al based alloy, a Cu-Al-Ni based alloy, etc., can also be used. When a ductile metal such as copper and nickel is jointly used as the stress relieving layer in addition to the alloy having a pseudoelastic deformation region, the stress relieving effect is further enhanced, and a high-strength bonded body can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、加熱接合時等に生じる残留応力を緩和したセ
ラミックス−金属接合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a ceramic-metal bonded body in which residual stress generated during heat bonding is alleviated.

(従来の技術) 近年、セラミックス部材の耐熱性、耐熱衝撃性、耐食性
、耐牽耗性等の各種特性を利用して種々の用途への使用
が試みられており、またセラミックス部材は極めて脆い
という欠点を有していることから、このような欠点を補
うために金属部材と接合して使用することも試みられて
いる。
(Prior art) In recent years, attempts have been made to use ceramic members for various purposes by taking advantage of their various properties such as heat resistance, thermal shock resistance, corrosion resistance, and abrasion resistance. Since it has drawbacks, attempts have been made to use it in conjunction with metal members in order to compensate for these drawbacks.

このようなセラミックス部材と金属部材との接合方法と
しては、セラミックス部材表面をメタライズ処理した後
ろう付けする方法やTi−Cu−Agろうのような活性
金属を添加してセラミックス部材との濡れ性を改善した
ろう材を使用する活性金属法、あるいは直接両者を接合
させる固相拡散法等が知られている。
Methods for joining such ceramic members and metal members include metallizing the surface of the ceramic member and then brazing, or adding an active metal such as Ti-Cu-Ag solder to improve wettability with the ceramic member. An active metal method using an improved brazing filler metal, a solid phase diffusion method that directly joins the two, and the like are known.

ところで、このようなセラミックス−金R9合体におい
て金属部材として鋼材のようなセラミックス部材との熱
膨張係数の差が大きいものを使用する場合には、加熱接
合後の冷却過程で接合界面にこの熱膨張差に起因する熱
応力が発生する。この応力は接合部近傍のセラミックス
部材に圧縮と引張の残留応力分布として存在し、このう
ちの引張応力がセラミックス部材の引張強度を超えると
きにセラミックス部材に亀裂を生じさせ、しいては接合
体破壊の原因になっている。また、破壊に至らなくとも
この引張応力は、接合強度を低下させるという悪影響を
及ぼす。
By the way, when using a metal member such as steel that has a large difference in coefficient of thermal expansion from the ceramic member in such a ceramic-gold R9 combination, this thermal expansion may occur at the bonding interface during the cooling process after heat bonding. Thermal stress occurs due to the difference. This stress exists as a compressive and tensile residual stress distribution in the ceramic member near the joint, and when the tensile stress exceeds the tensile strength of the ceramic member, it causes cracks in the ceramic member, and the joint breaks. It is the cause of Moreover, even if it does not lead to destruction, this tensile stress has the adverse effect of reducing the bonding strength.

このような残留応力を緩和するなめに、従来は′銅やニ
ッケルのような延性金属を応力緩衝層としてセラミック
ス部材と金属部材との間に介在させ、接合後の冷却過程
での熱応力発生時にこの延性金属を塑性変形させること
により、この応力を吸収させ、残留応力を低減または再
分布させるということが行われている。
In order to alleviate such residual stress, conventionally, a ductile metal such as copper or nickel was interposed as a stress buffer layer between the ceramic member and the metal member, and it was used to prevent thermal stress from occurring during the cooling process after joining. By plastically deforming this ductile metal, this stress is absorbed and the residual stress is reduced or redistributed.

(発明が解決しようとする問題点) しかしながら、前述したような延性金属を用いて熱膨張
係数の差に起因する残留応力を緩和する方法では、延性
金属の種類やその厚さによっては接合後のこれら延性金
属層内に弾性域や塑性変形の不十分な領域が残存してし
まい、その効果を充分に発揮しきれないという問題があ
った。
(Problems to be Solved by the Invention) However, in the method of alleviating residual stress caused by the difference in coefficient of thermal expansion using a ductile metal as described above, depending on the type of ductile metal and its thickness, the There is a problem in that elastic regions and regions with insufficient plastic deformation remain in these ductile metal layers, and their effects cannot be fully exhibited.

このような延性金属の厚さによる効果の差は、その接合
面積に大きく依存しており、このため従来は接合面積に
よる+a3!!な値、ずなわち充分に熱応力を緩和解放
し、かつ接合後に弾性域をできるだけ残存させないよう
な厚さを選択する必要があった。
The difference in effectiveness due to the thickness of ductile metals largely depends on the joint area, and for this reason, conventionally, +a3! ! It was necessary to select a thickness that would sufficiently relax and release thermal stress and leave as little elastic region as possible after bonding.

また、延性金属の使用によってセラミックス−金属接合
体に外部応力が加わった際に、この延性金属層内応力集
中を起こし、逆に強度低下を生じるという問題もあった
Furthermore, when external stress is applied to the ceramic-metal bonded body due to the use of a ductile metal, stress concentration occurs within the ductile metal layer, resulting in a decrease in strength.

本発明はこのような問題を解消するためになされたもの
で、残留応力が十分に緩和され、しかも強度低下の少な
いセラミックス−金属接合体を提供することを目的とす
る。
The present invention was made to solve these problems, and an object of the present invention is to provide a ceramic-metal bonded body in which residual stress is sufficiently relaxed and strength is less reduced.

[発明の桁成コ (問題点を解決するための手段) 本発明のセラミックス−金属接合体は、セラミックス部
材と金属部材とが少なくとも擬弾性変形域を有する合金
を介して加熱接合されてなることを特徴としている。
[Means of the Invention (Means for Solving Problems)] The ceramic-metal bonded body of the present invention is formed by heat-bonding a ceramic member and a metal member through an alloy having at least a pseudoelastic deformation region. It is characterized by

本発明に使用する擬弾性変形域を有する合金としては、
例えばTi−Ni系合金、Cu−Zn−AJ系合金、C
u−A、g−Ni系合金、N1−A℃系合金等の形状記
憶合金が挙げられる。
The alloys having a pseudoelastic deformation region used in the present invention include:
For example, Ti-Ni alloy, Cu-Zn-AJ alloy, C
Examples include shape memory alloys such as u-A, g-Ni alloys, and N1-A°C alloys.

これらの形状記憶合金は、例えば第1図に示す50重量
%Ti−501C量%Ni合金の応力−ひすみ曲線のよ
うに、通常の金属における塑性変形とは異なる原子間の
結合はそのままで変形する擬弾性変形域を有しており(
図中Aで示す)、この擬弾性変形域とその後の塑性変形
域(図中Bで示す)とにより充分な残留応力の緩和解放
を可能とするものである。
These shape memory alloys deform while the bonds between atoms remain intact, which is different from plastic deformation in ordinary metals, as shown in the stress-strain curve of the 50wt%Ti-501Cwt%Ni alloy shown in Figure 1, for example. It has a pseudoelastic deformation region (
This pseudo-elastic deformation region (indicated by A in the figure) and the subsequent plastic deformation region (indicated by B in the figure) enable sufficient relaxation and release of residual stress.

上述した各合金系は、例えば下記の組成によりその特性
を示す。
Each of the above-mentioned alloy systems exhibits its characteristics depending on, for example, the following composition.

合金       組成 Ti−Ni    49〜52原子%Ni−残部■:C
u−Zn−^J  13.5〜27.5重量%Zn−4
.5〜8重量%^ぶ一残部Cu Cu−^J2−Ni   13〜15重量%^1−3〜
4.5重量%旧−残部Cu Ni−^ぶ   30〜38原子%AJ2−残部Niこ
れらの擬弾性変形域を有する合金のうち、T i −N
 i系合金は、セラミックス部材と固相反応あるいは液
相反応して接合に寄与することから、特にその使用が好
ましい。
Alloy composition Ti-Ni 49-52 atomic% Ni-balance ■:C
u-Zn-^J 13.5-27.5 wt% Zn-4
.. 5~8% by weight^1 balance Cu Cu-^J2-Ni 13~15% by weight^1-3~
4.5% by weight Old-balance Cu Ni-^bu 30-38 atomic% AJ2-balance Ni Among these alloys having a pseudoelastic deformation region, Ti-N
The i-based alloy is particularly preferably used because it contributes to bonding through a solid phase reaction or liquid phase reaction with the ceramic member.

本発明のセラミックス−金属接合体における応力緩衝層
として、擬弾性変形域を有する合金に加えて、従来より
使用されている銅やニッケル等の延性金属を併用し、複
層化して用いることも可能である。この延性金属の併用
は、擬弾性変形域を有する合金による残留応力緩和効果
を補助するものであり、その使用量は充分に塑性変形可
能な僅かな量でその効果を発揮する。このように、擬弾
性変形域を有する合金と延性金属を併用することによっ
て応力緩和効果が併用した分増大し、さらに高強度のも
のとなり、またその使用量を減少させることC+より延
性金属の使用による外部応力による応力集中の影響もほ
とんどない高強度のものとなる。
As the stress buffer layer in the ceramic-metal bonded body of the present invention, in addition to an alloy having a pseudoelastic deformation region, conventionally used ductile metals such as copper and nickel can also be used in combination in a multilayered manner. It is. This combined use of ductile metal assists the residual stress relaxation effect of the alloy having a pseudo-elastic deformation region, and the amount used is small enough to be sufficiently plastically deformable to exhibit its effect. In this way, by using an alloy with a pseudoelastic deformation region in combination with a ductile metal, the stress relaxation effect increases by the combined use, resulting in even higher strength. It has high strength with almost no influence of stress concentration due to external stress.

本発明のセラミックス−金属接合体は、例えば次のよう
にして製造される。
The ceramic-metal bonded body of the present invention is manufactured, for example, as follows.

すなわち、セラミックス部材、擬弾性変形域を有する合
金および金属部材、さらには必要に応じて延性金属をそ
れぞれの接合すべき面の間に適当−なろう材を介在させ
て積層し、加熱することにより接合するか、あるいは擬
弾性変形域を有する合金としてT i −N i系合金
を使用する場合には、セラミックス部材と金属部材との
間にTi−Ni系合金を配置してそのまま加熱・し、固
相拡散により接合させることも可能である。
That is, by laminating ceramic members, alloys and metal members having a pseudo-elastic deformation region, and, if necessary, ductile metal, with a suitable brazing material interposed between the surfaces to be joined, and heating. When joining or using a Ti-Ni alloy as an alloy having a pseudoelastic deformation region, the Ti-Ni alloy is placed between the ceramic member and the metal member and heated as it is, It is also possible to bond by solid phase diffusion.

なお、擬弾性変形域を有する合金の使用形態としては、
予め合金化したもののみの使用に限らず、例えば各成分
の箔等を前述した組成となるように積層して用いること
も可能である。
The usage of alloys with pseudoelastic deformation region is as follows:
It is not limited to using only those alloyed in advance, but it is also possible to use, for example, laminated foils of each component so as to have the above-mentioned composition.

(作 用) 本発明のセラミックス−金属接合体においては、形状記
憶合金のような擬弾性変形域を有する合金を介在させて
いるので、この擬弾性変形域を有する合金の擬弾性変形
域と塑性変形域の作用により熱膨張係数の差による残留
応力が吸収されて緩和される。また、延性金属を併用し
て応力緩和効果を増大させても、延性金属の使用景は充
分に塑性変形可能な僅かな量でその効果を得られるため
、外部応力による応力集中の影響もほとんどなく、延性
金属のみの場合より破壊強度が上昇する。
(Function) In the ceramic-metal bonded body of the present invention, since an alloy having a pseudoelastic deformation region such as a shape memory alloy is interposed, the pseudoelastic deformation region and the plasticity of the alloy having the pseudoelastic deformation region are interposed. Due to the action of the deformation zone, the residual stress due to the difference in thermal expansion coefficients is absorbed and relaxed. In addition, even if ductile metal is used in combination to increase the stress relaxation effect, the effect can be obtained with a small amount that can be sufficiently plastically deformed, so there is almost no effect of stress concentration due to external stress. , the fracture strength is higher than that of ductile metal only.

また、擬弾性変形域を有する合金としてNi−Ti系合
金を使用した場合は、Ni−Ti系合金が直接接合に寄
与するので接合強度の向上と作業の簡略化をはかること
ができる。
Further, when a Ni-Ti alloy is used as the alloy having a pseudoelastic deformation region, the Ni-Ti alloy directly contributes to the bonding, thereby improving the bonding strength and simplifying the work.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、窒化ケイ素を主成分とする12nlx 121n
x20IIIlの2個のセラミックス部材の間に、鋼材
(845C)からなる厚さ3Illの金属部材を介在さ
せ、さらにセラミックス部材と金属部材のそれぞれの間
に、厚さ 0.511Ilの50重量%Ni−50重量
%T1合金板を挿入して積層し、この積層物の積層方向
に1kg/dの荷重を加えながら、真空中で1100℃
、1時間の条件で加熱接合してセラミックス−金属接合
体を作製した。
Example 1 First, 12nlx 121n whose main component is silicon nitride
A metal member made of steel (845C) with a thickness of 3Ill is interposed between two ceramic members of x20IIIl, and a 50% Ni- by weight with a thickness of 0.511Il is interposed between each of the ceramic members and the metal member. A 50% by weight T1 alloy plate was inserted and laminated, and the laminate was heated at 1100°C in vacuum while applying a load of 1 kg/d in the lamination direction.
A ceramic-metal bonded body was produced by heating and bonding for 1 hour.

このようにして得たセラミックス−金属接合体を3n+
mx 4nmx 40nnに加工して4点曲げ強度を測
定した。その結果は、室温で30k(1/ d、600
℃で25kg/−と良好な結果が得られ、充分に残留応
力が緩和されていることが確認でき、さらに高温での接
合強度も大きいものであった。
The ceramic-metal bonded body thus obtained was 3n+
It was processed to a size of mx 4nmx 40nn and its four-point bending strength was measured. The result is 30k (1/d, 600
A good result of 25 kg/- was obtained at a temperature of 25 kg/-, and it was confirmed that the residual stress was sufficiently relaxed, and the bonding strength at high temperatures was also high.

実施例2 窒化ケイ素を主成分とする12nlx 12nn+x 
2On11の2個のセラミックス部材の間に、鋼材(3
45C)からなる厚さ3n+nの金属部材を介在させ、
さらにセラミックス部材と金属部材のそれぞれの間に、
厚さ 0.5niの50重量%Ni−50重量%Ti合
金板と厚さ0.211mの銅板とを、銅板を金属部材側
に配置して介在させ、それぞれの接合すべき面の間に厚
さ 100.u 11の2重量%Ti−77重量%Ag
−21重量%Cuからなるろう材を挿入して積層し、こ
の積層物を真空中で830℃、6分の条件で加熱接合し
てセラミックス−金属接合体を作製した。
Example 2 12nlx 12nn+x whose main component is silicon nitride
A steel material (3
45C) with a thickness of 3n+n interposed,
Furthermore, between each ceramic member and metal member,
A 50 wt% Ni-50 wt% Ti alloy plate with a thickness of 0.5 ni and a copper plate with a thickness of 0.211 m are interposed with the copper plate placed on the metal member side, and the thickness is placed between the surfaces to be joined. Sa 100. u 11 2wt%Ti-77wt%Ag
A brazing material consisting of -21% by weight Cu was inserted and laminated, and the laminated product was heat-bonded in a vacuum at 830° C. for 6 minutes to produce a ceramic-metal bonded body.

このセラミックス−金属接合体についても実施例1と同
様にして4点曲げ強度を測定したところ、常温で40k
g/ndと非常に良好な結果が得られた。
The four-point bending strength of this ceramic-metal bonded body was measured in the same manner as in Example 1, and it was found to be 40k at room temperature.
A very good result of g/nd was obtained.

[発明の効果コ 以上説明したように本発明のセラミックス−金属接合体
は、擬弾性変形域を有する合金を応力緩衝層として使用
しており、この合金の擬弾性変形と塑性変形とにより残
留応力が十分緩和され高強度となり、特にNi−Ti系
合金は固相拡散接合することから、高温における強度の
大きい接合体となる。また、擬弾性変形域を有する合金
と延性金属を併用すれば、応力緩和効果がさらに増大し
、また延性金属使用による応力集中も低減されるので強
度低下がさけられ、延性金属のみの場合より強度が上昇
する。
[Effects of the Invention] As explained above, the ceramic-metal bonded body of the present invention uses an alloy having a pseudoelastic deformation region as a stress buffer layer, and the pseudoelastic deformation and plastic deformation of this alloy reduce residual stress. is sufficiently relaxed and has high strength. In particular, since Ni-Ti alloys are solid-phase diffusion bonded, the bonded body has high strength at high temperatures. In addition, if an alloy with a pseudoelastic deformation region is used in combination with a ductile metal, the stress relaxation effect will further increase, and stress concentration due to the use of a ductile metal will also be reduced, thereby avoiding a decrease in strength. rises.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は50重量%Ni−50重量%T1合金の応力−
ひすみ曲線を示すグラフである。 代理人 弁理士  則 近 憲 佑 同  湯山幸夫
Figure 1 shows the stress of the 50 wt% Ni-50 wt% T1 alloy.
It is a graph showing a distortion curve. Agent Patent Attorney Noriyoshi Chika Yudo Yukio Yuyama

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス部材と金属部材とが少なくとも擬弾
性変形域を有する合金を介して加熱接合されてなること
を特徴とするセラミックス−金属接合体。
(1) A ceramic-metal bonded body, characterized in that a ceramic member and a metal member are heat-bonded via an alloy having at least a pseudoelastic deformation region.
(2)セラミックス部材と金属部材との間にさらに延性
金属が介在されている特許請求の範囲第1項記載のセラ
ミックス−金属接合体。
(2) The ceramic-metal bonded body according to claim 1, wherein a ductile metal is further interposed between the ceramic member and the metal member.
(3)擬弾性変形域を有する合金が、Ni−Ti系合金
である特許請求の範囲第1項または第2項記載のセラミ
ックス−金属接合体。
(3) The ceramic-metal bonded body according to claim 1 or 2, wherein the alloy having a pseudoelastic deformation region is a Ni-Ti alloy.
JP25961687A 1987-10-16 1987-10-16 Ceramic-metal bonded body Pending JPH01103966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25961687A JPH01103966A (en) 1987-10-16 1987-10-16 Ceramic-metal bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25961687A JPH01103966A (en) 1987-10-16 1987-10-16 Ceramic-metal bonded body

Publications (1)

Publication Number Publication Date
JPH01103966A true JPH01103966A (en) 1989-04-21

Family

ID=17336555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25961687A Pending JPH01103966A (en) 1987-10-16 1987-10-16 Ceramic-metal bonded body

Country Status (1)

Country Link
JP (1) JPH01103966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225360A (en) * 2006-02-22 2007-09-06 Jtekt Corp Pressure sensor
JP2018004105A (en) * 2016-06-28 2018-01-11 株式会社ディ・ビー・シー・システム研究所 Molten metal treatment device and manufacturing method of the same
US11498145B2 (en) 2017-01-24 2022-11-15 Ihi Corporation Welding method of diffusion bonded structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225360A (en) * 2006-02-22 2007-09-06 Jtekt Corp Pressure sensor
JP2018004105A (en) * 2016-06-28 2018-01-11 株式会社ディ・ビー・シー・システム研究所 Molten metal treatment device and manufacturing method of the same
US11498145B2 (en) 2017-01-24 2022-11-15 Ihi Corporation Welding method of diffusion bonded structure

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
JPS60166165A (en) Joining method of metal and ceramics
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JPH01103966A (en) Ceramic-metal bonded body
JP2019036603A (en) Bonding sheet and bonding structure
US6286750B1 (en) Method of manufacturing beryllium-copper alloy hot isostatic press (HIP) bonded body and hip-bonded body
Dunford et al. Strength and fracture behaviour of diffusion-bonded joints in Al-Li (8090) alloy: Part 1 Shear strength
JPH0729859B2 (en) Ceramics-Metal bonding material
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer
JP2019079960A (en) Junction structure and manufacturing method thereof
JP3302714B2 (en) Ceramic-metal joint
Dunford et al. The peel strengths of diffusion bonded joints between clad Al-alloy sheets
JPH0353074B2 (en)
JPH0337165A (en) Adhesion between ceramics and metal
JPS59184778A (en) Pressure welding of ceramic member to metal member
JPS6250073A (en) Joined graphite-metal structural body
JPS61117171A (en) Heat stress alleviator
JPH0569159A (en) Method for joining composite material composed of, at least, one part of intermetallic compound
JPS6272577A (en) Alumina-metal heat stress alleviation joint
JPH0337166A (en) Adhesion between ceramics and metal
JP4522678B2 (en) Thin Al-Cu bonded structure and manufacturing method thereof
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPH0317793B2 (en)
JPH01169955A (en) Semiconductor device
JPH04238877A (en) Jointed form made up of aln member and cu member and production thereof