JPH0649620B2 - Method for joining ceramic member and metal member - Google Patents

Method for joining ceramic member and metal member

Info

Publication number
JPH0649620B2
JPH0649620B2 JP5423785A JP5423785A JPH0649620B2 JP H0649620 B2 JPH0649620 B2 JP H0649620B2 JP 5423785 A JP5423785 A JP 5423785A JP 5423785 A JP5423785 A JP 5423785A JP H0649620 B2 JPH0649620 B2 JP H0649620B2
Authority
JP
Japan
Prior art keywords
metal
thickness
layer
ceramic member
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5423785A
Other languages
Japanese (ja)
Other versions
JPS61215272A (en
Inventor
誠 白兼
昌子 中橋
達雄 山崎
博光 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5423785A priority Critical patent/JPH0649620B2/en
Publication of JPS61215272A publication Critical patent/JPS61215272A/en
Publication of JPH0649620B2 publication Critical patent/JPH0649620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はセラミックス部材と金属部材との接合方法に関
し、更に詳しくは、接合強度が高くかつセラミックス部
材にクラックを発生させることのない新規な接合方法に
関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for joining a ceramic member and a metal member, and more specifically, a novel joining method which has high joining strength and does not cause cracks in the ceramic member. Regarding

[発明の技術的背景とその問題点] 窒化ケイ素,炭化ケイ素,アルミナのような各種セラミ
ックスからなる部材は、それぞれが備える特異な特性を
生かすことにより、構造部材,各種機能部材として広く
利用されはじめている。その多くの場合は、セラミック
スをそれ自体を単独で利用するという態様である。
[Technical Background of the Invention and Problems] Members made of various ceramics such as silicon nitride, silicon carbide, and alumina have been widely used as structural members and various functional members by taking advantage of the unique characteristics of each. There is. In many cases, the ceramic is used alone.

しかしながら、仮にこれらセラミックス部材にセラミッ
クスにはない他の特性を有する金属を接合できるとすれ
ば、得られた部材は新たな機能を備えた部材として一層
広い分野での利用が可能になるものと考えられる。
However, if it is possible to join these ceramic members with metals having other properties that ceramics do not have, it is thought that the obtained members will be usable in a wider field as members with new functions. To be

このような部材において、それが構造部品である場合に
はセラミックス部材と金属部材との接合強度は充分に高
いことが要求され、また機能部材である場合にはセラミ
ックス部材と金属部材との接合界面では連続性を有する
ことが要求される。
In such a member, when it is a structural component, the bonding strength between the ceramic member and the metal member is required to be sufficiently high, and when it is a functional member, the bonding interface between the ceramic member and the metal member is required. Therefore, it is required to have continuity.

しかしながら一般に、セラミックスと金属とは各々原子
結合状態が相違する材料であり、両者の反応性などの化
学的性質;熱膨張率;電気伝導度などの物理的性質が互
いに異なるため、両者の接合時においては、両部材の接
合界面では信頼性の高い冶金的接合状態が形成され難
い。
However, in general, ceramics and metals are materials with different atomic bonding states, and their chemical properties such as reactivity; thermal expansion coefficient; In the above, it is difficult to form a highly reliable metallurgical bonding state at the bonding interface between both members.

ところで、従来より金属部材とセラミックス部材との冶
金的接合方法としては以下に示すような種々の方法が知
られている。例えば、 第1は、セラミックス部材の金属部材と接合すべき面
にMo-Ti-Wが主成分である粉末と有機バインダとの混合
物を塗布し、加湿した雰囲気中で1400〜1700℃に加熱し
て反応させて、通常、メタラインジングと呼ばれる層を
形成し、次いで、前記メタライジング層の上にNiメッキ
を施した後、該Niメッキに金属部材(例えばCu母材)を
Pb-Sn系半田などにより接合する方法である。
By the way, conventionally, the following various methods have been known as a metallurgical joining method of a metal member and a ceramic member. For example, firstly, a mixture of powder containing Mo-Ti-W as a main component and an organic binder is applied to the surface of the ceramic member to be joined to the metal member and heated to 1400 to 1700 ° C in a humidified atmosphere. To form a layer generally called metallizing, then, after Ni plating is applied on the metallizing layer, a metal member (for example, Cu base material) is applied to the Ni plating.
This is a method of joining with Pb-Sn solder or the like.

こうした接合方法はエレクトロニクス部品において、絶
縁体としてのセラミックス部材と導体としてのCu部材を
接合する場合に多用されている。
Such a joining method is often used in an electronic component when joining a ceramic member as an insulator and a Cu member as a conductor.

第2は、金属部材とセラミックス部材とをAu,Ptのよ
うな貴金属つまり酸素と親和力が小さい金属を主成分と
する合金を用いて接合する方法である。
The second is a method of joining the metal member and the ceramic member using an alloy whose main component is a noble metal such as Au and Pt, that is, a metal having a small affinity with oxygen.

第3は、金属部材とセラミックス部材との接合部にT
i,Nb,Zrなどの活性金属又は熱処理によって活性金属
に転化する活性金属水素化物を介在させた後、両者を高
温,高圧下で接合する方法である。
Thirdly, there is a T at the joint between the metal member and the ceramic member.
This is a method in which an active metal such as i, Nb, or Zr or an active metal hydride that is converted into an active metal by heat treatment is interposed, and then both are joined at high temperature and high pressure.

しかしながら、上記の方法は必要とする工程の数が多
くなり煩雑であるという欠点を有する。
However, the above method has a drawback that it requires many steps and is complicated.

上記の方法は簡単な工程の下で接合できるものの、高
価な貴金属を使用するため経済的メリットは極めて少な
く、しかも金属部材とセラミックス部材とが十分に接触
するように高い圧力を必要とする。上記の方法では、
活性金属の効果により強固な接合が可能ではあるが、し
かし前記の方法と同様に高い接合圧力を必要とするた
め変形を嫌うような部品等には適用することは好ましく
ない。
Although the above method can be joined in a simple process, since an expensive precious metal is used, the economical merit is extremely small, and high pressure is required so that the metal member and the ceramic member are sufficiently brought into contact with each other. In the above method,
Although strong joining is possible due to the effect of the active metal, it is not preferable to apply it to parts and the like that are unfavorable to deformation because high joining pressure is required as in the above method.

このような問題を解消するために、米国特許第2,857,66
3号明細書では次のような接合方法が開示されている。
すなわち、その方法とは、Ti,Zrなどの活性金属とCu,N
i,Feなどの遷移金属との合金は、その共晶組成領域で活
性金属の単体の融点(Ti;1720℃、Zr;1860℃)及びCu,N
i,Fe単体の融点(夫々1083℃,1453℃,1534℃)と比較
して融点を数100℃低下させることに着目し、遷移金属
の部材とセラミックス部材の接合部に活性金属を介在さ
せ、該接合部材を遷移金属と活性金属の合金の融点より
高く、遷移金属の融点より低い温度に加熱し、遷移金属
と活性金属の原子を相互に拡散せしめて合金化し、この
合金によって遷移金属部材とセラミックス部材とを接合
する方法である。
In order to solve such a problem, US Pat.
No. 3 specification discloses the following joining method.
In other words, the method is that active metals such as Ti and Zr and Cu and N
Alloys with transition metals such as i and Fe have a melting point (Ti; 1720 ℃, Zr; 1860 ℃) of the active metal alone and Cu, N in the eutectic composition region.
Focusing on lowering the melting point by several hundreds of degrees Celsius compared to the melting points of i and Fe alone (1083 ° C, 1453 ° C, 1534 ° C, respectively), an active metal is interposed between the transition metal member and the ceramic member, The joining member is heated to a temperature higher than the melting point of the alloy of the transition metal and the active metal and lower than the melting point of the transition metal, and the atoms of the transition metal and the active metal are mutually diffused to form an alloy, and this alloy forms a transition metal member. This is a method of joining with a ceramic member.

この方法の場合、接合時、接合部は遷移金属と活性金属
との合金の融液で満たされ、それが金属部材とセラミッ
クス部材とを濡らすので、各部材を接触させるための加
圧力を殆ど必要とせず、かつ活性金属の働きにより両部
材は強固に接合されることになる。
In the case of this method, at the time of joining, the joining portion is filled with a melt of an alloy of a transition metal and an active metal, which wets the metal member and the ceramic member, so that almost no pressing force is required to bring the members into contact with each other. However, both members are firmly joined by the action of the active metal.

しかしながら、この方法の欠点は、得られたセラミック
ス−金属接合部材を冷却する過程でセラミックス部材に
クラックが頻発するという問題である。これは、セラミ
ックス部材と金属部材との間に発生する熱応力に基づく
現象である。
However, a drawback of this method is that cracks frequently occur in the ceramic member during the process of cooling the obtained ceramic-metal bonding member. This is a phenomenon based on the thermal stress generated between the ceramic member and the metal member.

例えば、セラミックス部材がアルミナ,窒化ケイ素の場
合、それぞれの線熱膨張係数は、8.8×10-6/℃,2.5×
10-6/℃であり、Cu,Ni,Feなどに比べてその値は約1桁
小さいもので、両者の接合部に発生する熱応力は大きく
なる。
For example, when the ceramic member is alumina or silicon nitride, the coefficient of linear thermal expansion of each is 8.8 × 10 -6 / ° C, 2.5 ×
It is 10 -6 / ° C, which is about one digit smaller than that of Cu, Ni, Fe, etc., and the thermal stress generated at the joint between the two becomes large.

しかも、熱応力は接合時の温度と冷却時の温度(室温)
との差が大きければ大きいほど増大する。したがって、
熱応力を減ずるためには接合時の温度を低めることが求
められ、そのことは接合時に低融点のろう材の使用を要
求することになる。
Moreover, the thermal stress is the temperature at the time of joining and the temperature at the time of cooling (room temperature).
The larger the difference is, the greater the difference. Therefore,
In order to reduce the thermal stress, it is required to lower the temperature at the time of joining, which requires the use of a brazing material having a low melting point at the time of joining.

この観点に立った方法としては、活性金属を含むろう材
とこのろう材の間に延性に富むCu,Cu合金、Alなどの金
属薄板を介在させ、該ろう材と金属部材を点溶接して一
体化した接合材料を用いてセラミックス部材と金属部材
を接合する方法(特開昭56-163093)が提案されてい
る。また、活性金属を含むろう材をセラミックス部材と
金属部の両者に拡散せしめて構成した接合体も開発され
ている。
As a method based on this viewpoint, a brazing filler metal containing an active metal and a thin ductile metal such as Cu, Cu alloy, or Al is interposed between the brazing filler metal and spot welding the brazing filler metal and the metal member. A method for joining a ceramic member and a metal member using an integrated joining material (Japanese Patent Laid-Open No. 56-163093) has been proposed. Also, a joined body has been developed in which a brazing material containing an active metal is diffused into both the ceramic member and the metal part.

しかしながら、これら方法は複雑な工程,長時間の熱処
理を不可避とするので工業的とはいえず、しかもセラミ
ックス部材と金属部材間の熱応力の緩和には必ずしも有
効ではない。
However, these methods cannot be said to be industrial because they require complicated steps and long-time heat treatment, and are not always effective in alleviating thermal stress between the ceramic member and the metal member.

上記手法の適用時における応力緩和を果たすための方法
としては、セラミックス部材と金属部材の間に軟質金属
の層を介在させその塑性変形及び弾性変形によって熱応
力を緩和する方法(特開昭56-41879号参照),セラミッ
クス部材と金属部材の間に線膨張率が両者の中間の値を
有する材料の層を介在させる方法(特開昭55-113678号
公報参照)やセラミックス部材から金属部材にかけて線
膨張率が小から大へと変化する複数の層を順次積層して
介在させる方法(特開昭55-7544号参照)などが開示さ
れている。
As a method for achieving stress relaxation when the above method is applied, a soft metal layer is interposed between a ceramic member and a metal member, and thermal stress is relaxed by its plastic deformation and elastic deformation (JP-A-56- No. 41879), a method of interposing a layer of a material having a linear expansion coefficient between the ceramic member and the metal member (see Japanese Patent Laid-Open No. 55-113678), or a line extending from the ceramic member to the metal member. There is disclosed a method (see JP-A-55-7544) in which a plurality of layers whose expansion coefficient changes from small to large are sequentially laminated and interposed.

しかしながら、活性金属を含むろう材での上記接合法の
場合、接合面にかかる圧力によって、しばしば溶融ろう
材が接合部からはみ出すことがある。このはみ出した溶
融ろう材の量が多くなると、凝固冷却する過程におい
て、セラミックス部材とろう材の熱膨張係数の差に基づ
く熱応力によりセラミックス部材にクラックの生じるこ
とがある。この現象を防止するためには、はみ出しがな
くかつ接合部材全面をろう材がぬらすために必要な最適
なろう材の量(厚さ)を決めればよいのだが、しかし用
いる接合材料,接合圧力,接合温度,雰囲気等の条件に
より、ろう材の最適量を決めるのは非常に困難である。
また、はみ出しを機械的に防止する方法、たとえば、ろ
う材とのぬれ性の悪い材料を用いて接合部外周をシール
する方法が考えられているが、この方法はぬれ性の悪い
材料の選定が困難であるばかりでなく、接合工程の煩雑
化を招くことになり現実的な方法とはいい難い。
However, in the case of the above-mentioned joining method using a brazing filler metal containing an active metal, the molten brazing filler metal often protrudes from the joint due to the pressure applied to the joint surface. If the amount of the molten brazing filler metal that has overflowed increases, cracks may occur in the ceramic member due to thermal stress due to the difference in thermal expansion coefficient between the ceramic member and the brazing filler metal during the solidification cooling process. In order to prevent this phenomenon, the optimum amount (thickness) of the brazing material that does not protrude and is necessary for the brazing material to wet the entire surface of the joining member should be determined. It is very difficult to determine the optimum amount of brazing filler metal depending on the conditions such as joining temperature and atmosphere.
Also, a method of mechanically preventing the protrusion is considered, for example, a method of sealing the outer circumference of the joint part with a material having poor wettability with the brazing material, but this method requires selection of a material having poor wettability. Not only is it difficult, but it also complicates the joining process, which is difficult to call a realistic method.

このようなことから、熱応力を緩和でき、溶融ろう材の
はみ出しがなく、高い接合強度でセラミックス部材と金
属部材を簡単に接合する方法は強く求められている。
For this reason, there is a strong demand for a method that can relax the thermal stress, prevent the molten brazing filler metal from protruding, and easily join the ceramic member and the metal member with high joining strength.

[発明の目的] 本発明は、セラミックス部材と金属部材とを加圧するこ
となく強固に接合することができ、しかも冷却過程でセ
ラミックス部材にクラックを発生することのないセラミ
ックス部材と金属部材の接合方法の提供を目的とする。
[Object of the Invention] The present invention is a method of joining a ceramic member and a metal member, which can firmly join the ceramic member and the metal member without applying pressure, and which does not cause cracks in the ceramic member during the cooling process. For the purpose of providing.

[発明の概要] 本発明者らは、セラミックス部材と金属部材との間に応
力緩衝部材を介在せしめて全体をろう材で接合する方法
に関し鋭意研究を重ねた結果、ろう材の種類,ろう材の
厚みを後述するように制御すると、上記目的が達成し売
るとの事実を見出し、本発明方法を開発するに到った。
[Summary of the Invention] The inventors of the present invention have conducted extensive studies on a method of joining a whole of a ceramic member and a metal member with a stress buffer member and joining them together with a brazing material. It was found that the above object was achieved and the product was sold when the thickness was controlled as described below, and the method of the present invention was developed.

すなわち、本発明のセラミックス部材と金属部材との接
合方法は、セラミックス部材と金属部材との厚み0.2mm
以上の応力緩衝部材を介挿し、該セラミックス部材と該
応力緩衝部材との間及び該金属部材と該応力緩衝部材と
の間に、厚み1〜19μmの銀層と厚み0.5〜9μmの活
性金属層とからなりかつ全体の厚みが2〜20μmである
薄層A又は厚み1〜19μmの銀層と厚み0.5〜9μmの
活性金属層と厚み8μm以下の銅層とからなりかつ全体
の厚みが2〜20μmである薄層Bを介在させたのち、全
体を加熱することを特徴とする。
That is, the method of joining the ceramic member and the metal member of the present invention, the thickness of the ceramic member and the metal member 0.2mm
The stress buffer member described above is inserted, and a silver layer having a thickness of 1 to 19 μm and an active metal layer having a thickness of 0.5 to 9 μm are provided between the ceramic member and the stress buffer member and between the metal member and the stress buffer member. And a thin layer A having a total thickness of 2 to 20 μm or a silver layer having a thickness of 1 to 19 μm, an active metal layer having a thickness of 0.5 to 9 μm, and a copper layer having a thickness of 8 μm or less and having a total thickness of 2 to After the thin layer B having a thickness of 20 μm is interposed, the whole is heated.

まず、本発明方法を適用し得るセラミックス部材として
は、例えば、Al2O3,ZrO2のような酸化物系セラミックス
の部材;SiC,TiCのような炭化物系セラミックスの部
材;Si3N4,AlNのような窒化物系セラミックスの部
材;をあげることができる。また、金属部材としては、
Fe,Ni,Co,Ti,Mo,W,Nb,Ta,Zrのような金属の部
材若しくはこれら金属の適宜な合金の部材をあげること
ができる。
First, examples of ceramic members to which the method of the present invention can be applied include oxide ceramic members such as Al 2 O 3 and ZrO 2 ; carbide ceramic members such as SiC and TiC; Si 3 N 4 , Examples thereof include nitride ceramics members such as AlN. Also, as the metal member,
Examples thereof include members made of metals such as Fe, Ni, Co, Ti, Mo, W, Nb, Ta and Zr, or members made of an appropriate alloy of these metals.

本発明方法はまずセラミックス部材と金属部材との間に
厚み0.2mm以上の応力緩衝部材を介挿せしめる。この部
材の厚みが0.2mmより薄い場合は、セラミックス部材と
金属部材との間に発生する熱応力を有効に吸収すること
ができず、クラックが多発しはじめる。好ましくは、0.
2〜2.0mmである。この応力緩衝部材を構成する材料とし
ては、セラミックス部材と金属部材との熱膨張差を自
らが塑性変形したり弾性変形したりして吸収することの
できる例えばAl,Cuのような軟質金属、線膨張率がセ
ラミックス部材と金属部材との中間の値である例えばM
o,W,Tiのような材料、線膨張率が適宜に調整され
た複合層の材料、などをあげることができる。
In the method of the present invention, first, a stress buffering member having a thickness of 0.2 mm or more is inserted between the ceramic member and the metal member. When the thickness of this member is less than 0.2 mm, the thermal stress generated between the ceramic member and the metal member cannot be effectively absorbed, and cracks start to occur frequently. Preferably, 0.
2 to 2.0 mm. The material for forming the stress buffering member is, for example, a soft metal such as Al or Cu, which can absorb the thermal expansion difference between the ceramic member and the metal member by plastically deforming or elastically deforming, or a wire. The coefficient of expansion is an intermediate value between the ceramic member and the metal member, for example M
Examples thereof include materials such as o, W, and Ti, and materials for the composite layer whose linear expansion coefficient is appropriately adjusted.

つぎに、セラミックス部材と応力緩衝部材との間及び応
力緩衝部材と金属部材との間に、後述する薄層A又は薄
層Bを介在せしめる。
Next, a thin layer A or a thin layer B described later is interposed between the ceramic member and the stress buffer member and between the stress buffer member and the metal member.

まず、薄層Aは厚み1〜19μmの銀層と厚み0.5〜9μ
mの活性金属層とから成り、かつその全体厚が2〜20μ
mの層である。また、薄層Bは厚み1〜19μmの銀層と
厚み0.5〜9μmの活性金属層と厚み8μm以下の銅層
とから成り、かつその全体厚が2〜20μmの層である。
First, the thin layer A is a silver layer having a thickness of 1 to 19 μm and a thickness of 0.5 to 9 μm.
m active metal layer and the total thickness is 2 to 20 μm.
m layers. The thin layer B is a layer having a thickness of 1 to 19 μm, an active metal layer having a thickness of 0.5 to 9 μm, and a copper layer having a thickness of 8 μm or less, and having a total thickness of 2 to 20 μm.

これら両層における活性金属層を構成する活性金属とし
ては、Ti,Zr,Hf,V,Nb,Taなどを例示することがで
きる。また、薄層A,薄層Bのいずれにあっても、銀層
と活性金属層(薄層Aの場合),銀層と活性金属層と銅
層(薄層Bの場合)の順序は格別限定されるものではな
いが、薄層Aの場合はセラミックス部材側から活性金属
層,銀層の順で介在させることが好ましく、また、薄層
Bの場合は各層がそれぞれ1層だけである必要はなく、
それぞれの複数層が介在していてもよい。また、各層は
これら各成分の合金の層であってもよい。
Examples of the active metal forming the active metal layers in these two layers include Ti, Zr, Hf, V, Nb, and Ta. In addition, in both the thin layer A and the thin layer B, the order of the silver layer and the active metal layer (in the case of the thin layer A), the silver layer, the active metal layer and the copper layer (in the case of the thin layer B) is exceptional. Although not limited thereto, in the case of the thin layer A, it is preferable to interpose the active metal layer and the silver layer in this order from the ceramic member side, and in the case of the thin layer B, each layer needs to be only one layer. Not,
A plurality of layers may intervene. Moreover, each layer may be a layer of an alloy of each of these components.

薄層A,薄層Bにおいて、銀層の厚みが1μm,活性金
属層の厚みが0.5μmより薄い場合、銅と活性金属との
融液が少なくなるのでセラミックス部材と応力緩衝部材
及び金属部材と応力緩衝部との間を満たすことが出来
ず、またこれらの層の厚みが19μmより厚い場合は融液
が多くなり過ぎ、融液が接合部からはみ出し、このはみ
出した融液が凝固冷却する過程において、セラミックス
部材とろう材の熱膨張率の差に基づく熱応力によりセラ
ミックス部材にクラックが生ずるという不都合を招く。
また薄層Bにおいて銅層の厚みが8μmより厚くなって
も融液が多くなり、前述のごとくセラミックス部材にク
ラックが生ずるような事態を招来して不都合である。
In the thin layer A and the thin layer B, when the thickness of the silver layer is less than 1 μm and the thickness of the active metal layer is less than 0.5 μm, the melt of copper and the active metal decreases, so that the ceramic member, the stress buffering member and the metal member are If the space between the stress buffer and the layer cannot be satisfied, and if the thickness of these layers is thicker than 19 μm, the melt will be too much, the melt will squeeze out from the joint, and the squeezing melt will solidify and cool. In the above, there is a problem that cracks are generated in the ceramic member due to thermal stress based on the difference in thermal expansion coefficient between the ceramic member and the brazing material.
Further, in the thin layer B, even if the thickness of the copper layer is thicker than 8 μm, the amount of melt is large, which causes a situation in which a crack occurs in the ceramic member as described above, which is inconvenient.

薄層A,薄層Bのいずれもは、その全体層が2〜20μm
に設定される。この全体層が2μmより薄い場合はセラ
ミックス部材と金属部材の高い接合強度が得られず、ま
た、20μmを超えると加熱溶融時接合部材の外部材にま
で溶融した薄層A,薄層Bの成分がはみ出して広がり、
熱応力に基づくセラミックス部材へのクラックが発生し
はじめる。好ましくは2〜10μmである。
The total thickness of both thin layer A and thin layer B is 2 to 20 μm.
Is set to. When this whole layer is thinner than 2 μm, high bonding strength between the ceramic member and the metal member cannot be obtained, and when it exceeds 20 μm, the components of the thin layer A and the thin layer B melted to the outer member of the bonding member at the time of heating and melting. Overhanging and spreading,
Cracks begin to occur in the ceramic member due to thermal stress. It is preferably 2 to 10 μm.

これら薄層A,薄層Bを介在せしめる方法としては、セ
ラミックス部材,金属部材又は応力緩和部材の表面に前
記した各層の箔を載せてもよいが、前記した各層の成分
をスパッタリング法,蒸着法,めっき法などの方法によ
って堆積せしめる方法が工業的に容易であって好適であ
る。この各成分の堆積時には、金属部材の接合面にこの
処理を施すと、工程も容易でありかつ安定した接合が可
能となる。
As a method of interposing the thin layer A and the thin layer B, the foil of each layer described above may be placed on the surface of the ceramic member, the metal member, or the stress relaxation member, but the components of each layer described above may be sputtered or evaporated. The method of depositing by a plating method or the like is industrially easy and suitable. If this treatment is applied to the joint surface of the metal member during the deposition of these components, the process is easy and stable joining is possible.

このようにして得られた、セラミックス部材,薄層A又
は薄層B,応力緩和部材,薄層A又は薄層B,金属部材
を重ね合わせ真空雰囲気或いは不活性雰囲気中にて加熱
する。この工程において、基本的には圧力を加えなくと
もよいが、必要に応じて1kg/mm2以下の低圧を加えて加
熱してもよい。加熱温度は、金属部材の融点より低いこ
とが必要である。具体的には、779℃から金属部材の融
点の範囲で加熱すればよい。
The ceramic member, the thin layer A or the thin layer B, the stress relaxation member, the thin layer A or the thin layer B, and the metal member thus obtained are stacked and heated in a vacuum atmosphere or an inert atmosphere. In this step, basically it is not necessary to apply pressure, but if necessary, low pressure of 1 kg / mm 2 or less may be applied for heating. The heating temperature needs to be lower than the melting point of the metal member. Specifically, heating may be performed within the range of 779 ° C. to the melting point of the metal member.

[発明の実施例] 実施例1〜5 セラミックス部材として直径13mm高さ10mmの窒化ケイ素
円柱体、金属部材として直径15mm高さ15mmの構造用炭素
鋼(JIS G4051で規定するS45C)の円柱体を用意した。応
力緩衝部材として直径14mmで厚みが第1表のような値の
銅(JIS H3100で規定するC1221p)板を用意した。
Examples of the Invention Examples 1 to 5 A silicon nitride cylinder having a diameter of 13 mm and a height of 10 mm was used as a ceramic member, and a cylinder of structural carbon steel (S45C defined in JIS G4051) having a diameter of 15 mm and a height of 15 mm was used as a metal member. I prepared. A copper (C1221p specified by JIS H3100) plate having a diameter of 14 mm and a thickness as shown in Table 1 was prepared as a stress buffer member.

窒化ケイ素部材と炭素鋼部材の間に銅板を介在させ、窒
化ケイ素部材と銅板の間,及び銅板と炭素鋼材の間に第
1表に示した厚みのチタン箔と銀箔とを挟んで重ね合わ
せ、0.1kg/cm2の圧力を加えながら、5×10-5Torr,880
℃の条件下で30秒間保持した。アルゴンガス中で冷却
し、得られた接合体を引張試験機にかけて接合部の引張
強さを測定した。以上の結果を一括して第1表に示し
た。
A copper plate is interposed between the silicon nitride member and the carbon steel member, and a titanium foil and a silver foil having the thickness shown in Table 1 are sandwiched between the silicon nitride member and the copper plate, and between the copper plate and the carbon steel member to be superposed. 5 × 10 -5 Torr, 880 while applying a pressure of 0.1 kg / cm 2.
It was kept for 30 seconds under the condition of ° C. After cooling in argon gas, the obtained joined body was put into a tensile tester to measure the tensile strength of the joined portion. The above results are collectively shown in Table 1.

実施例1〜5はいずれも接合部の引張強さが13kg/mm2
上であって両部材間の熱応力は充分に緩和されているこ
とが推考される。これに反し、比較例の場合はいずれも
引張強さが小さく、接合面でクラック等の欠陥が発生し
ているものと思われる。事実、比較例2の場合は、窒化
ケイ素部材にクラックが発生していた。
In each of Examples 1 to 5, the tensile strength of the joint is 13 kg / mm 2 or more, and it is considered that the thermal stress between both members is sufficiently relaxed. On the contrary, in each of the comparative examples, the tensile strength is small, and it is considered that defects such as cracks are generated on the joint surface. In fact, in the case of Comparative Example 2, the silicon nitride member was cracked.

実施例6 金属部材としての同形状のモリブデン円柱体を用いたこ
と、銀箔の厚み,チタン箔の厚みがそれぞれ3μmであ
ったことを除いては実施例5と同様にして接合体を製造
した。
Example 6 A bonded body was manufactured in the same manner as in Example 5 except that a molybdenum columnar body having the same shape was used as the metal member, and the thickness of the silver foil and the thickness of the titanium foil were each 3 μm.

得られた接合体の引張強さの最高値は、室温下で10.9kg
/mm2,400℃で15.7kg/mm2,600℃で8.4kg/mm2であっ
た。
The maximum value of tensile strength of the obtained joined body is 10.9 kg at room temperature.
/ mm 2, 400 was 8.4 kg / mm 2 at 15.7kg / mm 2, 600 ℃ at ° C..

実施例7 セラミックス部材が同形状の炭化ケイ素円柱体,金属部
材が同形状のSUS316製円柱体,応力緩衝部材が厚み1mm
のタングステン円板,薄層Aの代わりに、厚み3μmの
チタン箔、厚み5μmの銀箔、厚み2μmの銅箔からな
る薄層Bを用いたことを除いては、実施例1と同様の方
法で接合体を得た。
Example 7 A silicon carbide columnar body having the same shape as the ceramic member, a SUS316 columnar body having the same shape as the metal member, and a stress buffering member having a thickness of 1 mm.
The same method as in Example 1 except that a thin layer B made of a titanium foil having a thickness of 3 μm, a silver foil having a thickness of 5 μm, and a copper foil having a thickness of 2 μm was used in place of the tungsten disc and the thin layer A. A joined body was obtained.

接合部の引張強さは室温下で6.6kg/mm2であった。The tensile strength of the joint was 6.6 kg / mm 2 at room temperature.

[発明の効果] 以上の説明で明らかなように、本発明方法は、セラミッ
クス部材と金属部材とを極めて簡単に接合して各種の機
能性を示唆する接合体を製造することができる。そし
て、従来頻発していたセラミックス部材のクラック現象
が防止若しくは抑制されて、接合部における接合強度が
大きくなる。しかも、接合部において、溶融物のはみ出
しもなくその外観は良好である。
[Effects of the Invention] As is clear from the above description, the method of the present invention can very easily join a ceramic member and a metal member to produce a joined body that suggests various functionalities. Then, the cracking phenomenon of the ceramic member, which frequently occurs in the past, is prevented or suppressed, and the bonding strength at the bonding portion is increased. Moreover, the appearance of the melt is good without any protrusion of the melt at the joint.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 博光 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (56)参考文献 特開 昭60−177635(JP,A) 特開 昭60−239373(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromitsu Takeda 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research Institute Co., Ltd. (56) Reference JP-A-60-177635 (JP, A) Kaisho 60-239373 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セラミックス部材と金属部材との間に厚み
0.2mm以上の応力緩衝部材を介挿し、該セラミックス
部材と該応力緩衝部材との間及び該金属部材と該応力緩
衝部材との間に、厚み1〜19μmの銀層と厚み0.5
〜9μmの活性金属層とからなり、かつ全体の厚みが2
〜20μmである薄層A、又は厚み1〜19μmの銀層
と厚み0.5〜9μmの活性金属層と厚み8μm以下の
銅層とからなり、かつ全体の厚みが2〜20μmである
薄層Bを介在させたのち、全体を加熱することを特徴と
するセラミックス部材と金属部材との接合方法。
1. A stress buffer member having a thickness of 0.2 mm or more is interposed between a ceramic member and a metal member, and between the ceramic member and the stress buffer member and between the metal member and the stress buffer member. A silver layer having a thickness of 1 to 19 μm and a thickness of 0.5
Consisting of an active metal layer of ~ 9 μm and having a total thickness of 2
Or a thin layer A having a thickness of 1 to 19 μm, an active metal layer having a thickness of 0.5 to 9 μm and a copper layer having a thickness of 8 μm or less, and having a total thickness of 2 to 20 μm. A method for joining a ceramic member and a metal member, which comprises heating B after interposing B.
【請求項2】該応力緩衝部材が銅又は銅合金から成る特
許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the stress buffering member comprises copper or a copper alloy.
【請求項3】該活性金属がチタン若しくはジルコニウム
である特許請求の範囲第1項記載の方法。
3. The method according to claim 1, wherein the active metal is titanium or zirconium.
JP5423785A 1985-03-20 1985-03-20 Method for joining ceramic member and metal member Expired - Lifetime JPH0649620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5423785A JPH0649620B2 (en) 1985-03-20 1985-03-20 Method for joining ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5423785A JPH0649620B2 (en) 1985-03-20 1985-03-20 Method for joining ceramic member and metal member

Publications (2)

Publication Number Publication Date
JPS61215272A JPS61215272A (en) 1986-09-25
JPH0649620B2 true JPH0649620B2 (en) 1994-06-29

Family

ID=12964932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5423785A Expired - Lifetime JPH0649620B2 (en) 1985-03-20 1985-03-20 Method for joining ceramic member and metal member

Country Status (1)

Country Link
JP (1) JPH0649620B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725597B2 (en) * 1987-06-22 1995-03-22 静岡県 Bonded body of metal and ceramics
JPS649878A (en) * 1987-07-02 1989-01-13 Agency Ind Science Techn Bonding between silicon nitride ceramics and metal
JP5720839B2 (en) * 2013-08-26 2015-05-20 三菱マテリアル株式会社 Bonded body and power module substrate
US9735085B2 (en) 2014-03-20 2017-08-15 Mitsubishi Materials Corporation Bonded body, power module substrate, power module and method for producing bonded body

Also Published As

Publication number Publication date
JPS61215272A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
US4763828A (en) Method for bonding ceramics and metals
JPH0217509B2 (en)
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
US4624404A (en) Method for bonding ceramics and metals
US4559277A (en) Ceramic and aluminum alloy composite
JPS6119429B2 (en)
US4859531A (en) Method for bonding a cubic boron nitride sintered compact
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS60166165A (en) Joining method of metal and ceramics
JPH0649620B2 (en) Method for joining ceramic member and metal member
JPH0520392B2 (en)
JPS62289396A (en) Joining method for ceramics
JPS6081071A (en) Metal sheet material for ceramic bonding
JPH0630829B2 (en) Active metal brazing material
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH06263553A (en) Joined body of carbonaceous material to metal
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JPS62227596A (en) Ceramics-metal joining member
JP3505212B2 (en) Joint and method of manufacturing joint
JPS6228067A (en) Joining method for ceramics
JPH01224280A (en) Ceramic-metal conjugate form
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPH08169778A (en) Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof