JPS62289396A - Joining method for ceramics - Google Patents

Joining method for ceramics

Info

Publication number
JPS62289396A
JPS62289396A JP25726585A JP25726585A JPS62289396A JP S62289396 A JPS62289396 A JP S62289396A JP 25726585 A JP25726585 A JP 25726585A JP 25726585 A JP25726585 A JP 25726585A JP S62289396 A JPS62289396 A JP S62289396A
Authority
JP
Japan
Prior art keywords
ceramics
bonding
joined
joining
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25726585A
Other languages
Japanese (ja)
Inventor
Yoichi Miyazawa
宮沢 陽一
Shoichi Hashiguchi
正一 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP25726585A priority Critical patent/JPS62289396A/en
Publication of JPS62289396A publication Critical patent/JPS62289396A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Abstract

PURPOSE:To improve the reliability of the joint between ceramics and material to be welded and to improve the corrosion resistance of the joint part by using a 4-component brazing filler metal consisting of Ag, Cu, Sn, and Ti. CONSTITUTION:The ceramics and ceramics or the ceramics and metal are joined in an inert atmosphere or reducing atmosphere by using the brazing filler metal consisting of the four components; Ag, Cu, Sn, and Ti. The compsn. ratios of the brazing filler metal by weight are preferably 10-40% Ag, 8-56% Cu, 8-56% Sn, and 5-25% Ti; furthermore, the Cu and Sn are preferably 20-80% Cu and 80-20% Sn. The bonding of non-oxide ceramics such as SiN is made possible by using such brazing filler metal. The joining with the high reliability and corrosion resistance is executed with decreased variance.

Description

【発明の詳細な説明】 3、発明の詳細な説用 〔産業上の利用分野〕 本発明はセラミックスの低温度接合方法に係り、特に、
セラミックス同士又はセラミックスと金属とを、不活性
雰囲気又は還元雰囲気中において接合する方法に関する
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a low-temperature bonding method for ceramics, and in particular,
The present invention relates to a method for joining ceramics or ceramics and metals in an inert atmosphere or a reducing atmosphere.

〔従来の技術〕[Conventional technology]

従来より、セラミ−7クス同士又は金属とセラミックス
とを接合する場合には、接合方法としてテレフンケン法
、活性金属法、銅化合物法等が利用されている。
BACKGROUND ART Conventionally, when bonding ceramics together or metals and ceramics, the Telefunken method, the active metal method, the copper compound method, and the like have been used as joining methods.

しかしながら、テレフンケン法及び銅化合物法等にあっ
ては、複数の接合工程を必要とするものであり、また、
接合する際には1000℃以上に加熱する必要があり、
低温度では接合できない、という欠点があった。一方、
上記活性金属法によれば一回のみの工程で接合可イをで
あるが、A文203  、ZrO2、又はSiC等のセ
ラミックスと、SS又はSUS等の金属とを一回の操作
により接合した場合には、接合温度が高くなる程、セラ
ミックスから成る。接合材と被接合材との熱膨張差によ
り発生した応力を緩和できず、確実に接合できない場合
がある、という欠点があった。
However, the Telefunken method and the copper compound method require multiple bonding steps, and
When joining, it is necessary to heat it to over 1000℃,
The drawback was that it could not be bonded at low temperatures. on the other hand,
According to the above active metal method, it is possible to join in only one process, but when ceramics such as A203, ZrO2, or SiC and metals such as SS or SUS are joined in one operation. The higher the bonding temperature, the more ceramics are used. There is a drawback that the stress generated due to the difference in thermal expansion between the bonding material and the material to be bonded cannot be alleviated, and reliable bonding may not be possible.

そこで、このような接合時における熱膨張差により発生
した応力を緩衝するために接合材と被接合材との間に緩
衝材をインサートする場合がある。そして、−回の工程
でセラミックスから成る接合材、緩衝材及び被接合材を
接合するためには、セラミックスから成る接合材と緩衝
材との接合温度及び緩衝材と被接合材との接合温度とを
同一にしておく必要があり、緩衝材として市販の銀ロウ
系ロウ材を使用する場合には、高温でろう接することは
好ましくなく、850℃以下で接合するのが好ましい、
一方、活性金属法において一般に用いられるロウ材とし
ては^g−Cu −Ti 、 Ag −Ni −Ti等
があり、N1cholas (USP No、 4,4
71,028 )によりCu−5n−Tiのロウ材も開
発されている。
Therefore, in order to buffer the stress generated due to the difference in thermal expansion during such joining, a buffer material may be inserted between the joining material and the materials to be joined. In order to join the bonding material made of ceramics, the buffer material, and the material to be bonded in step -, the bonding temperature between the bonding material made of ceramics and the buffer material, and the bonding temperature between the buffer material and the material to be bonded must be adjusted. It is necessary to keep them the same, and when using a commercially available silver solder brazing material as a buffer material, it is not preferable to solder at high temperatures, and it is preferable to join at 850 ° C or less.
On the other hand, brazing materials commonly used in the active metal method include ^g-Cu-Ti, Ag-Ni-Ti, etc., and N1cholas (USP No. 4,4
71,028) also developed a Cu-5n-Ti brazing material.

しかしながら、これら3成分系ロウ材の一般的な接合温
度は850℃〜1050℃であり、接合温度が高く、被
接合材と接合する際の応力を充分に緩衝することができ
ず、セラミックスに亀裂が生じる場合や、接合後にはく
離が生ずる等の欠点があった。また、従来の接合方法に
あっては、#触性に欠け、信頼性の点で劣るものであっ
た。
However, the general joining temperature of these three-component brazing materials is 850°C to 1050°C, which is high and cannot sufficiently buffer the stress when joining the materials to be joined, causing cracks in the ceramics. There were disadvantages such as peeling after bonding. Furthermore, conventional bonding methods lack tactility and are inferior in reliability.

そこで本発明の技術的課題は、セラミックスと被接合材
とを低温度において単純な工程において接合することが
できると共に信頼性が高く耐蝕性に富むセラミックスの
接合方法を提供することにある。
Therefore, a technical object of the present invention is to provide a method for joining ceramics that is capable of joining ceramics and materials to be joined in a simple process at low temperatures, and is highly reliable and highly corrosion resistant.

〔本発明の技術的手段及び作用〕[Technical means and effects of the present invention]

かかる目的を達成するため、本発明にあっては、銀(A
s)と、銅(Cu)と、錫(Sn)と、チタニウム(T
i)との4成分から成るロウ材を用いてセラミックスと
被接合材とを接合するように構成されている。
In order to achieve this object, the present invention uses silver (A
s), copper (Cu), tin (Sn), and titanium (T
It is configured to join ceramics and materials to be joined using a brazing material consisting of the four components i).

即ち、上記錫(Sn)はセラミックス接合層の濡れ性の
改善に寄与すると共にロウ材の低融点化に効果があり、
更に、銀ロウ等のロウ材との併用によりタングステンカ
ーバイド、窒化硼素等、超硬材料との接合をも回部にす
るものである。また、銅(Cu)については銀(Ag)
との共晶により低融点化を助け、展延性の面においても
優れ、また、錫(Sn)との合金によって耐蝕性も高め
られるものである。さらに、チタニウムは活性金属の一
種でセラミックの界面に濃縮され確実な接合を回走とす
るものである。一方、銀(Ag)は接合界面に近い部位
に濃縮されて接合層における緩衝層を形成し、膨張、収
縮に伴なう応力緩和に寄与するものである。また、銅(
Cu)と錫(Ag)とを合金とした場合にはチタニウム
(Ti)中に固溶され、ロウ材の低融点化と濡れ性を高
めるものと考えられる。
That is, the tin (Sn) contributes to improving the wettability of the ceramic bonding layer and is effective in lowering the melting point of the brazing material.
Furthermore, when used in combination with a brazing material such as silver solder, it can also be used to bond ultra-hard materials such as tungsten carbide and boron nitride. In addition, for copper (Cu), silver (Ag)
The eutectic with tin (Sn) helps lower the melting point and is excellent in malleability, and the alloy with tin (Sn) also improves corrosion resistance. Furthermore, titanium is a type of active metal that is concentrated at the ceramic interface and ensures reliable bonding. On the other hand, silver (Ag) is concentrated near the bonding interface, forms a buffer layer in the bonding layer, and contributes to stress relaxation due to expansion and contraction. Also, copper (
When Cu) and tin (Ag) are made into an alloy, they are solid dissolved in titanium (Ti) and are thought to lower the melting point and improve wettability of the brazing material.

上記4成分の各金属の状態については粉状、箔状もしく
はプレート状のいずれであっても良く、また、チタニウ
ムについては水素化物(Ti N2 )であっても良い
。また、tj4(Cu)錫(Sn)については両者の合
金が好ましく重量組成比は銅(Cu):錫(Sn) =
 (20〜80%) : (80〜20%)であること
が必要である。そして、このようなCu−Sn合金にお
いて、重量組成比Cu : Sn= 80 : 20の
場合の溶融温度は約920℃、重量組成比Cu : S
n= 20 : 80の場合の溶融温度は約550℃で
ある。また、その他、Ag−Cu系、Ag−5n系、A
g  Cu−3ol系の各種合金であっても良い。
The metals of the above four components may be in the form of powder, foil or plate, and titanium may be in the form of hydride (TiN2). In addition, for tj4 (Cu) and tin (Sn), an alloy of both is preferable, and the weight composition ratio is copper (Cu):tin (Sn) =
(20-80%): (80-20%) is required. In such a Cu-Sn alloy, the melting temperature is about 920°C when the weight composition ratio Cu:Sn=80:20, and the weight composition ratio Cu:S
When n=20:80, the melting temperature is about 550°C. In addition, in addition, Ag-Cu type, Ag-5n type, A
g Various Cu-3ol alloys may be used.

また、緩衝材として上記ロウ材を構成する4成分の各金
属の単体か、又は、各金属の単体を含むものを用いる場
合、接合層における拡散によりロウ材の組成が影響を受
ける場合もありうるが、影響を受は組成に加わった部分
も4成分の各金属の状態の一つとして含まれる0例えば
、Cuを接合母材としてのセラミックスと、被接合母材
の金属との間の緩衝材として用いる場合、温度及び時間
等の原因により表面からlθ〜40ALの反応層が生成
し、Cuが他の成分(3成分乃至4成分)中に溶出して
ロウ材成分の一部となる場合、溶出した部分についても
、上記粉状、箔状等と同様の金属の状態の一種と考えら
れるものであり、やはり本発明におけるロウ材の組成範
囲に含まれるものである。
In addition, when using a buffer material that contains each of the four component metals that make up the brazing material, or a material that includes each of the four components, the composition of the brazing material may be affected by diffusion in the bonding layer. However, the effect is that the part added to the composition is also included as one of the states of each of the four component metals. When used as a brazing material, a reaction layer of lθ to 40 AL is generated from the surface due to factors such as temperature and time, and Cu is eluted into other components (3 to 4 components) and becomes part of the brazing material component. The eluted portion is also considered to be in a metal state similar to the above-mentioned powder, foil, etc., and is also included in the composition range of the brazing material in the present invention.

尚、上記4成分以外の成分、例えば、Fe、Mn。Note that components other than the above four components, such as Fe and Mn.

Co又はCr′3を緩衝材に含めてもよい。また、4成
分の各金属の純度に関連し不可避不純物が加わることも
あり、さらに、接合母材であるセラミックスの成分又は
助剤成分の拡散により4次分が接合層において影響を受
けることもありうる。
Co or Cr'3 may be included in the buffer material. In addition, unavoidable impurities related to the purity of each of the four component metals may be added, and the fourth component may be affected in the bonding layer due to the diffusion of the ceramic components or auxiliary components that are the bonding base material. sell.

加熱雰囲気については、Tiは酸化し易いため10−”
 tarr以上の真空中か、遺児雰囲気又は水素ガス、
窒素ガス、アルゴンガス等の不活性雰囲気であることが
必要となる。
Regarding the heating atmosphere, since Ti is easily oxidized, 10-"
In a vacuum above tarr, in an orphan atmosphere or in hydrogen gas,
An inert atmosphere such as nitrogen gas or argon gas is required.

加熱温度については、ロウ材の組成によっても異なるが
1本発明においては750〜1000℃の範囲が好適で
ある。また、加熱速度及び冷却速度の条件は、本発明に
おいて特に制約はなく、急熱及び急冷(夫々、50℃/
win以上)であっても是し支えない、但し、脱詣及び
脱気のため500〜600℃の温度において10〜20
分間加熱する工程を設けることが望ましい。
The heating temperature varies depending on the composition of the brazing material, but in the present invention, a range of 750 to 1000°C is suitable. In addition, there are no particular restrictions on the heating rate and cooling rate conditions in the present invention, and rapid heating and cooling (50°C/50°C, respectively)
(win or higher) is not supported, however, 10-20℃ at a temperature of 500-600℃ for removal and degassing.
It is desirable to provide a step of heating for a minute.

本発明において、セラミックスから成る被接合材として
は、アルミナセラミックス等の金属酸化物系のセラミッ
クス、窒化珪素等の窒化物セラミックス、炭化物、硼化
物、スピネル類、フォルステライト類等が該当する。ま
た、金属から成る被接合材としては、ss 、 sc 
、 SK 、 SOS等の鋼鉄もしくは特殊鋼類、また
、Xi −Cr 、 Fe  −Ni、 Fe −Ni
−Go、超硬材料(例えばWC)等の合金も広く対象と
なる。また、上記セラミックス同士の接合においては、
銀ロウ等の他のロウ材と併用する必要はなく、本発明に
おけるロウ材のみを使用すればよいものであり、上記4
次分中の一つである銅の緩衝材を使用してもよい。
In the present invention, materials to be joined made of ceramics include metal oxide ceramics such as alumina ceramics, nitride ceramics such as silicon nitride, carbides, borides, spinels, forsterites, and the like. In addition, materials to be joined made of metal include ss, sc
, SK, SOS and other steels or special steels, as well as Xi-Cr, Fe-Ni, Fe-Ni
-Alloys such as Go and superhard materials (for example, WC) are also widely targeted. In addition, in joining the above ceramics,
It is not necessary to use it together with other brazing materials such as silver solder, and it is sufficient to use only the brazing material in the present invention, and the above-mentioned 4.
A copper buffer may be used, which is one of the following:

以上を基にして、各種実験を行い、その結果を総括し、
ロウ材の重量組成としてAg:10〜40%、Cu: 
 8〜58%、Sn:  8〜58%、Ti:5〜25
%が最適である、という結果が得られた。
Based on the above, we conducted various experiments and summarized the results.
The weight composition of the brazing material is Ag: 10-40%, Cu:
8-58%, Sn: 8-58%, Ti: 5-25
The results showed that % was optimal.

〔実施例〕〔Example〕

以下、添付図面に示す実施例に基づき本発明の詳細な説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

1回の操作でセラミックス板と金属との接合を行った。The ceramic plate and metal were joined in one operation.

第1図に示すように、セラミックス板として30X 1
5X 5■/1のアルミナ板(純度33.5%、表面粗
さ1〜2 gRa) l、金属は5 m/m厚の545
C板2を使用し、またインサート材として2腸111厚
のCu板3を使用した。まず、銀、銅、錫、チタニウム
の金属粉末(240層esh全通)を所定の配合割合に
秤取し、十分混合した後、混合粉末100 ii部に対
し、スクリーンオイル1023,1部を混合してペース
ト状とした0次に、アルミナ板1の表面をエタノールで
法外、乾燥した後、この表面にペーストを60gm厚に
塗布した。これを真空乾燥器でインサート材としてCu
板3をはさみ、真空中(約950℃の場合はCu−3n
ロウ、800℃の場合には銀ロウ(BAg−8)のロウ
材4を使用した。その時の接合の状態を第1図に示し、
接合層の断面のEPMAによる結果を第2図に示した。
As shown in Figure 1, the ceramic plate is 30×1
5X 5■/1 alumina plate (purity 33.5%, surface roughness 1-2 gRa) l, metal 545 with a thickness of 5 m/m
A C plate 2 was used, and a Cu plate 3 having a thickness of 2 mm and 111 mm was used as an insert material. First, metal powders of silver, copper, tin, and titanium (throughout 240 layers of esh) are weighed out to a predetermined mixing ratio and mixed thoroughly. Then, 1023.1 part of screen oil is mixed for 100 ii parts of the mixed powder. Next, the surface of the alumina plate 1 was excessively dried with ethanol, and then a paste was applied to the surface to a thickness of 60 gm. This is then processed into Cu as an insert material in a vacuum dryer.
Sandwich the plate 3 and place it in a vacuum (at about 950℃, use Cu-3n
In the case of soldering at 800° C., soldering material 4 of silver soldering (BAg-8) was used. The state of the bond at that time is shown in Figure 1.
FIG. 2 shows the results of EPMA of the cross section of the bonding layer.

尚、図中符号5はTi 、 Sn濃集部、6はTi 、
 Ag 、 Sn濃集部、7はCu−リ 主速度は0.51■/winである。
In addition, in the figure, reference numeral 5 indicates a Ti and Sn concentrated area, and 6 indicates a Ti and Sn concentrated area.
In the Ag and Sn concentrated portion 7, the main rate of Cu regeneration is 0.51/win.

〔発明の効果〕〔Effect of the invention〕

本発明の以上のような構成を有することから、セラミッ
クスと被接合材とを低温度において接合することが可能
となった。また、従来必要であったメッキ工程を省略す
ることが必要であったメッキ工程を省略することが可能
となり、−回のみの工程により接合することができ、従
来より少ない工程で接合できるものである。さらに、窒
化珪素等の非酸化物セラミックスをも接合することが可
使となり、より多種類の被接合部材を接合できるように
なった。また、バラツキが少なく信頼性及び耐蝕性に富
む接合が可使となる、という効果を奏する。
Since the present invention has the above configuration, it has become possible to join ceramics and materials to be joined at a low temperature. In addition, it is now possible to omit the plating process that was previously required, and it is possible to join with only -1 steps, making it possible to join with fewer steps than before. . Furthermore, it has become possible to join non-oxide ceramics such as silicon nitride, making it possible to join a wider variety of members to be joined. In addition, there is an effect that a bond with little variation and high reliability and corrosion resistance can be used.

z1久z1ku

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るセラミックスの接合方法を用いて
セラミックスと金属とを接合した状態を示す断面図、第
2図は第1図に示す断面図におけるセラミックスと緩衝
材との間の接合層の結晶の構造を示すEPMAによる組
成像であり、各成分元素の分布状態を示した写真である
。 、l・・・セラミックス 2・・・被接合材(545C板) 4・・・ロウ材 特許出願人  住友セメント株式会社 第1図 1・・・・セラミックス 2・−・−板1(8科(S45C) 3・−・緩を材(Cu版) 4−・・・ロウ材 (巨糸売滓甫正書(方式) %式% 1、事件の表示  昭和60年特許願第257265号
2、発明の錫  セラミックスの接合方法代麩今用彦二 氏名    (7519)  弁理士土橋皓5、補正命
令の日付  昭和62年3月31日(発送旧)6、補正
により増加する発明の数  なし7、補正の対象   
明細書の「図面の簡単な説明」の欄補正の内容 明細書第11ページ第4行乃至第7行に「示す断面図、
第2図は第1図に示す断面図におけるセラミックスと緩
衝材との間の接合層の結晶の構造を示すEPMAによる
組成像であり、各成分元素の分布状態を示した写真であ
る。」とあるのを「示す断面図である。」と補正する。
FIG. 1 is a cross-sectional view showing a state in which ceramics and metal are bonded using the ceramic bonding method according to the present invention, and FIG. 2 is a bonding layer between the ceramic and the buffer material in the cross-sectional view shown in FIG. This is an EPMA composition image showing the crystal structure of , and is a photograph showing the distribution state of each component element. , l... Ceramics 2... Material to be joined (545C board) 4... Brazing material Patent applicant Sumitomo Cement Co., Ltd. S45C) 3--Lower wood (Cu version) 4--Raw wood (Koitomerikahosho (method) % formula % 1. Indication of incident 1985 Patent Application No. 257265 2. Invention Name of Hikoji Imayo (7519) Patent attorney Tsuchihashi Ko 5, Date of amendment order March 31, 1985 (old shipping date) 6, Number of inventions increased by amendment None 7, Amendment Target of
Contents of amendment in the column “Brief explanation of drawings” of the specification In lines 4 to 7 of page 11 of the specification, “Cross-sectional view shown,
FIG. 2 is an EPMA composition image showing the crystal structure of the bonding layer between the ceramic and the buffer material in the cross-sectional view shown in FIG. 1, and is a photograph showing the distribution state of each component element. " is corrected to "This is a sectional view shown."

Claims (1)

【特許請求の範囲】 1)銀(Ag)と、銅(Cu)と、錫(Sn)と、チタ
ニウム(Ti)との4成分から成るロウ材を用いてセラ
ミックスと被接合材とを接合するセラミックスの接合方
法。 2)上記ロウ材を構成する4成分の重量組成は、銀(A
g)10〜40%、銅(Cu)8〜58%、錫(Sn)
8〜56%、チタニウム(Ti)5〜25%であること
を特徴とする特許請求の範囲第1項記載のセラミックス
の接合方法。 3)上記ロウ材を構成する4成分のうち銅(Cu)と錫
(Sn)とが、銅(Cu)20〜80%であって錫(S
n)8.0〜20%の重量組成比から成るCu−Sn合
金を用いてセラミックスと被接材とを接合する特許請求
の範囲第1項記載のセラミックスの接合方法。
[Claims] 1) Ceramics and materials to be joined are bonded using a brazing material consisting of four components: silver (Ag), copper (Cu), tin (Sn), and titanium (Ti). Ceramics joining method. 2) The weight composition of the four components constituting the brazing material is silver (A
g) 10-40%, copper (Cu) 8-58%, tin (Sn)
8 to 56%, titanium (Ti) 5 to 25%, the method for joining ceramics according to claim 1. 3) Copper (Cu) and tin (Sn) among the four components constituting the brazing material are 20 to 80% copper (Cu) and tin (Sn).
n) The method for joining ceramics according to claim 1, wherein the ceramic and the material to be joined are joined using a Cu-Sn alloy having a weight composition ratio of 8.0 to 20%.
JP25726585A 1985-11-16 1985-11-16 Joining method for ceramics Pending JPS62289396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25726585A JPS62289396A (en) 1985-11-16 1985-11-16 Joining method for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25726585A JPS62289396A (en) 1985-11-16 1985-11-16 Joining method for ceramics

Publications (1)

Publication Number Publication Date
JPS62289396A true JPS62289396A (en) 1987-12-16

Family

ID=17303977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25726585A Pending JPS62289396A (en) 1985-11-16 1985-11-16 Joining method for ceramics

Country Status (1)

Country Link
JP (1) JPS62289396A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725677A (en) * 1993-05-10 1995-01-27 Isuzu Motors Ltd Method for joining ceramics to nickel or nickel-based alloy
EP0798781A2 (en) * 1996-03-27 1997-10-01 Kabushiki Kaisha Toshiba Silicon nitride circuit board and producing method therefor
JPH09321400A (en) * 1995-10-18 1997-12-12 Cts Corp Active solder and formation of conductive trace
EP0798779A4 (en) * 1995-07-21 1998-05-13 Toshiba Kk Ceramic circuit board
JP2004172081A (en) * 2002-11-20 2004-06-17 Lg Electronics Inc Magnetron and joining method between magnetron members
CN101987402A (en) * 2010-11-30 2011-03-23 哈尔滨工业大学 Cu-Sn-Ti solder and method for brazing Ti2AlC ceramics and Cu with same
JP2011067849A (en) * 2009-09-28 2011-04-07 Kyocera Corp Brazing filler metal, and heat radiation base body joined by using the same
WO2015079844A1 (en) * 2013-11-29 2015-06-04 株式会社村田製作所 Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound
JP2016145132A (en) * 2015-02-09 2016-08-12 イビデン株式会社 Composite component
CN113278824A (en) * 2021-04-29 2021-08-20 西安理工大学 Preparation method of Cu-Sn-Ti alloy with high tin content and high plasticity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811389A (en) * 1981-07-02 1983-01-22 キヤリア・コ−ポレイシヨン High-performance heat-transfer pipe and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811389A (en) * 1981-07-02 1983-01-22 キヤリア・コ−ポレイシヨン High-performance heat-transfer pipe and its manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725677A (en) * 1993-05-10 1995-01-27 Isuzu Motors Ltd Method for joining ceramics to nickel or nickel-based alloy
EP0798779A4 (en) * 1995-07-21 1998-05-13 Toshiba Kk Ceramic circuit board
JPH09321400A (en) * 1995-10-18 1997-12-12 Cts Corp Active solder and formation of conductive trace
EP0798781A2 (en) * 1996-03-27 1997-10-01 Kabushiki Kaisha Toshiba Silicon nitride circuit board and producing method therefor
EP0798781A3 (en) * 1996-03-27 1998-05-27 Kabushiki Kaisha Toshiba Silicon nitride circuit board and producing method therefor
JP2004172081A (en) * 2002-11-20 2004-06-17 Lg Electronics Inc Magnetron and joining method between magnetron members
JP2011067849A (en) * 2009-09-28 2011-04-07 Kyocera Corp Brazing filler metal, and heat radiation base body joined by using the same
CN101987402A (en) * 2010-11-30 2011-03-23 哈尔滨工业大学 Cu-Sn-Ti solder and method for brazing Ti2AlC ceramics and Cu with same
WO2015079844A1 (en) * 2013-11-29 2015-06-04 株式会社村田製作所 Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound
JP2016145132A (en) * 2015-02-09 2016-08-12 イビデン株式会社 Composite component
CN113278824A (en) * 2021-04-29 2021-08-20 西安理工大学 Preparation method of Cu-Sn-Ti alloy with high tin content and high plasticity
CN113278824B (en) * 2021-04-29 2021-12-17 西安理工大学 Preparation method of Cu-Sn-Ti alloy with high tin content and high plasticity

Similar Documents

Publication Publication Date Title
US4562121A (en) Soldering foil for stress-free joining of ceramic bodies to metal
KR890000912B1 (en) Method for joining ceramic and metal
US4630767A (en) Method of brazing using a ductile low temperature brazing alloy
US4598025A (en) Ductile composite interlayer for joining by brazing
EP0301492B1 (en) Method for bonding cubic boron nitride sintered compact
JPS62289396A (en) Joining method for ceramics
US4980243A (en) Direct bonding of ceramic parts by a silver alloy solder
JP3095490B2 (en) Ceramic-metal joint
US5129574A (en) Braze bonding of oxidation-resistant foils
JP3302714B2 (en) Ceramic-metal joint
JPH10194860A (en) Brazing filler metal
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP2001048670A (en) Ceramics-metal joined body
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JP3505212B2 (en) Joint and method of manufacturing joint
JPH03103385A (en) Metallization of ceramic and bonding of ceramic to metal
JP3298235B2 (en) Joining method of ceramics and nickel
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0215874A (en) Method and material for joining metal and ceramics
JPS62227596A (en) Ceramics-metal joining member
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method
JPS61236661A (en) Method of joining ceramic and metal, same kind of ceramics or different kind of ceramics
KR0120956B1 (en) A composition for ceramic joining
JPS6140878A (en) Bonded body of silicon nitride sintered body and metal and manufacture
JPS62223071A (en) Method of joining ceramic to metal, same kind of ceramics each other or different kind of ceramics