WO2015079844A1 - Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound - Google Patents

Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound Download PDF

Info

Publication number
WO2015079844A1
WO2015079844A1 PCT/JP2014/078456 JP2014078456W WO2015079844A1 WO 2015079844 A1 WO2015079844 A1 WO 2015079844A1 JP 2014078456 W JP2014078456 W JP 2014078456W WO 2015079844 A1 WO2015079844 A1 WO 2015079844A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
intermetallic compound
melting point
alloy
acid
Prior art date
Application number
PCT/JP2014/078456
Other languages
French (fr)
Japanese (ja)
Inventor
公介 中野
高岡 英清
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015079844A1 publication Critical patent/WO2015079844A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process

Definitions

  • a first metal to be a material of an intermetallic compound and a second metal having a melting point higher than that of the first metal are prepared.
  • solvent examples include alcohols, ketones, esters, ethers, aromatics, hydrocarbons, and the like. Specific examples include benzyl alcohol, ethanol, isopropyl alcohol, butanol, diethylene glycol, ethylene glycol, glycerin.
  • FIG. 1 shows a reflow profile when the heat bonding is performed.
  • the area of the intermetallic compound layer surrounded by the dotted line is measured using image analysis software, and the area is divided by the width of 177.6 ⁇ m of the cross-sectional metal micrograph of the intermetallic compound layer. Evaluated as thickness.

Abstract

Provided is a method for generating an intermetallic compound which exhibits favorable diffusion of a first metal and a second metal when generating the intermetallic compound, is capable of generating, at a low temperature and in a short amount of time, an intermetallic compound having a high melting point, does not leave a low-melting point component behind after generating the intermetallic compound, and is capable of obtaining an intermetallic compound having excellent strength at high temperatures. This method for generating an intermetallic compound generates an intermetallic compound having a higher melting point than that of the first metal by heating the first metal and the second metal, which has a higher melting point than that of the first metal, to a temperature at or above the melting point of the first metal. The first metal is Sn or an alloy containing Sn, while the second metal is a Cu-based alloy which is a Cu-Ti alloy, a Cu-Co alloy, or a Cu-Pt alloy.

Description

金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法Method for producing intermetallic compound and method for connecting object to be connected using intermetallic compound
 この発明は、金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法に関し、特に、例えば電子部品の実装や、ビア接続などに用いられる、金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法に関する。 The present invention relates to a method for producing an intermetallic compound and a method for connecting an object to be connected using the intermetallic compound, and in particular, a method for producing an intermetallic compound and an intermetallic material used for mounting electronic parts, via connection, etc. The present invention relates to a connection method of a connection object using a compound.
 電子部品の実装の際に用いられる金属間化合物の導電性材料としては、はんだが広く用いられている。
 ところで、従来から広く用いられてきたSn-Pb系はんだにおいては、高温系はんだとして、例えばPbリッチのPb-5Sn(融点:314~310℃)、Pb-10Sn(融点:302~275℃)などを用いて330~350℃の温度ではんだ付けし、その後、例えば、低温系はんだのSn-37Pb共晶(183℃)などを用いて、上記の高温系はんだの融点以下の温度ではんだ付けすることにより、先のはんだ付けに用いた高温系はんだを溶融させることなく、はんだ付けによる接続を行う温度階層接続の方法が広く適用されている。
Solder is widely used as a conductive material of an intermetallic compound used for mounting electronic parts.
By the way, in the Sn—Pb solder that has been widely used heretofore, as a high temperature solder, for example, Pb-rich Pb-5Sn (melting point: 314 to 310 ° C.), Pb-10 Sn (melting point: 302 to 275 ° C.), etc. And then soldering at a temperature below the melting point of the high temperature solder using, for example, Sn-37Pb eutectic (183 ° C.) of a low temperature solder. Therefore, a method of temperature hierarchical connection in which connection by soldering is performed without melting the high-temperature solder used for the previous soldering has been widely applied.
 このような温度階層接続は、例えば、チップをダイボンドするタイプの半導体装置や、フリップチップ接続などの半導体装置などで適用されており、半導体装置の内部ではんだ付けによる接続を行った後、さらに、該半導体装置自体をはんだ付けにより基板に接続するような場合に用いられる重要な技術である。 Such a temperature hierarchy connection is applied to, for example, a semiconductor device of a die-bonding type chip or a semiconductor device such as a flip chip connection, and after performing connection by soldering inside the semiconductor device, This is an important technique used when the semiconductor device itself is connected to a substrate by soldering.
 この用途に用いられる導電性材料として、例えば、(a)Cu、Al、Au、Agなどの第2金属またはそれらを含む高融点合金からなる第2金属(または合金)ボールと、(b)SnまたはInからなる第1金属ボール、の混合体を含むはんだペーストが提案されている(特許文献1参照)。
 また、この特許文献1には、はんだペーストを用いた接続方法や、電子機器の製造方法が開示されている。
Examples of the conductive material used in this application include (a) a second metal (or alloy) ball made of a second metal such as Cu, Al, Au, Ag, or a high melting point alloy containing them, and (b) Sn. Alternatively, a solder paste including a mixture of first metal balls made of In has been proposed (see Patent Document 1).
Further, Patent Document 1 discloses a connection method using a solder paste and a method for manufacturing an electronic device.
 この特許文献1のはんだペーストを用いてはんだ付けを行った場合、図3(a)に模式的に示すように、低融点金属(例えばSn)ボール51と、高融点金属(例えばCu)ボール52と、フラックス53とを含むはんだペーストが、加熱されて反応し、はんだ付け後に、図3(b)に示すように、複数個の高融点金属ボール52が、低融点金属ボールに由来する低融点金属と、高融点金属ボールに由来する高融点金属との間に形成される金属間化合物54を介して連結され、この連結体により接続対象物が接続・連結される(はんだ付けされる)ことになる。 When soldering is performed using the solder paste of Patent Document 1, a low melting point metal (for example, Sn) ball 51 and a high melting point metal (for example, Cu) ball 52 are schematically shown in FIG. And the solder paste containing the flux 53 is heated to react, and after soldering, as shown in FIG. 3B, a plurality of high melting point metal balls 52 have a low melting point derived from the low melting point metal balls. It is connected via an intermetallic compound 54 formed between a metal and a refractory metal derived from a refractory metal ball, and the connection object is connected and connected (soldered) by this linking body. become.
特開2002-254194号公報JP 2002-254194 A
 しかしながら、この特許文献1のはんだペーストの場合、はんだ付け工程ではんだペーストを加熱することにより、高融点金属(例えばCu)と低融点金属(例えばSn)との金属間化合物を生成させるようにしているが、Cu(高融点金属)とSn(低融点金属)との組み合わせでは、その拡散速度が遅いため、低融点金属であるSnが残留する。Snが残留したはんだペーストの場合、高温下での接合強度が大幅に低下して、接続すべき製品の種類によっては使用することができなくなる場合がある。また、はんだ付けの工程で残留したSnは、その後のはんだ付け工程で溶融して流れ出すおそれがあり、温度階層接続に用いられる高温はんだとしては信頼性が低いという問題点がある。 However, in the case of the solder paste of Patent Document 1, an intermetallic compound of a high melting point metal (for example, Cu) and a low melting point metal (for example, Sn) is generated by heating the solder paste in the soldering process. However, in the combination of Cu (high melting point metal) and Sn (low melting point metal), the diffusion rate is slow, so that Sn which is a low melting point metal remains. In the case of a solder paste in which Sn remains, the bonding strength at a high temperature is greatly reduced, and it may not be possible to use depending on the type of product to be connected. Further, Sn remaining in the soldering process may melt and flow out in the subsequent soldering process, and there is a problem that reliability is low as a high-temperature solder used for the temperature hierarchy connection.
 すなわち、例えば半導体装置の製造工程において、はんだ付けを行う工程を経て半導体装置を製造した後、その半導体装置を、リフローはんだ付けの方法で基板に実装しようとした場合、半導体装置の製造工程におけるはんだ付けの工程で残留したSnが、リフローはんだ付けの工程で溶融して流れ出してしまうおそれがある。 That is, for example, when a semiconductor device is manufactured through a soldering process in the manufacturing process of the semiconductor device and then the semiconductor device is to be mounted on a substrate by a reflow soldering method, the solder in the manufacturing process of the semiconductor device is used. There is a possibility that Sn remaining in the attaching process may melt and flow out in the reflow soldering process.
 また、Snが残留しないように、低融点金属を完全に金属間化合物にするためには、はんだ付け工程において、高温かつ長時間の加熱が必要となるが生産性との兼ね合いもあり、実用上不可能であるのが実情である。 In addition, in order to completely convert the low melting point metal into an intermetallic compound so that Sn does not remain, high-temperature and long-time heating is necessary in the soldering process. The reality is that it is impossible.
 それゆえに、この発明の主たる目的は、金属間化合物を生成する際に第1金属と第2金属との拡散性が良好であって、低温かつ短時間で融点の高い金属間化合物を生成することができ、金属間化合物を生成した後に低融点成分が残留せず、耐熱強度に優れた金属間化合物を得ることができる、金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法を提供することである。 Therefore, a main object of the present invention is to produce an intermetallic compound having good diffusibility between the first metal and the second metal and having a high melting point at a low temperature in a short time when producing the intermetallic compound. The method for producing an intermetallic compound and the connection of an object to be connected using the intermetallic compound are capable of obtaining an intermetallic compound having excellent heat resistance and no low melting point components remaining after the intermetallic compound is produced. Is to provide a method.
 この発明にかかる金属間化合物の生成方法は、第1金属と第1金属の融点より高い融点を有する第2金属とを第1金属の融点以上の温度に加熱することによって、第1金属の融点より高い融点を有する金属間化合物を生成する、金属間化合物の生成方法であって、第1金属はSnまたはSnを含む合金であり、第2金属はCu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金であることを特徴とする、金属間化合物の生成方法である。
 この発明にかかる金属間化合物を用いた接続対象物の接続方法は、第1金属と第1金属の融点より高い融点を有する第2金属とを第1金属の融点以上の温度に加熱することによって、第1金属の融点より高い融点を有する金属間化合物を生成し、金属間化合物を用いて接続対象物を接続する、金属間化合物を用いた接続対象物の接続方法であって、第1金属はSnまたはSnを含む合金であり、第2金属はCu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金であることを特徴とする、金属間化合物を用いた接続対象物の接続方法である。
In the method for producing an intermetallic compound according to the present invention, the melting point of the first metal is obtained by heating the first metal and the second metal having a melting point higher than the melting point of the first metal to a temperature higher than the melting point of the first metal. A method for producing an intermetallic compound that produces an intermetallic compound having a higher melting point, wherein the first metal is Sn or an alloy containing Sn, and the second metal is a Cu-Ti alloy, Cu-Co alloy, or Cu A method for producing an intermetallic compound, which is a Cu-based alloy of -Pt alloys.
The connection method of the connection target object using the intermetallic compound concerning this invention is by heating the 1st metal and the 2nd metal which has melting | fusing point higher than melting | fusing point of 1st metal to the temperature more than melting | fusing point of 1st metal. A method for connecting a connection object using an intermetallic compound, wherein an intermetallic compound having a melting point higher than the melting point of the first metal is generated, and the connection object is connected using the intermetallic compound. Is a connection object using an intermetallic compound, characterized in that Sn or an alloy containing Sn, and the second metal is a Cu-based alloy of Cu—Ti alloy, Cu—Co alloy or Cu—Pt alloy It is a connection method of things.
 この発明にかかる金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法では、それぞれ、第1金属と第1金属の融点より高い融点を有する第2金属とを第1金属の融点以上の温度に加熱することによって、第1金属の融点より高い融点を有する金属間化合物を生成し、第1金属はSnまたはSnを含む合金であり、第2金属はCu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金であるので、第1金属と第2金属の拡散が飛躍的に進行し、高融点の金属間化合物への変化が促進され、低融点成分が残留しなくなるため、耐熱強度の大きい接続(例えばこの発明によって生成される金属間化合物の導電性材料をソルダペーストとして用いた場合にははんだ付け)を行うことが可能になる。 In the method for producing an intermetallic compound and the method for connecting an object to be connected using the intermetallic compound according to the present invention, the first metal and the second metal having a melting point higher than the melting point of the first metal are respectively used for the first metal. By heating to a temperature equal to or higher than the melting point, an intermetallic compound having a melting point higher than the melting point of the first metal is generated. The first metal is Sn or an alloy containing Sn, and the second metal is a Cu—Ti alloy, Cu -Co alloy or Cu-Pt alloy is a Cu-based alloy, so that the diffusion of the first metal and the second metal progresses dramatically, and the change to a high melting point intermetallic compound is promoted. Therefore, it becomes possible to make a connection with a high heat resistance (for example, soldering when a conductive material of an intermetallic compound produced by the present invention is used as a solder paste).
 すなわち、この発明にかかる金属間化合物の生成方法または金属間化合物を用いた接続対象物の接続方法を用いることにより、例えば、半導体装置の製造工程において、はんだ付けを行う工程を経て半導体装置を製造した後、その半導体装置を、リフローはんだ付けの方法で基板に実装するような場合にも、先のはんだ付けの工程におけるはんだ付け部分は、耐熱強度に優れているため、リフローはんだ付けの工程で再溶融してしまうことがなく、信頼性の高い実装を行うことが可能になる。 That is, by using the method for producing an intermetallic compound or the method for connecting an object to be connected using the intermetallic compound according to the present invention, for example, in the semiconductor device manufacturing process, a semiconductor device is manufactured through a soldering process. After that, even when the semiconductor device is mounted on the substrate by the reflow soldering method, the soldered part in the previous soldering process has excellent heat resistance, so in the reflow soldering process It is possible to perform highly reliable mounting without remelting.
 したがって、この発明によれば、金属間化合物を生成する際に第1金属と第2金属との拡散性が良好であって、低温かつ短時間で融点の高い金属間化合物を生成することができ、金属間化合物を生成した後に低融点成分が残留せず、耐熱強度に優れた金属間化合物を得ることができる、金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法が得られる。
 すなわち、この発明における第1金属および第2金属の組合せで加熱すると、低融点金属(第1金属)が溶融する比較的低い加工温度でより短時間に高融点の金属間化合物が急速拡散により生成する。
 そのため、この発明によれば、従来の第1金属および第2金属の組合せと比較して、急速短時間に金属間化合物を生成することができる。
Therefore, according to the present invention, when producing an intermetallic compound, the diffusibility between the first metal and the second metal is good, and an intermetallic compound having a high melting point can be produced at a low temperature in a short time. The method for producing an intermetallic compound and the method for connecting an object to be connected using the intermetallic compound are capable of obtaining an intermetallic compound having excellent heat resistance without low melting point components remaining after the intermetallic compound is produced. can get.
That is, when heated with a combination of the first metal and the second metal in the present invention, a high melting point intermetallic compound is formed by rapid diffusion in a shorter time at a relatively low processing temperature at which the low melting point metal (first metal) melts. To do.
Therefore, according to the present invention, an intermetallic compound can be generated in a rapid time compared with the conventional combination of the first metal and the second metal.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
高融点金属およびSn間に金属間化合物層を生成する際のリフロープロファイルの一例を示す図である。It is a figure which shows an example of the reflow profile at the time of producing | generating an intermetallic compound layer between a refractory metal and Sn. 高融点金属、Snおよびそれらの間の金属間化合物層の断面金属顕微鏡写真の一例を示す。An example of the cross-sectional metal micrograph of a refractory metal, Sn, and the intermetallic compound layer between them is shown. 従来のはんだペーストを用いてはんだ付けを行う場合のはんだの挙動を示す図であり、(a)は加熱前の状態を示す図であり、(b)ははんだ付け工程終了後の状態を示す図である。It is a figure which shows the behavior of the solder at the time of soldering using the conventional solder paste, (a) is a figure which shows the state before a heating, (b) is a figure which shows the state after completion | finish of a soldering process It is.
 この発明にかかる金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法の実施の形態について説明する。 Embodiments of a method for producing an intermetallic compound and a method for connecting a connection object using the intermetallic compound according to the present invention will be described.
 まず、金属間化合物の材料となる第1金属と第1金属の融点より高い融点を有する第2金属とを準備する。 First, a first metal to be a material of an intermetallic compound and a second metal having a melting point higher than that of the first metal are prepared.
 第1金属として、SnまたはSnを含む合金を用いる。第1金属として、特に、Sn単体、または、Cu、Ni、Ag、Au、Sb、Zn、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、Te、Pからなる群より選ばれる少なくとも1種とSnとを含む合金を用いることにより、他の金属(第2金属)との間で金属間化合物を形成しやすくすることが可能になり、この発明をより実効あらしめることができる。 As the first metal, Sn or an alloy containing Sn is used. As the first metal, in particular, Sn alone, Cu, Ni, Ag, Au, Sb, Zn, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg, Pd, Si, Sr, Te, By using an alloy containing Sn and at least one selected from the group consisting of P, it becomes possible to easily form an intermetallic compound with another metal (second metal). It can be more effective.
 また、第2金属として、Cu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金を用いる。このように第2金属として特定のCu基合金を用いることにより、より低温、短時間で第1金属との間で金属間化合物を形成しやすくすることが可能になり、その後のリフロー工程でも溶融しないようにすることが可能になる。
 第2金属には、第1金属との反応を阻害しない程度で、例えば、1重量%以下の割合で不純物が含まれていてもよい。不純物としては、Zn、Ge、Ti、Sn、Al、Be、Sb、In、Ga、Si、Ag、Mg、La、P、Pr、Th、Zr、B、Pd、Pt、Ni、Auなどが挙げられる。
As the second metal, a Cu-based alloy of Cu—Ti alloy, Cu—Co alloy or Cu—Pt alloy is used. In this way, by using a specific Cu-based alloy as the second metal, it becomes possible to easily form an intermetallic compound with the first metal at a lower temperature and in a shorter time. It becomes possible not to do.
The second metal may contain impurities at a ratio of 1% by weight or less, for example, to the extent that the reaction with the first metal is not hindered. Examples of impurities include Zn, Ge, Ti, Sn, Al, Be, Sb, In, Ga, Si, Ag, Mg, La, P, Pr, Th, Zr, B, Pd, Pt, Ni, Au, and the like. It is done.
 そして、第1金属および第2金属を、接触した状態で第1金属の融点以上の温度に加熱することによって、急速に液相拡散する現象を利用して、第1金属の融点より高い融点を有する金属間化合物を生成する。 Then, by heating the first metal and the second metal to a temperature equal to or higher than the melting point of the first metal in contact with each other, the melting point higher than the melting point of the first metal is obtained by utilizing the phenomenon of rapid liquid phase diffusion. The intermetallic compound which has is produced | generated.
 この場合、第1金属のうち少なくとも一部を、第2金属の周りにコートすることにより、第1金属と第2金属の間で、さらに金属間化合物を形成しやすくすることが可能になり、この発明をより実効あらしめることができる。 In this case, by coating at least a part of the first metal around the second metal, it becomes possible to easily form an intermetallic compound between the first metal and the second metal, This invention can be made more effective.
 また、この発明によって生成される金属間化合物の導電性材料においては、フラックスを含ませることも可能である。
 フラックスは、接続対象物や金属の表面の酸化被膜を除去する機能を果たす。この導電性材料においては、フラックスとして、例えば、ビヒクル、溶剤、チキソ剤、活性剤などからなる、公知の種々のものを用いることが可能である。
 前記ビヒクルの具体的な例としては、ロジンおよびそれを変性した変性ロジンなどの誘導体からなるロジン系樹脂、合成樹脂、またはこれらの混合体などが挙げられる。
 前記ロジンおよびそれを変性した変性ロジンなどの誘導体からなるロジン系樹脂の具体的な例としては、ガムロジン、トールロジン、ウッドロジン、重合ロジン、水素添加ロジン、ホルミル化ロジン、ロジンエステル、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ロジン変性アルキド樹脂、その他各種ロジン誘導体などが挙げられる。
 前記ロジンおよびそれを変性した変性ロジンなどの誘導体からなる合成樹脂の具体的な例としては、ポリエステル樹脂、ポリアミド樹脂、フェノキシ樹脂、テルペン樹脂などが挙げられる。
Further, the intermetallic compound conductive material produced by the present invention can contain a flux.
The flux fulfills the function of removing the oxide film on the surface of the connection object or metal. In this conductive material, various known materials such as a vehicle, a solvent, a thixotropic agent, and an activator can be used as the flux.
Specific examples of the vehicle include rosin-based resins, synthetic resins, and mixtures thereof composed of rosin and derivatives such as modified rosin modified with rosin.
Specific examples of the rosin resin composed of the rosin and a derivative such as a modified rosin modified from the rosin include gum rosin, tall rosin, wood rosin, polymerized rosin, hydrogenated rosin, formylated rosin, rosin ester, rosin modified maleic resin Rosin-modified phenol resin, rosin-modified alkyd resin, and other various rosin derivatives.
Specific examples of the synthetic resin comprising the rosin and a derivative such as a modified rosin modified from the rosin include polyester resin, polyamide resin, phenoxy resin, and terpene resin.
 前記溶剤としては、アルコール、ケトン、エステル、エーテル、芳香族系、炭化水素類などが知られており、具体的な例としては、ベンジルアルコール、エタノール、イソプロピルアルコール、ブタノール、ジエチレングリコール、エチレングリコール、グリセリン、エチルセロソルブ、ブチルセロソルブ、酢酸エチル、酢酸ブチル、安息香酸ブチル、アジピン酸ジエチル、ドデカン、テトラデセン、α-ターピネオール、テルピネオール、2-メチル2,4-ペンタンジオール、2-エチルヘキサンジオール、トルエン、キシレン、プロピレングリコールモノフェニルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノベンジルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、ジイソブチルアジペート、へキシレングリコール、シクロヘキサンジメタノール、2-ターピニルオキシエタノール、2-ジヒドロターピニルオキシエタノール、それらを混合したものなどが挙げられる。 Examples of the solvent include alcohols, ketones, esters, ethers, aromatics, hydrocarbons, and the like. Specific examples include benzyl alcohol, ethanol, isopropyl alcohol, butanol, diethylene glycol, ethylene glycol, glycerin. , Ethyl cellosolve, butyl cellosolve, ethyl acetate, butyl acetate, butyl benzoate, diethyl adipate, dodecane, tetradecene, α-terpineol, terpineol, 2-methyl 2,4-pentanediol, 2-ethylhexanediol, toluene, xylene, Propylene glycol monophenyl ether, diethylene glycol monohexyl ether, diethylene glycol monobenzyl ether, ethylene glycol monobutyl ether, diethylene glycol Nobutyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, diisobutyl adipate, hexylene glycol, cyclohexane dimethanol, 2-terpinyloxyethanol, 2-dihydroterpinyloxyethanol, and mixtures thereof Can be mentioned.
 前記チキソ剤の具体的な例としては、硬化ヒマシ油、カルナバワックス、アミド類、ヒドロキシ脂肪酸類、ジベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール類、蜜蝋、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミドなどが挙げられる。また、これらに必要に応じてカプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸のような脂肪酸、1,2-ヒドロキシステアリン酸のようなヒドロキシ脂肪酸、酸化防止剤、界面活性剤、アミン類などを添加したものも前記チキソ剤として用いることができる。 Specific examples of the thixotropic agent include hydrogenated castor oil, carnauba wax, amides, hydroxy fatty acids, dibenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, beeswax, stearamide, hydroxystearic acid ethylenebisamide Etc. In addition, if necessary, fatty acids such as caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, hydroxy fatty acids such as 1,2-hydroxystearic acid, antioxidants, surfactants Those added with amines can also be used as the thixotropic agent.
 前記活性剤としては、アミンのハロゲン化水素酸塩、有機ハロゲン化合物、有機酸、有機アミン、多価アルコールなどがある。前記アミンのハロゲン化水素酸塩の具体的なものとして、ジフェニルグアニジン臭化水素酸塩、ジフェニルグアニジン塩酸塩、シクロヘキシルアミン臭化水素酸塩、エチルアミン塩酸塩、エチルアミン臭化水素酸塩、ジエチルアニリン臭化水素酸塩、ジエチルアニリン塩酸塩、トリエタノールアミン臭化水素酸塩、モノエタノールアミン臭化水素酸塩などが例示される。 Examples of the activator include amine hydrohalides, organic halogen compounds, organic acids, organic amines, and polyhydric alcohols. Specific examples of the amine hydrohalide include diphenylguanidine hydrobromide, diphenylguanidine hydrochloride, cyclohexylamine hydrobromide, ethylamine hydrochloride, ethylamine hydrobromide, diethylaniline odor Examples thereof include hydrobromide, diethylaniline hydrochloride, triethanolamine hydrobromide, monoethanolamine hydrobromide, and the like.
 なお、前記有機ハロゲン化合物の具体的な例として、塩化パラフィン、テトラブロモエタン、ジブロモプロパノール、2,3-ジブロモ-1,4-ブタンジオール、2,3-ジブロモ-2-ブテン-1,4-ジオール、トリス(2,3-ジブロモプロピル)イソシアヌレートなどが挙げられる。
 前記有機酸の具体的な例として、マロン酸、フマル酸、グリコール酸、クエン酸、リンゴ酸、コハク酸、フェニルコハク酸、マレイン酸、サルチル酸、アントラニル酸、グルタル酸、スベリン酸、アジピン酸、セバシン酸、ステアリン酸、アビエチン酸、安息香酸、トリメリット酸、ピロメリット酸、ドデカン酸などがあり、さらに有機アミンの具体的なものとして、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、トリブチルアミン、アニリン、ジエチルアニリンなどが挙げられる。
 前記多価アルコールとしてはエリスリトール、ピロガロール、リビトールなどが例示される。
Specific examples of the organic halogen compound include chlorinated paraffin, tetrabromoethane, dibromopropanol, 2,3-dibromo-1,4-butanediol, 2,3-dibromo-2-butene-1,4- Examples thereof include diol and tris (2,3-dibromopropyl) isocyanurate.
Specific examples of the organic acid include malonic acid, fumaric acid, glycolic acid, citric acid, malic acid, succinic acid, phenyl succinic acid, maleic acid, salicylic acid, anthranilic acid, glutaric acid, suberic acid, adipic acid, There are sebacic acid, stearic acid, abietic acid, benzoic acid, trimellitic acid, pyromellitic acid, dodecanoic acid, etc., and specific organic amines include monoethanolamine, diethanolamine, triethanolamine, tributylamine, aniline , Diethylaniline and the like.
Examples of the polyhydric alcohol include erythritol, pyrogallol, ribitol and the like.
 上述のように、フラックスは、接続対象物や金属の表面の酸化被膜を除去する機能を果たすことから、この発明によって生成される金属間化合物の導電性材料においては、フラックスを含むことが好ましい。なお、フラックスは、導電性材料全体に対して7~15重量%の割合で含むことが好ましい。
 ただし、この発明によって生成される金属間化合物の導電性材料は、必ずしもフラックスを含むことを要するものではなく、フラックスを必要としない接続工法にも適用することが可能であり、例えば、加圧しながら加熱する方法や、強還元雰囲気で加熱する方法などによっても、接続対象物や金属の表面の酸化被膜を除去して、信頼性の高い接続を可能にすることができる。
As described above, since the flux functions to remove the oxide film on the surface of the connection object or the metal, the conductive material of the intermetallic compound produced by the present invention preferably contains the flux. Note that the flux is preferably included at a ratio of 7 to 15% by weight with respect to the entire conductive material.
However, the conductive material of the intermetallic compound produced by the present invention does not necessarily need to contain a flux, and can be applied to a connection method that does not require a flux. Also by a heating method or a heating method in a strong reducing atmosphere, it is possible to remove the oxide film on the object to be connected or the surface of the metal, thereby enabling a highly reliable connection.
 また、この発明によって生成される金属間化合物の導電性材料においては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコン樹脂またはその変性樹脂、アクリル樹脂からなる熱硬化性樹脂群より選ばれる少なくとも1種、あるいは、ポリアミド樹脂、ポリスチレン樹脂、ポリメタクリル樹脂、ポリカーボネート樹脂、セルロース系樹脂からなる熱可塑性樹脂群から選ばれる少なくとも1種を含ませることも可能である。 In the conductive material of the intermetallic compound produced by the present invention, at least one selected from the group of thermosetting resins consisting of epoxy resins, phenol resins, polyimide resins, silicon resins or modified resins thereof, and acrylic resins, Or at least 1 sort (s) chosen from the thermoplastic resin group which consists of a polyamide resin, a polystyrene resin, a polymethacryl resin, a polycarbonate resin, and a cellulose resin can also be included.
 次に、この発明にかかる実施例1~7および比較例1~24による金属間化合物の生成方法などについて説明する。 Next, methods for producing intermetallic compounds according to Examples 1 to 7 and Comparative Examples 1 to 24 according to the present invention will be described.
 まず、第1金属である低融点金属として、SnペーストOZ100-221BM5-21-12(千住金属工業社製)を準備した。 First, Sn paste OZ100-221BM5-21-12 (manufactured by Senju Metal Industry Co., Ltd.) was prepared as a low melting point metal as the first metal.
 さらに、第2金属として、表1および表2に示す高融点金属(高融点合金)を準備した。 Furthermore, refractory metals (refractory alloys) shown in Tables 1 and 2 were prepared as the second metal.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す高融点金属について、例えば、表1の上段の「X」が「-」であり、「n(重量%)」が「0」であるものは、表2に示す比較例1に対応する「Cu」を示し、Cu単体である。また、表1の「X」が「Ti」であり、「n(重量%)」が「2」である高融点金属は、表2に示す実施例1に対応する「Cu-2Ti」を示し、Cu基合金中に2重量%のTiを含有するものである。さらに、表1の「X」や「n(重量%)」が他のものである高融点金属についても、同様であり、表2に示す実施例2~7および比較例2~24に対応するものである。 Regarding the refractory metals shown in Table 1, for example, those in which “X” in the upper part of Table 1 is “−” and “n (% by weight)” is “0” are shown in Comparative Example 1 shown in Table 2. Corresponding “Cu” is shown, which is a simple substance of Cu. Further, the refractory metal whose “X” in Table 1 is “Ti” and whose “n (weight%)” is “2” indicates “Cu-2Ti” corresponding to Example 1 shown in Table 2. The Cu-based alloy contains 2% by weight of Ti. Further, the same applies to refractory metals having other “X” and “n (% by weight)” in Table 1 and correspond to Examples 2 to 7 and Comparative Examples 2 to 24 shown in Table 2. Is.
 また、各高融点金属は、平面が10mm×10mmであり厚さが1mmである板状のものを使用した。 Further, each refractory metal used was a plate having a plane of 10 mm × 10 mm and a thickness of 1 mm.
 そして、評価するサンプル(高融点金属およびSn間に金属間化合物層が生成されたもの)は、以下の手順で得た。 And the sample to be evaluated (one in which an intermetallic compound layer was generated between the refractory metal and Sn) was obtained by the following procedure.
 まず、上述の板状の各高融点金属の主面に、開口径が1.5mm×1.5mmであり厚さが0.15mmであるメタルマスクを用いて、上述のSnペーストを印刷した。 First, the above Sn paste was printed on the main surface of each of the above plate-like refractory metals using a metal mask having an opening diameter of 1.5 mm × 1.5 mm and a thickness of 0.15 mm.
 それから、各高融点金属および印刷されたSnペーストを、N2リフロー装置を用いて加熱接合して、各サンプルを得た。図1には、その加熱接合する際のリフロープロファイルを示した。 Then, each refractory metal and the printed Sn paste were heat-bonded using an N 2 reflow apparatus to obtain each sample. FIG. 1 shows a reflow profile when the heat bonding is performed.
 そして、各サンプルの金属間化合物層の厚さを、次のようにして評価した。 And the thickness of the intermetallic compound layer of each sample was evaluated as follows.
 まず、得られたサンプルの高融点金属およびSn間の界面接合部に生成された金属間化合物層の厚さを計測するために、断面金属顕微鏡観察を行った。この場合、断面研磨サンプルは、高融点金属およびSnの接合界面が底面に対して垂直方向になるように配置して、樹脂注型で24時間かけて室温硬化した。また、サンプルの観察面は、#220エメリー紙で面出しした後に、#500エメリー紙、#1000エメリー紙、#2400エメリー紙をその順に使用して粗研磨を行い、さらに、6μmダイヤモンドペースト、3μmダイヤモンドペースト、1μmダイヤモンドペーストをその順に使用してバフ研磨を行う手順で鏡面仕上げすることによって得た。そして、断面研磨サンプルの接合状態を、金属顕微鏡を用いて500倍で観察した。
 得られた500倍の断面金属顕微鏡写真を基に、金属間化合物層の厚さを計測した。図2には、断面金属顕微鏡写真の一例を示す。図2の断面金属顕微鏡写真において点線部分で囲まれた部分が、生成された金属間化合物層である。この金属間化合物層の点線部分で囲まれた部分の面積を画像解析ソフトを用いて測定し、その面積を断面金属顕微鏡写真の横幅の長さ177.6μmで除したものを金属間化合物層の厚さとして評価した。
First, in order to measure the thickness of the intermetallic compound layer produced | generated in the interface junction part between the high melting point metal and Sn of the obtained sample, cross-sectional metal microscope observation was performed. In this case, the cross-section polished sample was placed so that the bonding interface between the refractory metal and Sn was perpendicular to the bottom surface, and cured at room temperature by resin casting for 24 hours. In addition, the sample observation surface was surfaced with # 220 emery paper, followed by rough polishing using # 500 emery paper, # 1000 emery paper, and # 2400 emery paper in that order, and 6 μm diamond paste, 3 μm The diamond paste was obtained by mirror finishing in the order of buffing using diamond paste and 1 μm diamond paste in that order. And the joining state of the cross-sectional polishing sample was observed at 500 times using a metal microscope.
The thickness of the intermetallic compound layer was measured based on the obtained 500 times cross-sectional metal micrograph. FIG. 2 shows an example of a cross-sectional metal micrograph. A portion surrounded by a dotted line in the cross-sectional metal micrograph of FIG. 2 is the generated intermetallic compound layer. The area of the intermetallic compound layer surrounded by the dotted line is measured using image analysis software, and the area is divided by the width of 177.6 μm of the cross-sectional metal micrograph of the intermetallic compound layer. Evaluated as thickness.
 表2には、評価結果として、生成された金属間化合物層の厚さもまとめて示した。 Table 2 also shows the thickness of the generated intermetallic compound layer as an evaluation result.
 表2に示した結果より、生成された金属間化合物層の厚さは、比較例1に示すようにCu単体を用いた場合には3.9μmであり、比較例2~24に示すCu基合金を用いた場合には10μm未満であったのに対して、実施例1~7に示すCu基合金を用いた場合には10μm以上であった。 From the results shown in Table 2, the thickness of the generated intermetallic compound layer was 3.9 μm when Cu alone was used as shown in Comparative Example 1, and the Cu group shown in Comparative Examples 2 to 24 was used. When the alloy was used, it was less than 10 μm, whereas when the Cu-based alloy shown in Examples 1 to 7 was used, it was 10 μm or more.
 以上のように、この発明にかかる金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法では、金属間化合物を生成する際に第1金属と第2金属との拡散性が良好であって、低温かつ短時間で融点の高い金属間化合物を生成することができ、金属間化合物を生成した後に低融点成分が残留せず、耐熱強度に優れた金属間化合物を得ることができる。
 すなわち、この発明における第1金属および第2金属の組合せで加熱すると、低融点金属(第1金属)が溶融する比較的低い加工温度でより短時間に高融点の金属間化合物が急速拡散により生成する。
 そのため、この発明によれば、従来の第1金属および第2金属の組合せと比較して、急速短時間に金属間化合物を生成することができる。
As described above, in the method for producing an intermetallic compound and the method for connecting an object to be connected using the intermetallic compound according to the present invention, the diffusibility between the first metal and the second metal is produced when the intermetallic compound is produced. It is good and can produce an intermetallic compound having a high melting point at a low temperature and in a short time. it can.
That is, when heated with a combination of the first metal and the second metal in the present invention, a high melting point intermetallic compound is formed by rapid diffusion in a shorter time at a relatively low processing temperature at which the low melting point metal (first metal) melts. To do.
Therefore, according to the present invention, an intermetallic compound can be generated in a rapid time compared with the conventional combination of the first metal and the second metal.
 なお、上述の実施例では、第1金属としてSnペーストが用いられているが、この発明では、第1金属としてSnを含むはんだ合金が用いられてもよい。 In the above-described embodiment, Sn paste is used as the first metal. However, in the present invention, a solder alloy containing Sn as the first metal may be used.
 また、この発明は、電子部品の実装やビア接続だけでなく、金属管の接続や金属板の接続などに用いられてもよい。この場合、この発明によって生成される金属間化合物の一部分として、電子部品の電極の一部分、絶縁基板のビアや導体パターンの一部分、金属管の一部分、金属板の一部分などが用いられてもよい。 Further, the present invention may be used not only for mounting electronic parts and via connections, but also for connecting metal pipes and metal plates. In this case, as a part of the intermetallic compound produced by the present invention, a part of an electrode of an electronic component, a part of a via or conductor pattern of an insulating substrate, a part of a metal tube, a part of a metal plate, or the like may be used.
 この発明にかかる金属間化合物の生成方法および金属間化合物を用いた接続対象物の接続方法は、特に、例えば電子部品の実装や、ビア接続などに好適に用いられる。 The method for producing an intermetallic compound and the method for connecting an object to be connected using the intermetallic compound according to the present invention are particularly preferably used for mounting electronic parts, via connection, and the like.

Claims (2)

  1.  第1金属と前記第1金属の融点より高い融点を有する第2金属とを前記第1金属の融点以上の温度に加熱することによって、前記第1金属の融点より高い融点を有する金属間化合物を生成する、金属間化合物の生成方法であって、
     前記第1金属はSnまたはSnを含む合金であり、
     前記第2金属はCu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金であることを特徴とする、金属間化合物の生成方法。
    By heating the first metal and the second metal having a melting point higher than the melting point of the first metal to a temperature equal to or higher than the melting point of the first metal, an intermetallic compound having a melting point higher than the melting point of the first metal is obtained. A method for producing an intermetallic compound to be produced, comprising:
    The first metal is Sn or an alloy containing Sn,
    The method for producing an intermetallic compound, wherein the second metal is a Cu-based alloy of a Cu-Ti alloy, a Cu-Co alloy, or a Cu-Pt alloy.
  2.  第1金属と前記第1金属の融点より高い融点を有する第2金属とを前記第1金属の融点以上の温度に加熱することによって、前記第1金属の融点より高い融点を有する金属間化合物を生成し、前記金属間化合物を用いて接続対象物を接続する、金属間化合物を用いた接続対象物の接続方法であって、
     前記第1金属はSnまたはSnを含む合金であり、
     前記第2金属はCu-Ti合金、Cu-Co合金またはCu-Pt合金のうちのCu基合金であることを特徴とする、金属間化合物を用いた接続対象物の接続方法。
    By heating the first metal and the second metal having a melting point higher than the melting point of the first metal to a temperature equal to or higher than the melting point of the first metal, an intermetallic compound having a melting point higher than the melting point of the first metal is obtained. A method for connecting a connection object using an intermetallic compound, wherein the connection object is connected using the intermetallic compound,
    The first metal is Sn or an alloy containing Sn,
    The method of connecting objects to be connected using an intermetallic compound, wherein the second metal is a Cu-based alloy of Cu—Ti alloy, Cu—Co alloy, or Cu—Pt alloy.
PCT/JP2014/078456 2013-11-29 2014-10-27 Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound WO2015079844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-247096 2013-11-29
JP2013247096 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015079844A1 true WO2015079844A1 (en) 2015-06-04

Family

ID=53198793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078456 WO2015079844A1 (en) 2013-11-29 2014-10-27 Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound

Country Status (1)

Country Link
WO (1) WO2015079844A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170442B2 (en) 2016-12-08 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Mount structure including two members that are bonded to each other with a bonding material layer having a first interface layer and a second interface layer
CN111187917A (en) * 2020-02-26 2020-05-22 烟台大学 Removing agent and removing method for low-content impurity element tin in copper melt
CN114340834A (en) * 2019-09-02 2022-04-12 日本斯倍利亚社股份有限公司 Solder paste and solder joint
US20220274212A1 (en) * 2019-07-26 2022-09-01 Nihon Superior Co., Ltd. Preformed solder and solder bonded body formed by using said preformed solder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289396A (en) * 1985-11-16 1987-12-16 Sumitomo Cement Co Ltd Joining method for ceramics
JPH04220195A (en) * 1990-12-14 1992-08-11 Komatsu Ltd Joining insert material
JPH05139856A (en) * 1991-11-19 1993-06-08 Fukuda Metal Foil & Powder Co Ltd Paste composition for jointing between ceramic and metal
JP2003283064A (en) * 2002-03-26 2003-10-03 Ngk Spark Plug Co Ltd Ceramic circuit board and its producing method
JP2012176433A (en) * 2010-11-19 2012-09-13 Murata Mfg Co Ltd Electroconductive material, connection method using the same and connected structure
JP2014028380A (en) * 2012-07-31 2014-02-13 Koki:Kk Metal filler, solder paste, and connection structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289396A (en) * 1985-11-16 1987-12-16 Sumitomo Cement Co Ltd Joining method for ceramics
JPH04220195A (en) * 1990-12-14 1992-08-11 Komatsu Ltd Joining insert material
JPH05139856A (en) * 1991-11-19 1993-06-08 Fukuda Metal Foil & Powder Co Ltd Paste composition for jointing between ceramic and metal
JP2003283064A (en) * 2002-03-26 2003-10-03 Ngk Spark Plug Co Ltd Ceramic circuit board and its producing method
JP2012176433A (en) * 2010-11-19 2012-09-13 Murata Mfg Co Ltd Electroconductive material, connection method using the same and connected structure
JP2014028380A (en) * 2012-07-31 2014-02-13 Koki:Kk Metal filler, solder paste, and connection structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170442B2 (en) 2016-12-08 2019-01-01 Panasonic Intellectual Property Management Co., Ltd. Mount structure including two members that are bonded to each other with a bonding material layer having a first interface layer and a second interface layer
US20220274212A1 (en) * 2019-07-26 2022-09-01 Nihon Superior Co., Ltd. Preformed solder and solder bonded body formed by using said preformed solder
CN114340834A (en) * 2019-09-02 2022-04-12 日本斯倍利亚社股份有限公司 Solder paste and solder joint
CN111187917A (en) * 2020-02-26 2020-05-22 烟台大学 Removing agent and removing method for low-content impurity element tin in copper melt
CN111187917B (en) * 2020-02-26 2021-09-14 烟台大学 Removing agent and removing method for low-content impurity element tin in copper melt

Similar Documents

Publication Publication Date Title
JP5018978B1 (en) Conductive material, connection method using the same, and connection structure
CN103168392B (en) Syndeton
JP5533876B2 (en) Solder paste, bonding method using the same, and bonding structure
WO2013038817A1 (en) Electroconductive material, and connection method and connection structure using same
WO2013038816A1 (en) Electroconductive material, and connection method and connection structure using same
JP6337968B2 (en) Metal composition, bonding material
JP6683243B2 (en) Method for manufacturing bonded body and bonding material
JP6683244B2 (en) Joining material and method for producing joined body
WO2015079844A1 (en) Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound
JP6288284B2 (en) Method for producing intermetallic compound
WO2015079845A1 (en) Method for generating intermetallic compound, and method for connecting articles to be connected by using intermetallic compound
JP2021133410A (en) Conductive joint material and conductive joint body
JP2020110809A (en) Joint structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP