JPH10194860A - Brazing filler metal - Google Patents

Brazing filler metal

Info

Publication number
JPH10194860A
JPH10194860A JP35097596A JP35097596A JPH10194860A JP H10194860 A JPH10194860 A JP H10194860A JP 35097596 A JP35097596 A JP 35097596A JP 35097596 A JP35097596 A JP 35097596A JP H10194860 A JPH10194860 A JP H10194860A
Authority
JP
Japan
Prior art keywords
brazing material
oxygen
metal
solid solution
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35097596A
Other languages
Japanese (ja)
Inventor
Seiichi Suenaga
誠一 末永
Miho Maruyama
美保 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35097596A priority Critical patent/JPH10194860A/en
Publication of JPH10194860A publication Critical patent/JPH10194860A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve wettability and to enhance joining strength to ceramics in a brazing filler active metal for joining a ceramic to a metal or joining ceramics to each other. SOLUTION: In the brazing filler metal, an intermetallic compound consists of Ti, Zr, Hf which are group IVa elements and other metals and the group IVa elements form a solid soln. with at least one kind of nonmetallic element selected from oxygen, nitrogen and carbon. The brazing filler metal is supplied to a joining part between the ceramic and the metal, etc., in a shape of powder, foil, thin film, etc. Further, the brazing filler metal can be obtained by alloying the solid soln. between the group IVa elements and nonmetallic elements described above and a metal such as Ag, Cu and Ni.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックと金属
またはセラミック同士の封着・接合に用いられる活性金
属ろう材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active metal brazing material used for sealing and joining ceramic and metal or between ceramics.

【0002】[0002]

【従来の技術】従来から、セラミックからなる基材と金
属基材あるいはセラミック基材同士の封着・接合方法と
しては、Mo−Mn法(高融点金属法)、DBC( Dir
ect Bonding Cupper)法、活性金属法等が知られてお
り、半導体デバイス等の機能材料の接合からガスタービ
ン等の構造材料の接合まで、広い範囲に応用されてい
る。これらの接合方法のうちでMo−Mn法やDBC法
は、得られる接合体の機械的強度、例えば引張り強度が
母材の強度と比較して低いため、強度や耐熱疲労性が要
求される部材への適用が難しいばかりでなく、メタライ
ズ層の形成工程などの接合プロセスが複雑であるという
問題を有していた。
2. Description of the Related Art Conventionally, as a method of sealing and joining a ceramic base material and a metal base material or ceramic base materials, Mo-Mn method (high melting point metal method), DBC (Dirty metal method), and the like have been known.
(Elect Bonding Cupper) method, active metal method and the like are known, and are applied to a wide range from joining of functional materials such as semiconductor devices to joining of structural materials such as gas turbines. Among these joining methods, the Mo-Mn method and the DBC method are members in which the mechanical strength, for example, the tensile strength of the obtained joined body is lower than the strength of the base material, so that the strength and the heat fatigue resistance are required. Not only is it difficult to apply the method, but also there is a problem that a joining process such as a step of forming a metallized layer is complicated.

【0003】それに対して活性金属法は、活性な金属で
あるTiやZrのセラミックに対する還元作用を利用
し、界面における高い化学的結合力により接合を行なう
もので、前記したMo−Mn法やDBC法と比較して機
械的強度の高い接合体が得られ、さらに接合プロセスが
単純であるという利点を有している。
[0003] On the other hand, the active metal method uses the reducing action of Ti or Zr, which is an active metal, on ceramics to perform bonding by a high chemical bonding force at the interface. This has the advantage that a joined body having higher mechanical strength can be obtained as compared with the method and the joining process is simple.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
活性金属法においても、使用するろう材量を少なくして
効率良く接合を行なうために、ろう材のさらなる改良が
望まれている。すなわち、共晶組成のAg−Cu等の合
金中に固溶範囲のTiが添加された従来からのろう材よ
りも、セラミックに対する濡れ性が良いろう材が求めら
れている。
However, even in the active metal method described above, further improvement of the brazing material is desired in order to reduce the amount of the brazing material to be used and to perform the joining efficiently. That is, there is a demand for a brazing material having better wettability to ceramics than a conventional brazing material in which Ti in a solid solution range is added to an alloy such as Ag-Cu having a eutectic composition.

【0005】本発明は、このような要求に鑑みてなされ
たもので、セラミックに対する濡れ性が向上した接合用
の活性金属ろう材を提供することを目的とする。
The present invention has been made in view of such a demand, and an object of the present invention is to provide an active metal brazing material for bonding having improved wettability to ceramic.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記した
問題を解決すべく鋭意研究を重ねた結果、ー般に金属が
セラミックとの濡れ性が悪く、セラミック表面に濡れ広
がらないのに対して、ガラスソルダーに代表されるセラ
ミックろう材が、化学的な反応を伴わなくてもセラミッ
ク上に良好に濡れ広がることから、活性金属ろう材にお
いて、セラミックと反応する4a族元素に酸素等を積極
的に固溶させセラミックに近い状態をつくりだすこと
で、濡れ性を向上させ得ることを見出だした。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, although metals generally have poor wettability with ceramics and do not spread on the ceramic surface. On the other hand, since the ceramic brazing material represented by glass solder spreads well on the ceramic without any chemical reaction, the active metal brazing material contains oxygen or the like as a group 4a element that reacts with the ceramic. It has been found that wettability can be improved by positively dissolving the solid to create a state close to ceramic.

【0007】本発明のろう材は、このような知見に基づ
いてなされたもので、4a族元素および他の金属からな
る金属間化合物、また4a族元素が、酸素、窒素および
炭素から選ばれた少なくとも1種の非金属元素と固溶体
を形成していることを特徴とする。
The brazing material of the present invention has been made based on such findings, and the intermetallic compound comprising a Group 4a element and another metal, and a Group 4a element selected from oxygen, nitrogen and carbon. It is characterized in that it forms a solid solution with at least one nonmetallic element.

【0008】本発明のろう材は、例えば4a族元素であ
るTi、Zr、Hfから選ばれた少なくとも1種の金属
元素と、酸素、窒素、炭素から選ばれた少なくとも1種
の非金属元素との固溶体と、前記した4a族元素と比較
的低融点の合金をつくるその他の金属とを、合金化する
ことにより得ることができる。ここで、その他の金属と
しては、Ag、Cu、Ni、Co、Cr、Fe、Mn、
Ag−Cu合金、Au−Cu合金から選ばれた1種また
は2種以上の金属を使用することができる。
The brazing material of the present invention comprises, for example, at least one metal element selected from Ti, Zr and Hf which are Group 4a elements, and at least one nonmetal element selected from oxygen, nitrogen and carbon. Can be obtained by alloying the above-mentioned solid solution with another metal which forms an alloy having a relatively low melting point with the above-mentioned Group 4a element. Here, as other metals, Ag, Cu, Ni, Co, Cr, Fe, Mn,
One or more metals selected from Ag-Cu alloy and Au-Cu alloy can be used.

【0009】本発明のろう材は、粉末、箔、薄膜積層体
などの形状とされ、セラミックと金属、あるいはセラミ
ック同士の封着接合に供せられる。ここで、セラミック
としては、アルミナ、マグネシア、シリカ等の酸化物系
セラミック、窒化けい素、窒化アルミ等の窒化物系セラ
ミック、炭化けい素等の炭化物系セラミック等を挙げる
ことができる。特にTi、ZrまたはHfなどの4a族
元素(4a族元素と他の金属との金属間化合物を含
む。)が、酸素と固溶体を形成してろう材では、酸化物
系セラミックと金属等との封着接合に好適している。同
様に、4a族元素が窒素と固溶体を形成してろう材で
は、窒化物系セラミックと金属等との接合に好適し、4
a族元素が炭素と固溶体を形成してろう材では、炭化物
系セラミックと金属等との接合に好適している。
The brazing material of the present invention is in the form of a powder, a foil, a thin film laminate or the like, and is used for sealing and joining ceramic and metal or ceramics. Here, examples of the ceramic include oxide ceramics such as alumina, magnesia, and silica; nitride ceramics such as silicon nitride and aluminum nitride; and carbide ceramics such as silicon carbide. In particular, in a brazing material in which a Group 4a element (including an intermetallic compound of a Group 4a element and another metal) such as Ti, Zr or Hf forms a solid solution with oxygen, an oxide-based ceramic and a metal etc. Suitable for sealing joining. Similarly, a brazing material in which a Group 4a element forms a solid solution with nitrogen is suitable for joining a nitride-based ceramic to a metal or the like.
A brazing material in which a group a element forms a solid solution with carbon is suitable for joining a carbide-based ceramic to a metal or the like.

【0010】本発明のろう材のうちで、4a族元素と酸
素との固溶体を含むろう材を、前記した酸化物系セラミ
ックと金属等との接合部に供給し、真空中または不活性
ガス中のような非酸化性雰囲気下で加熱溶融させると、
酸化物系セラミックに近い構造を有する4a族元素と酸
素との固溶体が、セラミックの表面に良好に濡れ広がり
拡散する。また、4a族元素と酸素との固溶体自体が酸
素との親和力が強く、酸化物系セラミックと化学的に反
応するため、良好な接合を行なうことができる。また、
4a族元素と窒素との固溶体を含むろう材を、窒化物系
セラミックと金属等との接合部に供給して加熱溶融させ
ると、4a族元素と窒素との固溶体が、窒化物系セラミ
ックの表面に濡れ広がって拡散するとともに、窒化物系
セラミックと化学的に反応するので、良好な接合を得る
ことができ、同様に、4a族元素と炭素との固溶体を含
むろう材を、炭化物系セラミックと金属等との接合部に
供給して加熱溶融させると、4a族元素と炭素との固溶
体が、炭化物系セラミックの表面に濡れ広がり拡散し、
かつ炭化物系セラミックと化学的に反応するので、良好
な接合を得ることができる。
[0010] Among the brazing materials of the present invention, a brazing material containing a solid solution of a Group 4a element and oxygen is supplied to the above-mentioned joint between the oxide-based ceramic and a metal or the like, and is then placed in a vacuum or in an inert gas. When heated and melted in a non-oxidizing atmosphere such as
A solid solution of a Group 4a element and oxygen having a structure close to that of an oxide-based ceramic wets and spreads well on the surface of the ceramic. In addition, since the solid solution itself of the Group 4a element and oxygen has a strong affinity for oxygen and chemically reacts with the oxide-based ceramic, good bonding can be performed. Also,
When a brazing filler metal containing a solid solution of a Group 4a element and nitrogen is supplied to a joint between a nitride ceramic and a metal and heated and melted, a solid solution of a Group 4a element and nitrogen is formed on the surface of the nitride ceramic. And wet-spread and diffuse, and chemically react with the nitride-based ceramic, so that good bonding can be obtained. Similarly, a brazing material containing a solid solution of a 4a group element and carbon is used as a carbide-based ceramic. When supplied to a joint with a metal or the like and melted by heating, a solid solution of a 4a group element and carbon spreads and spreads on the surface of the carbide-based ceramic,
In addition, since it chemically reacts with the carbide-based ceramic, good joining can be obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0012】本発明のろう材においては、周期律表4a
族に属する元素であるTi、Zr、Hfから選ばれた少
なくとも1種の金属元素、あるいはこれら元素と他の金
属との金属間化合物と、酸素、窒素、炭素から選ばれた
少なくとも1種の非金属元素との固溶体が含有されてお
り、粉末状、箔状、薄膜積層体状などの形状で、セラミ
ックと金属あるいはセラミック同士の封着接合に供され
る。
In the brazing material of the present invention, the periodic table 4a
At least one metal element selected from the group consisting of Ti, Zr, and Hf, or an intermetallic compound of these elements and another metal, and at least one non-metal element selected from oxygen, nitrogen, and carbon. It contains a solid solution with a metal element, and is used for sealing and joining ceramics to metals or ceramics in the form of a powder, foil, thin film laminate, or the like.

【0013】例えばAg−CuーTi系のろう材におい
ては、Ag−Cu合金と酸素固溶Ti(Tiと酸素との
固溶体)とを、それぞれ粉末状、箔状、薄膜状などとし
て、セラミックと金属等との接合部に供給することがで
きる。ここでTiと酸素との固溶体としては、Ti
2 O、Ti3 2 、TiO等の組成式を有する固溶体を
挙げることができる。これらの固溶体では、Tiと酸素
との原子比(Ti:O)が1:1以上となっており、十
分な金属性を有している。同様にAg−Cu−Zr系あ
るいはAg−CuーHf系のろう材においても、Ag−
Cu合金と、ZrまたはHfと酸素との金属性の高い固
溶体(原子比が1:1以上)を、それぞれ箔状、粉末
状、薄膜状等の形状で接合部に供給することができる。
For example, in an Ag-Cu-Ti brazing material, an Ag-Cu alloy and oxygen-dissolved Ti (a solid solution of Ti and oxygen) are formed into powder, foil, thin film, etc., respectively, to form a ceramic material. It can be supplied to a joint with a metal or the like. Here, as a solid solution of Ti and oxygen, Ti
A solid solution having a composition formula such as 2 O, Ti 3 O 2 , and TiO can be given. These solid solutions have an atomic ratio of Ti to oxygen (Ti: O) of 1: 1 or more, and have sufficient metallicity. Similarly, Ag-Cu-Zr-based or Ag-Cu-Hf-based brazing filler metals
A Cu alloy and a solid solution having a high metallicity of Zr or Hf and oxygen (atomic ratio of 1: 1 or more) can be supplied to the joint in the form of a foil, a powder, a thin film, or the like.

【0014】本発明のろう材において、ろう材全体に対
する酸素等の非金属元素の含有割合は、 1重量%( wt
%)以上とすることが望ましく、より好ましくは5wt%以
上とする。酸素等の含有割合がろう材全体の1wt%未満で
は、セラミックに対する濡れ性向上の効果がほとんど現
出しない。
In the brazing material of the present invention, the content ratio of the nonmetallic element such as oxygen to the whole brazing material is 1% by weight (wt.
%) Or more, more preferably 5% by weight or more. If the content ratio of oxygen and the like is less than 1 wt% of the whole brazing material, the effect of improving the wettability to the ceramic hardly appears.

【0015】このようなろう材を接合部に挿入して加熱
溶融させると、ろう材中の4a族元素と酸素との固溶体
(例えばTi2 O,Ti3 2 )が、セラミックの表面
に濡れ広がり拡散する。また、Ti2 O,Ti3 2
はそれ自体酸素との親和力が強いため、界面において酸
化物系のセラミックと化学的に反応し、良好な接合がな
される。
When such a brazing material is inserted into the joint and melted by heating, a solid solution (eg, Ti 2 O, Ti 3 O 2 ) of the Group 4a element and oxygen in the brazing material wets the ceramic surface. Spread and spread. Further, Ti 2 O, Ti 3 O 2, and the like themselves have a strong affinity for oxygen, and thus chemically react with an oxide-based ceramic at the interface to form a good bond.

【0016】また本発明のろう材は、4a族元素である
Ti、Zr、Hfから選ばれた少なくとも1種の金属元
素、あるいはこれらと他の金属との金属間化合物と、酸
素、窒素、炭素から選ばれた少なくとも1種の非金属元
素との固溶体と、Ag、Cu、Au、Ni、Co、C
r、Fe、Mn、Ag−Cu、Au−Cuから選ばれた
少なくとも1種の金属または合金とを、合金化すること
により得ることができる。 このようなろう材におい
て、酸素(以下、酸素について説明するが、窒素あるい
は炭素を含む場合も全く同様である)の含有割合は、ろ
う材全体に対して1wt%以上とすることが望ましく、より
好ましくは5wt%以上とする。また、4a族元素と酸素と
の固溶体中の酸素の固溶量は、特に限定されないが、得
られるろう材の濡れ性の点からは、固溶限度いっぱいに
酸素を固溶させることが好ましい。
The brazing material according to the present invention comprises at least one metal element selected from the group 4a elements Ti, Zr and Hf, or an intermetallic compound of these with other metals, oxygen, nitrogen and carbon. A solid solution with at least one non-metallic element selected from the group consisting of Ag, Cu, Au, Ni, Co, C
It can be obtained by alloying with at least one metal or alloy selected from r, Fe, Mn, Ag-Cu and Au-Cu. In such a brazing material, the content ratio of oxygen (hereinafter, oxygen will be described, but the same applies to the case where nitrogen or carbon is included) is desirably 1 wt% or more based on the entire brazing material. Preferably, it is at least 5 wt%. Further, the amount of oxygen in the solid solution of the Group 4a element and oxygen is not particularly limited. However, from the viewpoint of the wettability of the brazing material to be obtained, it is preferable to form a solid solution of oxygen to the full solid solution limit.

【0017】例えば、Cu−Ti系、Ni−Ti系のよ
うな二元系のろう材では、Tiと酸素との固溶体におい
て、酸素を最大で 15at%(原子%)まで固溶させること
ができ、Cu2 Ti4 OやNi2 Ti4 O等の組成式を
有する物質を用いることができる。
For example, in a binary brazing material such as Cu-Ti or Ni-Ti, oxygen can be dissolved up to 15 at% (atomic%) in a solid solution of Ti and oxygen. , A substance having a composition formula such as Cu 2 Ti 4 O or Ni 2 Ti 4 O can be used.

【0018】このような合金系のろう材を得る方法とし
ては、予め酸素が固溶している4a族元素の固溶体を用
い、これを前記した他の金属元素と混合して合金化する
方法と、4a族元素を前記金属元素と混合するプロセス
で酸素を固溶させる方法等を挙げることができる。最終
的に4a族元素と酸素との固溶体を含むろう材を得るこ
とができれば、合金化方法は特に限定されない。前者の
方法における4a族元素の固溶体としては、α−Tiの
酸素固溶体、組成式TiO、Ti2 O、Ti32 をそ
れぞれ有する固溶体、α−Zrの酸素固溶体,α−Hf
の酸素固溶体等を挙げることができる。また、後者の方
法で、4a族元素と他の金属元素とを混合する方法とし
ては、アーク溶解法、ボールミルを用いた混合方法、メ
カニカルアロイング法等が挙げられ、これらの混合過程
で4a族元素に酸素を固溶させることができる。アーク
溶解法では、TiとTi2 3 、TiO2 等の酸化物と
を、 1:1以上の混合比でTi粉末が含まれるように、合
金元素とペレット化して溶解することにより、酸素固溶
Tiを得ることができる。また、ボールミル法では、大
気中で合金元素を遊星ボールミルを使用して高いエネル
ギーで混合することにより、雰囲気中に存在する酸素を
わずかに巻き込みながら合金化させることができる。
As a method for obtaining such an alloy-based brazing material, there is a method of using a solid solution of a Group 4a element in which oxygen is dissolved in advance and mixing it with another metal element to form an alloy. And a method of dissolving oxygen in a process of mixing a Group 4a element with the metal element. The alloying method is not particularly limited as long as a brazing material containing a solid solution of a Group 4a element and oxygen can be finally obtained. Examples of the solid solution of the Group 4a element in the former method include an α-Ti oxygen solid solution, a solid solution having the composition formulas TiO, Ti 2 O, and Ti 3 O 2 , an α-Zr oxygen solid solution, and an α-Hf
Oxygen solid solution and the like can be mentioned. In the latter method, as a method of mixing a 4a group element with another metal element, there are an arc melting method, a mixing method using a ball mill, a mechanical alloying method, and the like. Oxygen can be dissolved in the element. In the arc melting method, Ti and an oxide such as Ti 2 O 3 and TiO 2 are pelletized and dissolved with an alloy element so that the Ti powder is contained at a mixing ratio of 1: 1 or more, so that oxygen is solidified. Soluble Ti can be obtained. In the ball milling method, alloying can be performed while slightly incorporating oxygen existing in the atmosphere by mixing alloying elements in the atmosphere with high energy using a planetary ball mill.

【0019】[0019]

【実施例】次に、本発明の具体的実施例について説明す
る。
Next, specific examples of the present invention will be described.

【0020】実施例1 Ti箔を 1×10-5Torrの低酸素雰囲気中で、 3時間、 6
73°K の温度で熱処理することにより、厚さ 1μm のT
2 Oを含有する酸素固溶Ti箔を得た。次いで、純度
99%のAl2 3 からなる基材の表面に、厚さ50μm の
Ag一Cu共晶合金箔と厚さ 1μm のTi2 Oを含有す
る酸素固溶Ti箔とを、 100mm2 の面積に重ねて配置
し、これを真空炉に入れ、0.25°K/sec の昇温速度で11
23°K まで昇温した。1123°K に到達した時点で、Al
2 3 基材表面でのろう材の濡れ角度(接触角)を測定
したところ、 6°であった。
Example 1 A Ti foil was placed in a low oxygen atmosphere of 1 × 10 −5 Torr for 3 hours for 6 hours.
Heat treatment at a temperature of 73 ° K allows a 1 μm thick T
An oxygen-dissolved Ti foil containing i 2 O was obtained. Then purity
On the surface of a substrate made of 99% Al 2 O 3, an oxygen solid solution Ti foil containing Ti 2 O of Ag one Cu eutectic alloy foil and the thickness 1μm thick 50 [mu] m, an area of 100 mm 2 Place them in a vacuum furnace and place them at a heating rate of 0.25 K / sec.
The temperature was raised to 23 ° K. When the temperature reaches 1123 ° K, Al
When the wetting angle (contact angle) of the brazing material on the surface of the 2 O 3 substrate was measured, it was 6 °.

【0021】また、直径 5mmの円板状のAg一Cu共晶
合金箔(厚さ50μm )と前記酸素固溶Ti(Ti2 O)
箔( 1μm )とをAl2 3 基板の上に重ね、その上に
直径2mmの Fe-42Ni製のピンを円板の中心に配置し、全
体を真空炉に入れて同様にして1123°K まで昇温し、そ
の温度で 5分間保持した後、そのまま炉冷したところ、
Al2 3 基材と Fe-42Ni製ピンとは良好に封着接合さ
れ、接合面積は最初にろう材が占めていた直径 5mmの円
の面積(19.6mm2 )であり、接合強度は 98kgfであっ
た。
Also, a disk-shaped Ag-Cu eutectic alloy foil (thickness: 50 μm) having a diameter of 5 mm and the oxygen-solid Ti (Ti 2 O)
A foil (1 μm) is placed on the Al 2 O 3 substrate, and a pin made of Fe-42Ni with a diameter of 2 mm is placed at the center of the disc on the Al 2 O 3 substrate. Temperature, held at that temperature for 5 minutes, and then cooled in the furnace,
The Al 2 O 3 base material and the Fe-42Ni pin are well sealed and joined, the joint area is the area of a circle with a diameter of 5 mm (19.6 mm 2 ) occupied by the brazing material at the beginning, and the joint strength is 98 kgf. there were.

【0022】一方、比較例1として、純度 99%のAl2
3 基材の表面に、厚さ50μm のAg一Cu共晶合金箔
と従来からの厚さ 1μm のTi箔とを 100mm2 の面積に
重ねて配置し、これを真空炉中で、実施例1と同じ昇温
速度で1123°K まで昇温し、1123°K に到達した時点で
Al2 3 基材表面でのろう材の濡れ角度を測定したと
ころ、10°であった。
On the other hand, as Comparative Example 1, Al 2 having a purity of 99% was used.
On a surface of an O 3 substrate, a 50 μm thick Ag-Cu eutectic alloy foil and a conventional 1 μm thick Ti foil were placed in an area of 100 mm 2 , and this was placed in a vacuum furnace. The temperature was raised to 1123 ° K at the same temperature raising rate as that of 1, and when the temperature reached 1123 ° K, the wetting angle of the brazing material on the surface of the Al 2 O 3 base material was measured to be 10 °.

【0023】また、直径 5mmの円板状のAg一Cu共晶
合金箔(厚さ50μm )と従来のTi箔( 1μm )とをA
2 3 基板の上に重ね、その上に直径 2mmの Fe-42Ni
製のピンを円板の中心に配置し、全体を真空炉に入れて
同様にして1123°K まで昇温し、その温度で 5分間保持
した後、そのまま炉冷したところ、Al2 3 基材とFe
-42Ni製ピンとは接合されたが、接合面積は最初にろう
材が占めていた直径 5mmの円の面積より少なく、直径 3
mm程度(5.39mm2 )であり、接合強度は 26.95kgf であ
った。
Further, a disc-shaped Ag-Cu eutectic alloy foil (thickness: 50 μm) having a diameter of 5 mm and a conventional Ti foil (1 μm) were formed by A
L 2 O 3 Substrate is overlaid on it, and 2mm diameter Fe-42Ni
The manufacturing of the pin disposed in the center of the disc, the temperature was raised to 1123 ° K in a similar manner to put the whole in a vacuum furnace, it was maintained at that temperature for 5 minutes, was cooled as it furnace, Al 2 O 3 group Material and Fe
It was joined to the -42Ni pin, but the joint area was smaller than the area of the 5mm
mm (5.39 mm 2 ), and the joint strength was 26.95 kgf.

【0024】このように、実施例1のろう材では、比較
例1のろう材に比べてAl2 3 に対する濡れ性が大き
く、気密性の高い良好な封着接合部が得られることがわ
かった。
Thus, it can be seen that the brazing material of Example 1 has higher wettability to Al 2 O 3 than the brazing material of Comparative Example 1, and a good sealing joint with high airtightness can be obtained. Was.

【0025】実施例2 Ti箔を 1×10-5Torrの低酸素雰囲気中で、 2時間、 7
73°K の温度で熱処理することにより、厚さ 1μm のT
3 2 を含有する箔を得た。次いで、純度96%のAl
2 3 基材の表面に、厚さ50μm のAg一Cu共晶合金
箔と厚さ 1μmのTi3 2 を含有する酸素固溶Ti箔
とを、 100mm2 の面積に重ねて配置し、これを真空炉中
で0.25°K/sec の昇温速度で1123°K まで昇温した。11
23°K に到達した時点で、Al2 3 基材表面でのろう
材の濡れ角度を測定したところ、7°であった。
Example 2 Ti foil was placed in a low oxygen atmosphere of 1 × 10 −5 Torr for 2 hours for 7 hours.
Heat treatment at a temperature of 73 ° K allows a 1 μm thick T
A foil containing i 3 O 2 was obtained. Then, 96% pure Al
A 50 μm thick Ag-Cu eutectic alloy foil and a 1 μm thick oxygen-dissolved Ti foil containing Ti 3 O 2 were placed on the surface of a 2 O 3 substrate in an area of 100 mm 2 , This was heated in a vacuum furnace to 1123 ° K at a rate of 0.25 ° K / sec. 11
When the temperature reached 23 ° K, the wetting angle of the brazing material on the surface of the Al 2 O 3 substrate was measured and found to be 7 °.

【0026】また、直径 5mmの円板状のAg一Cu共晶
合金箔(厚さ50μm )と前記酸素固溶Ti(Ti
3 2 )箔( 1μm )とをAl2 3 基板の上に重ね、
その上に直径 2mmの Fe-42Ni製のピンを円板の中心に配
置し、全体を真空炉に入れて同様にして1123°K まで昇
温し、その温度で 5分間保持した後、そのまま炉冷した
ところ、Al2 3 基材と Fe-42Ni製ピンとは良好に封
着接合され、接合面積は最初にろう材が占めていた直径
4.5mmの円の面積(15.9mm2 )であり、接合強度は80kg
f であった。
Further, a disk-shaped Ag-Cu eutectic alloy foil (thickness: 50 μm) having a diameter of 5 mm and the oxygen-dissolved Ti (Ti
3 O 2 ) foil (1 μm) and an Al 2 O 3 substrate
A 2 mm diameter Fe-42Ni pin was placed on the center of the disk, and the whole was placed in a vacuum furnace, heated to 1123 ° K in the same manner, and kept at that temperature for 5 minutes. When cooled, the Al 2 O 3 base material and the Fe-42Ni pin were sealed and joined well, and the joint area was the diameter occupied by the brazing material initially.
4.5mm circle area (15.9mm 2 ), bonding strength 80kg
f.

【0027】一方比較例2として、純度 96%のAl2
3 基材の表面に、固溶限度いっぱいまで酸素を固溶させ
た厚さ50μm のAg一Cu共晶合金箔と、厚さ 1μm の
Ti箔とを 100mm2 の面積に重ねて配置し、これを真空
炉中で実施例1と同じ昇温速度で1123°K まで昇温し、
1123°K に到達した時点でAl2 3 基材表面でのろう
材の濡れ角度を測定したところ、15°であった。
On the other hand, as Comparative Example 2, Al 2 O having a purity of 96% was used.
(3) On a surface of the base material, a 50 μm-thick Ag-Cu eutectic alloy foil in which oxygen is dissolved to the full solid solution limit and a 1 μm-thick Ti foil are placed in an area of 100 mm 2 in an overlapping manner. Was heated to 1123 ° K in a vacuum furnace at the same heating rate as in Example 1,
When the temperature reached 1123 ° K, the wetting angle of the brazing material on the Al 2 O 3 substrate surface was measured and found to be 15 °.

【0028】このように、4a族元素であるTi側に酸
素を固溶させた実施例2のろう材では、共晶合金側に酸
素を固溶させた比較例2のろう材に比べて、Al2 3
に対する濡れ性が大きく、気密性の高い良好な接合部が
得られることがわかった。
As described above, the brazing material of Example 2 in which oxygen was dissolved in the Ti side, which is a Group 4a element, compared with the brazing material of Comparative Example 2 in which oxygen was dissolved in the eutectic alloy side. Al 2 O 3
It has been found that a good joint having high wettability with respect to water and high airtightness can be obtained.

【0029】実施例3 Ag一Cu共晶合金粉末と、酸素を 15at%含むZr−酸
素固溶体の粉末とを、Ag:Cu:Zrが70:27: 3の
重量比となるように有機バインダー中に混合し、得られ
たろう材の1gを、純度 99%のAl2 3 基材の表面に塗
布した。次に、このようにろう材が塗布されたAl2
3 基材を、真空炉中で0.25°K/sec の昇温速度で1123°
K まで昇温し、1123°K に到達した時点で、Al2 3
基材表面でのろう材の濡れ角度を測定したところ、 8°
であった。
Example 3 Ag-Cu eutectic alloy powder and Zr-oxygen solid solution powder containing 15 at% of oxygen were mixed in an organic binder so that the weight ratio of Ag: Cu: Zr was 70: 27: 3. And 1 g of the obtained brazing material was applied to the surface of an Al 2 O 3 substrate having a purity of 99%. Next, the Al 2 O thus coated with the brazing material
(3) The substrate is heated to 1123 ° at a rate of 0.25 ° K / sec in a vacuum furnace.
K, and when it reaches 1123 ° K, Al 2 O 3
When the wetting angle of the brazing material on the substrate surface was measured, 8 °
Met.

【0030】また、Ag一Cu共晶合金と前記酸素固溶
Zrとの混合粉末10mgを、Al2 3 基板上に直径 5mm
の円状に塗布し、その上に直径 2mmの Fe-42Ni製のピン
を円の中心に配置し、全体を真空炉に入れて同様にして
1123°K まで昇温し、その温度で 5分間保持した後、そ
のまま炉冷したところ、Al2 3 基材と Fe-42Ni製ピ
ンとは良好に封着接合され、接合面積は最初にろう材が
占めていた直径 5mmの円の面積(19.6mm2 )であり、接
合強度は 78kgfであった。
Further, 10 mg of a mixed powder of the Ag-Cu eutectic alloy and the oxygen-dissolved Zr was placed on an Al 2 O 3 substrate with a diameter of 5 mm.
Apply a 2mm diameter Fe-42Ni pin on the center of the circle, put the whole into a vacuum furnace and do the same.
After the temperature was raised to 1123 ° K, the temperature was held for 5 minutes, and the furnace was cooled, the Al 2 O 3 base material and the Fe-42Ni pin were bonded and bonded well, and the bonding area was the brazing material first. The area occupied by a circle having a diameter of 5 mm (19.6 mm 2 ) and the joint strength was 78 kgf.

【0031】一方比較例3として、Ag一Cu共晶合金
粉末とZr粉末とを、Ag:Cu:Zrが重量比で70:
27: 3になるように有機バインダー中に混合して得られ
たろう材の1gを、純度 99%のAl2 3 基材の表面に塗
布した。次いで、このようにろう材が塗布されたAl2
3 基材を、真空炉中で実施例3と同様にして1123°K
まで昇温し、1123°K に到達した時点でAl2 3 基材
表面でのろう材の濡れ角度を測定したところ、15°であ
った。
On the other hand, as Comparative Example 3, Ag-Cu eutectic alloy powder and Zr powder were mixed at a weight ratio of Ag: Cu: Zr of 70:
1 g of the brazing material obtained by mixing in an organic binder to give a ratio of 27: 3 was applied to the surface of a 99% pure Al 2 O 3 substrate. Next, the Al 2 coated with the brazing material
The O 3 substrate was heated at 1123 ° K. in a vacuum furnace in the same manner as in Example 3.
When the temperature reached 1123 ° K, the wetting angle of the brazing material on the Al 2 O 3 substrate surface was measured and found to be 15 °.

【0032】また、Ag一Cu共晶合金と通常のZrと
の混合粉末10mgを、Al2 3 基板上に直径 5mmの円状
に塗布し、その上に直径 2mmの Fe-42Ni製のピンを円の
中心に配置し、全体を真空炉に入れて同様にして1123°
K まで昇温し、その温度で 5分間保持した後、そのまま
炉冷したところ、Al2 3 基材と Fe-42Ni製ピンとは
接合されたが、接合面積は最初にろう材が占めていた直
径 5mmの円の面積より少なく、直径 3mm程度(5.39m
m2 )であり、接合強度は 28.26kgf であった。
Further, 10 mg of a mixed powder of an Ag-Cu eutectic alloy and ordinary Zr is applied in a circular shape having a diameter of 5 mm on an Al 2 O 3 substrate, and a pin made of Fe-42Ni having a diameter of 2 mm is formed thereon. At the center of the circle, put the whole in a vacuum furnace and
After raising the temperature to K, holding at that temperature for 5 minutes, and then cooling the furnace as it was, the Al 2 O 3 substrate was joined to the Fe-42Ni pin, but the brazing material occupied the joint area first. Less than the area of a 5mm diameter circle, about 3mm in diameter (5.39m
m 2 ), and the joining strength was 28.26 kgf.

【0033】このように、実施例3のろう材では、比較
例3のろう材に比べてAl2 3 に対する濡れ性が大き
く、良好な接合部が得られることがわかった。
Thus, it was found that the brazing material of Example 3 had higher wettability to Al 2 O 3 than the brazing material of Comparative Example 3, and a good joint was obtained.

【0034】実施例4 Tiと酸素との固溶体とCuとを、Cu:Ti:Oが1
5: 5: 1の原子比になるように混合して合金化した、
厚さ10μm 、面積 100mm2 の箔状の合金ろう材を、純度
96%のMgOからなる基材の表面に配置し、これを真空
炉中で0.25°K/sec の昇温速度で1173°K まで昇温し
た。1173°K に到達した時点でMgO基材表面でのろう
材の濡れ角度を測定したところ、10°であった。
Example 4 A solid solution of Ti and oxygen was mixed with Cu, and Cu: Ti: O was 1
5: 5: 1 atomic ratio was mixed and alloyed.
Thickness 10 [mu] m, the foil-like brazing alloy material of area 100 mm 2, purity
This was placed on the surface of a base material made of 96% MgO, and this was heated to 1173 ° K in a vacuum furnace at a rate of 0.25 ° K / sec. When the temperature reached 1173 ° K, the wetting angle of the brazing material on the MgO substrate surface was measured and found to be 10 °.

【0035】また、直径 5mmの円板状のCu−Ti−O
合金箔(厚さ10μm )をMgO基板の上に置き、その上
に直径 2mmの Fe-42Ni製のピンを円板の中心に配置し、
全体を真空炉に入れて同様にして1173°K まで昇温し、
その温度で 5分間保持した後、そのまま炉冷したとこ
ろ、MgO基材と Fe-42Ni製ピンとは良好に封着接合さ
れ、接合面積は最初にろう材が占めていた直径 5mmの円
の面積(19.6mm2 )であり、接合強度は117kgfであっ
た。
A disk-shaped Cu-Ti-O having a diameter of 5 mm
Place the alloy foil (thickness 10μm) on the MgO substrate and place a 2mm diameter Fe-42Ni pin on the MgO substrate at the center of the disk.
Put the whole in a vacuum furnace and raise the temperature to 1173 ° K in the same way,
After holding at that temperature for 5 minutes and then cooled in the furnace, the MgO base material and the Fe-42Ni pin were well sealed and joined, and the joining area was the area of the 5 mm diameter circle initially occupied by the brazing material ( 19.6 mm 2 ) and the bonding strength was 117 kgf.

【0036】ー方比較例4として、Cu:Tiが15: 5
の原子比になるように合金化した、厚さ10μm 、面積 1
00mm2 の箔状のCu−Ti合金ろう材を、純度 96%のM
gO基材の表面に配置し、これを真空炉中で実施例4と
同様にして1173°K まで昇温し、1173°K に到達した時
点でMgO基材表面でのろう材の濡れ角度を測定したと
ころ、16°であった。
As Comparative Example 4, Cu: Ti is 15: 5
Alloyed to have an atomic ratio of 10 μm in thickness and 1 in area
A Cu-Ti alloy brazing material in the form of a 00 mm 2 foil was
This was placed on the surface of the gO substrate, and the temperature was raised to 1173 ° K in a vacuum furnace in the same manner as in Example 4. When the temperature reached 1173 ° K, the wetting angle of the brazing material on the MgO substrate surface was changed. It was 16 ° when measured.

【0037】また、直径 5mmの円板状のCu−Ti合金
箔(厚さ10μm )をMgO基板の上に置き、その上に直
径 2mmの Fe-42Ni製のピンを円板の中心に配置し、全体
を真空炉に入れて同様にして1173°K まで昇温し、その
温度で 5分間保持した後、そのまま炉冷したところ、M
gO基材と Fe-42Ni製ピンとは接合されたが、接合面積
は最初にろう材が占めていた直径 5mmの円の面積より少
なく、直径 3mm程度(5.39mm2 )であり、接合強度は 3
0kgfであった。
Further, a disk-shaped Cu—Ti alloy foil (thickness: 10 μm) having a diameter of 5 mm is placed on an MgO substrate, and a pin made of Fe-42Ni having a diameter of 2 mm is placed at the center of the disk. The whole was put in a vacuum furnace, heated to 1173 ° K in the same manner, kept at that temperature for 5 minutes, and then cooled in the furnace as it was.
Although the gO base material and the Fe-42Ni pin were joined, the joining area was smaller than the area of the 5 mm diameter circle occupied by the brazing material initially, and was about 3 mm in diameter (5.39 mm 2 ).
It was 0 kgf.

【0038】このように、実施例4の箔状合金ろう材で
は、比較例4のものに比べてMgOに対する濡れ性が大
きく、良好な接合部が得られることがわかった。
As described above, it was found that the foil alloy brazing material of Example 4 had higher wettability to MgO than that of Comparative Example 4, and a good joint was obtained.

【0039】実施例5 Tiと酸素との固溶体とNiとが、Ni:Ti:Oが
2: 4: 1の原子比になるように混合して合金化した、
厚さ10μm 、面積 100mm2 の箔状の合金ろう材を、純度
96%のMgO基材の表面に配置し、これを真空炉中で0.
25°K/sec の昇温速度で1223°K まで昇温した。1223°
K に到達した時点でMgO基材表面でのろう材の濡れ角
度を測定したところ、13°であった。
Example 5 A solid solution of Ti and oxygen and Ni were Ni: Ti: O.
Mixed and alloyed to give an atomic ratio of 2: 4: 1,
Thickness 10 [mu] m, the foil-like brazing alloy material of area 100 mm 2, purity
It was placed on the surface of a 96% MgO substrate, and this was placed in a vacuum furnace at 0.
The temperature was raised to 1223 ° K at a rate of 25 ° K / sec. 1223 °
When reaching K, the wetting angle of the brazing material on the surface of the MgO substrate was measured and found to be 13 °.

【0040】また、直径 5mmの円板状のNi−Ti−O
合金箔(厚さ10μm )をMgO基板の上に置き、その上
に直径 2mmの Fe-42Ni製のピンを円板の中心に配置し、
全体を真空炉に入れて同様にして1223°K まで昇温し、
その温度で 5分間保持した後、そのまま炉冷したとこ
ろ、MgO基材と Fe-42Ni製ピンとは良好に封着接合さ
れ、接合面積は最初にろう材が占めていた直径 5mmの円
の面積(19.6mm2 )であり、接合強度は88.2kgf であっ
た。
Also, a disk-shaped Ni-Ti-O having a diameter of 5 mm is used.
Place the alloy foil (thickness 10μm) on the MgO substrate and place a 2mm diameter Fe-42Ni pin on the MgO substrate at the center of the disk.
Put the whole in a vacuum furnace and raise the temperature to 1223 ° K in the same way,
After holding at that temperature for 5 minutes and then cooled in the furnace, the MgO base material and the Fe-42Ni pin were well sealed and joined, and the joining area was the area of the 5 mm diameter circle initially occupied by the brazing material ( 19.6 mm 2 ) and the joint strength was 88.2 kgf.

【0041】ー方比較例5として、Ni:Tiが 2: 4
の原子比になるように合金化した、厚さ10μm 、面積 1
00mm2 の箔状のNi−Ti合金ろう材を、純度 96%のM
gO基材の表面に配置し、これを真空炉中で実施例5と
同様にして1223°K まで昇温し、1223°K に到達した時
点でMgO基材表面でのろう材の濡れ角度を測定したと
ころ、20°であった。
As Comparative Example 5, Ni: Ti is 2: 4
Alloyed to have an atomic ratio of 10 μm in thickness and 1 in area
00mm 2 foil Ni-Ti alloy brazing material
This was placed on the surface of the gO base material, and the temperature was raised to 1223 ° K in a vacuum furnace in the same manner as in Example 5. When the temperature reached 1223 ° K, the wetting angle of the brazing material on the MgO base surface was changed. It was 20 ° when measured.

【0042】また、直径 5mmの円板状のNi−Ti合金
箔(厚さ10μm )をMgO基板の上に置き、その上に直
径 2mmの Fe-42Ni製のピンを円板の中心に配置し、全体
を真空炉に入れて同様にして1223°K まで昇温し、その
温度で 5分間保持した後、そのまま炉冷したところ、M
gO基材と Fe-42Ni製ピンとは接合されたが、接合面積
は最初にろう材が占めていた直径 5mmの円の面積より少
なく、直径 3mm程度(5.39mm2 )であり、接合強度は 2
5kgfであった。
Further, a disk-shaped Ni-Ti alloy foil (thickness: 10 μm) having a diameter of 5 mm is placed on an MgO substrate, and a pin made of Fe-42Ni having a diameter of 2 mm is placed at the center of the disk. The whole was put in a vacuum furnace, heated to 1223 ° K in the same manner, kept at that temperature for 5 minutes, and then cooled in the furnace.
Although the gO base material and the Fe-42Ni pin were joined, the joining area was smaller than the area of the 5 mm diameter circle occupied by the brazing material initially, and was about 3 mm in diameter (5.39 mm 2 ).
It was 5 kgf.

【0043】このように、実施例5の箔状合金ろう材で
は、比較例5のものに比べてMgOに対する濡れ性が大
きく、良好な接合部が得られることがわかった。
As described above, it was found that the foil alloy brazing material of Example 5 had higher wettability to MgO than that of Comparative Example 5, and a good joint was obtained.

【0044】実施例6 圧力が 5×10-3Torrのチャンバー内に、酸素とArとの
混合ガス(混合比20:1)を60sccm流しながら、Al2
3 基板の表面にTiを20nmの厚さに成膜した後、引き続
いてAg一Cu合金層を 800nm積層してろう材層とし
た。
Example 6 Al 2 O was introduced into a chamber at a pressure of 5 × 10 -3 Torr while flowing a mixed gas of oxygen and Ar (mixing ratio: 20: 1) at a flow rate of 60 sccm.
3 After a film of Ti was formed to a thickness of 20 nm on the surface of the substrate, an 800 nm Ag-Cu alloy layer was subsequently laminated to form a brazing material layer.

【0045】このろう材層の表面にNb製のピンを接触
させ、1123°K で10分間 1×10-5Torrの真空炉中で熱処
理したところ、ろう材が良好にAl2 3 基板上に濡れ
広がりながらNb製ピンとの接合が行なわれた。
When a pin made of Nb was brought into contact with the surface of the brazing material layer and heat-treated at 1123 ° K. for 10 minutes in a vacuum furnace of 1 × 10 −5 Torr, the brazing material was satisfactorily deposited on the Al 2 O 3 substrate. The connection with the Nb pin was performed while spreading wet.

【0046】一方比較例6として、圧力が 5×10-3Torr
のチャンバー内に、Arのみを60sccm流しながら、Al
2 3 基板表面にTiを20nm厚に成膜した後、引き続い
てAg一Cu合金層を 800nm積層してろう材層とした。
このろう材層表面にNb製のピンを接触させ、1123°K
で10分間 1×10-5Torrの真空炉中で熱処理したところ、
ろう材が濡れ広がらずに島状に凝集してしまい、接合が
行えなかった。
On the other hand, as Comparative Example 6, the pressure was 5 × 10 −3 Torr.
While flowing only Ar at a flow rate of 60 sccm into the chamber of
After a 20 nm thick Ti film was formed on the surface of the 2 O 3 substrate, an 800 nm Ag-Cu alloy layer was subsequently laminated to form a brazing filler metal layer.
The surface of this brazing material layer is brought into contact with a pin made of Nb,
For 10 minutes in a vacuum furnace of 1 × 10 -5 Torr,
The brazing material did not spread and wet and aggregated in an island shape, and the joining could not be performed.

【0047】このように、実施例1の薄膜状のろう材で
は、比較例6のものに比べてAl23 に対する濡れ性
が良く、良好な接合部が得られることがわかった。
As described above, it was found that the thin film brazing material of Example 1 had better wettability to Al 2 O 3 than that of Comparative Example 6, and a good joint was obtained.

【0048】[0048]

【発明の効果】以上説明したように本発明のろう材は、
従来の活性金属ろう材に比べて、加熱溶融時のセラミッ
クに対する濡れ性が大幅に向上している。したがって、
本発明のろう材によれば、セラミックと金属あるいはセ
ラミック同士の封着接合を少ないろう材量で効率良く行
ない、気密性の高い良好な封着接合部を得ることができ
る。
As described above, the brazing material of the present invention is:
Compared with the conventional active metal brazing material, the wettability to the ceramic at the time of heating and melting is greatly improved. Therefore,
ADVANTAGE OF THE INVENTION According to the brazing material of this invention, the sealing joining of a ceramic and a metal or ceramics can be performed efficiently with a small brazing material amount, and a favorable sealing joining part with high airtightness can be obtained.

【0049】[0049]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 4a族元素および他の金属からなる金属
間化合物、また4a族元素が、酸素、窒素および炭素か
ら選ばれた少なくとも1種の非金属元素と固溶体を形成
していることを特徴とするろう材。
1. An intermetallic compound comprising a Group 4a element and another metal, and a Group 4a element forming a solid solution with at least one nonmetallic element selected from oxygen, nitrogen and carbon. Brazing material.
【請求項2】 前記固溶体と、Ag、Cu、Ni、C
o、Cr、Fe、Mn、Ag−Cu合金、Au−Cu合
金から選ばれた少なくとも1種の金属とが、合金化して
いることを特徴とする請求項1記載のろう材。
2. The solid solution, Ag, Cu, Ni, C
The brazing material according to claim 1, wherein at least one metal selected from the group consisting of o, Cr, Fe, Mn, an Ag-Cu alloy, and an Au-Cu alloy is alloyed.
JP35097596A 1996-12-27 1996-12-27 Brazing filler metal Withdrawn JPH10194860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35097596A JPH10194860A (en) 1996-12-27 1996-12-27 Brazing filler metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35097596A JPH10194860A (en) 1996-12-27 1996-12-27 Brazing filler metal

Publications (1)

Publication Number Publication Date
JPH10194860A true JPH10194860A (en) 1998-07-28

Family

ID=18414195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35097596A Withdrawn JPH10194860A (en) 1996-12-27 1996-12-27 Brazing filler metal

Country Status (1)

Country Link
JP (1) JPH10194860A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218905A (en) * 2007-03-07 2008-09-18 Tokuyama Corp Method of manufacturing wiring substrate
US20100055498A1 (en) * 2008-09-01 2010-03-04 COMMISSARIAT A L'ENERGIE ATOMIQUE and INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Process for the Moderately Refractory Assembling of Articles Made of SiC-Based Materials by Non-Reactive Brazing in an Oxidizing Atmosphere, Brazing Compositions, and Joint and Assembly Obtained by this Process
JP4908426B2 (en) * 2005-11-29 2012-04-04 株式会社東芝 Thermoelectric conversion module and heat exchanger and thermoelectric generator using the same
JP2016046289A (en) * 2014-08-20 2016-04-04 デンカ株式会社 Ceramics circuit board
WO2021067081A1 (en) * 2019-10-01 2021-04-08 General Electric Company Method of processing a joint to be brazed, a method of processing a brazed joint, and an actively brazed joint
CN115786762A (en) * 2022-11-24 2023-03-14 南京理工大学 High-strength active brazing filler metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908426B2 (en) * 2005-11-29 2012-04-04 株式会社東芝 Thermoelectric conversion module and heat exchanger and thermoelectric generator using the same
JP2008218905A (en) * 2007-03-07 2008-09-18 Tokuyama Corp Method of manufacturing wiring substrate
US20100055498A1 (en) * 2008-09-01 2010-03-04 COMMISSARIAT A L'ENERGIE ATOMIQUE and INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Process for the Moderately Refractory Assembling of Articles Made of SiC-Based Materials by Non-Reactive Brazing in an Oxidizing Atmosphere, Brazing Compositions, and Joint and Assembly Obtained by this Process
JP2010059048A (en) * 2008-09-01 2010-03-18 Commiss Energ Atom Method for assembling moderately refractory article made of sic-based material by non-reactive brazing of brazing composition in oxidizing atmosphere, and refractory joint and assembly obtained by the method
US10093582B2 (en) 2008-09-01 2018-10-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for the moderately refractory assembling of articles made of SiC-based materials by non-reactive brazing in an oxidizing atmosphere, brazing compositions, and joint and assembly obtained by this process
JP2016046289A (en) * 2014-08-20 2016-04-04 デンカ株式会社 Ceramics circuit board
WO2021067081A1 (en) * 2019-10-01 2021-04-08 General Electric Company Method of processing a joint to be brazed, a method of processing a brazed joint, and an actively brazed joint
CN114375235A (en) * 2019-10-01 2022-04-19 通用电气公司 Method for machining joint to be brazed, method for machining brazed joint, and active brazed joint
CN115786762A (en) * 2022-11-24 2023-03-14 南京理工大学 High-strength active brazing filler metal

Similar Documents

Publication Publication Date Title
US4448605A (en) Ductile brazing alloys containing reactive metals
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JPH0367985B2 (en)
US4859531A (en) Method for bonding a cubic boron nitride sintered compact
US4606981A (en) Ductile brazing alloys containing reactive metals
JPH10194860A (en) Brazing filler metal
US20050127146A1 (en) Process for the metallization and/or brazing with a silicon alloy of parts made of an oxide ceramic unable to be wetted by the said alloy
JPH07126079A (en) Soldering material for bonding ceramic material
JPS62289396A (en) Joining method for ceramics
JPS62270483A (en) Ceramic metallizing composition, metallization and metallized product
JP3495052B2 (en) Metallized body and manufacturing method thereof
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JPS5844635B2 (en) Method of brazing metal and ultra-hard artificial material and brazing agent therefor
JP3505212B2 (en) Joint and method of manufacturing joint
JPH0532463A (en) Soldering material for bonding metal and ceramic
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH0460946B2 (en)
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPH0215874A (en) Method and material for joining metal and ceramics
JPS6317267A (en) Solder material for joining ceramics each other or ceramic and metal
JPS61215272A (en) Method of bonding ceramic member and metal member
JPH0632869B2 (en) Brazing method for ceramics and metal
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302