JPH03103385A - Metallization of ceramic and bonding of ceramic to metal - Google Patents

Metallization of ceramic and bonding of ceramic to metal

Info

Publication number
JPH03103385A
JPH03103385A JP24026389A JP24026389A JPH03103385A JP H03103385 A JPH03103385 A JP H03103385A JP 24026389 A JP24026389 A JP 24026389A JP 24026389 A JP24026389 A JP 24026389A JP H03103385 A JPH03103385 A JP H03103385A
Authority
JP
Japan
Prior art keywords
metal
ceramic
metallized layer
layer
metallizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24026389A
Other languages
Japanese (ja)
Inventor
Tsuneo Enokido
榎戸 恒夫
Naoki Hirai
直樹 平井
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24026389A priority Critical patent/JPH03103385A/en
Publication of JPH03103385A publication Critical patent/JPH03103385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metallized ceramic excellent in bond strength at temperature and hot strength characteristics by bringing Ni metal into contact with a metallizing layer formed on a ceramic surface with Ag-Cu-Ti-based metal followed by heating treatment under specified conditions. CONSTITUTION:Firstly, metallization treatment is applied on a ceramic surface using Ag-Cu-Ti-based metal to form a metallizing layer on the surface. Thence, Ni metal is brought into contact with this layer followed by heating treatment in a vacuum or inert gas atmosphere at 650-900 deg.C to effect diffusion of Ni into the layer. Alternatively, after forming a metallizing layer on the surface as described above, glaze is attached on both surfaces of the metallizing layer and a metal to be put to contact with said layer, and furthermore, a Ni-plated layer-clad thermal stress-buffer material is put between both the surfaces. Thence, the system is heated in a vacuum or inert gas atmosphere at 650-900 deg.C for >=10min, thus bonding the ceramic to the metal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックスのメタライズ方法に関し、特に活
性金属を利用する前記メタライズ方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for metallizing ceramics, and more particularly to improvements in the metallizing method using active metals.

(従来の技術) セラミックス材料の耐摩耗性、耐熱性等に優れた特性を
積極的に利用する試みが活発に行われるようになってき
た。しかしながらセラミックスは前記優れた特性を持つ
反面、靭性に乏しいという欠点を有している他、高価で
あるため前記セラミックスを構造材として使用する場合
、高い靭性を持つ金属材料と複合化させ、セラミックス
の特性を要求される部分のみにセラミックスを使用する
ことが多く行われている。
(Prior Art) Attempts have been actively made to utilize the excellent properties of ceramic materials, such as wear resistance and heat resistance. However, although ceramics have the above-mentioned excellent properties, they also have the disadvantage of poor toughness and are expensive. Ceramics are often used only in areas where specific properties are required.

前記複合化の方法としては、セラミックスを金属材料に
接合して行うことが一般的であり、従来より種々の技術
が開発されている。たとえば、特開昭60 − 188
185号公報や、特開昭82 − 217533号公報
には、活性金属を含むAg−Cuろう材をセラミックス
と金属の間に介在させ直接加熱してセラミックスと金属
を接合し、接合体とする方法が開示されている。
The method for making composites is generally to bond ceramics to metal materials, and various techniques have been developed so far. For example, Japanese Patent Publication No. 1888-1888
No. 185 and Japanese Unexamined Patent Publication No. 82-217533 disclose a method of interposing an Ag-Cu brazing material containing an active metal between ceramics and metals and directly heating the ceramics and metals to form a joined body. is disclosed.

また、セラミックスは金属と濡れ難い性質を有するため
、セラミックスと金属を接合するにあたり、メタライズ
とろう付けを同時に行うと接合界面に気泡状の非接合部
を形成したり、セラミックスのメタライズ反応が十分行
われていない部分を内包した状態がしばしば発生し、セ
ラミックスと金属接合体の接合強度が大きくばらつき、
接合体の信頼性の向上を阻害する要因になっていた。
Additionally, since ceramics have the property of not being easily wetted by metals, if metallization and brazing are performed at the same time when joining ceramics and metals, bubble-like non-bonded areas may be formed at the bonding interface, and the metallization reaction of the ceramics may not be sufficiently carried out. This often results in a state where parts that are not bonded are included, and the bonding strength of the ceramic and metal bonded body varies greatly.
This was a factor that hindered the improvement of the reliability of the joined body.

こうした問題を解決する手段として予めセラミックスの
表面にTi,  Zrの金属粉末あるいはその混合粉末
を塗布しその上に板ろう材を載置して真空中で加熱して
セラミックスの表面にメタライズ処理層を形或させ、メ
タライズが完全に施されていることを確認した後ろう付
けする方法が、例えば特開昭83 − 139088号
公報に開示されている。
As a means to solve these problems, metal powders such as Ti and Zr or mixed powders of Ti and Zr are coated on the surface of the ceramic in advance, a brazing plate is placed on top of the powder, and the plate is heated in a vacuum to form a metallized layer on the surface of the ceramic. For example, Japanese Unexamined Patent Publication No. 139088/1983 discloses a method in which the material is shaped and brazed after confirming that metallization is completely applied.

これら方法の他、予めT1等の活性金属を含むAg− 
Cu系金属粉末を使用してメタライズする方法等も多く
提案されている。これらの従来方法でメタライズされた
セラミックスの、金属とのろう付け接合体は通常の常温
状態での使用には支障のない接合強度にまで達しつつあ
る。
In addition to these methods, Ag-
Many methods of metallization using Cu-based metal powder have also been proposed. Ceramics metallized by these conventional methods and brazed joints with metals are reaching a joint strength that does not pose a problem when used under normal room temperature conditions.

しかしながら近年、セラミックスと金属の接合体を設計
する上で、より高い接合強度が要求される場合が多くな
ってきており、加えて、前記接合体を高温下で使用する
ケース、高温の使用状態と室温との間の熱サイクルを受
ける環境下で使用されるケースが多くなっており、前述
した従来方法でメタライズした接合体ではこうした過酷
な要求を十分満足させることができなかった。而して前
述した従来のセラミックスのメタライズ方法より更に熱
間接合強度や耐熱サイクル性に優れたメタライズ方法の
開発が望まれていた。
However, in recent years, when designing a ceramic-metal bonded body, higher bonding strength is often required. In many cases, they are used in environments where they are subjected to thermal cycles between room temperature and room temperature, and the bonded bodies metallized by the conventional methods described above have not been able to fully satisfy these severe requirements. Therefore, it has been desired to develop a metallization method that has even better hot bonding strength and heat cycle resistance than the conventional ceramic metallization methods described above.

(発明が解決しようとする課題) 本発明は、活性金属、特にTiを含むAg −Cu系金
属粉、或いはその合金粉末でセラミックスをメタライズ
する方法において、前述した従来のメタライズ方法の問
題点の抜本的な解決を図り、常温接合強度だけでなく熱
間強度特性にも優れたセラミックスのメタライズ方法、
並びにこのようにメタライズされたセラミックスと金属
との接合方法を提供することをその課題とするものであ
る。
(Problems to be Solved by the Invention) The present invention is a method of metallizing ceramics using an active metal, particularly an Ag-Cu metal powder containing Ti, or an alloy powder thereof, which completely solves the problems of the conventional metallization method described above. A method for metallizing ceramics that has excellent not only room-temperature bonding strength but also hot strength properties.
Another object of the present invention is to provide a method for bonding metallized ceramics and metals.

(課題を解決するための手段) 前記課題を解決する本発明は、 セラミックス表面にAg− Cu− Ti系金属による
メタライズ処理を施し、メタライズ層を形成した後、前
記メタライズ層にNi金属を接触せしめ、真空、或いは
不活性ガス雰囲気中、650〜900℃の温度で加熱処
理し、前記メタライズ層内にNiを拡散させることを特
徴とするものである。
(Means for Solving the Problems) The present invention for solving the above-mentioned problems is as follows: After metallizing the ceramic surface with an Ag-Cu-Ti metal to form a metallized layer, Ni metal is brought into contact with the metallized layer. The method is characterized in that Ni is diffused into the metallized layer by heat treatment at a temperature of 650 to 900° C. in a vacuum or an inert gas atmosphere.

また、前記Ni金属がメタライズ層表面に施されたNi
メッキであることを他の特徴とするものである。
Further, the Ni metal is applied to the surface of the metallized layer.
Another feature is that it is plated.

さらにまた、セラミックス表面にAg− Cu−Ti系
金属によるメタライズ処理を施しメタライズ層を形或し
た後、該セラミックスを金属に接合するにあたり、前記
メタライズ層と金属間に、上下にろう材が貼着され、さ
らに前記メタライズ層と接する表面にNiメッキ層を有
する熱応力緩衝材を介在せしめ、しかる後真空、或いは
不活性ガス雰囲気中、650〜900℃の温度で、IO
分以上加熱することにより前記セラミックスと金属とを
接合することを他の特徴とするものである。
Furthermore, after metallizing the ceramic surface with an Ag-Cu-Ti metal to form a metallized layer, when joining the ceramic to the metal, a brazing material is attached above and below between the metallized layer and the metal. Furthermore, a thermal stress buffering material having a Ni plating layer is interposed on the surface in contact with the metallized layer, and then IO is applied at a temperature of 650 to 900°C in a vacuum or an inert gas atmosphere.
Another feature of the present invention is that the ceramic and metal are bonded by heating for more than a minute.

以下、本発明の具体的な構成を詳細に説明する。Hereinafter, a specific configuration of the present invention will be explained in detail.

第1図は、本発明の基本構成を示す断面構造図である。FIG. 1 is a cross-sectional structural diagram showing the basic configuration of the present invention.

図において1はセラミックスであり、2は前記セラミッ
クス1の表面に形或されたメタライズ層、3はNi金属
である。
In the figure, 1 is a ceramic, 2 is a metallized layer formed on the surface of the ceramic 1, and 3 is Ni metal.

本発明においては、まずセラミックス1の表面に、Ag
− Cu−Ti系金属、例えばAg71%、Cu27%
、Ti 2%の配合組成の合金粉末を塗布し、850℃
の真空中で30分間、加熱処理するなどしてメタライズ
処理を施し、メタライズ層2を形成する。このメタライ
ズ処理は活性金属メタライズ法として従来より知られて
いる方法であり、AI2 03,Zr02などの酸化物
系セラミックス、st3N4,AjlN,BN等の窒化
物系セラミックス、SiC等の炭化物系セラミックス等
に適用できる。
In the present invention, Ag is first applied to the surface of the ceramic 1.
- Cu-Ti metal, e.g. Ag71%, Cu27%
, coated with alloy powder with a composition of 2% Ti and heated at 850°C.
The metallized layer 2 is formed by performing metallization treatment such as heat treatment in a vacuum for 30 minutes. This metallization process is a method conventionally known as an active metal metallization method, and is suitable for oxide ceramics such as AI203 and Zr02, nitride ceramics such as st3N4, AjlN, and BN, and carbide ceramics such as SiC. Applicable.

前記メタライズ層2が形成されたら、そのメタライズ層
2にNI金属3を接触せしめ、真空、或いは不活性ガス
雰囲気中で、しかも650〜900℃の温度範囲で、加
熱処理する。この加熱処理によって前記Ni金属3は、
前記メタライズ層2内に拡散・浸透する。この結果メタ
ライズ層2は接合強度や熱サイクル性等の熱間強度特性
に優れたものとなる。
After the metallized layer 2 is formed, the NI metal 3 is brought into contact with the metallized layer 2 and heat-treated in a vacuum or an inert gas atmosphere at a temperature in the range of 650 to 900°C. Through this heat treatment, the Ni metal 3 becomes
It diffuses and permeates into the metallized layer 2. As a result, the metallized layer 2 has excellent hot strength characteristics such as bonding strength and thermal cycleability.

本発明におけるNi金属3は、後述する熱応力緩衝材と
して機能するのではなく、前述したメタライズ層2と接
して加熱処理され、メタライズ層2自体の接合強度を高
くし、しかも熱間特性に優れたメタライズ層組織に改質
することを目的とするものである。そのため熱応力緩衝
材のような厚い板である必要はなく、数坤の厚みでかつ
メタライズ層2の全面を必ずしも被覆する必要がない。
The Ni metal 3 in the present invention does not function as a thermal stress buffer as described later, but is heat-treated in contact with the metallized layer 2 described above to increase the bonding strength of the metallized layer 2 itself and have excellent hot properties. The purpose of this is to modify the structure of the metallized layer. Therefore, it does not need to be a thick plate like a thermal stress buffering material, and it is not necessary to have a thickness of several ounces and to cover the entire surface of the metallized layer 2.

従って、本発明ではメタライズ層2に接触させるNi金
属は種々の形状のもの、例えば、箔状、板状或いは粉末
状のNi金属が使用でき、加熱処理方法に最も適した形
状のものを選択してメタライズ層2に接触させて加熱処
理すればよい。しかし、熱処理後のメタライズ層2に接
触させたNi金属3が完全に密着していないと以後のろ
う付け工程で完全なろう付けが不可能となるので、メタ
ライズ層表面に、数一程度の厚みのNiメッキを施し、
しかる後、加熱処理する方法がメタライズの作業性やメ
タライズ層の改質反応の面から効果的である。
Therefore, in the present invention, the Ni metal to be brought into contact with the metallized layer 2 can be in various shapes, such as foil, plate, or powder, and the shape most suitable for the heat treatment method is selected. The metallized layer 2 may be brought into contact with the metallized layer 2 and heat treated. However, if the Ni metal 3 that has been brought into contact with the metallized layer 2 after heat treatment is not completely adhered, complete brazing will not be possible in the subsequent brazing process. Ni plating is applied,
After that, a method of heat treatment is effective in terms of workability of metallization and modification reaction of the metallized layer.

また、加熱処理は、前述したように真空中あるいは不活
性ガス中で850℃以上900℃以下の温度範囲で行わ
れる。このように加熱処理条件に制約を設けている理由
は、真空あるいは不活性ガス雰囲気以外ではメタライズ
層2が酸化して以後のろう付け工程に支障をきたすため
であり、650℃以下の温度ではNi金属の拡散があま
り進行せずメタライズ層2の前述した改質が進まないた
めである。逆に上限の900℃を越えると予め施してあ
る活性金属によるメタライズ層2から金属成分が蒸発し
、メタライズ層2の組織が変化し、後工程での金属との
良好な接合体が得られなくなる。加熱処理時間は特に限
定するものではないが、あまり短いとNi金属3の拡散
が進行せず、メタライズ層2の改質が進まない。本発明
者らの経験では約lO分程度の処理時間があれば充分で
あった。
Further, as described above, the heat treatment is performed in a vacuum or in an inert gas at a temperature range of 850° C. or higher and 900° C. or lower. The reason why the heat treatment conditions are restricted in this way is that the metallized layer 2 will oxidize in environments other than vacuum or inert gas atmosphere, which will interfere with the subsequent brazing process. This is because the metal diffusion does not proceed much and the above-mentioned modification of the metallized layer 2 does not proceed. On the other hand, if the temperature exceeds the upper limit of 900°C, the metal component will evaporate from the pre-applied active metal metallized layer 2, and the structure of the metallized layer 2 will change, making it impossible to obtain a good bond with metal in the subsequent process. . Although the heat treatment time is not particularly limited, if it is too short, the diffusion of the Ni metal 3 will not proceed and the modification of the metallized layer 2 will not proceed. In the experience of the present inventors, a processing time of approximately 10 minutes was sufficient.

Ni金属を接触させての加熱処理は、前述したようにN
iをメタライズ層2内に拡散させ、メタライズ層組織の
改質を図ることを目的とするものであり、この目的は金
属とのろう付けと並行して実施することでも違戊するこ
とが可能である。
As mentioned above, heat treatment with Ni metal in contact with N
The purpose is to diffuse i into the metallized layer 2 to improve the structure of the metallized layer, and this purpose can also be achieved by performing it in parallel with brazing with metal. be.

即ち、メタライズ層を形威したセラミックスと金属を接
合するにあたり、例えば周知の炉中ろう付け時に、前記
金属とセラミックスのメタライズ面の間にNi板、また
はNI箔あるいはNi粉末等のNf金属を配してろう付
けを行うことにより、メタライズ層内にNiを拡散・浸
透させつつろう付け接合を同時に実施することが可能で
ある。
That is, when joining ceramics with a metallized layer and metal, for example, during well-known furnace brazing, an Nf metal such as a Ni plate, Ni foil, or Ni powder is placed between the metallized surface of the metal and the ceramic. By performing brazing, Ni can be diffused and permeated into the metallized layer and brazed joint can be performed at the same time.

第2図は、本発明に基づいて製造されたセラミックスと
金属との接合体の一例を示す断面図である。
FIG. 2 is a sectional view showing an example of a joined body of ceramic and metal manufactured according to the present invention.

図において5が金属であり、この金属5とメタライズ層
2が形成されたセラミックス1との間には、例えば銀ろ
う等のろう材6 a.. 6 bにサンドイッチされた
熱応力緩衝材4が介在されている。
In the figure, 5 is a metal, and between the metal 5 and the ceramic 1 on which the metallized layer 2 is formed, there is a brazing material 6 such as silver solder. .. A thermal stress buffer material 4 sandwiched between 6 b is interposed.

この熱応力緩衝材4は、0.5〜1.0+am程度の厚
さの銅板等で構或されでおり、少なくとも前記メタライ
ズ層2に接する側の表面にNiメッキ層3aが形成され
ている。而して第2図に示されるように金属5上に、ろ
う材6b,Niメッキ層3aが形成された熱応力緩衝材
4、ろう材6a,およびメタライズ層2を有するセラミ
ックス1が順次積層し、次いでこの状態で、真空、或い
は不活性ガス雰囲気の炉中等で、650〜900℃の温
度で加熱することによってメタライズ層2内にNiを拡
散・浸透させつつろう付け接合を同時に実施することが
できる。
The thermal stress buffering material 4 is made of a copper plate or the like having a thickness of about 0.5 to 1.0+am, and has a Ni plating layer 3a formed on at least the surface in contact with the metallized layer 2. As shown in FIG. 2, a brazing filler metal 6b, a thermal stress buffering material 4 with a Ni plating layer 3a formed thereon, a brazing filler metal 6a, and a ceramic 1 having a metallized layer 2 are sequentially laminated on the metal 5. Next, in this state, Ni can be diffused and penetrated into the metallized layer 2 by heating at a temperature of 650 to 900° C. in a vacuum or in a furnace under an inert gas atmosphere, and brazing can be performed at the same time. can.

尚、前記第2図の例では、熱応力緩衝材4にNi金属を
メッキ層として介在させたが、ろう材6aにNiメッキ
層を形成すること、或いはメタライズ層2と熱応力緩衝
材4の間にNi金属箔や、Ni金属板等を介在させるこ
とでも同様な効果が得られる。
In the example shown in FIG. 2, the thermal stress buffer material 4 is interposed with Ni metal as a plating layer, but it is possible to form a Ni plating layer on the brazing material 6a or to separate the metallized layer 2 and the thermal stress buffer material 4. A similar effect can be obtained by interposing a Ni metal foil, a Ni metal plate, or the like in between.

本発明において活性金属によるメタライズ処理と、メタ
ライズ層表面にNi金属を接触させての加熱処理とを2
段階に分けて実施するのは、予めNi金属を活性金属を
含むAg−Cu系金属と一緒にメタライズ処理を行った
場合に生じる問題、つまりNiがTiと選択的に合金相
を形成してセラミックスと接合能を発揮するに必要なT
iを消費しその結果接合強度を低下させることを防止す
るためである。
In the present invention, metallization treatment using an active metal and heat treatment by bringing Ni metal into contact with the surface of the metallization layer are performed in two steps.
The reason for performing the step-by-step process is to solve the problem that occurs when Ni metal is pre-metallized with Ag-Cu metals containing active metals, that is, Ni selectively forms an alloy phase with Ti, resulting in the formation of ceramics. T required to exhibit bonding ability with
This is to prevent consumption of i and resulting reduction in bonding strength.

(作  用) 前述したような問題を有する活性金属によるメタライズ
方法において、本発明は、予めセラミックス表面に、A
g− Cu− Ti系金属によるメタライズ処理を施し
、メタライズ層を形威した後、このメタライズ層にNi
金属を接触させて加熱処理を行うだけの簡単な操作でメ
タライズ層中のTiの賦存状態を著しく変化させること
により常温接合強度だけでなく、熱間接合強度が高く、
耐熱サイクル性に優れたメタライズ層を形成させること
に成功したものである。
(Function) In a metallization method using an active metal that has the above-mentioned problems, the present invention provides a method for applying A to the ceramic surface in advance.
After metallizing with g-Cu-Ti metal to form a metallized layer, Ni is applied to this metallized layer.
By simply bringing the metals into contact and performing heat treatment, the state of Ti in the metallized layer can be significantly changed, resulting in high not only room-temperature bonding strength but also hot bonding strength.
We succeeded in forming a metallized layer with excellent heat cycle resistance.

(実 施 例) 実施例 1 純度92%のAjl’20iセラミックス(20X20
X4 *ta t )の表面に、Ti5vt%を含むB
Ag−8相当組成の混合金属粉末(− 325a+es
h)をスクリーンオイルで混練して調製したペーストを
100a+eshのスクリーンで、1[10mg印刷塗
布し、真空乾燥した後、10〜’Torr. 840℃
の真空炉中で30分間、加熱処理してメタライズ処理を
施した。このメタライズ層表面に、スクリーンオイルで
混練して調製したNi金属粉末ペースト25mgを、3
00seshのスクリーンで印刷、塗布し、真空乾燥さ
せた後、840℃のArガス雰囲気炉中で30分間加熱
処理を行った。
(Example) Example 1 Ajl'20i ceramics (20X20
B containing 5vt% Ti on the surface of X4 *ta t )
Mixed metal powder with composition equivalent to Ag-8 (-325a+es
A paste prepared by kneading h) with screen oil was applied by printing on a 100a+esh screen in an amount of 1[10mg], dried under vacuum, and then heated at 10~'Torr. 840℃
Metallization treatment was performed by heat treatment for 30 minutes in a vacuum furnace. 25 mg of Ni metal powder paste prepared by kneading with screen oil was added to the surface of this metallized layer for 30 minutes.
After printing and coating with a 00 sesh screen and vacuum drying, heat treatment was performed for 30 minutes in an Ar gas atmosphere furnace at 840°C.

塗布したNi金属粉末がメタライズ層と一体化したこと
を確認した後、このセラミックスの前記メタライズ層と
SS41jM片の間に、銅熱応力緩衝材(20x 20
x O.5 t )の上下にBAg−8の板ろうを介し
て積層し850℃のArガス雰囲気炉中で、30分間、
加熱してろう付けした。このようにしてろう付けした接
合体と、前述したNi金属粉末ペーストの塗布、および
その後の工程を行わない従来の活性金属法でメタライズ
したセラミックスを同一条件でろう付けした比較接合体
との熱間特性を調査した。
After confirming that the applied Ni metal powder was integrated with the metallized layer, a copper thermal stress buffer material (20 x 20
xO. 5t) were laminated with BAg-8 solder plates on top and bottom, and heated in an Ar gas atmosphere furnace at 850°C for 30 minutes.
It was heated and brazed. Hot bonding between the thus brazed joined body and a comparative joined body in which ceramics metallized by the conventional active metal method, which does not include the application of the Ni metal powder paste mentioned above and the subsequent steps, are brazed under the same conditions. The characteristics were investigated.

第3図は、その調査結果の一例であり、●が本発明によ
るセラミックスと金属との接合体の熱間接合強度を、O
が比較材の熱間接合強度を示すものである。この第3図
から明らかなように、本発明に基づく接合体の常温接合
強度は、比較材の常温接合強度98MPaよりも約1.
5倍高い148MPaの接合強度が得られ、熱間でも著
しく高い接合強度を示している。更に、この接合体を室
温と400℃の間で100回熱サイクルテストを行った
後、接合強度を比較したところ本発明の接合体には接合
強度の低下はほとんど観察されなかったが、比較材では
テスト前の強度の1/2に低下し、本発明が常温接合強
度のみならず熱間接合強度や耐熱サイクル特性に優れた
メタライズ方法であることが確認できた。
Figure 3 shows an example of the investigation results, where ● indicates the hot bonding strength of the ceramic-metal bonded body according to the present invention;
indicates the hot bonding strength of the comparative materials. As is clear from FIG. 3, the room temperature bonding strength of the bonded body based on the present invention is about 1.
A bonding strength of 148 MPa, which is five times higher, was obtained, and the bonding strength is extremely high even in hot conditions. Furthermore, after performing a thermal cycle test on this bonded body 100 times between room temperature and 400°C, the bonding strength was compared. The strength decreased to 1/2 of that before the test, confirming that the present invention is a metallizing method that is excellent not only in room temperature bonding strength but also in hot bonding strength and heat cycle resistance.

実施例 2 実施例1と同じ条件でメタライズ処理を施したセラミッ
クスを、前述した第2図に示すように予め3pの厚みの
Niメッキを施した銅熱応力緩衝材(20X20xO.
5t)の上下間にBAg−8の板ろうを介して、SS4
1鋼片に積層し840℃のA『ガス気流の炉中に挿入し
て30分間、加熱してろう付けした。並行して、同じ条
件で、Niメッキを施していないCu緩衝材を使用して
製作した接合体を比較材として熱間特性を比較した。得
られた接合体の強度特性は、前記実施例1で製造した本
発明に基づく接合体の特性と殆ど同じであった。
Example 2 Ceramic metallized under the same conditions as Example 1 was coated with a copper thermal stress buffer material (20x20xO.
5t) between the top and bottom of the SS4
The pieces were laminated into one steel piece, inserted into a gas flow furnace at 840°C, and heated and brazed for 30 minutes. In parallel, hot characteristics were compared using a bonded body manufactured under the same conditions using a Cu buffer material that was not plated with Ni as a comparison material. The strength characteristics of the obtained bonded body were almost the same as those of the bonded body based on the present invention manufactured in Example 1 above.

実施例 3 St,N.セラミックス(20x20x4關t)の表面
に、実施例1の仕様と同じT15wt%を含むBAg−
8相当組戊の混合金属粉末ペーストをスクリーン印刷し
、真空乾燥した後、10””Torr,850℃の真空
炉中で30mIn加熱処理してメタライズ処理した。冷
却後、炉外に取り出したSi3N4セラミックスをNi
無電解メッキ液に投入して、メタライズ層表面に約3坤
厚みのNiメッキを施し、再度850℃の真空炉中で3
0min加熱処理した。
Example 3 St,N. BAg- containing T15wt%, which is the same as the specification of Example 1, was applied to the surface of ceramics (20x20x4 pieces).
A mixed metal powder paste of 8 equivalents was screen printed, vacuum dried, and then heat-treated for 30 ml in a vacuum furnace at 10'' Torr and 850° C. for metallization. After cooling, the Si3N4 ceramics taken out of the furnace were
The surface of the metallized layer was plated with Ni to a thickness of about 3 cm by placing it in an electroless plating solution, and then it was plated again in a vacuum furnace at 850°C for 3 cm.
Heat treatment was performed for 0 min.

こうしてメタライズしたセラミックスを銅熱応力緩衝材
(20X20X0.5t)の上下にBAg−1の板ろう
材を挿入しSS41鋼片上に積層させセラミックスの無
処理面より高周波加熱コイルを接近させ、大気中で約3
0秒加熱してろう付けを行った。
The metallized ceramics were laminated on SS41 steel pieces by inserting BAg-1 brazing filler metals above and below a copper thermal stress buffer material (20 x 20 x 0.5 tons), and a high-frequency heating coil was brought closer to the untreated surface of the ceramics in the atmosphere. Approximately 3
Brazing was performed by heating for 0 seconds.

並行して同じ条件で製作したNiメッキなしメタライズ
セラミックスの接合体の接合強度を比較した。本発明の
接合体の常温接合強度は125MPaであり、比較材の
接合強度は72MPaより著しく高かった。また、この
接合体を室温と450℃の間で50回熱サイクルテスト
を行った後、その接合強度を比較したところ本発明の接
合体の接合強度は75MPaまで低下したが、比較材で
はテスト中にほとんどの接合体が破壊し強度測定ができ
ず、本発明の有用性が確認された。
In parallel, the bonding strengths of metalized ceramic bonded bodies without Ni plating manufactured under the same conditions were compared. The bonding strength at room temperature of the bonded body of the present invention was 125 MPa, and the bonding strength of the comparative material was significantly higher than 72 MPa. In addition, after performing a thermal cycle test on this bonded body 50 times between room temperature and 450°C, the bonding strength was compared, and the bonding strength of the bonded body of the present invention was reduced to 75 MPa, while that of the comparative material was Most of the joined bodies were destroyed and strength measurement was not possible, confirming the usefulness of the present invention.

(発明の効果) 本発明によれば、T1等の活性金属を用いてセラミック
スをメタライズする方法において、活性金属メタライズ
層にNi金属を介在させて加熱処理するだけの簡単な工
程で常温接合強度や熱間強度が高く、かつ耐熱サイクル
性に優れたメタライズセラミックスならびにセラミック
ス金属接合体を得ることができ工業的に有用である。
(Effects of the Invention) According to the present invention, in a method of metallizing ceramics using an active metal such as T1, a simple process of interposing Ni metal in the active metal metallized layer and heat treatment can improve the room-temperature bonding strength. It is possible to obtain metallized ceramics and ceramic-metal joined bodies that have high hot strength and excellent heat cycle resistance, and are industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基本構或を示す断面構造図、第2図
は、本発明に基づいて製造されたセラミックスと金属と
の接合体の一例を示す断面図である。 第3図は、本発明に基づく接合体と比較材の熱間強度の
調査結果の一例を示す図表である。 1:セラミックス 3:Ni金属 4:熱応力緩衝材 6a,6b:ろう材 2:メタライズ層 3a:Niメッキ層 5:金属
FIG. 1 is a cross-sectional structural view showing the basic structure of the present invention, and FIG. 2 is a cross-sectional view showing an example of a joined body of ceramic and metal manufactured based on the present invention. FIG. 3 is a chart showing an example of the results of a hot strength investigation of a joined body based on the present invention and a comparative material. 1: Ceramics 3: Ni metal 4: Thermal stress buffering materials 6a, 6b: Brazing filler metal 2: Metallized layer 3a: Ni plating layer 5: Metal

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス表面にAg−Cu−Ti系金属によ
るメタライズ処理を施し、メタライズ層を形成した後、
前記メタライズ層にNi金属を接触せしめ、真空、或い
は不活性ガス雰囲気中、650〜900℃の温度で加熱
処理し、前記メタライズ層内にNiを拡散させることを
特徴とするセラミックスのメタライズ方法。
(1) After metallizing the ceramic surface with Ag-Cu-Ti metal and forming a metallized layer,
A method for metallizing ceramics, characterized in that Ni metal is brought into contact with the metallized layer and heat treated at a temperature of 650 to 900° C. in a vacuum or an inert gas atmosphere to diffuse Ni into the metallized layer.
(2)Ni金属がメタライズ層表面に施されたNiメッ
キであることを特徴とする請求項第1項記載のメタライ
ズ方法。
(2) The metallizing method according to claim 1, wherein the Ni metal is Ni plating applied to the surface of the metallized layer.
(3)セラミックス表面にAg−Cu−Ti系金属によ
るメタライズ処理を施しメタライズ層を形成した後、該
セラミックスを金属に接合するにあたり、前記メタライ
ズ層と金属間に、上下にろう材が貼着され、さらに前記
メタライズ層と接する表面にNiメッキ層を有する熱応
力緩衝材を介在せしめ、しかる後真空、或いは不活性ガ
ス雰囲気中、850〜900℃の温度で、10分以上加
熱し接合することを特徴とするセラミックスと金属の接
合方法。
(3) After metallizing the ceramic surface with an Ag-Cu-Ti metal to form a metallized layer, when joining the ceramic to the metal, a brazing material is pasted above and below between the metallized layer and the metal. Further, a thermal stress buffering material having a Ni plating layer is interposed on the surface in contact with the metallized layer, and then the bonding is performed by heating at a temperature of 850 to 900° C. for 10 minutes or more in a vacuum or an inert gas atmosphere. A distinctive method of joining ceramics and metal.
JP24026389A 1989-09-18 1989-09-18 Metallization of ceramic and bonding of ceramic to metal Pending JPH03103385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24026389A JPH03103385A (en) 1989-09-18 1989-09-18 Metallization of ceramic and bonding of ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24026389A JPH03103385A (en) 1989-09-18 1989-09-18 Metallization of ceramic and bonding of ceramic to metal

Publications (1)

Publication Number Publication Date
JPH03103385A true JPH03103385A (en) 1991-04-30

Family

ID=17056896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24026389A Pending JPH03103385A (en) 1989-09-18 1989-09-18 Metallization of ceramic and bonding of ceramic to metal

Country Status (1)

Country Link
JP (1) JPH03103385A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238875A (en) * 1990-04-12 1992-08-26 E I Du Pont De Nemours & Co Method for brazing metalized constitutional element on ceramic base sheet
WO2004092785A2 (en) 2003-03-31 2004-10-28 Litton Systems, Inc. Bonding method for microchannel plates
US8994482B2 (en) 2011-05-19 2015-03-31 Fuji Electric Co., Ltd. Electromagnetic contactor
CN105057919A (en) * 2015-09-16 2015-11-18 江苏科技大学 Metalized materials for Si3N4 ceramic surface and preparation method as well as brazing technique

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238875A (en) * 1990-04-12 1992-08-26 E I Du Pont De Nemours & Co Method for brazing metalized constitutional element on ceramic base sheet
JP2602372B2 (en) * 1990-04-12 1997-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method of brazing metallized components to ceramic substrate
WO2004092785A2 (en) 2003-03-31 2004-10-28 Litton Systems, Inc. Bonding method for microchannel plates
EP1613448A2 (en) * 2003-03-31 2006-01-11 Litton Systems, Inc. Bonding method for microchannel plates
EP1613448A4 (en) * 2003-03-31 2008-09-10 Litton Systems Inc Bonding method for microchannel plates
US8994482B2 (en) 2011-05-19 2015-03-31 Fuji Electric Co., Ltd. Electromagnetic contactor
CN105057919A (en) * 2015-09-16 2015-11-18 江苏科技大学 Metalized materials for Si3N4 ceramic surface and preparation method as well as brazing technique
CN105057919B (en) * 2015-09-16 2017-04-05 江苏科技大学 For Si3N4The material and preparation method of ceramic surface metallization and soldering processes

Similar Documents

Publication Publication Date Title
US5023147A (en) Ceramics-metal jointed body
JPH0367985B2 (en)
JPH03103385A (en) Metallization of ceramic and bonding of ceramic to metal
JPH05148053A (en) Ceramics-metal joined material
JPS62289396A (en) Joining method for ceramics
JPH0520392B2 (en)
JPH02217372A (en) Method for jointing silicon nitride and metal
JP3302714B2 (en) Ceramic-metal joint
JP2651847B2 (en) Aluminum alloy for ceramic joining
JP3505212B2 (en) Joint and method of manufacturing joint
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JPH07110795B2 (en) Ceramic-metal bonded body with excellent bonding strength
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPS63170279A (en) Ceramic joining method
JPH02199075A (en) Joined product of ceramic and metal
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JP2001048670A (en) Ceramics-metal joined body
JPH04235246A (en) Alloy for metalizing for ceramics and metalizing method
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0362674B2 (en)
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JP2001114575A (en) Joining material of ceramics to ceramics and method for joining the same
JPS62166087A (en) Joining method for ceramics and metal