JPS6338244A - Manufacture of ceramic substrate for semiconductor device and clad material used for the same - Google Patents

Manufacture of ceramic substrate for semiconductor device and clad material used for the same

Info

Publication number
JPS6338244A
JPS6338244A JP18288386A JP18288386A JPS6338244A JP S6338244 A JPS6338244 A JP S6338244A JP 18288386 A JP18288386 A JP 18288386A JP 18288386 A JP18288386 A JP 18288386A JP S6338244 A JPS6338244 A JP S6338244A
Authority
JP
Japan
Prior art keywords
layer
alloy
cladding material
substrate
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18288386A
Other languages
Japanese (ja)
Inventor
Tomio Iizuka
飯塚 富雄
Takayuki Oota
太田 隆之
Nobuo Sato
伸雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP18288386A priority Critical patent/JPS6338244A/en
Publication of JPS6338244A publication Critical patent/JPS6338244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To Omit steps, to enhance the efficiency and to largely reduce a cost by preparing a clad material selected from a group of specific alloys, disposing the Al-Si alloy side of the clad material at an alumina substrate, and directly heating to bond it on the substrate to form a copper layer. CONSTITUTION:An Al-Si alloy layer, a Cu layer to be sequentially formed on a ceramic substrate are prepared in advance as clad materials, which are bonded on the substrate in one step. The Cu layer 1 may use any copper, but when it is used as the conductor layer or a heat sink layer of a semiconductor device, an oxygen-free copper is preferable. Since the Al-Si alloy layer 5 has good bondability to the ceramics with less thermal expansion in case of bonding to a ceramic plate of Al2O3, etc., it is used as an inserting metal. The content of the Si in the alloy is preferably 5-20wt.%. The layer 5 is bonded by a clad technique by means of cold rolling bonding method. The thicknesses ratio of the layers 1 to 5 are preferably 1:1-10:1.

Description

【発明の詳細な説明】 〈産業−にの利用分野〉 本発明はアルミナ基板上に導体層あるいは放熱層として
の銅層な有する半導体装置用セラミック基板の製造方法
に関し、特にアルミナ−銅の接合のイΔ頼性が高く、接
合プロセスか簡素化、高率化される半導体装置用セラミ
ック基板の製造方法およびその方法に使用するクラッド
材に関する。
[Detailed Description of the Invention] <Field of Industrial Application> The present invention relates to a method of manufacturing a ceramic substrate for a semiconductor device having a copper layer as a conductive layer or a heat dissipation layer on an alumina substrate, and particularly relates to a method of manufacturing a ceramic substrate for a semiconductor device having a copper layer as a conductive layer or a heat dissipation layer on an alumina substrate. The present invention relates to a method of manufacturing a ceramic substrate for a semiconductor device that has high reliability, simplifies the bonding process, and increases the efficiency of the bonding process, and a cladding material used in the method.

〈従来の技術〉 パワーIC、ハイブリッドICでは、素f−組込み用の
基板として耐熱性、熱放散性および機械的強度に優れて
いるセラミック基板が多用されている。このようなセラ
ミック基板の中て厚膜ICと呼ばれるものは、アルミナ
基板上に、通常、銀、パラジウム、ルテニウムなどの金
属微粉末に数組h1%のガラス粉末を添加して、これを
有機剤へ均一分散してなる厚膜導体ベーストを印刷し、
焼結して導体層その他を形成したものである。
<Prior Art> In power ICs and hybrid ICs, ceramic substrates, which are excellent in heat resistance, heat dissipation, and mechanical strength, are often used as substrates for incorporating elements. Among such ceramic substrates, what is called a thick film IC is usually made by adding several groups of h1% glass powder to fine metal powders such as silver, palladium, and ruthenium on an alumina substrate, and then using an organic agent. Print a thick film conductor base that is uniformly dispersed in
It is sintered to form a conductor layer and other parts.

また、より一般的に使用されているのは、アルミナJ、
(板1−にW、MOなどの金属微粉末からなる導体ペー
ストを印刷、焼成してW、Mo導体を形成し、このW、
Mo導体にNi、 Cu、へuメツキを施したものかあ
る。
Also, more commonly used are alumina J,
(A conductive paste made of fine metal powder such as W or MO is printed on plate 1- and fired to form a W or Mo conductor.
There are Mo conductors with Ni, Cu, and U plating applied to them.

第4図はこのようなセラミック基板の−・例を示すもの
で、セラミック基板4の表面には部分的に導体層として
働く銅層1を、裏面には全面放熱層としての銅層1を設
ける。
Figure 4 shows an example of such a ceramic substrate, in which a copper layer 1 is provided partially on the front surface of the ceramic substrate 4 to act as a conductive layer, and a copper layer 1 is provided as a heat dissipation layer on the entire surface of the ceramic substrate 4. .

このセラミック基板4の従来の製造法は、アルミナ等の
セラミック基板4の表面および裏面のそれぞれ所定位置
にまずW層3を印刷により形成し、このW層3−ににメ
ツキによるNi層2を介して無電解メツキによるCu層
1を100μ〜300μ施し、さらにこのCuメツキ上
にメツキによる旧居2を施′1−ものである。W層3お
よびNiメツキの厚さはそれぞれ数μ〜数1−μの範囲
である。W層3はW層が金属としてはアルミナとの熱膨
41+係数の整合性並びに密着性に優れている関係から
設4−Jられる。またNiメツキはC【1のト”地メツ
キおよびGoの表面に耐食性を付与するために設けられ
る。
The conventional manufacturing method for this ceramic substrate 4 is to first form a W layer 3 by printing at predetermined positions on the front and back surfaces of a ceramic substrate 4 made of alumina or the like, and then to coat this W layer 3 with a Ni layer 2 by plating. Then, a Cu layer 1 of 100 to 300 μm is applied by electroless plating, and a former layer 2 is further applied by plating on this Cu plating. The thickness of the W layer 3 and the Ni plating are each in the range of several micrometers to several 1-micrometers. The W layer 3 is designed 4-J because the W layer, as a metal, has excellent matching with alumina in thermal expansion coefficient of 41+ and adhesion. Further, Ni plating is provided to impart corrosion resistance to the bottom plating of C[1] and the surface of Go.

しかし、このような製造法ではNiメツキ、〔:11メ
ツキ下程に著しく時間を要し、とくに無電解Cuメツキ
下程により100〜300μの厚さの611メツキを施
すには数時間を要するという大きな問題がある。なお無
電解Goメツキの方が膜厚の内性に優れているという関
係から採用される。
However, with this manufacturing method, it takes a considerable amount of time for Ni plating and [:11 plating, and in particular, it takes several hours to apply 611 plating with a thickness of 100 to 300μ due to electroless Cu plating. There's a big problem. Note that electroless Go plating is adopted because it has better internal film thickness.

一方、最近は金属とセラミックの接合に関して盛んに研
究が行わわており、例えば銀ろう、In−Si合金ろう
な介して金属とセラミックを接合することが提案されて
いる。しかしここで提案されている金属とセラミックの
接合は、金属としては鉄系の金属例えば電子部品材料の
分野ではインバーや4270イ、また機械構造用材料の
分野では鋼や超硬合金を対象とするものである。篩とセ
ラミックとくにCt+とアルミナとの接合に関しては実
際に研究された例がなく、不明な点が多い。
On the other hand, there has recently been much research into joining metals and ceramics, and it has been proposed, for example, to join metals and ceramics through silver solder or In-Si alloy solder. However, the metal-ceramic bonding proposed here targets iron-based metals such as Invar and 4270I in the field of electronic component materials, and steel and cemented carbide in the field of mechanical structural materials. It is something. There is no actual research on the bonding between sieves and ceramics, especially Ct+ and alumina, and there are many unknown points.

このようなセラミック基板の製造において、W、Mo層
を不要にしく;11のメツキ作業を廃11−することが
できればその作業性が飛躍的に向トすることは明らかて
あり、このような新しいセラミック基板の製造方法が要
望されている。
In the production of such ceramic substrates, it is clear that if the W and Mo layers can be made unnecessary; if the plating work can be eliminated, the workability will be dramatically improved. There is a need for a method of manufacturing a ceramic substrate.

〈発明の目的〉 本発明の[1的は、従来技術における問題点を解決し、
製造プロセスを簡素化し、容易に、がっ短時間でセラミ
ック基板上にC1層を1工程で接合することのできる半
導体装置用セラミック基板の製造方法、およびこの方法
に使用するクラッド材を提供せんとするものである。
<Objective of the invention> [1] The present invention solves the problems in the prior art,
It is an object of the present invention to provide a method for manufacturing a ceramic substrate for a semiconductor device, which simplifies the manufacturing process and can easily and quickly bond a C1 layer onto a ceramic substrate in one step, and a cladding material used in this method. It is something to do.

〈問題点を解決するだめの手段〉 パワーIC、ハイブリッドICの分野では従来から耐熱
性、熱放散性および機械的強度の面からアルミナのセラ
ミック基板が使用され、さらにその導体層および熱放散
層としてGoが使用されているにもかかわらず、このC
uを箔もしくはシートとして使用し、これを例えば銀ろ
う、 +1IJ2−Si合金ろうを介してアルミナ基板
上に直接接合したという例がない。
<Means to solve the problem> In the field of power ICs and hybrid ICs, alumina ceramic substrates have traditionally been used for their heat resistance, heat dissipation properties, and mechanical strength, and they are also used as conductor layers and heat dissipation layers. Even though Go is used, this C
There is no example of using U as a foil or sheet and directly bonding it to an alumina substrate via, for example, silver solder or +1IJ2-Si alloy solder.

本発明者等は、Afi、0.等のセラミック基板と(:
11板を接合する際に、あらかじめC11板にAfl 
−Si合金等のインサート金属を接合し、クラッド材と
しておけば、セラミック板とGu板との接合が効率良く
行えることを知見し、本発明に至った。
The inventors have proposed that Afi, 0. With ceramic substrates such as (:
When joining 11 plates, Afl is attached to C11 plate in advance.
It was discovered that the ceramic plate and the Gu plate can be efficiently bonded by bonding an insert metal such as -Si alloy and using it as a cladding material, leading to the present invention.

本発明の第1の態様は、アルミナ基板上に銅層を形成し
て半導体装置用セラミック基板を製造するに際し、予め
、Cu/AR−5r合金、Cu/Ni/An−Si合金
、C1+/Sn/ 1−Si合金の群から選択されたい
ずれかのクラッド材を用意し、該クラッド材のAffi
−Si合金側をアルミナ基板側に配置し、アルミナ基板
−にに直接加熱接合して、アルミナ基板にに銅層を形成
することを特徴とする半導体装置用セラミック基板の製
造方法を提供する。
A first aspect of the present invention is that when manufacturing a ceramic substrate for a semiconductor device by forming a copper layer on an alumina substrate, Cu/AR-5r alloy, Cu/Ni/An-Si alloy, C1+/Sn / Prepare any cladding material selected from the group of 1-Si alloys, and set the Affi of the cladding material.
Provided is a method for manufacturing a ceramic substrate for a semiconductor device, characterized in that the Si alloy side is placed on the alumina substrate side, the alumina substrate is directly heated and bonded, and a copper layer is formed on the alumina substrate.

本発明の第2の態様は、アルミナ基板上に銅層を形成す
るために用いられるクラッド材であって、Cu層とへI
1.−Si合金層が冷間圧接により一体化されているこ
とを特徴とするクラッド材を提供する。
A second aspect of the present invention is a cladding material used to form a copper layer on an alumina substrate, the cladding material being an I.
1. - Provides a cladding material characterized in that a Si alloy layer is integrated by cold welding.

本発明の第3の態様は、アルミナ基板上に銅層を形成す
るために用いられるクラッド材であって、C11層にに
Sn層さらにその上にAJZ−Si合金層が冷間圧接に
より一体化されていることを特徴とするクラッド材を提
供する。
A third aspect of the present invention is a cladding material used to form a copper layer on an alumina substrate, in which a C11 layer, a Sn layer, and an AJZ-Si alloy layer are integrated by cold welding on top of the Sn layer. To provide a cladding material characterized by:

本発明の第4の態様は、アルミナ基板上に銅層を形成す
るために用いられるクラッド材であって、Cu層ににN
i層さらにそのトにAM−Si合金層が冷間圧接により
一体化されていることを特徴とするクラッド材を提供す
る。
A fourth aspect of the present invention is a cladding material used for forming a copper layer on an alumina substrate, the cladding material including N in the Cu layer.
The present invention provides a cladding material characterized in that an i-layer and an AM-Si alloy layer are integrated with the i-layer by cold welding.

〈発明の構成〉 以ドに図面に示1−好適実施例を用いて、本発明を詳述
′4−る。
<Structure of the Invention> The present invention will now be described in detail using preferred embodiments shown in the drawings.

本発明の製造方法は従来IC等を製造する際に、セラミ
ック基板上に順次設けられてきたへfi−Si合金層、
Chi層等をあらかじめクラッド材としておき、このク
ラッド材をセラミック基板にに1丁程で接合することを
特徴とする。
The manufacturing method of the present invention employs a fi-Si alloy layer, which has been sequentially provided on a ceramic substrate when manufacturing an IC or the like.
The method is characterized in that a Chi layer or the like is prepared in advance as a cladding material, and the cladding material is bonded to the ceramic substrate in about one step.

セラミック基板上のCu層は片面に設けられてもよいし
、両面に設けられてもよい。
The Cu layer on the ceramic substrate may be provided on one side or both sides.

ろう材を介してC++とアルミナを接合する場合、ろう
材としてはC11とアルミナの双方に接合しやすいこと
か必要である。実験によると/Al−Si合金はCuと
アルミナの双方に接合しやすいことか判明した。しかし
この場合C11とAl2−Si合金の接合についてみる
と、Cuと へfl−Si合金の接合界面には接合温度
が200℃以1−になると、脆い合金層が形成されやす
くなることも判明した。CuとAffi−Si合金層の
接合界面に脆い合金層を形成させないためには接合温度
を低くすれば良いが、そうするとアルミナとへ1−Si
合金の接合が著しく困難となる。GuとAfi−Si合
金をtめ冷間圧接によりクラッド材としておけば、冷間
圧接では(〕11とAffi−Si合金との間に脆い合
金層が形成されることがさけられる。熱間圧接法による
クラッド旧は金属間の熱拡散の問題が生じ好ましくない
When bonding C++ and alumina via a brazing filler metal, the brazing filler metal must be able to bond easily to both C11 and alumina. According to experiments, it was found that /Al-Si alloy can be easily bonded to both Cu and alumina. However, in this case, when looking at the bonding between C11 and Al2-Si alloy, it was found that a brittle alloy layer is likely to be formed at the bonding interface between Cu and Al2-Si alloy when the bonding temperature is 200℃ or higher. . In order to prevent the formation of a brittle alloy layer at the bonding interface between the Cu and Affi-Si alloy layers, the bonding temperature can be lowered, but in this case, the 1-Si
It becomes extremely difficult to join the alloy. If Gu and Affi-Si alloy are used as cladding materials by cold welding, it is possible to avoid forming a brittle alloy layer between (11) and Affi-Si alloy in cold welding.Hot welding The method of cladding is undesirable because of the problem of heat diffusion between metals.

このようにして得たクラッド材をAffi−Si合金を
アルミナ側に向けて配置して加熱接合したところ、クラ
ッド材のGoとAQ−Si合金の界面にほとんど脆い合
金層を形成することなく、1−分な強度をもってクラッ
ド材をアルミナ基板に接合することができた。
When the cladding material obtained in this manner was heated and bonded with the Affi-Si alloy facing the alumina side, almost no brittle alloy layer was formed at the interface between the Go cladding material and the AQ-Si alloy. - It was possible to bond the cladding material to the alumina substrate with sufficient strength.

第1図は本発明の第2の態様の(:u/Al1−Si合
金クラッド材を示す断面図である。
FIG. 1 is a sectional view showing a u/Al1-Si alloy cladding material according to the second embodiment of the present invention.

Cu層1はいかなる銅を用いてもよいが、半導体デバイ
スの導体層あるいは放熱層として用いる場合は無酸素銅
か好ましい。
Although any copper may be used for the Cu layer 1, oxygen-free copper is preferable when used as a conductor layer or a heat dissipation layer of a semiconductor device.

へff1−Si合金層5は、 1203等のセラミック
板との接合の際にセラミックとの接合性が良く熱膨張が
少ないのでインサート金属として作用する。合金中のS
iの含有率は5〜20wL零が好ましい。それはろう接
着を促進し、接合を容易にするために必要な範囲だから
である。
When the ff1-Si alloy layer 5 is bonded to a ceramic plate such as 1203, it has good bonding properties with the ceramic and has little thermal expansion, so it acts as an insert metal. S in alloy
The content of i is preferably 5 to 20 wL zero. This is because this is the range necessary to promote solder adhesion and facilitate joining.

Al1−Si合金層5はC11層1上に冷間圧延圧接法
によるクラッド技術を使って接合する。
The Al1-Si alloy layer 5 is bonded onto the C11 layer 1 using a cladding technique using cold rolling pressure welding.

圧廷圧接法によるクラッド材の製造は、圧延材の形状や
加圧硬化曲線を勘案した圧延スケジュールや、圧延ロー
ル径などを配慮した圧延条件を適切に選定することが重
要である。
In the production of cladding materials using the flat pressure welding method, it is important to appropriately select rolling conditions that take into consideration the rolling schedule, the rolling roll diameter, etc., taking into account the shape of the rolled material and the pressure hardening curve.

Cu層1とIn−Si合金層5のJlさは、1:1〜1
0:1が好ましい。
The Jl ratio between the Cu layer 1 and the In-Si alloy layer 5 is 1:1 to 1.
0:1 is preferred.

第2図は本発明の第3の態様の(: u / S n 
/AQ −Si合金用クラッド材を示す断面図である。
FIG. 2 shows the third aspect of the invention (: u/S n
/AQ - It is a sectional view showing a cladding material for Si alloy.

Cu層1トにはSn層6を介してAffi−Si合金層
5を接合する。
The Affi-Si alloy layer 5 is bonded to the Cu layer 1 via the Sn layer 6.

Cu層1FにSn層6を冷間圧延圧接法によりクラッド
し、その後へjl−Si合金層5を接合してもよいし、
Sn層6とAffi−Si合金層5を同時に接合しても
よい。
The Cu layer 1F may be clad with the Sn layer 6 by cold rolling welding, and the jl-Si alloy layer 5 may be bonded thereto, or
The Sn layer 6 and the Affi-Si alloy layer 5 may be bonded at the same time.

Cu層1とSn層6とAl2−Si合金層5との厚さは
1:O,l:1〜10:1:1とすることが好ましい。
The thicknesses of the Cu layer 1, the Sn layer 6, and the Al2-Si alloy layer 5 are preferably 1:O, l:1 to 10:1:1.

Cu層1とへn−Si合金層5との間にSn層6を介す
ることにより、セラミックと銅との接合P1か良いばか
りでなく、銅とAffi−Si合金との間の金属的接着
も良好となる。
By interposing the Sn layer 6 between the Cu layer 1 and the n-Si alloy layer 5, not only the bond P1 between the ceramic and the copper is improved, but also the metallic adhesion between the copper and the Affi-Si alloy is improved. Becomes good.

また、Gli層1とへfi−Si合金層5との間のSn
層6が拡散防1に層として働くのて、アルミナ↓(板と
クラッド材の接合に際し、I−分加熱しても(: u 
//Al−Si合金間に合金層が形成される恐れが全く
なくなり、加熱温度を上げて接合強度を強くすることが
できる。
Furthermore, Sn between the Gli layer 1 and the fi-Si alloy layer 5 is
Since the layer 6 acts as a layer on the diffusion barrier 1, the alumina↓
//There is no possibility that an alloy layer will be formed between the Al-Si alloys, and it is possible to increase the heating temperature and strengthen the bonding strength.

第3図は、本発明の第4の態様のGu/Ni/ Aff
i−Si合金クラッド材を示す断面図である。
FIG. 3 shows the Gu/Ni/Aff of the fourth aspect of the present invention.
FIG. 2 is a cross-sectional view showing an i-Si alloy cladding material.

Gu層1FにはN4層2を介してAiL−Si合金層5
を接合する。
AiL-Si alloy layer 5 is provided on the Gu layer 1F via the N4 layer 2.
join.

Cu層1、N4層2、 へ辺−Si合金層5は、順次あ
るいは五層同時に冷間圧延圧接法によりクラッドとする
The Cu layer 1, the N4 layer 2, and the edge-Si alloy layer 5 are formed into a cladding by cold rolling welding one after another or all five layers at the same time.

Cu層1とN4層2とへ1−Si合金層5との厚さは1
:0.I:1〜10:1:1が好ましい。
The thickness of Cu layer 1, N4 layer 2, and 1-Si alloy layer 5 is 1
:0. I:1 to 10:1:1 is preferred.

Gu層1とへi−s+合金層5との間にN4層2を介す
ることにより、セラミックと銅との接合性ばかりでなく
、銅とへQ−Si合金との間の金属的接着も良好となる
By interposing the N4 layer 2 between the Gu layer 1 and the I-S+ alloy layer 5, not only the bonding between the ceramic and the copper but also the metallic adhesion between the copper and the Q-Si alloy is good. becomes.

また、C11層1とへj!−Si合金層5との間のN4
層2が拡散防11一層として働き、アルミナ基板とクラ
ッド材の接合に際し、十分高温で加熱して接合強度をあ
げることができる。
Also, C11 layer 1 and hej! -N4 between Si alloy layer 5
Layer 2 acts as one layer of diffusion barrier 11, and when bonding the alumina substrate and cladding material, it can be heated to a sufficiently high temperature to increase the bonding strength.

本発明の製造方法は、以にの本発明の第2、第3、第4
の態様のいずれかのクラッド材をあらかしめ用意し、こ
のクラッド材のAQ−Si合金側をアルミナ等のセラミ
ック」、(板側に配置し、好ましくはアルゴン等の不活
性ガス雰囲気中で、600℃〜650℃で加熱圧接して
、短時間で接合し、アルミナ基板にに銅層を導体層ある
いは放熱層等として有するt導体装置用セラミック基板
を得るものである。
The manufacturing method of the present invention includes the second, third, and fourth methods of the present invention.
A cladding material according to any of the embodiments is prepared in advance, and the AQ-Si alloy side of this cladding material is placed on the side of a ceramic plate such as alumina, preferably in an inert gas atmosphere such as argon. The ceramic substrate for a t-conductor device is obtained by heat-pressure welding at a temperature of .degree. C. to 650.degree. C. and bonding in a short period of time to obtain a ceramic substrate for a t-conductor device having a copper layer on an alumina substrate as a conductive layer or a heat dissipation layer.

〈発明の効果〉 本発明の製造方法によれば、従来のセラミック板上への
W、Mo層の形成及び金属のめっきプロセスに比べて、
玉梓が省略でき、効率化がはかれるので、大幅なコスト
低減が図れる。
<Effects of the Invention> According to the manufacturing method of the present invention, compared to the conventional process of forming W and Mo layers on a ceramic plate and plating metal,
Since the jade can be omitted and efficiency is improved, a significant cost reduction can be achieved.

すなわち、本発明のクラッド材を用いる製造方法により
、短時間で、しかもl上程で、セラミック板と銅との接
合ができる。
That is, by the manufacturing method using the cladding material of the present invention, the ceramic plate and the copper can be joined in a short time and in about 1 hour.

さらに本発明クラッド材は、あらかしめCII材とイン
サート金属間トが強力に接合されているうえに、へα−
Si合金とセラミックとの極めて良い接合性が利用でき
るので、このクラッド材を用いて>t’、導体装置用セ
ラミック基板を製造すれば、セラミック板と鋼材との接
合の信頼性が大幅に向上する。
Furthermore, the cladding material of the present invention has a strong bond between the CII material and the insert metal, and also has α-
Since extremely good bonding properties between the Si alloy and the ceramic can be utilized, if >t' is used to manufacture ceramic substrates for conductor devices using this cladding material, the reliability of the bond between the ceramic plate and the steel material will be greatly improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第2の態様のCu/AIL−Si合
金クラッF材の断面図である。 第2図は、本発明の第3の態様のCu/Sn/ Aji
t−Si合金クラッド材の断面図である。 第3図は、本発明の第4の態様のCu/Ni/ へn−
Si合金クラッド材の断面図である。 第4図は従来のセラミックー銅の接合方法を示す断面図
である。 符号の説明 1・・・・011層、2・・・・Ni層、3・・・・W
層、4・・・・セラミック基板、
FIG. 1 is a cross-sectional view of the Cu/AIL-Si alloy crack F material according to the second embodiment of the present invention. FIG. 2 shows the Cu/Sn/Aji of the third aspect of the present invention.
FIG. 3 is a cross-sectional view of a t-Si alloy cladding material. FIG. 3 shows the Cu/Ni/n-
FIG. 3 is a cross-sectional view of a Si alloy cladding material. FIG. 4 is a sectional view showing a conventional ceramic-copper bonding method. Explanation of symbols 1...011 layer, 2...Ni layer, 3...W
Layer 4...ceramic substrate,

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ基板上に銅層を形成して半導体装置用セ
ラミック基板を製造するに際し、 予め、Cu/Al−Si合金、Cu/Ni/Al−Si
合金、Cu/Sn/Al−Si合金の群から選択された
いずれかのクラッド材を用意し、 該クラッド材のAl−Si合金側をアルミナ基板側に配
置し、アルミナ基板上に直接加熱接合して、アルミナ基
板上に銅層を形成することを特徴とする半導体装置用セ
ラミック基板の製造方法。
(1) When manufacturing a ceramic substrate for semiconductor devices by forming a copper layer on an alumina substrate, Cu/Al-Si alloy, Cu/Ni/Al-Si
A cladding material selected from the group of alloys, Cu/Sn/Al-Si alloys is prepared, the Al-Si alloy side of the cladding material is placed on the alumina substrate side, and the cladding material is directly heat-bonded onto the alumina substrate. A method of manufacturing a ceramic substrate for a semiconductor device, comprising forming a copper layer on an alumina substrate.
(2)アルミナ基板上に銅層を形成するために用いられ
るクラッド材であって、Cu層とAl−Si合金層が冷
間圧接により一体化されていることを特徴とするクラッ
ド材。
(2) A cladding material used for forming a copper layer on an alumina substrate, characterized in that a Cu layer and an Al-Si alloy layer are integrated by cold pressure welding.
(3)アルミナ基板上に銅層を形成するために用いられ
るクラッド材であって、Cu層上にSn層さらにその上
にAl−Si合金層が冷間圧接により一体化されている
ことを特徴とするクラッド材。
(3) A cladding material used to form a copper layer on an alumina substrate, characterized in that a Sn layer is formed on the Cu layer, and an Al-Si alloy layer is integrated thereon by cold welding. cladding material.
(4)アルミナ基板上に銅層を形成するために用いられ
るクラッド材であって、Cu層上にNi層さらにその上
にAl−Si合金層が冷間圧接により一体化されている
ことを特徴とするクラッド材。
(4) A cladding material used to form a copper layer on an alumina substrate, characterized in that a Ni layer is formed on the Cu layer, and an Al-Si alloy layer is integrated thereon by cold welding. cladding material.
JP18288386A 1986-08-04 1986-08-04 Manufacture of ceramic substrate for semiconductor device and clad material used for the same Pending JPS6338244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18288386A JPS6338244A (en) 1986-08-04 1986-08-04 Manufacture of ceramic substrate for semiconductor device and clad material used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18288386A JPS6338244A (en) 1986-08-04 1986-08-04 Manufacture of ceramic substrate for semiconductor device and clad material used for the same

Publications (1)

Publication Number Publication Date
JPS6338244A true JPS6338244A (en) 1988-02-18

Family

ID=16126077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18288386A Pending JPS6338244A (en) 1986-08-04 1986-08-04 Manufacture of ceramic substrate for semiconductor device and clad material used for the same

Country Status (1)

Country Link
JP (1) JPS6338244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010874A (en) * 1999-03-27 2001-01-16 Nippon Hybrid Technologies Kk Production of composite material of inorganic material with metal containing aluminum and product related to the same
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
CN1082237C (en) * 1996-08-27 2002-04-03 欧姆龙株式会社 Micro-relay and method for manufacturing the same
JP2014072364A (en) * 2012-09-28 2014-04-21 Mitsubishi Materials Corp Power module substrate and manufacturing method thereof
WO2014086950A1 (en) * 2012-12-07 2014-06-12 Ixys Semiconductor Gmbh Process for producing substrates for semiconductor components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082237C (en) * 1996-08-27 2002-04-03 欧姆龙株式会社 Micro-relay and method for manufacturing the same
JP2001010874A (en) * 1999-03-27 2001-01-16 Nippon Hybrid Technologies Kk Production of composite material of inorganic material with metal containing aluminum and product related to the same
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
JP2010103570A (en) * 1999-09-28 2010-05-06 Toshiba Corp Ceramic circuit board
JP4649027B2 (en) * 1999-09-28 2011-03-09 株式会社東芝 Ceramic circuit board
JP2014072364A (en) * 2012-09-28 2014-04-21 Mitsubishi Materials Corp Power module substrate and manufacturing method thereof
WO2014086950A1 (en) * 2012-12-07 2014-06-12 Ixys Semiconductor Gmbh Process for producing substrates for semiconductor components

Similar Documents

Publication Publication Date Title
JP6753869B2 (en) How to make composites
JP2003078086A (en) Lamination structure of semiconductor module substrate
KR20110033117A (en) Substrate for power module, power module, and method for producing substrate for power module
JP2016208010A (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JP4104253B2 (en) Board integrated structure
JP7337987B2 (en) Method for manufacturing semi-finished metal products and method for manufacturing metal-ceramic substrates
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP3095490B2 (en) Ceramic-metal joint
JP3495051B2 (en) Ceramic-metal joint
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP3302714B2 (en) Ceramic-metal joint
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JPH09315876A (en) Aluminum-ceramic composite substrate and is production
JPH0723964Y2 (en) Lightweight substrate for semiconductor device
JP2607700Y2 (en) Lightweight substrates for semiconductor devices
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
EP3753912A1 (en) Method for manufacturing ceramic/al-sic composite material joined body, and method for manufacturing heat sink-equipped substrate for power module
JP3370060B2 (en) Ceramic-metal joint
JP2503775B2 (en) Substrate for semiconductor device
JPS6318647A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for method thereof
JP2945198B2 (en) Joining method of copper plate and ceramics
JP2607699Y2 (en) Lightweight substrates for semiconductor devices