JP2000323618A - Copper circuit clad substrate and manufacture thereof - Google Patents

Copper circuit clad substrate and manufacture thereof

Info

Publication number
JP2000323618A
JP2000323618A JP12703499A JP12703499A JP2000323618A JP 2000323618 A JP2000323618 A JP 2000323618A JP 12703499 A JP12703499 A JP 12703499A JP 12703499 A JP12703499 A JP 12703499A JP 2000323618 A JP2000323618 A JP 2000323618A
Authority
JP
Japan
Prior art keywords
layer
copper
metal
bonding
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12703499A
Other languages
Japanese (ja)
Inventor
Kenjiro Higaki
賢次郎 桧垣
Hiroshi Hiiragidaira
啓 柊平
Kazutaka Sasaki
一隆 佐々木
Takashi Ishii
隆 石井
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12703499A priority Critical patent/JP2000323618A/en
Publication of JP2000323618A publication Critical patent/JP2000323618A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To obtain a copper circuit clad substrate with high adhesion in which a damage or warpage due to thermal stress on the substrate does not occur, is applicable to a high power module, and has excellent reliability when mounted on or used for a ceramic base material such as a semiconductor element or a lead frame. SOLUTION: This substrate consists of a high melting point metal layer 2 provided on one or both surfaces a metal intermediate layer 3 containing at least one kind of nickel or copper as a main component and a conductive layer 4 containing copper as a main component, which are orderly provided on one or both surfaces of a ceramic base material 1. The length and width of the metal intermediate layer 3 in the planar direction is small than those of the high melting point metal layer 2 by 0.05 mm or more. An outer peripheral edge of the metal intermediate layer 3 is positioned inside the outer peripheral edge of the high melting point metal layer 2, and the peripheral edge of the conductive layer 4 is positioned on or inside the peripheral edge of the metal intermediate layer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック基材に
銅を主体とする導体層を設けた半導体装置用の銅回路接
合基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper circuit bonding substrate for a semiconductor device having a conductor layer mainly composed of copper on a ceramic substrate.

【0002】[0002]

【従来の技術】半導体装置に用いられる絶縁基材として
は、従来より、酸化アルミニウム系セラミック(Al2
3を主成分とするセラミック、以下アルミナと言
う)、窒化アルミニウム系セラミック(AlNを主成分
とするセラミック、以下窒化アルミニウムと言う)、窒
化ケイ素系セラミック(Si34を主成分とするセラミ
ック、以下窒化ケイ素と言う)等のセラミックが用いら
れている。これらの基材上に、タングステン(W)やモ
リブデン(Mo)を主成分とするメタライズ回路や、銅
(Cu)を主成分とする回路を形成したものが半導体I
C用回路基板として用いられてきた。
2. Description of the Related Art Conventionally, as an insulating base material used for a semiconductor device, an aluminum oxide-based ceramic (Al 2
Ceramics containing O 3 as a main component (hereinafter referred to as alumina), aluminum nitride-based ceramics (ceramics containing AlN as a main component, hereinafter referred to as aluminum nitride), and silicon nitride-based ceramics (ceramics containing Si 3 N 4 as a main component) , Silicon nitride). On these base materials, a metallized circuit containing tungsten (W) or molybdenum (Mo) as a main component or a circuit containing copper (Cu) as a main component is formed.
It has been used as a circuit board for C.

【0003】絶縁基材に用いられる上記各セラミック
は、電気絶縁性及び機械強度に優れていると共に、高い
熱伝導率を有している。その熱伝導率は市販のものでア
ルミナ、窒化ケイ素、窒化アルミニウムの順に、それぞ
れ17、60、170W/m・K程度である。中でも窒
化アルミニウムは、アルミナ及び窒化ケイ素とほぼ同等
の電気絶縁性を有しながら、100W/m・Kを越える
優れた熱伝導率を備えているため、回路基板用基材とし
て最近脚光を浴びている材料である。
[0003] Each of the above-mentioned ceramics used for the insulating base material has excellent electrical insulation properties and mechanical strength, and also has high thermal conductivity. Its thermal conductivity is a commercial product, which is about 17, 60, 170 W / mK in the order of alumina, silicon nitride, and aluminum nitride. Among them, aluminum nitride has recently been spotlighted as a substrate for circuit boards because aluminum nitride has excellent thermal conductivity of more than 100 W / m · K while having almost the same electrical insulation properties as alumina and silicon nitride. Material.

【0004】また、これらセラミックの熱膨張率をみる
と、窒化アルミニウムは室温から銀ろう付け温度(約8
00℃)までの平均熱膨張率が5.5×10-6/℃と小
さいため、Si(熱膨張率4.0×10-6/℃)の半導
体チップとの接合整合性は良い。窒化ケイ素は窒化アル
ミニウムに比べて熱伝導率は低いが、その熱膨張率は窒
化アルミニウムとほぼ同程度であり、更に窒化アルミニ
ウムに比べ高い機械的強度を有しているため、最近では
厚みを薄くすることによって熱抵抗を抑え、回路基板用
の基材として利用され始めている。
[0004] In view of the coefficient of thermal expansion of these ceramics, aluminum nitride has a temperature from room temperature to a silver brazing temperature (about 8 ° C).
Since the average coefficient of thermal expansion up to 00 ° C.) is as small as 5.5 × 10 −6 / ° C., the bonding consistency with a semiconductor chip of Si (thermal expansion coefficient 4.0 × 10 −6 / ° C.) is good. Silicon nitride has a lower thermal conductivity than aluminum nitride, but its thermal expansion coefficient is almost the same as aluminum nitride, and it has higher mechanical strength than aluminum nitride. By doing so, thermal resistance has been suppressed, and it has begun to be used as a substrate for circuit boards.

【0005】しかしながら、窒化アルミニウムを含め上
記各セラミックの熱膨張率は小さいため、そのセラミッ
ク基材上に形成する導体回路との整合性は満足すべきも
のではない。特に、銅(熱膨張率16.7×10-6
℃)を主成分とする導体回路をセラミック基材上に形成
する場合には、両者の熱膨張率の整合性が非常に悪い。
このため、導体回路の接合段階及び実際に基板として用
いられる実用段階で生じる接合界面での熱応力により、
セラミック基材が破損したり変形したりし易かった。そ
こで従来から、セラミック基材と銅回路との接合は、通
常それらの間に種々の熱応力緩和のための介在層を介挿
して行われてきた。
However, since the coefficient of thermal expansion of each of the above ceramics, including aluminum nitride, is small, the matching with the conductor circuit formed on the ceramic base material is not satisfactory. In particular, copper (coefficient of thermal expansion 16.7 × 10 −6 /
When a conductor circuit whose main component is (.degree. C.) is formed on a ceramic base material, the matching of the thermal expansion coefficients of the two is very poor.
For this reason, due to thermal stress at the bonding interface that occurs in the bonding stage of the conductor circuit and the practical stage actually used as a substrate,
The ceramic substrate was easily broken or deformed. Therefore, conventionally, the bonding between the ceramic substrate and the copper circuit has been usually performed by interposing various intervening layers for relaxing thermal stress between them.

【0006】一般に、窒化物セラミックスと金属との接
合に関しては、間に種々の介在層を形成した事例が知ら
れている。例えば、特公平2−34908号公報には、
セラミックス側から順に低弾性率金属及び/又は展延性
を有する金属からなる層、脆性材料層、低熱膨張率材料
層を介在させた接合形態が記載されている。しかし、こ
の種の多層介在層による接合は、それぞれの介在層での
熱伝導率を低下させ易いため、放熱基板への適用には実
用上限界がある。
[0006] In general, with regard to the joining of a nitride ceramic and a metal, it is known that various intervening layers are formed between them. For example, in Japanese Patent Publication No. 2-34908,
There is described a bonding mode in which a layer made of a low elastic modulus metal and / or a metal having ductility, a brittle material layer, and a low thermal expansion material layer are interposed in this order from the ceramic side. However, this type of bonding with multiple intervening layers tends to lower the thermal conductivity of each intervening layer, so that there is a practical limit to application to a heat dissipation substrate.

【0007】そこで通常は、窒化アルミニウム基材とリ
ードフレームや外囲器等の金属部材とを接合する場合、
窒化アルミニウム基材の表面にW、Mo等のメタライズ
層を設け、これを介して銀ロウ付けによって接合を行っ
てきた。例えば、特開昭63−289950号公報で
は、窒化アルミニウム上のWメタライズ層に高熱伝導率
で且つ熱緩衝性の高い無酸素銅をリードフレームとして
用い(同公報第1図及び第2図参照)、場合によっては
窒化アルミニウム上のWメタライズ層と無酸素銅リード
フレームに濡れ性を改善するためのNi層を形成して、
これらを銀ロウ付けにより接合している。このWメタラ
イズ層を介して無酸素銅リードフレームを接合する方法
によれば、通常のコバール等のリードフレームに比べて
ロウ付け時の加熱による接合界面の熱応力が大幅に緩和
されるため、接合強度の低下が生じることはない。
Therefore, usually, when joining an aluminum nitride base material to a metal member such as a lead frame or an envelope,
A metallized layer of W, Mo, or the like is provided on the surface of an aluminum nitride base material, and bonding is performed by silver brazing through the metallized layer. For example, in Japanese Patent Application Laid-Open No. 63-289950, oxygen-free copper having high thermal conductivity and high thermal buffering property is used as a lead frame for a W metallized layer on aluminum nitride (see FIGS. 1 and 2 of the same publication). Forming a Ni layer for improving wettability on a W metallized layer on aluminum nitride and an oxygen-free copper lead frame in some cases;
These are joined by silver brazing. According to the method of joining the oxygen-free copper lead frame via the W metallization layer, the thermal stress at the joint interface due to heating during brazing is greatly reduced as compared with a normal lead frame such as Kovar. There is no reduction in strength.

【0008】しかし、無酸素銅は軟質であるため、リー
ドフレームとしての形状維持が難しいという問題があ
る。更に、このように銀ロウ層を介して銅系の部材を窒
化アルミニウム基材に接合する場合には、銀ロウと窒化
アルミニウムとの熱膨張差によるロウ付時の熱応力作用
が大きいため、冷却後の窒化アルミニウム基材に割れや
反り等の破損変形が生じ易い。このため、銀リッチで且
つ軟質の特殊で高価な銀ロウ材を用いて冷却時の応力を
低下させたり、銀ロウ層をより薄くするために少量領域
での厳密なコントロールが必要になるという問題があ
る。
However, since oxygen-free copper is soft, there is a problem that it is difficult to maintain the shape as a lead frame. Further, when the copper-based member is joined to the aluminum nitride base material via the silver brazing layer as described above, a thermal stress effect at the time of brazing due to a difference in thermal expansion between the silver brazing and the aluminum nitride is large. Breakage deformation such as cracking and warping is likely to occur in the aluminum nitride base material afterwards. For this reason, there is a problem that a special and expensive silver brazing material that is rich in silver and soft is used to reduce the stress at the time of cooling, and strict control in a small amount area is required to make the silver brazing layer thinner. There is.

【0009】このため、銀ロウ等のロウ材層に代わる方
法として、導体の金属部材を窒化アルミニウム基材に直
接接合する方法が検討されてきた。その1つに、いわゆ
るDBC(ダイレクトボンディングカッパー)法があ
る。例えば、特開昭59−40404号公報には、窒化
アルミニウム基材表面に同焼結体の焼結助剤であるアル
ミニウム、希土類元素、アルカリ土類元素の酸化物から
なる結合層か又は単に窒化アルミニウム自体の酸化層を
形成し、他方の金属部材には少量の同種酸化物結合剤
(酸素のみの場合を含む)を含ませるか又は予めその表
面にこれらの結合層を形成しておき、窒化アルミニウム
基材上の結合層又は酸化層と金属部材又はその結合層と
の親和性を利用して、両者を直接接合する方法が開示さ
れている。例えば、金属部材が銅である場合には、その
表面の銅酸化物を利用し、銅の融点未満且つ銅酸化物と
銅の共晶温度以上の温度範囲で熱処理を行って、表面に
酸化層を形成した窒化アルミニウムと接合している。
For this reason, a method of directly joining a metal member of a conductor to an aluminum nitride base material has been studied as an alternative to a brazing material layer such as silver brazing. One of them is a so-called DBC (direct bonding copper) method. For example, Japanese Unexamined Patent Publication No. 59-40404 discloses that a bonding layer made of an oxide of aluminum, a rare earth element, or an alkaline earth element, which is a sintering aid for the same sintered body, is formed on the surface of an aluminum nitride substrate or simply nitrided. An oxide layer of aluminum itself is formed, and the other metal member contains a small amount of the same kind of oxide binder (including the case of only oxygen), or these binding layers are formed on the surface in advance and nitrided. There is disclosed a method of directly bonding a bonding layer or an oxide layer on an aluminum substrate and the metal member or the bonding layer thereof by utilizing the affinity between the two. For example, when the metal member is copper, heat treatment is performed at a temperature lower than the melting point of copper and equal to or higher than the eutectic temperature of copper oxide and copper using the copper oxide on the surface, and an oxide layer is formed on the surface. With the aluminum nitride formed.

【0010】類似の方法が特開昭60−32343号公
報にも開示され、具体的には窒化アルミニウム基材と銅
放熱板との間に薄い活性金属(Ti、Zr、Hfなど)
を含む銅合金共晶層を介在させる接合法が紹介されてい
る。更に、「エレクトロニクスセラミクス」1988年
11月号の第17頁〜21頁には、上記DBC法が報告
されている。これによると、まず窒化アルミニウム基材
表面に数μmまでの薄い酸化アルミニウム層を形成し、
これにCu2O−Al23共晶層を介して銅との接合を
行っている。
A similar method is also disclosed in Japanese Patent Application Laid-Open No. Sho 60-32343. Specifically, a thin active metal (Ti, Zr, Hf, etc.) is provided between an aluminum nitride substrate and a copper radiator plate.
A joining method in which a copper alloy eutectic layer containing is interposed is introduced. Further, the above-mentioned DBC method is reported in "Electronic Ceramics", November 1988, pp. 17-21. According to this, first, a thin aluminum oxide layer up to several μm is formed on the surface of the aluminum nitride substrate,
This through Cu 2 O-Al 2 O 3 eutectic doing bonding with copper.

【0011】しかしながら、以上のような銅酸化物と銅
の共晶域を利用した銅とセラミックの接合は、上記「エ
レクトロニクスセラミックス」中の図4に記載のよう
に、セラミック基材上の酸化物層の厚みを狭い範囲でコ
ントロールしない限り、接合強度のバラツキが大きくな
る。また、この方法でも、基本的には、窒化アルミニウ
ムと銅部材間の酸化アルミニウムとの熱膨張率差によ
り、基板の割れや反り等の破損変形が生じ易い。更に、
1000℃付近での銅−酸化銅共晶接合のため、特殊な
酸素分圧雰囲気を作る必要があるうえ、これによって銅
部材表面が酸化される結果、銅部材に更に半田接合を行
う際には表面を研磨するなど、余分の手間がかかる。ま
た、銅部材を窒化アルミニウム基材に実装する場合、そ
の非実装部を設ける際の位置決め及び実装する溶融部と
の境目を再現性よく形成するための手間がかかる。
[0011] However, the bonding of copper and ceramic using the eutectic region of copper oxide and copper as described above, as shown in FIG. Unless the thickness of the layer is controlled in a narrow range, the variation in bonding strength increases. In addition, even in this method, basically, due to the difference in thermal expansion coefficient between aluminum nitride and aluminum oxide between the copper members, breakage deformation such as cracking or warpage of the substrate is likely to occur. Furthermore,
For copper-copper oxide eutectic bonding at around 1000 ° C., it is necessary to create a special oxygen partial pressure atmosphere, and this oxidizes the copper member surface. Extra work such as polishing the surface is required. In addition, when the copper member is mounted on the aluminum nitride base material, it takes time and effort to position the non-mounting portion and to form a boundary with the melting portion to be mounted with good reproducibility.

【0012】尚、上記特開昭60−32343号公報等
に記載の活性金属による接合方法では、高価な活性金属
ロウ材が必要となり、ロウ付時には10-4Torr以下
の高い真空度が必要となる。また、窒素中でのロウ付時
には予めロウ材に多量のTiを含有させるなど、特殊な
金属ロウ材の調整を必要とする場合が多い。更に、活性
金属ロウ材を用いると、セラミック基材との界面にボイ
ドが生じなくなるため割れやすく、上記ロウ材のため熱
抵抗が増加する恐れもある。
Incidentally, the bonding method using an active metal described in the above-mentioned Japanese Patent Application Laid-Open No. Sho 60-32343 requires an expensive active metal brazing material, and a high degree of vacuum of 10 -4 Torr or less is required at the time of brazing. Become. In addition, when brazing in nitrogen, it is often necessary to adjust a special metal brazing material such as adding a large amount of Ti to the brazing material in advance. Furthermore, when an active metal brazing material is used, voids are not generated at the interface with the ceramic substrate, so that the active metal brazing material is easily broken, and the brazing material may increase thermal resistance.

【0013】[0013]

【発明が解決しようとする課題】上記のごとく、従来の
銅部材とセラミック基材とを酸化層若しくは活性化金属
ロウ剤層を介在させて直接接合する方法では、銅とセラ
ミックの熱膨張差のために、製造時や使用時に発生する
熱応力によってセラミック基材に割れや反りを生じさせ
たり、銅部材の剥離を生じさせるなど、著しく信頼性に
欠けるという欠点があった。また、銅共晶による接合で
は酸化雰囲気を接合界面に導入するため銅部材表面に溝
を形成する必要があり、活性金属ロウ材を用いて接合す
る場合には回路形成のエッチング時にエッチング液の周
り込みがあるため、セラミック基材と銅部材の間に空間
が発生して放電の原因となったり、接合強度のバラツキ
が大きくなりやすいうえ、接合方法が繁雑でコストの増
加を招いていた。
As described above, in the conventional method of directly joining a copper member and a ceramic substrate with an oxide layer or an activated metal brazing agent layer interposed therebetween, the difference in thermal expansion between copper and ceramic is reduced. For this reason, there has been a defect that the ceramic substrate has cracks and warpages due to thermal stress generated at the time of manufacturing and use, and peeling of the copper member is caused, and the reliability is extremely low. Also, in the case of joining by copper eutectic, it is necessary to form a groove in the surface of the copper member to introduce an oxidizing atmosphere into the joining interface. Therefore, a space is generated between the ceramic base member and the copper member, which causes a discharge, a variation in bonding strength is likely to be large, and a bonding method is complicated, resulting in an increase in cost.

【0014】本発明者らは、既に特開平9−27516
6号により、上記した従来の問題点を解決し、導体層の
接合時や使用時の熱応力によって生じるセラミック基材
の破損変形を防止でき、導体層とセラミック基材間の空
間に発生する放電現象を回避することが可能であって、
コストの抑制を図ると共に、安定した接合強度が得られ
る銅回路接合基板を提案した。即ち、この銅回路接合基
板は、セラミック基材上に該基材側から順に、主に高融
点金属からなる高融点金属層と、融点が1000℃以下
でニッケル、銅、鉄の少なくとも1種を主成分とする金
属介在層とを備え、該金属介在層上に銅を主体とする導
体層を接合したものである。
The present inventors have already disclosed in JP-A-9-27516.
No. 6 solves the above-mentioned conventional problems, prevents breakage and deformation of the ceramic substrate caused by thermal stress during joining and use of the conductor layer, and discharge generated in the space between the conductor layer and the ceramic substrate. It is possible to avoid the phenomenon,
We have proposed a copper circuit bonding board that can reduce costs and provide stable bonding strength. That is, this copper circuit bonding board is composed of a refractory metal layer mainly composed of a refractory metal and at least one of nickel, copper and iron having a melting point of 1000 ° C. or less on a ceramic substrate in this order from the substrate side. And a metal intervening layer comprising a main component, and a conductor layer mainly composed of copper is joined to the metal intervening layer.

【0015】上記の銅回路接合基板において、高融点金
属層はセラミック基材と銅を主体とする導体層との間の
熱膨張係数の差によって発生する熱応力を緩和する機能
を果し、一方金属介在層は高融点金属層と導体層との間
の接合時の濡れ性を改善する機能を果す。この接合構造
は通常の銀ロウや半田等のロウ材層が接合部分に含まれ
ない点が特徴的であり、従来ロウ材層を含む場合に発生
しやすかったセラミック基材の割れや基板の反りの防止
に有効である。また、活性金属を含む共晶相やCu2
−Al23共晶層によって接合されたDBC法等の場合
に生じる諸問題もほぼ解消された。
In the above-described copper circuit bonding board, the refractory metal layer functions to relieve thermal stress generated by a difference in thermal expansion coefficient between the ceramic base and the copper-based conductor layer. The metal intervening layer has a function of improving wettability at the time of joining between the high melting point metal layer and the conductor layer. This joint structure is characterized in that a brazing material layer such as ordinary silver brazing or solder is not included in the joining portion, and cracking of the ceramic base and warping of the substrate, which were likely to occur when a brazing material layer was included in the past. It is effective for prevention. Further, a eutectic phase containing an active metal or Cu 2 O
-Al 2 O 3 problems arising in the case of DBC method, which is joined by eutectic layer was also substantially eliminated.

【0016】また、本発明者らは、上記出願において、
導体層と金属介在層との接合界面における導体層の平面
方向の長さ及び幅を金属介在層のそれよりも短くした接
合構造や、導体層の側面と金属介在層の上面とのなす角
度を80度以下とする接合構造についても提案した。こ
のような接合構造にすることによって、導体層に通電し
た時に、セラミック基材と導体層との間に生じる放電現
象を回避することができる。
Further, the present inventors have made in the above application that
The joint structure where the length and width of the conductor layer in the plane direction at the joint interface between the conductor layer and the metal interposition layer are shorter than that of the metal interposition layer, and the angle between the side surface of the conductor layer and the top surface of the metal interposition layer A joint structure at 80 degrees or less was also proposed. With such a bonding structure, it is possible to avoid a discharge phenomenon occurring between the ceramic base material and the conductor layer when the conductor layer is energized.

【0017】しかしながら、本発明者らが先に提案した
上記銅回路接合基板であっても、最も使用環境が過酷で
基板サイズが大きく、工作機械、電気自動車、電鉄等の
用途に使われている高出力のモジュール(ハイパワーモ
ジュール)では応力緩和が必ずしも十分ではないため、
より高い信頼性を有する銅回路接合基板が要望されてい
る。
However, even the above-mentioned copper circuit bonding board proposed by the present inventors has the harshest operating environment and large board size, and is used for applications such as machine tools, electric vehicles and electric railways. Since high-power modules (high-power modules) do not always have sufficient stress relaxation,
There is a need for a copper circuit bonding substrate having higher reliability.

【0018】本発明は、このような現状に鑑み、上記特
開平9−275166号公報に提案した導体回路接合基
板に更に改良を加え、各接合部の接合強度に優れ、特に
冷熱サイクルにおける信頼性が極めて高く、ハイパワー
モジュール用として有用な銅回路接合基板を提供するこ
とを目的とする。
In view of the above situation, the present invention further improves the conductor circuit bonding board proposed in Japanese Patent Application Laid-Open No. 9-275166 to improve the bonding strength of each bonding portion, and particularly to the reliability in a thermal cycle. It is an object of the present invention to provide a copper circuit bonding substrate which is extremely high and is useful for a high power module.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する銅回路接合基板は、セラミック基
材と、セラミック基材の片面上又は両面上に該基材側か
ら順に設けた、主に高融点金属からなる高融点金属層
と、ニッケルと銅の少なくとも1種を主成分とする少な
くとも1層の金属介在層と、銅を主体とする導体層とを
備えた銅回路接合基板であって、前記高融点金属層と金
属介在層との接合界面における金属介在層の平面方向の
長さ及び幅が高融点金属層のそれらより0.05mm以
上短く、該金属介在層の外周端縁が高融点金属層の外周
端縁の内側にあり、且つ前記導体層の外周端縁が金属介
在層の外周端縁上にあるか又はその内側にあることを特
徴とするものである。
Means for Solving the Problems To achieve the above object, a copper circuit bonding board provided by the present invention is provided with a ceramic base and one side or both sides of the ceramic base in order from the base side. A copper circuit bonding substrate comprising a high melting point metal layer mainly composed of a high melting point metal, at least one metal intervening layer containing at least one of nickel and copper as a main component, and a conductor layer mainly containing copper. Wherein the length and width of the intervening metal layer at the joint interface between the refractory metal layer and the intervening metal layer are 0.05 mm or more shorter than those of the refractory metal layer in the planar direction, and The edge is inside the outer peripheral edge of the refractory metal layer, and the outer peripheral edge of the conductor layer is on or inside the outer peripheral edge of the metal intervening layer.

【0020】上記本発明の銅回路接合基板においては、
前記金属介在層が少なくとも銅、ニッケル、リンの2種
以上を含む合金層からなることが好ましく、また前記導
体層の最外表面又は最外表面及び側面に、Niを主体と
する外層が形成されていることがより好ましい。尚、こ
の場合、セラミックス基材及び高融点金属層の露呈した
外表面には、金属介在層を形成したその主面を除いて、
Niを主体とする外層は形成しない。
In the above-mentioned copper circuit bonding board of the present invention,
The metal intervening layer is preferably made of an alloy layer containing at least two of copper, nickel and phosphorus, and an outer layer mainly composed of Ni is formed on the outermost surface or the outermost surface and side surfaces of the conductor layer. Is more preferable. In this case, on the exposed outer surface of the ceramic base material and the high melting point metal layer, except for the main surface on which the metal intervening layer was formed,
No outer layer mainly composed of Ni is formed.

【0021】上記本発明の銅回路接合基板は、冷熱サイ
クルにおける信頼性が高く、ハイパワーモジュールに代
表される半導体装置用の基板として好適である。更に、
その導体層に半導体素子をダイボンディングすることに
よって、ハイパワーモジュール等の半導体装置を提供す
ることができる。
The copper circuit bonding board of the present invention has high reliability in a cooling / heating cycle and is suitable as a board for a semiconductor device represented by a high power module. Furthermore,
A semiconductor device such as a high power module can be provided by die bonding a semiconductor element to the conductor layer.

【0022】本発明の銅回路接合基板の製造方法の一つ
は、焼結体からなるセラミック基材上に高融点金属を含
むペーストを塗布し、焼成して高融点金属層を形成する
工程と、銅を主体とする導体層の前記高融点金属層との
接合面側に、平面方向の長さ及び幅が該高融点金属層の
それらより0.05mm以上短く、ニッケルと銅の少な
くとも1種を主成分とする金属介在層を形成する工程
と、該金属介在層を介して前記高融点金属層を設けたセ
ラミック基材と前記導体層とを金属介在層の外周端縁が
高融点金属層の外周端縁の内側にあるように、該金属介
在層を介して前記高融点金属層を設けたセラミック基材
と前記導体層とを該導体層の融点未満の温度で接合する
工程とを含むことを特徴とする。
One of the methods for manufacturing a copper circuit bonding board according to the present invention includes a step of applying a paste containing a high melting point metal on a ceramic base material made of a sintered body and firing it to form a high melting point metal layer. A length and a width of the conductor layer mainly composed of copper are shorter by 0.05 mm or more than those of the refractory metal layer in a plane direction on a bonding surface side of the refractory metal layer with at least one of nickel and copper. Forming a metal intervening layer containing, as a main component, a ceramic base provided with the high melting point metal layer via the metal intervening layer and the conductor layer; Joining the ceramic substrate provided with the high melting point metal layer and the conductor layer at a temperature lower than the melting point of the conductor layer via the metal intervening layer so as to be inside the outer peripheral edge of the conductor layer. It is characterized by the following.

【0023】また、本発明の銅回路接合基板の他の製造
方法は、セラミック基材上に銅を主体とする導体層を備
える銅回路接合基板の製造方法であって、セラミック原
料粉末の成形体上に高融点金属を含むペーストを塗布
し、焼成してセラミック基材を得ると同時に該セラミッ
ク基材上に高融点金属層を形成する工程と、銅を主体と
する導体層の前記高融点金属層との接合面側に、平面方
向の長さ及び幅が該高融点金属層のそれらより0.05
mm以上短く、ニッケルと銅の少なくとも1種を主成分
とする金属介在層を形成する工程と、該金属介在層を介
して前記高融点金属層を設けたセラミック基材と前記導
体層とを金属介在層の外周端縁が高融点金属層の外周端
縁の内側にあるように、該金属介在層を介して前記高融
点金属層を設けたセラミック基材と前記導体層とを該導
体層の融点未満の温度で接合する工程とを含むことを特
徴とする。
Further, another method of manufacturing a copper circuit bonding substrate according to the present invention is a method of manufacturing a copper circuit bonding substrate having a conductor layer mainly composed of copper on a ceramic base, wherein the method comprises the steps of: A step of applying a paste containing a high melting point metal thereon and firing it to obtain a ceramic base and simultaneously forming a high melting point metal layer on the ceramic base; and forming the high melting point metal of a conductor layer mainly composed of copper. On the bonding surface side with the layer, the length and width in the planar direction are 0.05 times higher than those of the refractory metal layer.
mm or more, a step of forming a metal intervening layer containing at least one of nickel and copper as a main component, and a step of forming a metal layer between the ceramic base and the conductor layer provided with the refractory metal layer via the metal intervening layer. The ceramic base and the conductor layer provided with the refractory metal layer via the metal interposition layer so that the outer peripheral edge of the intervening layer is inside the outer peripheral edge of the refractory metal layer. Bonding at a temperature lower than the melting point.

【0024】[0024]

【発明の実施の形態】本発明の銅回路接合基板では、金
属介在層と高融点金属層との接合界面において、金属介
在層の平面方向の長さ及び幅は高融点金属層よりも0.
05mm以上短くなっていて、且つ金属介在層の外周端
縁は高融点金属層の外周端縁の内側に位置している。具
体的には、図1に示すように、金属介在層3の高融点金
層層2と直接接合されている主面は、その主面の平面方
向の長さ及び幅方向と共に直下に形成された高融点金属
層2のそれよりも少なくとも0.05mm短く、好まし
くは0.05〜1mmの範囲で短くなっている。また、
この金属介在層3の主面に対し垂直方向から見て、金属
介在層3の外周端縁が直下の高融点金属層2の外周端縁
からはみ出さないように配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION In the copper circuit bonding substrate of the present invention, the length and width of the metal intervening layer in the plane direction at the bonding interface between the metal intervening layer and the high melting point metal layer are larger than those of the high melting point metal layer.
The outer peripheral edge of the metal intervening layer is located inside the outer peripheral edge of the high melting point metal layer. Specifically, as shown in FIG. 1, the main surface of the metal intervening layer 3 that is directly bonded to the high-melting-point gold layer 2 is formed immediately below the main surface in the plane length and width direction. It is shorter than that of the refractory metal layer 2 by at least 0.05 mm, preferably in the range of 0.05 to 1 mm. Also,
When viewed from a direction perpendicular to the main surface of the metal intervening layer 3, the outer peripheral edge of the metal intervening layer 3 is arranged so as not to protrude from the outer peripheral edge of the refractory metal layer 2 immediately below.

【0025】尚、従来のこの種の基板では、図2のよう
に、金属介在層13の高融点金属層12と直接接合され
ている主面は、その直下の高融点金属層12の主面と外
周寸法が同一で且つ両者の外周端縁が一致していた。し
かしながら、実際に導体層14と高融点金属層12を金
属介在層13を液相にすることによって接合した場合、
図4に示すように、液相になった金属介在層13は高融
点金属層12の外周端側に流れ、表面張力によって高融
点金属層12の外周端部に溜まり13aを形成すること
が確認された。その結果、従来の基板では導体層14と
セラミック基材11との間の熱膨張係数の差によって発
生した熱応力が溜まり13aが形成された高融点金属層
12の外周端部に集中し、セラミックス基材11が割れ
やすくなることが判明した。
In the conventional substrate of this type, as shown in FIG. 2, the main surface of the metal interposed layer 13 which is directly bonded to the refractory metal layer 12 is the main surface of the refractory metal layer 12 immediately below it. And the outer peripheral dimensions were the same, and the outer peripheral edges of both coincided. However, when the conductor layer 14 and the refractory metal layer 12 are actually joined by making the metal intervening layer 13 into a liquid phase,
As shown in FIG. 4, it was confirmed that the intervening metal layer 13 in the liquid phase flows toward the outer peripheral end of the high melting point metal layer 12 and accumulates at the outer peripheral end of the high melting point metal layer 12 due to surface tension to form 13 a. Was done. As a result, in the conventional substrate, the thermal stress generated due to the difference in the thermal expansion coefficient between the conductor layer 14 and the ceramic base material 11 accumulates and concentrates on the outer peripheral edge of the high melting point metal layer 12 on which the 13a is formed. It has been found that the substrate 11 is easily broken.

【0026】一方、本発明の場合には、上記のごとく金
属介在層3の外周端縁が高融点金属層2の外周端縁より
内側に位置しているので、図3に示すように、接合時に
液相となった金属介在層3が高融点金属層2上を外周方
向に流れても、高融点金属層2の外周端部に溜まりを形
成することがない。従って、熱応力が高融点金属層2の
外周端部に集中することがなく、導電層4の外周端部か
ら高融点金属層2の外周端部にかかる熱応力を更に分散
させることができ、この部分でのセラミックス基材1の
割れが殆ど起こらなくなる。
On the other hand, in the case of the present invention, since the outer peripheral edge of the metal intervening layer 3 is located inside the outer peripheral edge of the high melting point metal layer 2 as described above, as shown in FIG. Even if the intervening metal layer 3 which has sometimes become a liquid phase flows on the high melting point metal layer 2 in the outer peripheral direction, no pool is formed at the outer peripheral end of the high melting point metal layer 2. Therefore, thermal stress does not concentrate on the outer peripheral end of the high melting point metal layer 2, and the thermal stress applied from the outer peripheral end of the conductive layer 4 to the outer peripheral end of the high melting point metal layer 2 can be further dispersed. Cracking of the ceramic substrate 1 at this portion hardly occurs.

【0027】また、本発明においては、図1に示すよう
に導体層4の外周端縁が、金属介在層3の外周端縁上に
あるか、又はその内側にあるように配置して、金属介在
層3の外周端縁からはみ出さないようにする。尚、セラ
ミック基材1と高融点金属層2の組み合わせにおいても
同様に、高融点金属層2の長さ及び幅をセラミック基材
1より小さくすることができる。これにより、セラミッ
ク基材1の表裏面間の絶縁が保たれ、またセラミック基
材1の外周端部に熱応力が集中して破損するのを防止で
きる。
Further, in the present invention, as shown in FIG. 1, the outer peripheral edge of the conductor layer 4 is disposed on the inner peripheral edge of the metal intervening layer 3 or is located inside the outer peripheral edge. It does not protrude from the outer peripheral edge of the intervening layer 3. In addition, similarly, in the combination of the ceramic base 1 and the high melting point metal layer 2, the length and width of the high melting point metal layer 2 can be made smaller than that of the ceramic base 1. Thereby, insulation between the front and back surfaces of the ceramic substrate 1 is maintained, and it is possible to prevent the thermal stress from being concentrated on the outer peripheral end portion of the ceramic substrate 1 and prevent the ceramic substrate 1 from being damaged.

【0028】本発明で用いるセラミック基材について
は、熱伝導率及び電気絶縁耐圧の高いものが望ましく、
これに加えて機械的な強度や靭性にも優れているものが
望ましい。また、この種の銅回路接合基板の使用環境の
拡大に伴い、湿気やガス雰囲気に対する耐久性にも優れ
ていることが重要になりつつある。以上の点を考慮する
と、セラミック基材としては、窒化アルミニウム(Al
N)系か、又は窒化ケイ素(Si34)系のものが望ま
しい。しかし、負荷容量や使用条件によっては、アルミ
ナ(Al23)系、その他の単一主成分のもの、若しく
は幾つかの主成分で複合化された各種のセラミックスが
選択される場合もある。
The ceramic substrate used in the present invention preferably has a high thermal conductivity and a high withstand voltage.
In addition to this, those having excellent mechanical strength and toughness are desirable. Further, with the expansion of the use environment of this type of copper circuit bonding substrate, it is becoming important that the copper circuit bonding substrate also has excellent durability against humidity and gas atmosphere. In view of the above, aluminum nitride (Al
N) or silicon nitride (Si 3 N 4 ). However, an alumina (Al 2 O 3 ) -based material, other ceramics having a single main component, or various ceramics composited with several main components may be selected depending on a load capacity and a use condition.

【0029】これらのセラミック基材は、通常用いられ
ているY23等の希土類元素化合物やCaO等のアルカ
リ土類元素化合物のような焼結助剤を添加したものでよ
く、必要により更にTiN等の他の遷移元素化合物のよ
うな各種添加成分を含むことができる。また、セラミッ
ク基材の相対密度は95%以上、好ましくは98%以上
とする。相対密度が95%未満では基材の機械的強度が
低下し、熱衝撃に対する信頼性が低下するからである。
尚、セラミック基材の高融点金属層形成面には、予め酸
素を含む薄層が形成されていても良く、更に例えばA
l、Si、希土類元素、アルカリ土類元素等の酸化物を
含むことができる。これらセラミック基材の熱伝導率は
高いほど望ましく、例えばAlN系では100W/m・
K以上、好ましくは150W/m・K以上、またSi3
4系では30W/m・K以上、好ましく60W/m・K以
上、及びAl23系では20W/mK・以上、好ましく
40W/m・K以上であることが好ましい。
These ceramic substrates may be added with a sintering aid such as a commonly used rare earth element compound such as Y 2 O 3 or an alkaline earth element compound such as CaO. Various additional components such as other transition element compounds such as TiN can be included. Further, the relative density of the ceramic base material is 95% or more, preferably 98% or more. If the relative density is less than 95%, the mechanical strength of the substrate decreases, and the reliability against thermal shock decreases.
Note that a thin layer containing oxygen may be formed in advance on the surface of the ceramic base on which the high melting point metal layer is formed.
l, Si, oxides such as rare earth elements and alkaline earth elements can be included. The higher the thermal conductivity of these ceramic substrates, the better. For example, 100 W / m ·
K or more, preferably 150 W / m · K or more, and Si 3 N
It is preferably 30 W / m · K or more, preferably 60 W / m · K or more for the 4 system, and 20 W / mK · or more, preferably 40 W / m · K or more for the Al 2 O 3 system.

【0030】セラミック基材の表面上に設ける高融点金
属層の役割は、回路形成等の一般的な表面金属化処理だ
けに留まらず、銅を主体とする導体層とセラミック基材
の熱膨張率差によって生ずる熱応力を高融点金属層が受
け止め、セラミック基材に加わる熱応力を緩和する。更
に、形成する高融点金属層の表面を平滑にし、好ましく
は表面粗さを平均粗さRaで4μm以下にすることによ
り、応力緩和効果を更に安定させ、接合強度のバラツキ
を低減し、冷熱サイクルに対する特性を一層向上するこ
とができる。また、焼付け後の高融点金属層の厚みは3
〜50μmに制御することが望ましい。厚みが3μm未
満ではセラミック基材との十分な接合強度が得にくく、
また厚みが50μmを越えると金属介在層形成後の反り
量が増す傾向が大きくなるからである。
The role of the refractory metal layer provided on the surface of the ceramic substrate is not limited to the general surface metallization treatment such as circuit formation, but also the coefficient of thermal expansion of the conductor layer mainly composed of copper and the ceramic substrate. The refractory metal layer receives the thermal stress caused by the difference and relieves the thermal stress applied to the ceramic substrate. Further, the surface of the refractory metal layer to be formed is made smooth, and preferably, the surface roughness is made 4 μm or less in average roughness Ra, thereby further stabilizing the stress relaxation effect, reducing the variation in bonding strength, and reducing the thermal cycle. Can be further improved. The thickness of the refractory metal layer after baking is 3
It is desirable to control the thickness to 50 μm. If the thickness is less than 3 μm, it is difficult to obtain sufficient bonding strength with the ceramic substrate,
On the other hand, if the thickness exceeds 50 μm, the amount of warpage after the formation of the metal intervening layer tends to increase.

【0031】かかる高融点金属層の主成分は高融点金属
であり、例えばW、Ta、Mo、Ti、Zr等の金属で
ある。この高融点金属層には、セラミック基材との接合
性を改善するため、同焼結体中に添加される希土類元
素、アルカリ土類元素、Si、Al並びにその他の遷移
元素を含むガラスフリットを含んでいてもよい。高融点
金属層の焼付け後の成分構成は高融点金属を80体積%
以上とし、前述のようなガラスフリットを20体積%以
下とすることが好ましい。高融点金属が80体積%未満
では高融点金属層の熱伝導性が低下し易くなり、ガラス
フリットが20体積%を越える場合も同様である。
The main component of the refractory metal layer is a refractory metal, for example, a metal such as W, Ta, Mo, Ti, and Zr. The refractory metal layer includes a glass frit containing a rare earth element, an alkaline earth element, Si, Al and other transition elements added to the sintered body in order to improve the bonding property with the ceramic substrate. May be included. The composition of the refractory metal layer after baking is 80% by volume of the refractory metal.
As described above, the content of the glass frit as described above is preferably 20% by volume or less. When the content of the high melting point metal is less than 80% by volume, the thermal conductivity of the high melting point metal layer tends to decrease, and the same applies when the glass frit exceeds 20% by volume.

【0032】金属介在層は、1000℃以下で溶融し、
高融点金属層と銅を主体とする導体層とを接合せしめる
と共に、高融点金属層と導体層とセラミック基材の熱膨
張率差によって生ずる熱応力を緩和する。このような金
属介在層としては、Ni及びCuの少なくとも1種を主
成分とする1種以上の層からなり、特にNi−Pの組成
を有する層、あるいは少なくともCu、Ni、Pの2種
以上の合金からなる層が好適である。製造時の積層に当
たっては、セラミック基材側から順に、例えば、Ni−
B層とNi−P層の2層の積層構成や、同じくCu−P
層、Cu−Ni−P層、Ni−P層、Ni−B層のよう
な多層の積層構成で行っても良い。接合後の金属介在層
は、積層された成分であるCu、Ni、Pの2種以上が
少なくとも1層形成される。金属介在層の厚みは2〜4
0μmとするのが好ましく、2〜10μmが更に好まし
い。厚みが2μm未満では高融点金属層と導体層との間
の十分な接合強度が得くくなり、また厚みが40μmを
越えると金属介在層によって全体の放熱性が低下し易く
なる。
The metal intervening layer melts at 1000 ° C. or less,
The refractory metal layer and the conductor layer mainly composed of copper are joined together, and the thermal stress caused by the difference in the coefficient of thermal expansion between the refractory metal layer, the conductor layer and the ceramic substrate is alleviated. Such a metal intervening layer is composed of at least one layer mainly composed of at least one of Ni and Cu, and in particular, a layer having a composition of Ni-P, or at least two or more of Cu, Ni, and P Is preferred. For lamination at the time of manufacturing, for example, Ni-
B-layer and Ni-P layer of a two-layer structure, or Cu-P
It may be performed in a multilayer structure such as a layer, a Cu—Ni—P layer, a Ni—P layer, and a Ni—B layer. At least one layer of two or more of the laminated components Cu, Ni, and P is formed as the metal intervening layer after the bonding. The thickness of the metal intervening layer is 2 to 4
It is preferably 0 μm, more preferably 2 to 10 μm. When the thickness is less than 2 μm, a sufficient bonding strength between the high melting point metal layer and the conductor layer is easily obtained, and when the thickness is more than 40 μm, the overall heat radiation property tends to be reduced due to the metal intervening layer.

【0033】上記の高融点金属層と金属介在層を介して
セラミック基材に接合される銅を主体とする導体層とし
ては、無酸素銅、タフピッチ銅等の銅単体を初め、銅モ
リブデン合金、銅タングステン合金、銅モリブデン・タ
ングステン合金等の銅合金、あるいは高い電気伝導度と
低い熱膨張率を兼ね備えた銅−モリブデン−銅のような
クラッド材を挙げることができる。尚、この導体層上に
は、必要に応じて、例えばコバール等のFe−Ni−C
o系合金、42アロイ等のFe−Ni系合金、Ni及び
その合金、Cu及びその合金、W、Mo又はこれらの合
金等からなり、半導体装置としてセラミック基材の外囲
に配設される金属部材が直接又は間接に接合されていて
も良い。
The conductor layer mainly composed of copper to be joined to the ceramic substrate through the high melting point metal layer and the metal intervening layer includes, for example, simple copper such as oxygen-free copper and tough pitch copper, copper molybdenum alloy, Examples thereof include copper alloys such as copper-tungsten alloy and copper-molybdenum-tungsten alloy, and cladding materials such as copper-molybdenum-copper having both high electric conductivity and low coefficient of thermal expansion. In addition, if necessary, for example, an Fe—Ni—C such as Kovar
o-based alloys, Fe-Ni-based alloys such as 42 alloy, Ni and its alloys, Cu and its alloys, W, Mo, and their alloys, and are disposed as a semiconductor device around the ceramic substrate. The members may be joined directly or indirectly.

【0034】導体層の側面から見た断面形状は、通常は
図1のように矩形であるが、放電現象を避けるためには
導体層の外周端部に角部や突起が無いことが望ましく、
また熱応力の部分的な集中を防ぐためには断面を曲線状
又は階段状にすることが好ましい。例えば、図5に示す
ように導体層4の外周端部断面を内側に凸状をなす曲線
状や、逆に外側に凸状をなす曲線状としたり、図6に示
すように階段状にすることができる。
Although the cross-sectional shape of the conductor layer viewed from the side is usually rectangular as shown in FIG. 1, it is desirable that there is no corner or protrusion at the outer peripheral end of the conductor layer in order to avoid a discharge phenomenon.
In order to prevent partial concentration of thermal stress, it is preferable that the cross section be curved or stepped. For example, as shown in FIG. 5, the outer peripheral end section of the conductor layer 4 is formed into a curved shape having an inwardly convex shape, conversely, a curved shape having an outwardly convex shape, or a stepped shape as shown in FIG. be able to.

【0035】更に、本発明の銅回路接合基板において
は、図7に示すように導体層4の最外表面にNiを主体
とする外層5aを設けたり、図8のように導体層4の最
外表面及び側面にNiを主体とする外層5bを形成する
ことができる。Niを主体とする外層としては、例え
ば、Niや、Ni−B系の合金が挙げられる。このよう
にNiを主体として外層5a、5bを設けることによ
り、耐湿性を向上させることができる。
Further, in the copper circuit bonding substrate of the present invention, an outer layer 5a mainly composed of Ni is provided on the outermost surface of the conductor layer 4 as shown in FIG. An outer layer 5b mainly composed of Ni can be formed on the outer surface and side surfaces. Examples of the outer layer mainly composed of Ni include Ni and Ni-B based alloys. By providing the outer layers 5a and 5b mainly with Ni as described above, the moisture resistance can be improved.

【0036】次に、本発明の銅回路接合基板の製造方法
について説明する。本発明の製造方法は、基本的に、セ
ラミック基材上に高融点金属層を形成する工程と、銅を
主体とする導体層の上記高融点金属層との接合面側に金
属介在層を形成する工程と、この金属介在層を介してセ
ラミック基材と銅を主体とする導体層とを導体層の融点
未満の温度で接合する工程とを含むものである。また、
上記製造方法の好ましい態樣として、導体層の高融点金
属層との接合面と反対側の面に、又は接合面と反対側の
面及びその側面に、Niを主体とする外層を接合前に形
成する工程を含むことができる。
Next, a method of manufacturing a copper circuit bonding board according to the present invention will be described. The manufacturing method of the present invention basically includes a step of forming a high melting point metal layer on a ceramic substrate, and a step of forming a metal intervening layer on a bonding surface side of the conductor layer mainly composed of copper with the high melting point metal layer. And joining the ceramic substrate and the conductor layer mainly composed of copper at a temperature lower than the melting point of the conductor layer via the metal intervening layer. Also,
As a preferred mode of the above manufacturing method, an outer layer mainly composed of Ni is attached to the surface opposite to the joining surface of the conductor layer with the high melting point metal layer, or to the surface opposite to the joining surface and its side surfaces before joining. A forming step can be included.

【0037】セラミック基材は、例えば、AlN、Si
34、Al23のような主成分粉末を用い、既に述べた
ような種々の焼結助剤粉末等を混合し、得られた原料混
合粉末を成形し、その成形体を焼結することによって得
られる。その後必要に応じて、高融点金属層を形成する
面に、例えば酸化層を形成するなど、金属化を容易にす
るための前処理を行うこともできる。
The ceramic substrate is made of, for example, AlN, Si
3 N 4, with a main component powder, such as Al 2 O 3, mixed already various sintering aid powder such as described, etc., by molding a raw material mixture powder obtained, sintering the green body It is obtained by doing. Thereafter, if necessary, a pretreatment for facilitating metallization can be performed on the surface on which the high melting point metal layer is to be formed, for example, by forming an oxide layer.

【0038】セラミックス基材上に予め高融点金属層を
形成する方法としては、ポスタファイヤーメタライズ法
とコファイヤーメタライズ法の2方法がある。ポスタフ
ァイヤーメタライズ方法では、上記のように焼結された
焼結体からなるセラミック基材上に、高融点金属ペース
トを印刷塗布し、これを非酸化性雰囲気中で焼成して焼
き付ける。一方、コファイヤーメタライズ法では、前記
のセラミック基材の原料混合粉末を成形した成形体上に
高融点金属ペーストを印刷塗布し、これを非酸化性雰囲
気中で焼成して、成形体を焼結すると同時にその上に高
融点金属層を形成する。コファイヤーメタライズ法は、
ポストファイヤーメタライズ法に比べ製造コストが低
く、高融点金属層とセラミック基材との高い接合強度が
得られるので、工業的に有利な方法である。尚、使用す
る高融点金属ペーストは、前述のとおりW等の高融点金
属に必要に応じてガラスフリットを混合し、更に有機バ
インダーや有機溶媒を混合して調整するる。
As a method of forming a high melting point metal layer on a ceramic base material in advance, there are two methods, a postfire metallization method and a cofire metallization method. In the poster metallizing method, a high-melting-point metal paste is printed on a ceramic base made of the sintered body sintered as described above, and the paste is baked by baking in a non-oxidizing atmosphere. On the other hand, in the cofire metallization method, a high-melting-point metal paste is printed and applied on a molded body obtained by molding the above-mentioned ceramic base material mixed powder, and the paste is fired in a non-oxidizing atmosphere to sinter the molded body. At the same time, a refractory metal layer is formed thereon. The cofire metallization method is
The production cost is lower than that of the post-fire metallization method, and a high bonding strength between the high melting point metal layer and the ceramic substrate can be obtained, which is an industrially advantageous method. The high-melting-point metal paste used is prepared by mixing a high-melting-point metal such as W with a glass frit as necessary, and further mixing an organic binder or an organic solvent as described above.

【0039】導体層を形成するための素材は通常板材を
用いる。その板材の外形寸法を、予め、セラミックス基
材上に形成した高融点金属層の主面よりも長さ及び幅と
もに0.05mm以上短く、好ましくは0.05〜1mm
程度短く加工する。また、導体層の端部断面形状につい
ても、好ましくは前述のごとく曲面状又は階段状等に加
工する。尚、これらの加工方法は、既存の板材の成形加
工の方法であれば、いかなる方法でも適用できる。
As a material for forming the conductor layer, a plate material is usually used. The outer dimensions of the plate material are shorter than the main surface of the refractory metal layer formed on the ceramic base material in both length and width by 0.05 mm or more, preferably 0.05 to 1 mm.
Process about a short time. Also, the end cross-sectional shape of the conductor layer is preferably processed into a curved shape or a step shape as described above. In addition, these processing methods can be applied by any method as long as it is an existing plate material forming method.

【0040】本発明の方法では、上記導体層の高融点金
属層との接合面側に、予め金属介在層を形成する。これ
は、簡便で安価に本発明の構造体を形成できるからであ
る。例えば、高融点金属層側に金属介在層を形成しよう
とすると、予めマスキングを行ってメッキを行い、メッ
キ後にエッチングを行う必要があり、手間がかかること
になる。好ましい金属介在層としてはNi−P層があ
り、Ni−P層の上にCu層を形成することが更に好ま
しい。金属介在層の形成方法は種々考えられ、例えば電
気メッキや無電解メッキ、溶射塗布、蒸着、印刷等が挙
げられる。しかしながら、形成時の生産性を考慮する
と、メッキによって形成するのが最も効率が良く、確実
に厚みその他の品質を確保することができる。その場
合、特に密着性を考慮して、導体層上にNi−B層を形
成し、その上にNi−P層及びCu層を形成してもよ
い。
In the method of the present invention, a metal intervening layer is formed in advance on the side of the above-mentioned conductor layer which is to be bonded to the high melting point metal layer. This is because the structure of the present invention can be formed simply and inexpensively. For example, if an attempt is made to form a metal intervening layer on the high melting point metal layer side, it is necessary to perform masking and plating in advance, and then perform etching after plating, which is troublesome. A preferred metal intervening layer is a Ni-P layer, and more preferably a Cu layer is formed on the Ni-P layer. Various methods for forming the metal intervening layer are conceivable, for example, electroplating, electroless plating, thermal spray coating, vapor deposition, printing, and the like. However, in consideration of the productivity at the time of formation, the formation by plating is the most efficient, and the thickness and other qualities can be reliably ensured. In that case, a Ni-B layer may be formed on the conductor layer, and a Ni-P layer and a Cu layer may be formed thereon, particularly in consideration of adhesion.

【0041】また、導体層上にNiを主体とする外層を
形成する場合には、導体層を高融点金属層と接合する前
に、導体層の高融点金属層との接合面と反対側の面、又
はその接合面と反対側の面及び側面に、Niを主体とす
る外層を形成しておく。このNiを主体とする外層もメ
ッキによって形成するのが最も効率が良く、確実に厚み
等の層の品質を確保することができる。メッキ方法も同
様に電解メッキ又は無電解メッキのいずれの方法でもよ
い。このようにして形成した金属介在層及び外層は、非
酸化性雰囲気中で焼成することが好ましい。
In the case where an outer layer mainly composed of Ni is formed on the conductor layer, before the conductor layer is joined to the refractory metal layer, the outer surface of the conductor layer opposite to the joining surface with the refractory metal layer is joined. An outer layer mainly composed of Ni is formed on the surface or on the surface and side surface opposite to the joining surface. The outer layer mainly composed of Ni is most efficiently formed by plating, and the quality of the layer such as the thickness can be reliably ensured. Similarly, the plating method may be either electrolytic plating or electroless plating. The thus formed metal intervening layer and outer layer are preferably fired in a non-oxidizing atmosphere.

【0042】次に、高融点金属層を形成したセラミック
基材と、金属介在層又は金属介在層と外層を形成した導
体層とを、その高融点金属層と金属介在層とが対向する
ように重ね合わせ、加熱処理して接合することにより、
本発明の銅回路接合基板とする。この加熱処理は、金属
介在層が液相化する温度以上で且つ導体層素材の融点未
満の温度範囲、通常は700〜1000℃の温度範囲に
おいて、非酸化性雰囲気中又は10-4Torr以下の真
空中で行う。加熱処理温度が導体層の融点以上になる
と、導体層の外周形状及び形成した回路パターンが崩れ
易くなる。この加熱処理により、金属介在層は一旦液相
となり、前述のようにCu、Ni、Pの2種以上を含む
少なくとも1つの層を形成する。このため、冷却時に新
たな組成の合金、例えばCu−PやCu−Ni−P等の
組成の合金を生成することもある。
Next, the ceramic substrate on which the refractory metal layer is formed and the conductor layer on which the metal intervening layer or the metal intervening layer and the outer layer are formed are placed such that the refractory metal layer and the metal intervening layer face each other. By overlapping, heating and joining,
This is a copper circuit bonding board of the present invention. This heat treatment is carried out in a non-oxidizing atmosphere or at a temperature of 10 -4 Torr or less in a temperature range that is equal to or higher than the temperature at which the metal intervening layer turns into a liquid phase and lower than the melting point of the conductor layer material, usually 700 to 1000 ° C. Perform in vacuum. When the heat treatment temperature is equal to or higher than the melting point of the conductor layer, the outer peripheral shape of the conductor layer and the formed circuit pattern are easily broken. By this heat treatment, the metal intervening layer temporarily becomes a liquid phase, and forms at least one layer containing two or more of Cu, Ni, and P as described above. For this reason, an alloy having a new composition, for example, an alloy having a composition such as Cu-P or Cu-Ni-P may be generated during cooling.

【0043】尚、上記接合時に導体層とセラミック基材
の相互の位置ずれを防止するため、必要に応じて、例え
ば炭素質、アルミナ質、窒化アルミニウム質等の耐火物
を素材とする治具を用いて両者を仮固定し、位置ずれを
防止することもできる。また、位置ずれを防止すると共
に、実用上必要な接合強度レベルを確実に得るため、必
要に応じて仮固定した両者に適正な荷重を負荷すること
もできる。
In order to prevent mutual displacement between the conductor layer and the ceramic substrate during the joining, a jig made of a refractory material such as carbonaceous material, alumina material, or aluminum nitride material may be used as necessary. It can also be used to temporarily fix them to prevent displacement. In addition, in order to prevent displacement and reliably obtain a practically necessary bonding strength level, it is possible to apply an appropriate load to both of the temporarily fixed members as necessary.

【0044】このようにして得られる本発明の銅回路接
合基板においては、接合部の接合強度が、剥離強度で実
用上不具合を生じない0.5kg/mm以上の高いレベ
ルとなり、しかもこの高レベルの接合強度が安定して得
られる。尚、剥離強度の測定方法は、以下の通りであ
る。即ち、図9に示すように、セラミック基材1上に設
けた高融点金属層2及び金属介在層3を介して、厚み
0.1mm及び幅4.0mmの導体層4を長さL=3mm
となるように接合する。この場合、導体層4には接合部
と直角となるように導体層4を折り曲げて把持部4aを
形成する。その後、この把持部4aを上方に引っ張るこ
とによって、導体層4を含めた接合層又はそれらの接合
界面の一部が剥離し始める引っ張り荷重を、長さLの1
mm当たりに換算した値を剥離強度の値とする。
In the thus-obtained copper circuit bonding substrate of the present invention, the bonding strength of the bonding portion is at a high level of not less than 0.5 kg / mm which does not cause a practical problem in peeling strength. Is obtained stably. In addition, the measuring method of peeling strength is as follows. That is, as shown in FIG. 9, a conductor layer 4 having a thickness of 0.1 mm and a width of 4.0 mm is interposed between a high melting point metal layer 2 and a metal intervening layer 3 provided on a ceramic substrate 1 to have a length L = 3 mm.
Joining so that In this case, the conductor layer 4 is bent so as to be perpendicular to the bonding portion to form the grip portion 4a. Thereafter, by pulling the grip portion 4a upward, a tensile load at which the bonding layer including the conductor layer 4 or a part of the bonding interface thereof starts to peel is reduced by a length L of 1
The value converted per mm is defined as the peel strength.

【0045】[0045]

【実施例】実施例1 平均粒径1μmのAlN粉末と、平均粒径0.6μmの
23粉、及び平均粒径0.3μmのCaO粉末を、そ
れぞれ97重量%、1.5重量%、及び1.5重量%とな
るように秤取し、エタノール溶媒中ボールミルにて24
時間混合して、焼結助剤がY23−CaOからなるAl
N系の混合原料粉末を得た。更に、この混合原料粉末1
00重量部に対し、有機バインダーとしてPVBを10
重量部加えてスラリー化した。このスラリーの一部を噴
霧乾燥し、得られた粉末を成形プレスにて成形した。
And AlN powder EXAMPLE 1 The average particle diameter of 1 [mu] m, Y 2 O 3 powder having an average particle diameter of 0.6 .mu.m, and a CaO powder having an average particle diameter of 0.3 [mu] m, respectively 97 wt%, 1.5 wt % And 1.5% by weight, and weighed in a ball mill in an ethanol solvent.
After mixing for a time, the sintering aid is made of Y 2 O 3 —CaO
An N-based mixed raw material powder was obtained. Further, the mixed raw material powder 1
100 parts by weight of PVB as an organic binder
A slurry was added by adding parts by weight. A part of this slurry was spray-dried, and the obtained powder was molded by a molding press.

【0046】これらの成形体の半数を、窒素雰囲気中に
て1700℃で5時間焼結した。得られたAlN焼結体
の相対密度(理論密度を100%としたとき、水中法で
測定した実測密度の比率)はいずれも99%であり、表
面には実用上問題となるよう空孔等の欠陥は無かった。
また、レーザーフラッシュ法で測定したAlN焼結体の
熱伝導率は150〜160W/m・Kであった。
Half of these compacts were sintered at 1700 ° C. for 5 hours in a nitrogen atmosphere. The relative density (ratio of the measured density measured by the underwater method when the theoretical density is 100%) of each of the obtained AlN sintered bodies is 99%, and pores and the like are formed on the surface so as to cause a practical problem. There were no defects.
The thermal conductivity of the AlN sintered body measured by the laser flash method was 150 to 160 W / m · K.

【0047】これらのAlN焼結体の片方の主面に、高
融点金属ペーストをスクリーン印刷により塗布し、ポス
トファイヤーメタライズ法により高融点金属層を成形し
た。即ち、高融点金属のW粉末80重量%をボールミル
に少量ずつ添加し、溶剤10重量%、SiO2−CaO
−B23系ガラス5重量%、有機バインダー5重量%と
混合して高融点金属ペーストとした。このペーストをA
lN焼結体上に塗布し、窒素雰囲気中で脱バインダーし
た後、窒素雰囲気中にて1650℃で1時間焼成して高
融点金属層を形成した。得られた高融点金属層の厚みは
20±10μmであった。
A high melting point metal paste was applied to one main surface of these AlN sintered bodies by screen printing, and a high melting point metal layer was formed by a post-fire metallization method. That is, the W powder 80 wt% of the refractory metal was added in small portions to the ball mill, 10 wt% solvent, SiO 2 -CaO
-B 2 O 3 based glass 5 wt%, and an organic binder 5 wt% in admixture with high melting point metal paste. Put this paste in A
After coating on the 1N sintered body and removing the binder in a nitrogen atmosphere, firing was performed at 1650 ° C. for 1 hour in a nitrogen atmosphere to form a high melting point metal layer. The thickness of the obtained refractory metal layer was 20 ± 10 μm.

【0048】残りの半数の成形体を用いて、コファイヤ
ーメタライズ法により高融点金属層を形成した。即ち、
成形体の片方の主面上に上記と同じ高融点金属ペースト
を印刷塗布し、窒素雰囲気中にて600℃で脱バインダ
ーした後、窒素雰囲気中にて1700℃で5時間焼成し
て、成形体を焼結すると共に高融点金属ペーストを焼き
付けた。得られた高融点金属層の厚みは20±10μm
であった。以上の工程でW高融点金属層を形成したメタ
ライズ基板のサイズは、全て幅50mm、長さ50m
m、厚み0.8mmであった。
Using the remaining half of the compacts, a refractory metal layer was formed by a cofire metallization method. That is,
The same high melting point metal paste as described above was printed and applied on one main surface of the molded body, and after removing the binder at 600 ° C. in a nitrogen atmosphere, it was baked at 1700 ° C. for 5 hours in a nitrogen atmosphere to form a molded body. Was sintered and the high melting point metal paste was baked. The thickness of the obtained refractory metal layer is 20 ± 10 μm.
Met. The size of the metallized substrate on which the W refractory metal layer was formed in the above steps was 50 mm in width and 50 m in length.
m and thickness 0.8 mm.

【0049】次に、長さ及び幅ともに高融点金属層より
0.1mm短く(△L=0.1mm)且つ厚みが0.3m
mの銅板と、長さ及び幅ともに高融点金属層より0.5
mm短く(△L=0.5mm)且つ厚みが0.3mmの銅
板を各30枚用意し、それらの片面上にNi−Pメッキ
を行い、窒素雰囲気中にて600℃で30分間保持して
焼成し、金属介在層とした。得られた金属介在層にはフ
クレ、ハガレ等の異常は見られなかった。また、いずれ
の試料も、金属介在層のメッキ厚は6±1μmの範囲に
入っていた。尚、銅板の素材はJIS C1020の銅
素材を用い、その端部断面形状は図1の矩形、図5の曲
面状、及び図6の階段状の3種類を各10枚づつ作製し
た。
Next, both the length and width are 0.1 mm shorter than the refractory metal layer (ΔL = 0.1 mm) and the thickness is 0.3 m.
m from the high melting point metal layer in both length and width.
Prepare 30 copper plates each of which is 30 mm short (△ L = 0.5 mm) and 0.3 mm in thickness, Ni-P plated on one side thereof, and held at 600 ° C. for 30 minutes in a nitrogen atmosphere. It was fired to form a metal intervening layer. No abnormalities such as blisters and peeling were found in the obtained metal intervening layer. In all samples, the plating thickness of the metal intervening layer was in the range of 6 ± 1 μm. In addition, a copper material of JIS C1020 was used as a material of the copper plate, and three end types of the rectangular shape in FIG. 1, the curved shape in FIG. 5, and the step shape in FIG.

【0050】更に、前記のごとく高融点金属層を形成し
たメタライズ基板と、上記Ni−Pの金属介在層を形成
した銅板とを、銅板のNi−Pメッキ面(金属介在層)
が高融点金属層と密着するように対向させて黒鉛製のセ
ッター上に並べ、窒素気流中において1000℃×30
分間の無負荷での炉中接合を行い、銅回路接合基板を作
製した。
Further, the metallized substrate on which the refractory metal layer was formed as described above and the copper plate on which the Ni-P metal interposed layer was formed were combined with the Ni-P plated surface of the copper plate (metal interposed layer).
Are arranged on a graphite setter so as to be in close contact with the refractory metal layer, and 1000 ° C. × 30 in a nitrogen stream.
Bonding was performed in a furnace without any load for 5 minutes to produce a copper circuit bonded substrate.

【0051】得られた各基板を100倍の光学顕微鏡で
観察し、金属介在層の外周端縁が高融点金属層の外周端
縁からはみ出していないことを確認した。また、接合後
の各試料には、超音波探傷面分析により異常な欠陥は認
められなかった。更に、接合後の断面を1000倍のS
EM(走査型電子顕微鏡)で観察したところ、全ての試
料の界面にクラック、ピンホール等は認められなかっ
た。また、導体層の剥離強度は、全て1.5〜2.5kg
/mmの範囲に入っていた。
Each of the obtained substrates was observed with an optical microscope of 100 times, and it was confirmed that the outer peripheral edge of the metal interposed layer did not protrude from the outer peripheral edge of the high melting point metal layer. In addition, no abnormal defect was observed in each of the samples after bonding by ultrasonic flaw detection surface analysis. Furthermore, the cross section after bonding is 1000 times S
When observed with an EM (scanning electron microscope), no cracks, pinholes, etc. were found at the interfaces of all the samples. The peel strength of the conductor layer was 1.5 to 2.5 kg in all cases.
/ Mm range.

【0052】このようにして作製した各銅回路接合基板
について、−55℃×10分→+160℃×10分の条
件で1000サイクルのヒートサイクル試験を行い、2
0倍の実体顕微鏡で接合端面部の剥がれやクラック等の
欠陥の有無を調査して、欠陥の存在による不良数を求め
下記表1に示した。
A heat cycle test of 1000 cycles was performed on each of the copper circuit boards thus manufactured under the conditions of −55 ° C. × 10 minutes → + 160 ° C. × 10 minutes.
The presence or absence of defects such as peeling or cracks at the joint end surface was examined with a stereo microscope of 0 magnification, and the number of defects due to the presence of defects was determined and is shown in Table 1 below.

【0053】比較例1 実施例1と同様にポストファイヤーメタライズ法とコフ
ァイヤーメタライズ法により、AlNのセラミック基材
上に高融点金属層を形成した後、そのメタライズ基板の
高融点金属層上にNi−Pメッキを行い、窒素雰囲気中
にて600℃で30分間保持してNi−Pの金属介在層
とした。得られた金属介在層にフクレ、ハガレ等の異常
は見られなかった。また、いずれの試料も金属介在層の
メッキ厚は6±1μmの範囲に入っていた。これらの各
試料の金属介在層上に、実施例1で用いたもとの同じ銅
板(ただしNi−Pメッキは施していない)を載せ、実
施例1と同様に接合を行って銅回路接合基板を作製し
た。
COMPARATIVE EXAMPLE 1 A refractory metal layer was formed on an AlN ceramic base material by a post-fire metallization method and a cofire metallization method in the same manner as in Example 1, and Ni was deposited on the refractory metal layer of the metallized substrate. -P plating was performed, and held at 600 ° C. for 30 minutes in a nitrogen atmosphere to form a Ni-P metal intervening layer. No abnormalities such as blisters and peeling were observed in the obtained metal intervening layer. In each of the samples, the plating thickness of the metal intervening layer was in the range of 6 ± 1 μm. On the metal intervening layer of each of these samples, the same copper plate as used in Example 1 (but not subjected to Ni-P plating) was placed, and the bonding was performed in the same manner as in Example 1 to produce a copper circuit bonded substrate. did.

【0054】接合後の比較例の各試料について、超音波
探傷面分析を実施したところ異常な欠陥は認められなか
った。また、接合後の各試料の断面を1000倍のSE
M(走査型電子顕微鏡)で観察をしたところ、その界面
にクラック、ピンホール等は見られなかった。更に、各
試料の導体層の剥離強度は、全て1.3〜2.5kg/m
mの範囲に入っていた。このようにして作製した比較例
の各試料の銅回路接合基板について、実施例1と同じヒ
ートサイクル試験を施し、欠陥の有無による不良数を求
めた。
When each sample of the comparative example after bonding was subjected to ultrasonic flaw detection surface analysis, no abnormal defect was found. In addition, the cross section of each sample after bonding was made 1000 times SE.
Observation with a scanning electron microscope (M) revealed no cracks, pinholes, etc. at the interface. Further, the peel strength of the conductor layer of each sample was 1.3 to 2.5 kg / m.
m. The same heat cycle test as in Example 1 was performed on the copper circuit bonding substrates of the respective samples of the comparative example manufactured in this manner, and the number of defects based on the presence or absence of defects was determined.

【0055】上記実施例1及び比較例1の各試料につい
て、ヒートサイクル試験後の不良数に関する結果を、高
融点金属層の製法、導体層と高融点金属層の寸法差△
L、及び導体層の断面形状と共に、下記表1に示した。
For each of the samples of Example 1 and Comparative Example 1, the results regarding the number of defects after the heat cycle test were determined based on the manufacturing method of the refractory metal layer and the dimensional difference between the conductor layer and the refractory metal layer.
Table 1 below shows L and the cross-sectional shape of the conductor layer.

【0056】[0056]

【表1】 (注)製法におけるPFはポストファイヤーメタライズ
法を、CFはコファイヤーメタライズ法を表す。
[Table 1] (Note) In the manufacturing method, PF indicates the post-fire metallization method, and CF indicates the co-fire metallization method.

【0057】実施例2 上記実施例1で作製した各メタライズ基板を用い、導体
層とする銅板の片面上にNi−Pメッキのみを行う代わ
りに、厚み6±1μmのNi−Pメッキ及びその上に厚
み2±1μmのCuメッキを行い、且つ窒素気流中にお
いて950℃×30分間の無負荷での炉中接合を行った
こと以外は、全て上記実施例1と同様にして銅回路接合
基板を作製した。
Example 2 Instead of performing only Ni-P plating on one side of a copper plate serving as a conductor layer, using each metallized substrate prepared in Example 1 above, Ni-P plating having a thickness of 6 ± 1 μm and A copper circuit bonding substrate was prepared in the same manner as in Example 1 except that a Cu plating of thickness 2 ± 1 μm was performed, and bonding was performed in a furnace at 950 ° C. for 30 minutes under no load in a nitrogen stream. Produced.

【0058】接合後、100倍の光学顕微鏡での観察に
より、全ての試料の金属介在層の外周端縁が高融点金属
層の外周端縁からはみ出していないことを確認した。ま
た、接合後に超音波探傷面分析をした結果、全ての試料
に異常な欠陥は認められなかった。更に、接合後の断面
を1000倍のSEM(走査型電子顕微鏡)で観察した
ところ、接合界面にクラック、ピンホール等は見られな
かった。また、接合後の金属介在層はNi、P、Cuが
拡散してできた合金層となっていることを、EDX(En
ergy Dispersion X−ray Analyzer)により確認した。
尚、導体層の剥離強度は、全て1.8〜3.0kg/mm
の範囲に入っていた。
After the joining, it was confirmed by observation with an optical microscope of 100 times that the outer peripheral edge of the metal interposed layer did not protrude from the outer peripheral edge of the refractory metal layer in all samples. In addition, as a result of ultrasonic inspection surface analysis after joining, no abnormal defect was found in any of the samples. Further, when the cross section after bonding was observed with a SEM (scanning electron microscope) at a magnification of 1000 times, no crack, pinhole, or the like was found at the bonding interface. Further, it was confirmed that the metal intervening layer after bonding was an alloy layer formed by diffusion of Ni, P, and Cu.
(Energy Dispersion X-ray Analyzer).
The peel strength of the conductor layer was 1.8 to 3.0 kg / mm.
Was in the range.

【0059】このようにして作製した各試料の銅回路接
合基板について、−55℃×10分→+160℃×10
分の条件で1000サイクルのヒートサイクル試験を行
い、20倍の実体顕微鏡で接合端面部の剥がれやクラッ
ク等の欠陥の有無を調査し、欠陥による不良数を求めて
下記表2に示した。
With respect to the copper circuit bonding substrate of each sample prepared in this manner, the temperature was -55 ° C. × 10 minutes → + 160 ° C. × 10
A heat cycle test of 1000 cycles was performed under the conditions of minutes, and the presence or absence of defects such as peeling or cracks at the joint end face was examined with a 20 × stereo microscope. The number of defects due to defects was determined and is shown in Table 2 below.

【0060】比較例2 上記実施例1で作製した各メタライズ基板を用い、その
高融点金属層上に厚み2±1μmのCuメッキ及びその
上に厚み6±1μmのNi−Pメッキを行い、これらの
メタライズ基板に実施例1で用いたものと同じ銅板(た
だしメッキは施していない)を載せ、実施例2と同様に
接合を行った。
Comparative Example 2 Using each of the metallized substrates prepared in Example 1 above, Cu plating of 2 ± 1 μm thickness was applied on the refractory metal layer and Ni—P plating of 6 ± 1 μm thickness was applied thereon. The same copper plate (but not plated) used in Example 1 was placed on the metallized substrate of No. 1 and joined in the same manner as in Example 2.

【0061】接合後の比較例の各試料は、超音波探傷面
分析の結果、異常な欠陥は認められなかった。また、接
合後の断面を1000倍のSEM(走査型電子顕微鏡)
で観察したところ、接合界面にクラック、ピンホール等
は見られなかった。尚、導体層の剥離強度は、全て1.
4〜2.3kg/mmの範囲に入っていた。
As a result of the ultrasonic flaw detection surface analysis, no abnormal defect was observed in each sample of the comparative example after bonding. In addition, the cross section after bonding is SEM (scanning electron microscope) of 1000 times.
As a result, no crack, pinhole or the like was found at the joint interface. The peel strength of the conductor layer was 1.
It was in the range of 4-2.3 kg / mm.

【0062】上記比較例2の各試料について、実施例2
と同様に評価したヒートサイクル試験後の不良数を、そ
れぞれの高融点金属層の製法、導体層と高融点金属層の
寸法差△L、及び導体層の断面形状と共に、下記表2に
示した。
For each sample of Comparative Example 2 above,
The number of defects after the heat cycle test, which was evaluated in the same manner as described above, is shown in Table 2 below together with the manufacturing method of each refractory metal layer, the dimensional difference ΔL between the conductor layer and the refractory metal layer, and the cross-sectional shape of the conductor layer. .

【0063】[0063]

【表2】 (注)製法におけるPFはポストファイヤーメタライズ
法を、CFはコファイヤーメタライズ法を表す。
[Table 2] (Note) In the manufacturing method, PF indicates the post-fire metallization method, and CF indicates the co-fire metallization method.

【0064】実施例3 上記実施例1で作製した各メタライズ基板を用い、銅板
の片面上にNi−Pメッキのみを行う代わりに、厚み6
±1μmのNi−Pメッキ及びその上に厚み2±1μm
のCuメッキを行い、銅板の他方の面(導体層主面)に
外層として厚み2±1μmのNi−Bメッキを行って、
窒素気流中において950℃×30分間の無負荷で炉中
接合を行ったこと以外は、実施例1と同様にして、図5
に示すように導体層の端部断面形状が曲面状であり且つ
図7に示すように導体層上にNi−Bの外層を有する銅
回路接合基板を作製した。
Example 3 Instead of performing only Ni-P plating on one surface of a copper plate using each of the metallized substrates prepared in Example 1 above,
± 1μm Ni-P plating and 2 ± 1μm thick
Cu plating is performed, and the other surface (conductor layer main surface) of the copper plate is Ni-B plated with a thickness of 2 ± 1 μm as an outer layer,
5 in the same manner as in Example 1 except that the in-furnace bonding was performed at 950 ° C. for 30 minutes under no load in a nitrogen stream.
As shown in FIG. 7, a copper circuit bonding board having a curved end cross section at the end of the conductor layer and having an outer layer of Ni-B on the conductor layer as shown in FIG. 7 was produced.

【0065】接合後100倍の光学顕微鏡観察によっ
て、全ての試料の金属介在層の外周端縁が高融点金属層
の外周端縁からはみ出していないことを確認した。ま
た、接合後の各試料について超音波探傷面分析をした結
果、異常な欠陥は認められなかった。更に、接合後の断
面を1000倍のSEM(走査型電子顕微鏡)で観察を
したところ、接合界面にクラック、ピンホール等は見ら
れなかった。
After the joining, it was confirmed by an optical microscope observation at a magnification of 100 times that the outer peripheral edge of the metal interposed layer did not protrude from the outer peripheral edge of the refractory metal layer in all samples. In addition, as a result of performing an ultrasonic inspection surface analysis on each of the samples after bonding, no abnormal defect was recognized. Further, when the cross section after bonding was observed with a SEM (scanning electron microscope) at a magnification of 1000 times, no crack, pinhole, or the like was found at the bonding interface.

【0066】このようにして作製した試料10個と、実
施例2で作製した導体層が図5に示す曲面状の端部断面
形状を有する試料10個に対し、温度85℃で湿度90
%の条件下で2時間の耐湿試験を5回繰り返し、各耐湿
試験毎に各試料の外周の目視試験を行って、特に導体層
主面の変色及び変質状況を確認した。この場合、試料は
試験前後に導体層主面のX線回析によって、その表面の
相の状況変化を確認した。
The 10 samples thus prepared and the 10 samples in which the conductor layer prepared in Example 2 had the curved end cross-sectional shape shown in FIG.
The moisture resistance test for 2 hours was repeated five times under the condition of%, and a visual test of the outer periphery of each sample was performed for each moisture resistance test to check particularly the discoloration and deterioration of the main surface of the conductor layer. In this case, before and after the test, a change in the state of the phase on the surface was confirmed by X-ray diffraction of the main surface of the conductor layer.

【0067】その結果、Ni−Bの外層を導体層主面上
に形成することによって耐湿性が格段に向上し、外層を
形成した試料はいずれも5回の耐湿試験後も導体層主面
の変色及び変質、並びに主面の相の変化は認められなか
った。しかし、外層を導体層主面上に形成していない試
料では、初回の耐湿試験後に導体層の表面に薄い亜酸化
銅の層が形成され、変質が認められた。
As a result, by forming the outer layer of Ni-B on the main surface of the conductor layer, the moisture resistance was remarkably improved, and all the samples having the outer layer formed on the main surface of the conductor layer after the moisture resistance test were performed five times. No discoloration and deterioration, and no change in the phase of the main surface were observed. However, in the sample in which the outer layer was not formed on the main surface of the conductor layer, a thin layer of cuprous oxide was formed on the surface of the conductor layer after the first moisture resistance test, and deterioration was observed.

【0068】実施例4 上記実施例1で作製した各メタライズ基板を用い、銅板
の片面上にNi−Pメッキのみを行う代わりに、厚み6
±1μmのNi−Pメッキ及びその上に厚み2±1μm
のCuメッキを行い、銅板の他方の面には外層として厚
み2±1μmのNi−Bメッキを行って、窒素気流中に
おいて950℃×30分間の無負荷での炉中接合を行っ
たこと以外は、全て実施例1と同様にして銅回路接合基
板を作製した。尚、この実施例4では、上記全ての層及
び銅板をセラミック基材の両面に形成した。
Example 4 Instead of performing only Ni-P plating on one surface of a copper plate, using each metallized substrate prepared in Example 1 above,
± 1μm Ni-P plating and 2 ± 1μm thick
Except that the other side of the copper plate was subjected to Ni-B plating with a thickness of 2 ± 1 μm as an outer layer, and the furnace was joined in a nitrogen stream at 950 ° C. for 30 minutes with no load. A copper circuit bonding substrate was produced in the same manner as in Example 1. In Example 4, all the layers and the copper plate were formed on both surfaces of the ceramic base material.

【0069】接合後100倍の光学顕微鏡観察によっ
て、全て試料の金属介在層の外周端縁が高融点金属層の
外周端縁からはみ出していないことを確認した。また、
接合後の各試料について超音波探傷面分析をした結果、
異常な欠陥等は認められなかった。更に、接合後の断面
を1000倍のSEM(走査型電子顕微鏡)で観察した
ところ、各試料の接合界面にクラック、ピンホール等は
見られなかった。
After the joining, it was confirmed by an optical microscope observation at a magnification of 100 that the outer peripheral edge of the metal interposed layer did not protrude from the outer peripheral edge of the refractory metal layer in all the samples. Also,
As a result of ultrasonic inspection surface analysis for each sample after joining,
No abnormal defects were found. Furthermore, when the cross section after bonding was observed with a SEM (scanning electron microscope) at a magnification of 1000, no crack, pinhole, or the like was found at the bonding interface of each sample.

【0070】得られた各基板は図10に示すように、A
lN焼結体のセラミック基材1の両面に基材側から順に
高融点金属層2、金属介在層3、導体層4、及び外層5
を備えた構造であり、この主面と反対側をCu−W合金
製の放熱板6に共晶半田7を用いて接合した。更に、半
導体素子8を導体層4の主面上の外層5にダイボンディ
ングしてリード9で接続し、図11に示すように、外部
端子16を備えたケーシング15に収納した後、樹脂1
7を充填して半導体装置とした。
As shown in FIG. 10, each of the obtained substrates
Refractory metal layer 2, metal intervening layer 3, conductor layer 4, and outer layer 5 on both sides of ceramic substrate 1 of 1N sintered body in order from the substrate side.
The main surface and the side opposite to the main surface were joined to a heat radiating plate 6 made of a Cu-W alloy using eutectic solder 7. Further, the semiconductor element 8 is die-bonded to the outer layer 5 on the main surface of the conductor layer 4 and connected with the lead 9, and is housed in a casing 15 having external terminals 16 as shown in FIG.
7 was filled to obtain a semiconductor device.

【0071】このようにして作製した半導体装置につい
て、−55℃×10分→+160℃×10分の条件で1
000サイクルのヒートサイクル試験を行い、20倍の
実体顕微鏡で接合部の亀裂や剥離、表面の変質等の実用
上障害となるような不具合の有無を調査し、その結果を
不良数として下記表3に示した。
With respect to the semiconductor device manufactured in this manner, one time was applied under the condition of -55 ° C. × 10 minutes → + 160 ° C. × 10 minutes.
A heat cycle test of 000 cycles was carried out, and the presence or absence of defects that could be a practical obstacle such as cracks or peeling of the joints or surface alteration was examined with a 20 × stereo microscope. It was shown to.

【0072】比較例4 上記実施例1で作製したメタライズ基板の高融点金属層
上に、厚み2±1μmのCuメッキ及びその上に厚み6
±1μmのNi−Pメッキを行い、これに実施例1で用
いたものと同じ銅板(ただしメッキは施していない)を
載せ、上記実施例4と同様に接合を行って銅回路接合基
板を作製した。
Comparative Example 4 A 2 ± 1 μm thick Cu plating was formed on the refractory metal layer of the metallized substrate prepared in Example 1 and a 6 mm thick
Ni-P plating of ± 1 μm is performed, and the same copper plate (but not plated) used in Example 1 is mounted thereon, and bonding is performed in the same manner as in Example 4 to produce a copper circuit bonding substrate. did.

【0073】接合後の各試料について、超音波探傷面分
析の結果、異常な欠陥は認められなかった。また、接合
後の断面を1000倍のSEM(走査型電子顕微鏡)で
観察をしたところ、接合界面にクラック、ピンホール等
は見られなかった。このようにして作製した銅回路接合
基板に、外層として厚み2±1μmのNi−Bメッキを
施した後、上記実施例4と同様に半導体装置を作製し
た。得られた半導体装置に対し、上記実施例4と同じヒ
ートサイクル試験及び評価を行い、その結果を表3に併
せて示した。
As a result of the ultrasonic inspection surface analysis of each of the samples after bonding, no abnormal defect was recognized. When the cross section after bonding was observed with a SEM (scanning electron microscope) at a magnification of 1000, no crack, pinhole, or the like was found at the bonding interface. After the Ni-B plating having a thickness of 2 ± 1 μm was applied as an outer layer to the copper circuit bonding substrate thus manufactured, a semiconductor device was manufactured in the same manner as in Example 4. The obtained semiconductor device was subjected to the same heat cycle test and evaluation as in Example 4 above, and the results are shown in Table 3.

【0074】[0074]

【表3】 (注)製法におけるPFはポストファイヤーメタライズ
法を、CFはコファイヤーメタライズ法を表す。
[Table 3] (Note) In the manufacturing method, PF indicates the post-fire metallization method, and CF indicates the co-fire metallization method.

【0075】[0075]

【発明の効果】本発明によれば、リードフレームのよう
な金属部材からなる導体層を窒化アルミニウム等のセラ
ミック基材上に実装する際に、従来のロウ付けや共晶接
合で発生していた基材の破損や変形をなくし、反りを抑
制すると共に、接合強度が高く、大幅に信頼性を向上さ
せた半導体装置用の銅回路接合基板を簡単且つ安価に提
供することができる。
According to the present invention, when a conductor layer made of a metal member such as a lead frame is mounted on a ceramic base material such as aluminum nitride, it is generated by conventional brazing or eutectic bonding. It is possible to easily and inexpensively provide a copper circuit bonding substrate for a semiconductor device which eliminates breakage and deformation of a base material, suppresses warpage, has high bonding strength, and greatly improves reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の銅回路接合基板の具体例を示す概略の
断面図である。
FIG. 1 is a schematic sectional view showing a specific example of a copper circuit bonding board of the present invention.

【図2】従来の銅回路接合基板を示す概略の断面図であ
る。
FIG. 2 is a schematic sectional view showing a conventional copper circuit bonding substrate.

【図3】本発明の銅回路接合基板における金属介在層の
外周端部を模式的に示す概略の断面図である。
FIG. 3 is a schematic cross-sectional view schematically showing an outer peripheral end of a metal interposed layer in the copper circuit bonding board of the present invention.

【図4】従来の銅回路接合基板における金属介在層の外
周端部を模式的に示す概略の断面図である。
FIG. 4 is a schematic cross-sectional view schematically showing an outer peripheral end of a metal intervening layer in a conventional copper circuit bonding substrate.

【図5】本発明の導体層の端部断面形状が曲面状の銅回
路接合基板を示す概略の断面図である。
FIG. 5 is a schematic cross-sectional view showing a copper circuit bonding substrate in which a cross-sectional shape of an end of a conductor layer of the present invention is a curved surface.

【図6】本発明の導体層の端部断面形状が階段状の銅回
路接合基板を示す概略の断面図である。
FIG. 6 is a schematic cross-sectional view illustrating a copper circuit bonding substrate having a stepped end cross-sectional shape of a conductor layer according to the present invention.

【図7】本発明の外層を備えた銅回路接合基板を示す概
略の断面図である。
FIG. 7 is a schematic cross-sectional view showing a copper circuit bonding substrate having an outer layer according to the present invention.

【図8】本発明の外層を備えた別の銅回路接合基板を示
す概略の断面図である。
FIG. 8 is a schematic cross-sectional view showing another copper circuit bonding substrate having an outer layer according to the present invention.

【図9】本発明の銅回路接合基板における剥離強度の測
定方法を説明するための断面図である。
FIG. 9 is a cross-sectional view for explaining a method of measuring the peel strength of the copper circuit bonding board according to the present invention.

【図10】実施例4で作製した銅回路接合基板を放熱板
に接合した部材を示す概略の断面図である。
FIG. 10 is a schematic cross-sectional view showing a member in which a copper circuit bonding substrate manufactured in Example 4 is bonded to a heat sink.

【図11】実施例4で作製した半導体装置を示す概略の
一部切欠側面図である。
FIG. 11 is a schematic partially cutaway side view showing a semiconductor device manufactured in Example 4.

【符号の説明】[Explanation of symbols]

1、11 セラミック基材 2、12 高融点金属
層 3、13 金属介在層 4、14 導体層
5、5a、5b 外層 6 放熱板 7 共晶半田 8 半導体素子
9 リード 15 ケーシング 16 外部端子 17 樹
DESCRIPTION OF SYMBOLS 1, 11 Ceramic base material 2, 12 Refractory metal layer 3, 13 Metal intervening layer 4, 14 Conductive layer
5, 5a, 5b Outer layer 6 Heat sink 7 Eutectic solder 8 Semiconductor element 9 Lead 15 Casing 16 External terminal 17 Resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 一隆 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 石井 隆 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 仲田 博彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4E351 AA09 AA12 BB01 BB30 BB31 BB35 BB38 CC06 CC07 CC08 CC09 CC12 CC23 CC31 CC33 DD04 DD17 DD19 DD28 DD47 DD52 EE10 EE11 GG01 GG02 GG04 5E343 AA02 AA23 BB13 BB17 BB24 BB39 BB40 BB44 BB57 BB67 BB72 BB73 BB75 BB78 CC07 DD02 DD22 DD33 DD43 DD64 ER23 ER37 ER39 ER57 GG16 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazutaka Sasaki 1-1-1, Koyokita-Kita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Takashi Ishii, Kochi-Kita1, Itami-shi, Hyogo No. 1-1 In Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Hirohiko Nakata 1-1-1, Koyo-Kita-Kita, Itami-shi, Hyogo F-term in Sumitomo Electric Industries, Ltd. Itami Works F-term (reference) 4E351 AA09 AA12 BB01 BB30 BB31 BB35 BB38 CC06 CC07 CC08 CC09 CC12 CC23 CC31 CC33 DD04 DD17 DD19 DD28 DD47 DD52 EE10 EE11 GG01 GG02 GG04 5E343 AA02 AA23 BB13 BB17 BB24 BB39 BB40 BB44 BB57 BB67 BB72 BB73 BB75 ER23 DD33 DD33 DD33 DD33

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基材と、セラミック基材の片
面上又は両面上に該基材側から順に設けた、主に高融点
金属からなる高融点金属層と、ニッケル、銅の少なくと
も1種を主成分とする少なくとも1層の金属介在層と、
銅を主体とする導体層とを備えた銅回路接合基板であっ
て、前記高融点金属層と金属介在層との接合界面におけ
る金属介在層の平面方向の長さ及び幅が高融点金属層の
それらより0.05mm以上短く、該金属介在層の外周
端縁が高融点金属層の外周端縁の内側にあり、且つ前記
導体層の外周端縁が金属介在層の外周端縁上にあるか又
はその内側にあることを特徴とする銅回路接合基板。
1. A ceramic substrate, a refractory metal layer mainly composed of a refractory metal provided on one or both sides of the ceramic substrate in order from the substrate side, and at least one of nickel and copper. At least one metal intervening layer as a main component;
A copper circuit bonding substrate comprising a copper-based conductor layer, wherein the length and width of the metal interposition layer at the bonding interface between the refractory metal layer and the metal interposition layer in the planar direction are different from those of the refractory metal layer. 0.05 mm or more shorter than them, whether the outer peripheral edge of the metal intervening layer is inside the outer peripheral edge of the refractory metal layer, and whether the outer peripheral edge of the conductor layer is on the outer peripheral edge of the metal intervening layer. Or a copper circuit bonding board characterized by being inside.
【請求項2】 前記金属介在層が少なくとも銅、ニッケ
ル、リンの2種以上を含む合金層からなることを特徴と
する、請求項1に記載の銅回路接合基板。
2. The copper circuit bonding board according to claim 1, wherein the metal intervening layer is formed of an alloy layer containing at least two of copper, nickel, and phosphorus.
【請求項3】 前記導体層の最外表面又は該最外表面及
び側面に、Niを主体とする外層が形成されていること
を特徴とする、請求項1又は2に記載の銅回路接合基
板。
3. The copper circuit bonding board according to claim 1, wherein an outer layer mainly composed of Ni is formed on the outermost surface of the conductor layer or on the outermost surface and side surfaces. .
【請求項4】 前記セラミック基材が窒化アルミニウム
系セラミックからなることを特徴とする、請求項1〜3
のいずれかに記載の銅回路接合基板。
4. The ceramic substrate according to claim 1, wherein said ceramic substrate is made of an aluminum nitride-based ceramic.
A copper circuit bonding board according to any one of the above.
【請求項5】 前記高融点金属層がタングステンである
ことを特徴とする、請求項1〜4のいずれかに記載の銅
回路接合基板。
5. The copper circuit bonding board according to claim 1, wherein said high melting point metal layer is tungsten.
【請求項6】 請求項1〜5の銅回路接合基板に半導体
素子をダイボンディングしてなる半導体装置。
6. A semiconductor device formed by die bonding a semiconductor element to the copper circuit bonding substrate according to claim 1.
【請求項7】 セラミック基材上に銅を主体とする導体
層を備える銅回路接合基板の製造方法であって、焼結体
からなるセラミック基材上に高融点金属を含むペースト
を塗布し、焼成して高融点金属層を形成する工程と、銅
を主体とする導体層の前記高融点金属層との接合面側
に、平面方向の長さ及び幅が該高融点金属層のそれらよ
り0.05mm以上短く、ニッケルと銅の少なくとも1
種を主成分とする金属介在層を形成する工程と、該金属
介在層を介して前記高融点金属層を設けたセラミック基
材と前記導体層とを金属介在層の外周端縁が高融点金属
層の外周端縁の内側にあるように、該導体層の融点未満
の温度で接合する工程とを含むことを特徴とする銅回路
接合基板の製造方法。
7. A method for manufacturing a copper circuit bonding substrate comprising a ceramic base and a conductor layer mainly composed of copper, comprising applying a paste containing a high melting point metal to a ceramic base made of a sintered body. Baking a high-melting-point metal layer, and providing a conductor layer mainly composed of copper with a length and width in the plane direction smaller than those of the high-melting-point metal layer on the joining surface side with the high-melting-point metal layer. .05mm or more, at least one of nickel and copper
A step of forming a metal interposed layer containing a seed as a main component; and a step of forming a ceramic base provided with the high melting point metal layer and the conductor layer through the metal interposed layer, the outer peripheral edge of the metal interposed layer having a high melting point metal. Bonding at a temperature lower than the melting point of the conductor layer so as to be inside the outer peripheral edge of the layer.
【請求項8】 セラミック基材上に銅を主体とする導体
層を備える銅回路接合基板の製造方法であって、セラミ
ック原料粉末の成形体上に高融点金属を含むペーストを
塗布し、焼成してセラミック基材を得ると同時に該セラ
ミック基材上に高融点金属層を形成する工程と、銅を主
体とする導体層の前記高融点金属層との接合面側に、平
面方向の長さ及び幅が該高融点金属層のそれらより0.
05mm以上短く、ニッケルと銅の少なくとも1種を主
成分とする金属介在層を形成する工程と、該金属介在層
を介して前記高融点金属層を設けたセラミック基材と前
記導体層とを金属介在層の外周端縁が高融点金属層の外
周端縁の内側にあるように、該導体層の融点未満の温度
で接合する工程とを含むことを特徴とする銅回路接合基
板の製造方法。
8. A method for manufacturing a copper circuit bonding board having a conductor layer mainly composed of copper on a ceramic substrate, comprising applying a paste containing a high melting point metal on a molded body of ceramic raw material powder and firing the paste. Forming a high-melting metal layer on the ceramic substrate at the same time as obtaining the ceramic substrate, and the bonding surface side of the copper-based conductor layer with the high-melting metal layer, the length in the planar direction and The width is more than that of those of the refractory metal layer.
A step of forming a metal intervening layer which is at least 05 mm shorter and contains at least one of nickel and copper as a main component; Bonding at a temperature lower than the melting point of the conductor layer so that the outer peripheral edge of the intervening layer is inside the outer peripheral edge of the high melting point metal layer.
【請求項9】 前記金属介在層として、前記導体層上に
ニッケル−リン層を形成するか又は該ニッケル−リン層
とその上に更に銅層を形成することを特徴とする、請求
項7又は8に記載の銅回路接合基板の製造方法。
9. The method according to claim 7, wherein a nickel-phosphorus layer is formed on the conductor layer, or a copper layer is further formed on the nickel-phosphorus layer as the metal intervening layer. 9. The method for producing a copper circuit bonding substrate according to item 8.
【請求項10】 前記導体層とセラミック基材との接合
前に、前記導体層の高融点金属層との接合面と反対側の
面又は該接合面と反対側の面及びその側面に、Niを主
体とする外層を形成することを特徴とする、請求項7〜
9のいずれかに記載の銅回路接合基板の製造方法。
10. Before joining the conductor layer and the ceramic substrate, the conductor layer has a surface opposite to the joint surface with the refractory metal layer, or a surface opposite to the joint surface and a side surface thereof. Forming an outer layer mainly composed of:
10. The method for manufacturing a copper circuit bonding board according to any one of the above items 9.
JP12703499A 1999-05-07 1999-05-07 Copper circuit clad substrate and manufacture thereof Pending JP2000323618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12703499A JP2000323618A (en) 1999-05-07 1999-05-07 Copper circuit clad substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12703499A JP2000323618A (en) 1999-05-07 1999-05-07 Copper circuit clad substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000323618A true JP2000323618A (en) 2000-11-24

Family

ID=14950028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12703499A Pending JP2000323618A (en) 1999-05-07 1999-05-07 Copper circuit clad substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000323618A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017837A (en) * 2001-06-28 2003-01-17 Tokuyama Corp Method of manufacturing printed wiring board
JP2004022710A (en) * 2002-06-14 2004-01-22 Dowa Mining Co Ltd Metal ceramic joined body and method for manufacturing the same
JP2005035874A (en) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd Method for producing metal/ceramic bonding substrate
JP2006128228A (en) * 2004-10-26 2006-05-18 Seiko Epson Corp Forming method of conductive film, wiring board, electronic device, and electronic equipment
JP2009170930A (en) * 2009-03-12 2009-07-30 Hitachi Metals Ltd Ceramic circuit board and power semiconductor module using the same
JP2009256207A (en) * 2003-03-27 2009-11-05 Dowa Holdings Co Ltd Method for producing metal/ceramic bonding substrate
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
JP2011187765A (en) * 2010-03-10 2011-09-22 Sumitomo Electric Ind Ltd Substrate for printed wiring board and method for manufacturing the same
JP2012138629A (en) * 2012-04-05 2012-07-19 Fuji Electric Co Ltd Insulating substrate and semiconductor device
WO2016056203A1 (en) * 2014-10-07 2016-04-14 Dowaメタルテック株式会社 Metal-ceramic circuit board and method of manufacturing same
TWI553154B (en) * 2015-11-03 2016-10-11 Nat Inst Chung Shan Science & Technology A structure for improving the interfacial stress of aluminum nitride substrate and copper coating
JP2018037527A (en) * 2016-08-31 2018-03-08 日本特殊陶業株式会社 Wiring board and manufacturing method of the same
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
EP3471517A4 (en) * 2016-06-10 2019-06-05 Tanaka Kikinzoku Kogyo K.K. Ceramic circuit board and method for manufacturing ceramic circuit board
JP2020508878A (en) * 2017-02-28 2020-03-26 ローズマウント インコーポレイテッド Joining for brittle materials
TWI698553B (en) * 2019-10-15 2020-07-11 國家中山科學研究院 Method for modifying surface of aluminum nitride ceramic substrate
CN114325332A (en) * 2021-12-30 2022-04-12 上海埃积半导体有限公司 Power chip rapid test method and system
US20220362891A1 (en) * 2019-10-08 2022-11-17 Rogers Germany Gmbh Method for producing a metal-ceramic substrate, solder system, and metal-ceramic substrate produced using such a method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017837A (en) * 2001-06-28 2003-01-17 Tokuyama Corp Method of manufacturing printed wiring board
JP2004022710A (en) * 2002-06-14 2004-01-22 Dowa Mining Co Ltd Metal ceramic joined body and method for manufacturing the same
JP2005035874A (en) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd Method for producing metal/ceramic bonding substrate
JP2009256207A (en) * 2003-03-27 2009-11-05 Dowa Holdings Co Ltd Method for producing metal/ceramic bonding substrate
JP2006128228A (en) * 2004-10-26 2006-05-18 Seiko Epson Corp Forming method of conductive film, wiring board, electronic device, and electronic equipment
JP2009170930A (en) * 2009-03-12 2009-07-30 Hitachi Metals Ltd Ceramic circuit board and power semiconductor module using the same
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
JP2016154239A (en) * 2009-04-24 2016-08-25 住友電気工業株式会社 Substrate for printed wiring board, and method of manufacturing substrate for printed wiring board
JP2011187765A (en) * 2010-03-10 2011-09-22 Sumitomo Electric Ind Ltd Substrate for printed wiring board and method for manufacturing the same
JP2012138629A (en) * 2012-04-05 2012-07-19 Fuji Electric Co Ltd Insulating substrate and semiconductor device
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
WO2016056203A1 (en) * 2014-10-07 2016-04-14 Dowaメタルテック株式会社 Metal-ceramic circuit board and method of manufacturing same
JP2016074565A (en) * 2014-10-07 2016-05-12 Dowaメタルテック株式会社 Metal-ceramic circuit board and method for producing the same
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
TWI553154B (en) * 2015-11-03 2016-10-11 Nat Inst Chung Shan Science & Technology A structure for improving the interfacial stress of aluminum nitride substrate and copper coating
EP3471517A4 (en) * 2016-06-10 2019-06-05 Tanaka Kikinzoku Kogyo K.K. Ceramic circuit board and method for manufacturing ceramic circuit board
US10485112B2 (en) 2016-06-10 2019-11-19 Tanaka Kikinzoku Kogyo K.K. Ceramic circuit substrate and method for producing ceramic circuit substrate
WO2018042918A1 (en) * 2016-08-31 2018-03-08 日本特殊陶業株式会社 Wiring board and method for manufacturing same
JP2018037527A (en) * 2016-08-31 2018-03-08 日本特殊陶業株式会社 Wiring board and manufacturing method of the same
JP2020508878A (en) * 2017-02-28 2020-03-26 ローズマウント インコーポレイテッド Joining for brittle materials
US20220362891A1 (en) * 2019-10-08 2022-11-17 Rogers Germany Gmbh Method for producing a metal-ceramic substrate, solder system, and metal-ceramic substrate produced using such a method
US11945054B2 (en) * 2019-10-08 2024-04-02 Rogers Germany Gmbh Method for producing a metal-ceramic substrate, solder system, and metal-ceramic substrate produced using such a method
TWI698553B (en) * 2019-10-15 2020-07-11 國家中山科學研究院 Method for modifying surface of aluminum nitride ceramic substrate
CN114325332A (en) * 2021-12-30 2022-04-12 上海埃积半导体有限公司 Power chip rapid test method and system

Similar Documents

Publication Publication Date Title
US6261703B1 (en) Copper circuit junction substrate and method of producing the same
EP0788153B1 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
KR100328407B1 (en) Ceramic circuit board
US5672848A (en) Ceramic circuit board
EP3632879A1 (en) Ceramic circuit board and module using same
EP1450401B1 (en) Module comprising a ceramic circuit board
JPH09157054A (en) Circuit board
US6783867B2 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP4104429B2 (en) Module structure and module using it
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JPH08102570A (en) Ceramic circuit board
JP4557398B2 (en) Electronic element
US5613181A (en) Co-sintered surface metallization for pin-join, wire-bond and chip attach
WO2020218193A1 (en) Ceramic circuit substrate and electronic component module
JP2001156413A (en) Copper circuit junction substrate and its manufacturing method
JP3239549B2 (en) Ceramic radiator for semiconductor and method of manufacturing the same
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JPH10167804A (en) Ceramic substrate, circuit board using same and its production
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP3454331B2 (en) Circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731