WO2016056203A1 - Metal-ceramic circuit board and method of manufacturing same - Google Patents

Metal-ceramic circuit board and method of manufacturing same Download PDF

Info

Publication number
WO2016056203A1
WO2016056203A1 PCT/JP2015/004976 JP2015004976W WO2016056203A1 WO 2016056203 A1 WO2016056203 A1 WO 2016056203A1 JP 2015004976 W JP2015004976 W JP 2015004976W WO 2016056203 A1 WO2016056203 A1 WO 2016056203A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
circuit board
reaction product
brazing material
Prior art date
Application number
PCT/JP2015/004976
Other languages
French (fr)
Japanese (ja)
Inventor
小林 幸司
明朗 沢辺
尭 出野
風呂 正博
Original Assignee
Dowaメタルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaメタルテック株式会社 filed Critical Dowaメタルテック株式会社
Publication of WO2016056203A1 publication Critical patent/WO2016056203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a metal-ceramic circuit board and a method for manufacturing the same, and more particularly to a metal-ceramic circuit board in which a metal plate is bonded to a ceramic member with an active metal-containing brazing material and a method for manufacturing the same.
  • power modules have been used to control high power in electric vehicles, trains, machine tools, and the like.
  • an insulating substrate for such a power module there is a metal-ceramic circuit substrate in which a chip component on a metal circuit board bonded to one surface of a ceramic substrate or a portion where terminals need to be soldered is plated. in use.
  • a method of thinning the creeping portion of the metal circuit board that is, a stepped structure or a fillet (the protrusion of the brazing material for joining the metal circuit board to the ceramic substrate) at the peripheral edge of the metal circuit board.
  • a method of thinning the creeping portion of the metal circuit board that is, a stepped structure or a fillet (the protrusion of the brazing material for joining the metal circuit board to the ceramic substrate) at the peripheral edge of the metal circuit board.
  • Ni-P plating is applied to the protruding portion of the active metal-containing brazing material, migration may occur due to heat treatment (such as soldering) or coating with an insulating gel in the assembly process when the metal-ceramic circuit board is assembled into the power module. It is not possible to sufficiently suppress the occurrence.
  • the present invention provides a metal-ceramic circuit board in which a metal plate is bonded to a ceramic substrate with an active metal-containing brazing material, and the occurrence of migration can be sufficiently suppressed.
  • An object is to provide a ceramic circuit board and a method for manufacturing the same.
  • the present inventors have found that in a method for producing a metal-ceramic circuit board in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, ceramics A reaction product layer composed mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramic of the ceramic substrate is formed on at least one surface of the substrate, and between the reaction product layer and the metal plate. A metal layer mainly composed of a metal other than the active metal of the active metal-containing brazing material is formed, and the reaction product layer and the reaction product layer are bonded to at least one of the ceramic substrates via the reaction product layer and the metal layer.
  • the method for producing a metal-ceramic circuit board according to the present invention includes a method for producing a metal-ceramic circuit board in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material.
  • a reaction product layer consisting mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramic of the ceramic substrate is formed on one surface, and the active product is mainly active between the reaction product layer and the metal plate.
  • the reaction product layer and the metal layer are Remove the unnecessary part of the metal plate so that it protrudes from the side part of the metal plate, and then the metal so that the reaction product layer protrudes from the side part of the metal layer. Unnecessary portion is removed fillets made of the reaction product layer to form, and forming a plating film on the exposed surface of the metal layer with the reaction product layer of.
  • the metal plate protrudes from the side surface of the metal plate.
  • the fillet may be formed as a fillet composed of a metal layer and a reaction product layer.
  • the metal plate is preferably made of copper or a copper alloy, and the ceramic substrate is preferably made of a nitride or an oxide.
  • the active metal-containing brazing material is preferably a brazing material made of active metal, silver and copper, and the active metal-containing brazing material may contain tin. Moreover, it is preferable that content of the silver in an active metal containing brazing material is 30 mass% or more.
  • the plating film is preferably formed by electroless Ni alloy plating.
  • the active metal of the active metal-containing brazing material is titanium, and titanium nitride is preferably generated as a reaction product.
  • the active metal contains It is preferable that the active metal of the brazing material is titanium and titanium oxide is generated as a reaction product.
  • the metal-ceramic circuit board according to the present invention is an active metal mainly composed of an active metal-containing brazing material in a metal-ceramic circuit board in which a metal plate is joined to at least one surface of the ceramic substrate via an active metal-containing brazing material. Is formed on the ceramic substrate, and a metal layer mainly composed of a metal other than the active metal of the active metal-containing brazing material is formed between the reaction product and the metal plate. The reaction product layer protrudes from the side surface of the metal layer to form a fillet, and a plating film is formed on the exposed surface of the metal layer and the reaction product layer.
  • the planar shape and size of the metal layer are preferably substantially the same as the metal plate.
  • a metal layer may protrude from the side surface of a metal plate, and may form a fillet with a reaction product.
  • the metal plate is preferably made of copper or a copper alloy
  • the ceramic substrate is preferably made of a nitride or an oxide.
  • the active metal-containing brazing material is preferably a brazing material made of active metal, silver and copper, and the active metal-containing brazing material may contain tin. Moreover, it is preferable that content of the silver in an active metal containing brazing material is 30 mass% or more.
  • the plating film is preferably made of Ni alloy plating.
  • the active metal of the active metal-containing brazing material is preferably titanium, and titanium nitride is preferably produced as a reaction product.
  • the active metal of the brazing filler metal is titanium and titanium oxide is generated as a reaction product.
  • FIG. 3 is a cross-sectional view showing a state in which an active metal-containing brazing material is printed on a ceramic substrate in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a metal plate is joined to a ceramic substrate via an active metal-containing brazing material in the first embodiment of the method for producing a metal-ceramic circuit substrate of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a resist having a desired circuit pattern is applied to the surface of a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which an active metal-containing brazing material is printed on a ceramic substrate in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a metal plate is joined
  • FIG. 3 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state where a resist is removed from a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state where an unnecessary portion of the active metal-containing brazing material is removed in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a resist smaller than a metal plate is applied to the surface of the metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state where a resist is removed from a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which an unnecessary portion of the metal layer of the active metal-containing brazing material is removed in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a plating film is formed in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • a state in which an active metal-containing brazing material having a shape substantially the same as a desired circuit pattern and slightly larger than the circuit pattern is printed on the ceramic substrate is shown. It is sectional drawing shown.
  • FIG. 1 is a cross-sectional view showing a state in which an unnecessary portion of the metal layer of the active metal-containing brazing material is removed in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which a plating film is formed in the first embodiment of the method for producing a metal-ceramic
  • FIG. 5 is a cross-sectional view showing a state in which a metal plate is joined to a ceramic substrate via an active metal-containing brazing material in a second embodiment of the method for producing a metal-ceramic circuit substrate of the present invention.
  • FIG. 7 is a cross-sectional view showing a state in which a resist having a desired circuit pattern is applied to the surface of a metal plate in the second embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 5 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 5 is a cross-sectional view showing a state where a resist is removed from a metal plate in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 5 is a cross-sectional view showing a state where an unnecessary portion of a metal layer of an active metal-containing brazing material is removed in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in which a plating film is formed in the second embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 10 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in a third embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 7 is a cross-sectional view showing a state where a resist is removed from a metal plate in a third embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • FIG. 6 is a cross-sectional view showing a state in which a plating film is formed in the third embodiment of the method for producing a metal-ceramic circuit board of the present invention.
  • a metal plate in the method for manufacturing a metal-ceramic circuit board, in which a metal plate is joined to at least one surface of the ceramic substrate via an active metal-containing brazing material, at least one of the ceramic substrates is used.
  • a reaction product layer composed mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramics of the ceramic substrate is formed on the surface of the substrate, and the active metal is mainly formed between the reaction product layer and the metal plate.
  • the reaction product layer and the metal layer are made of metal. Remove the unnecessary part of the metal plate so that it protrudes from the side of the plate, and then eliminate the need for the metal layer so that the reaction product layer protrudes from the side of the metal layer. Forming a fillet comprised of the reaction product layer by removing the portion, the metal layer with the reaction product layer (preferably a reaction product layer between the metal plate and the metal layer) to form a plating film on the exposed surface of.
  • the fillet may be formed as a fillet composed of a metal layer and a reaction product layer.
  • the active metal-containing brazing is mainly used in the metal-ceramic circuit board in which the metal plate is bonded to at least one surface of the ceramic substrate via the active metal-containing brazing material.
  • a reaction product layer made of a reaction product of the active metal of the material and the ceramic of the ceramic substrate is formed on the ceramic substrate, and a metal layer mainly made of a metal other than the active metal of the active metal-containing brazing material is formed with the reaction product.
  • a reaction product layer protrudes from the side surface of the metal layer to form a fillet, and a plating film is formed on the surface of the fillet.
  • the planar shape and size of the metal layer are preferably substantially the same as the metal plate, but the metal layer may protrude from the side surface of the metal plate to form a fillet with the reaction product. Good.
  • a metal plate such as a copper plate
  • an active metal-containing brazing material for example, a brazing material made of active metal, silver and copper
  • the metal plate is formed by electroless Ni-P plating. Even if the plating film is formed so as to cover the active metal-containing brazing material, it is considered that the plating film is only in contact with the ceramic substrate and has a very weak adhesion to the ceramic substrate.
  • the metal in the active metal-containing brazing material for example, silver or copper when using a brazing material composed of active metal, silver and copper
  • the metal in the active metal-containing brazing material reacts with sulfur. Migration occurs. Therefore, in the embodiment of the metal-ceramic circuit board and the manufacturing method thereof according to the present invention, unnecessary portions of the metal layer are removed from the brazing material (reaction product layer and metal layer) protruding from the side surface of the metal plate.
  • the ceramic substrate is made of an oxide mainly composed of alumina or silica, or a non-oxide mainly composed of aluminum nitride, silicon nitride, silicon carbide, or the like,
  • a substrate having a size of about 5 to 200 mm ⁇ 5 to 200 mm and a thickness of 0.25 to 3.0 mm (preferably 0.3 to 1.0 mm) can be used.
  • the active metal-containing brazing material preferably has a silver content in the active metal-containing brazing material of 30% by mass or more.
  • this active metal-containing brazing material 1.0 to 7.0% by mass (preferably 1.5 to 6.5% by mass) of active metal, 30 to 95% by mass (preferably 50 to 90% by mass,
  • An active metal-containing brazing material comprising preferably 60 to 80% by mass of silver and the balance copper can be used.
  • the active metal component of the active metal-containing brazing material at least one of titanium, zirconium, hafnium and hydrides thereof can be used.
  • the active metal of the active metal-containing brazing material is titanium, and titanium nitride is preferably generated as a reaction product.
  • the active metal contains It is preferable that the active metal of the brazing material is titanium and titanium oxide is generated as a reaction product.
  • the metal plate is made of a single metal such as copper, aluminum or nickel, a copper alloy such as manganin or brass, or an alloy such as stainless steel, and a metal foil or metal plate having a thickness of 0.1 to 2.0 mm.
  • a metal foil or metal plate made of copper or a copper alloy and having a thickness of 0.1 to 0.5 mm is preferably used.
  • the fillet width (the length of the portion where the reaction product layer extends along the ceramic substrate and protrudes from the side surface of the metal plate) is preferably 20 to 150 ⁇ m, and more preferably 30 to 100 ⁇ m. .
  • the thickness of the protruding portion of the reaction product layer formed as a fillet is preferably 0.05 to 2 ⁇ m, and more preferably 0.1 to 1.0 ⁇ m.
  • the plating film formed on the exposed surfaces of the metal layer and the reaction product layer is preferably a nickel plating film.
  • paste-like active metal-containing brazing filler metal 12 is screen-printed on both surfaces of a ceramic substrate 10, and a metal plate 14 is disposed on the active metal-containing brazing filler metal 12 so as to be substantially vacuum.
  • the metal plate 14 is bonded to both surfaces of the ceramic substrate 10 by cooling after heating in a non-oxidizing atmosphere.
  • the active metal-containing brazing material 12 is a layer (reaction product) formed mainly by the reaction product of the active metal of the active metal-containing brazing material 12 and the ceramics of the ceramic substrate 10 as shown in FIG. 1B.
  • the reaction product layer 12a is a layer having a low content of metals other than the active metal
  • the metal layer 12b is a layer having a high content of metals other than the active metal.
  • EPMA electron probe microanalyzer
  • a resist 16 having a desired circuit pattern is applied to the surface of the metal plate 14 bonded to both surfaces of the ceramic substrate 10, and as shown in FIG. After unnecessary portions of the metal plate 14 are removed by etching with an iron chloride etchant or the like, the resist 16 is removed as shown in FIG. 1E.
  • an unnecessary portion of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or a compound that forms a complex with an active metal such as amine tetraacetic acid (EDTA) during ethylene.
  • an aqueous solution containing hydrofluoric acid or a compound that forms a complex with an active metal such as amine tetraacetic acid (EDTA) during ethylene.
  • EDTA amine tetraacetic acid
  • an unnecessary portion of the metal layer 12b of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA.
  • a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12, and a fillet (reaction product layer 12a) having a predetermined width is formed.
  • a metal-ceramic circuit board is obtained in which 12a extends along each of both surfaces of the ceramic substrate 10 to form a portion protruding from the side surface of the metal layer 12b.
  • the reaction product layer 12a is slower in dissolving in an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA, compared to the metal layer 12b. If the treatment with this aqueous solution is stopped when the reaction product layer 12a is exposed to the metal layer 12b, as shown in FIG. 1J, the reaction product layer 12a of the active metal-containing brazing material 12 remains, and the metal layer 12b remains. Unnecessary portions can be removed. Whether or not the reaction product layer 12a is exposed can be easily determined visually by the color of the surface, but can also be easily confirmed using an electronic probe microanalyzer (EPMA) or the like.
  • EPMA electronic probe microanalyzer
  • the active metal-containing brazing material 12 is a layer (reaction product) formed mainly by a reaction product of the active metal of the active metal-containing brazing material 12 and ceramics of the ceramic substrate 10 as shown in FIG. 2B.
  • the metal of the desired circuit pattern is formed on the surface of the metal plate 14 bonded to both surfaces of the ceramic substrate 10 (the position corresponding to the metal plate 14 of the desired circuit pattern).
  • a resist 18 having the same shape and size as the plate 14 is applied, and as shown in FIG. 2D, unnecessary portions of the metal plate 14 are removed by etching with a cupric chloride etchant or an iron chloride etchant. After the brazing material 12 protrudes from the side surface of the metal plate 14, the resist 16 is removed as shown in FIG. 2E.
  • an unnecessary portion of the metal layer 12b of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA.
  • a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12, and a fillet (reaction product layer 12a) having a predetermined width is formed.
  • a metal-ceramic circuit board is obtained in which 12a extends along each of both surfaces of the ceramic substrate 10 to form a portion protruding from the side surface of the metal layer 12b.
  • the peripheral portion of the upper surface of the metal plate 14 is exposed as shown in FIG. 3A.
  • a resist 22 smaller than the metal plate 14 is applied on the metal plate 14, and unnecessary portions of the metal plate 14 (the metal plate 14 are coated with a cupric chloride etchant or an iron chloride etchant as shown in FIG. 3B. 3), the metal layer 12b protrudes from the side surface of the metal plate 14, and then the resist 22 is removed as shown in FIG. 3C. Thereafter, as shown in FIG.
  • a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12 (a reaction product layer 12a having a predetermined width and a metal layer shorter than the reaction product layer 12a).
  • a metal-ceramic circuit board is obtained in which fillets (the reaction product layer 12a and the metal layer 12b extend along each of both surfaces of the ceramic substrate 10 and protrude from the side surfaces of the metal plate 14).
  • an ultraviolet-curing alkali-peeling resist having a predetermined circuit pattern is applied on both sides of the copper plate by screen printing, cured by irradiating the resist with ultraviolet light, and then etched with an etching solution containing copper chloride and hydrogen peroxide. Unnecessary portions of the copper plate were etched, and the resist was removed with an aqueous sodium hydroxide solution to form a copper circuit.
  • the active metal-containing brazing material protrudes from the side surface of the copper plate, and then the resist is removed. It was. In addition, the thickness of the active metal containing brazing material which protruded from the side part of the copper plate was about 15 micrometers.
  • a metal layer of an active metal-containing brazing material (mainly By removing unnecessary portions of the layer formed of Ag and Cu, a fillet having a thickness of about 1 ⁇ m and a width of 60 ⁇ m (mainly a reaction product layer formed by TiN as a reaction product of Ti and AlN)
  • a 3 ⁇ m thick plating film is formed by electroless Ni-P plating so as to cover the copper plate and the active metal-containing brazing material (metal layer and reaction product layer) As a result, a metal-ceramic circuit board was obtained.
  • the thus produced metal-ceramic circuit board was subjected to the following sulfur flower test to evaluate the occurrence of migration.
  • a gel TSE3051 manufactured by Momentive
  • This metal-ceramic circuit board was put into a glass container having a volume of about 1200 cm 3 containing 4 g of sulfur flower and 20 mL of distilled water for controlling relative humidity, sealed and allowed to stand at 80 ° C. for 500 hours.
  • the portion of the peripheral edge of the copper plate with a width of about 1 mm was observed from above with an electron probe microanalyzer (EPMA) at a magnification of 500 times, and the portion where Ag (and S) protruded from the Ni-P plating film (a point of 5 ⁇ m or more in width) If the number of occurrences is 0 to less than 10, no migration occurs, and migration occurs if the number is 10 to 20. If the number of occurrences is 21 to 100, it is evaluated that a large number of migrations occur. If the number exceeds 100, if there are places with a width of 100 ⁇ m or more, or if migration occurs in almost all of the observation area, migration occurs. The occurrence was evaluated as remarkable. As a result, in the metal-ceramic circuit board produced in this example, there was no migration occurrence place and no migration occurred.
  • EPMA electron probe microanalyzer
  • a sample obtained by cutting a portion of the metal-ceramic circuit board manufactured in this example where the copper plate is bonded to both surfaces of the aluminum nitride substrate substantially perpendicularly to the main surface of the aluminum nitride substrate is embedded in the resin.
  • the ratio Cu / Ti between the height of the Ti peak detected between 190 and 195 ° and the height of the Cu peak detected between 105 and 110 ° in the spectral crystal LiF when irradiated with the beam is expressed as follows.
  • the reaction product layer has a Cu peak height of 101, Ti peak height of 72, Cu / Ti of 1.4, and the metal layer has a Cu peak height of 600, Ti
  • the peak height was 25 and Cu / Ti was 24.
  • Cu / Ti is 5 or less in the reaction product layer and Cu / Ti is 10 or more in the metal layer, the reaction product layer and the metal layer can be clearly distinguished.
  • the thickness of the reaction product layer is as thin as about 1 ⁇ m out of the thickness of about 15 ⁇ m of the active metal-containing brazing material, Cu in the reaction product layer detected by EPMA includes Cu in the metal layer. However, even if the amount (Cu in the metal layer) is added, the reaction product layer and the metal layer can be clearly distinguished.
  • the copper plate of the metal-ceramic circuit board produced in this example was peeled off, and the surface of the metal layer of the active metal brazing material and the reaction product layer (the part where the reaction product layer protruded from the side surface of the metal layer)
  • Surface analysis (mapping analysis) of X-rays (characteristic X-rays) unique to the elements that are magnified 1500 times by EPMA and constitute each surface confirmed that the metal layer contains Cu, Ag, and Ti. It was confirmed that N and Ti were contained in the reaction product layer. In addition, it was not confirmed that Cu and Ag are contained in the reaction product layer.
  • the metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this example was obtained. Then, the number of locations where migration occurred was 11, and the occurrence of migration was negligible.
  • Example 1 except that the active metal-containing brazing material was protruded from the side surface portion of the copper plate and unnecessary portions of the metal layer (layer mainly formed of Ag and Cu) of the active metal-containing brazing material were not removed.
  • a metal-ceramic circuit board was obtained by the same method as described above.
  • the metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this comparative example was obtained. Then, the number of locations where migration occurred was very large (over 100), and the occurrence of migration was significant.
  • Example 2 A metal-ceramic circuit board was obtained in the same manner as in Example 1 except that the active metal-containing brazing material was not protruded from the side surface of the copper plate.
  • the metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this comparative example was obtained. Then, the number of locations where migration occurred was very large (over 100), and the occurrence of migration was significant.
  • the reaction product layer (mainly composed of the reaction product of the active metal of the active metal-containing brazing material and the ceramics of the ceramic substrate) was formed (mainly the activity of the active metal-containing brazing material).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides: a metal-ceramic circuit board having a metal plate bonded to a ceramic substrate through an active material-containing brazing material, wherein the occurrence of migration can be sufficiently suppressed; and a method of manufacturing the same. The metal-ceramic circuit board is provided with a metal plate 14 bonded to a ceramic substrate 10 through an active material-containing brazing material 12, wherein: a reaction product layer 12a mainly comprising a reaction product, which is obtained from the active metal of the active material-containing brazing material and ceramics of the ceramic substrate, is formed on the ceramic substrate; a metal layer 12b mainly comprising a metal other than the active metal of the active material-containing brazing material is formed between the reaction product and the metal plate; the reaction product layer protrudes from side surfaces of the metal layer to form a fillet; and plating films are formed on exposed surfaces of the metal layer and the reaction product layer (preferably, the metal plate, the metal layer, and the reaction product layer).

Description

金属-セラミックス回路基板およびその製造方法Metal-ceramic circuit board and manufacturing method thereof
 本発明は、金属-セラミックス回路基板およびその製造方法に関し、特に、活性金属含有ろう材により金属板がセラミックス部材に接合された金属-セラミックス回路基板およびその製造方法に関する。 The present invention relates to a metal-ceramic circuit board and a method for manufacturing the same, and more particularly to a metal-ceramic circuit board in which a metal plate is bonded to a ceramic member with an active metal-containing brazing material and a method for manufacturing the same.
 従来、電気自動車、電車、工作機械などの大電力を制御するために、パワーモジュールが使用されている。このようなパワーモジュール用の絶縁基板として、セラミックス基板の一方の面に接合された金属回路板上のチップ部品や端子の半田付けが必要な部分などにめっきが施された金属-セラミックス回路基板が使用されている。 Conventionally, power modules have been used to control high power in electric vehicles, trains, machine tools, and the like. As an insulating substrate for such a power module, there is a metal-ceramic circuit substrate in which a chip component on a metal circuit board bonded to one surface of a ceramic substrate or a portion where terminals need to be soldered is plated. in use.
 このような金属-セラミックス回路基板では、接合後の熱衝撃によりセラミックス基板と金属回路板との間に発生する熱膨張差による熱応力により、セラミックス基板にクラックが発生し易い。 In such a metal-ceramic circuit board, cracks are likely to occur in the ceramic substrate due to thermal stress due to a thermal expansion difference generated between the ceramic substrate and the metal circuit board due to thermal shock after bonding.
 このような熱応力を緩和させる方法として、金属回路板の沿面部分を薄くする方法、すなわち金属回路板の周縁部に段構造またはフィレット(金属回路板をセラミックス基板に接合するためのろう材のはみ出し部)を形成する方法が知られている(例えば、特許文献1~3参照)。 As a method of relieving such thermal stress, a method of thinning the creeping portion of the metal circuit board, that is, a stepped structure or a fillet (the protrusion of the brazing material for joining the metal circuit board to the ceramic substrate) at the peripheral edge of the metal circuit board. Is known (for example, see Patent Documents 1 to 3).
 しかし、(銅回路板などの)金属回路板をセラミックス基板に接合するための活性金属含有ろう材のはみ出し部(フィレット)を形成した金属-セラミックス回路基板をパワーモジュールに組み込むと、セラミックス基板上の金属回路板の回路パターン間などにおいて、活性金属含有ろう材中の金属(例えば、活性金属と銀と銅からなるろう材を使用した場合に銀または銅)のマイグレーションが生じて、絶縁不良を起こすおそれがある。 However, when a metal-ceramic circuit board formed with a protruding portion (fillet) of a brazing material containing active metal for joining a metal circuit board (such as a copper circuit board) to the ceramic board is incorporated into the power module, Migration between metals in the active metal-containing brazing material (for example, silver or copper when using a brazing material composed of active metal, silver and copper) occurs between the circuit patterns of the metal circuit board, resulting in poor insulation. There is a fear.
 このようなマイグレーションを防止する方法として、金属板の端部からはみ出したろう材のはみ出し部の表面に無電解Ni-Pめっきを施す方法が知られている(例えば、特許文献4参照)。 As a method for preventing such migration, a method is known in which electroless Ni—P plating is applied to the surface of the protruding portion of the brazing material protruding from the end of the metal plate (see, for example, Patent Document 4).
特開平10-125821号公報(段落番号0008)Japanese Patent Laid-Open No. 10-125821 (paragraph number 0008) 特開2001-332854号公報(段落番号0014-0019)JP 2001-332854 A (paragraph number 0014-0019) 特開2004-307307号公報(段落番号0012-0014)Japanese Patent Application Laid-Open No. 2004-307307 (paragraph numbers 0012-0014) 特開2006-228918号公報(段落番号0021-0022)JP 2006-228918 A (paragraph numbers 0021-0022)
 しかし、活性金属含有ろう材のはみ出し部にNi-Pめっきを施しても、金属-セラミックス回路基板をパワーモジュールに組み込む際のアセンブリ工程における(半田付けなどの)熱処理や絶縁ゲルによる被覆によってマイグレーションが発生するのを十分に抑制することができない。 However, even if Ni-P plating is applied to the protruding portion of the active metal-containing brazing material, migration may occur due to heat treatment (such as soldering) or coating with an insulating gel in the assembly process when the metal-ceramic circuit board is assembled into the power module. It is not possible to sufficiently suppress the occurrence.
 したがって、本発明は、このような従来の問題点に鑑み、活性金属含有ろう材によりセラミックス基板に金属板を接合した金属-セラミックス回路基板において、マイグレーションの発生を十分に抑制することができる、金属-セラミックス回路基板およびその製造方法を提供することを目的とする。 Therefore, in view of such a conventional problem, the present invention provides a metal-ceramic circuit board in which a metal plate is bonded to a ceramic substrate with an active metal-containing brazing material, and the occurrence of migration can be sufficiently suppressed. An object is to provide a ceramic circuit board and a method for manufacturing the same.
 本発明者らは、上記課題を解決するために鋭意研究した結果、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板を接合する金属-セラミックス回路基板の製造方法において、セラミックス基板の少なくとも一方の面に主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層を形成するとともに、この反応生成物層と金属板との間に主に活性金属含有ろう材の活性金属以外の金属からなる金属層を形成して、セラミックス基板の少なくとも一方に反応生成物層と金属層を介して金属板を接合した後、反応生成物層と金属層が金属板の側面部からはみ出すように金属板の不要部分を除去し、その後、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去して反応生成物層からなるフィレットを形成し、金属層と反応生成物層の露出面にめっき皮膜を形成することにより、マイグレーションの発生を十分に抑制することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that in a method for producing a metal-ceramic circuit board in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, ceramics A reaction product layer composed mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramic of the ceramic substrate is formed on at least one surface of the substrate, and between the reaction product layer and the metal plate. A metal layer mainly composed of a metal other than the active metal of the active metal-containing brazing material is formed, and the reaction product layer and the reaction product layer are bonded to at least one of the ceramic substrates via the reaction product layer and the metal layer. Unnecessary portions of the metal plate are removed so that the metal layer protrudes from the side surface of the metal plate, and then the metal layer is removed so that the reaction product layer protrudes from the side surface of the metal layer. The formation of a fillet consisting of a reaction product layer by removing the necessary part, and the formation of a plating film on the exposed surface of the metal layer and the reaction product layer, found that the occurrence of migration can be sufficiently suppressed, The present invention has been completed.
 すなわち、本発明による金属-セラミックス回路基板の製造方法は、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板を接合する金属-セラミックス回路基板の製造方法において、セラミックス基板の少なくとも一方の面に主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層を形成するとともに、この反応生成物層と金属板との間に主に活性金属含有ろう材の活性金属以外の金属からなる金属層を形成して、セラミックス基板の少なくとも一方に反応生成物層と金属層を介して金属板を接合した後、反応生成物層と金属層が金属板の側面部からはみ出すように金属板の不要部分を除去し、その後、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去して反応生成物層からなるフィレットを形成し、金属層と反応生成物層の露出面にめっき皮膜を形成することを特徴とする。 That is, the method for producing a metal-ceramic circuit board according to the present invention includes a method for producing a metal-ceramic circuit board in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material. A reaction product layer consisting mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramic of the ceramic substrate is formed on one surface, and the active product is mainly active between the reaction product layer and the metal plate. After forming a metal layer made of a metal other than the active metal of the metal-containing brazing material and joining the metal plate to at least one of the ceramic substrates via the reaction product layer and the metal layer, the reaction product layer and the metal layer are Remove the unnecessary part of the metal plate so that it protrudes from the side part of the metal plate, and then the metal so that the reaction product layer protrudes from the side part of the metal layer. Unnecessary portion is removed fillets made of the reaction product layer to form, and forming a plating film on the exposed surface of the metal layer with the reaction product layer of.
 この金属-セラミックス回路基板の製造方法において、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去した後に、金属層が金属板の側面部からはみ出すように金属板の不要な部分を除去して、フィレットを金属層と反応生成物層からなるフィレットとして形成してもよい。また、金属板が銅または銅合金からなるのが好ましく、セラミックス基板が窒化物または酸化物からなるのが好ましい。また、活性金属含有ろう材が活性金属と銀と銅からなるろう材であるのが好ましく、活性金属含有ろう材が錫を含んでもよい。また、活性金属含有ろう材中の銀の含有量が30質量%以上であるのが好ましい。また、めっき皮膜が無電解Ni合金めっきにより形成されるのが好ましい。また、セラミックス基板が窒化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として窒化チタンが生成されるのが好ましく、セラミックス基板が酸化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として酸化チタンが生成されるのが好ましい。 In this metal-ceramic circuit board manufacturing method, after removing unnecessary portions of the metal layer so that the reaction product layer protrudes from the side surface of the metal layer, the metal plate protrudes from the side surface of the metal plate. The fillet may be formed as a fillet composed of a metal layer and a reaction product layer. The metal plate is preferably made of copper or a copper alloy, and the ceramic substrate is preferably made of a nitride or an oxide. The active metal-containing brazing material is preferably a brazing material made of active metal, silver and copper, and the active metal-containing brazing material may contain tin. Moreover, it is preferable that content of the silver in an active metal containing brazing material is 30 mass% or more. The plating film is preferably formed by electroless Ni alloy plating. Further, when the ceramic substrate is made of nitride, the active metal of the active metal-containing brazing material is titanium, and titanium nitride is preferably generated as a reaction product. When the ceramic substrate is made of oxide, the active metal contains It is preferable that the active metal of the brazing material is titanium and titanium oxide is generated as a reaction product.
 また、本発明による金属-セラミックス回路基板は、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板が接合した金属-セラミックス回路基板において、主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層がセラミックス基板上に形成され、主に活性金属含有ろう材の活性金属以外の金属からなる金属層が反応生成物と金属板との間に形成され、反応生成物層が金属層の側面からはみ出してフィレットを形成し、金属層と反応生成物層の露出面にめっき皮膜が形成されていることを特徴とする。 The metal-ceramic circuit board according to the present invention is an active metal mainly composed of an active metal-containing brazing material in a metal-ceramic circuit board in which a metal plate is joined to at least one surface of the ceramic substrate via an active metal-containing brazing material. Is formed on the ceramic substrate, and a metal layer mainly composed of a metal other than the active metal of the active metal-containing brazing material is formed between the reaction product and the metal plate. The reaction product layer protrudes from the side surface of the metal layer to form a fillet, and a plating film is formed on the exposed surface of the metal layer and the reaction product layer.
 この金属-セラミックス回路基板において、金属層の平面形状およびその大きさが金属板と略同一であるのが好ましい。あるいは、金属層が金属板の側面からはみ出して反応生成物とともにフィレットを形成してもよい。また、金属板が銅または銅合金からなるのが好ましく、セラミックス基板が窒化物または酸化物からなるのが好ましい。また、活性金属含有ろう材が活性金属と銀と銅からなるろう材であるのが好ましく、活性金属含有ろう材が錫を含んでもよい。また、活性金属含有ろう材中の銀の含有量が30質量%以上であるのが好ましい。また、めっき皮膜がNi合金めっきからなるのが好ましい。また、セラミックス基板が窒化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として窒化チタンが生成されているのが好ましく、セラミックス基板が酸化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として酸化チタンが生成されているのが好ましい。 In this metal-ceramic circuit board, the planar shape and size of the metal layer are preferably substantially the same as the metal plate. Or a metal layer may protrude from the side surface of a metal plate, and may form a fillet with a reaction product. The metal plate is preferably made of copper or a copper alloy, and the ceramic substrate is preferably made of a nitride or an oxide. The active metal-containing brazing material is preferably a brazing material made of active metal, silver and copper, and the active metal-containing brazing material may contain tin. Moreover, it is preferable that content of the silver in an active metal containing brazing material is 30 mass% or more. The plating film is preferably made of Ni alloy plating. When the ceramic substrate is made of a nitride, the active metal of the active metal-containing brazing material is preferably titanium, and titanium nitride is preferably produced as a reaction product. When the ceramic substrate is made of an oxide, the active metal It is preferable that the active metal of the brazing filler metal is titanium and titanium oxide is generated as a reaction product.
 本発明によれば、活性金属含有ろう材によりセラミックス基板に金属板を接合した金属-セラミックス回路基板のマイグレーションの発生を十分に抑制することができる。 According to the present invention, it is possible to sufficiently suppress the occurrence of migration of a metal-ceramic circuit board in which a metal plate is bonded to a ceramic board with an active metal-containing brazing material.
本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、セラミックス基板に活性金属含有ろう材を印刷した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which an active metal-containing brazing material is printed on a ceramic substrate in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、活性金属含有ろう材を介してセラミックス基板に金属板を接合した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which a metal plate is joined to a ceramic substrate via an active metal-containing brazing material in the first embodiment of the method for producing a metal-ceramic circuit substrate of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板の表面に所望の回路パターンのレジストを塗布した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which a resist having a desired circuit pattern is applied to the surface of a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板の不要な部分をエッチング除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板からレジストを除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where a resist is removed from a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、活性金属含有ろう材の不要な部分を除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where an unnecessary portion of the active metal-containing brazing material is removed in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板の表面に金属板より小さいレジストを塗布した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which a resist smaller than a metal plate is applied to the surface of the metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板の不要な部分をエッチング除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、金属板からレジストを除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state where a resist is removed from a metal plate in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、活性金属含有ろう材の金属層の不要な部分を除去した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which an unnecessary portion of the metal layer of the active metal-containing brazing material is removed in the first embodiment of the metal-ceramic circuit board manufacturing method of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第1の実施の形態において、めっき皮膜を形成した状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which a plating film is formed in the first embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、所望の回路パターンと略同一の形状で且つその回路パターンより少し大きい活性金属含有ろう材をセラミックス基板に印刷した状態を示す断面図である。In the second embodiment of the metal-ceramic circuit board manufacturing method of the present invention, a state in which an active metal-containing brazing material having a shape substantially the same as a desired circuit pattern and slightly larger than the circuit pattern is printed on the ceramic substrate is shown. It is sectional drawing shown. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、活性金属含有ろう材を介してセラミックス基板に金属板を接合した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a metal plate is joined to a ceramic substrate via an active metal-containing brazing material in a second embodiment of the method for producing a metal-ceramic circuit substrate of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、金属板の表面に所望の回路パターンのレジストを塗布した状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state in which a resist having a desired circuit pattern is applied to the surface of a metal plate in the second embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、金属板の不要な部分をエッチング除去した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、金属板からレジストを除去した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where a resist is removed from a metal plate in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、活性金属含有ろう材の金属層の不要な部分を除去した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state where an unnecessary portion of a metal layer of an active metal-containing brazing material is removed in a second embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第2の実施の形態において、めっき皮膜を形成した状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a plating film is formed in the second embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第3の実施の形態において、活性金属含有ろう材の金属層の不要な部分を除去した後に金属板より小さいレジストを金属板の表面に塗布した状態を示す断面図である。In the third embodiment of the metal-ceramic circuit board manufacturing method of the present invention, after removing unnecessary portions of the metal layer of the active metal-containing brazing material, a resist smaller than the metal plate is applied to the surface of the metal plate FIG. 本発明の金属-セラミックス回路基板の製造方法の第3の実施の形態において、金属板の不要な部分をエッチング除去した状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state where unnecessary portions of a metal plate are removed by etching in a third embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第3の実施の形態において、金属板からレジストを除去した状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state where a resist is removed from a metal plate in a third embodiment of the method for producing a metal-ceramic circuit board of the present invention. 本発明の金属-セラミックス回路基板の製造方法の第3の実施の形態において、めっき皮膜を形成した状態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a plating film is formed in the third embodiment of the method for producing a metal-ceramic circuit board of the present invention.
 金属-セラミックス回路基板の製造方法の実施の形態では、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板を接合する金属-セラミックス回路基板の製造方法において、セラミックス基板の少なくとも一方の面に主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層を形成するとともに、この反応生成物層と金属板との間に主に活性金属含有ろう材の活性金属以外の金属からなる金属層を形成して、セラミックス基板の少なくとも一方に反応生成物層と金属層を介して金属板を接合した後、反応生成物層と金属層が金属板の側面部からはみ出すように金属板の不要部分を除去し、その後、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去して反応生成物層からなるフィレットを形成し、金属層と反応生成物層(好ましくは金属板と金属層と反応生成物層)の露出面にめっき皮膜を形成する。また、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去した後に、金属層が金属板の側面部からはみ出すように金属板の不要な部分を除去して、フィレットを金属層と反応生成物層からなるフィレットとして形成してもよい。 In an embodiment of a method for manufacturing a metal-ceramic circuit board, in the method for manufacturing a metal-ceramic circuit board, in which a metal plate is joined to at least one surface of the ceramic substrate via an active metal-containing brazing material, at least one of the ceramic substrates is used. A reaction product layer composed mainly of a reaction product of the active metal of the active metal-containing brazing material and the ceramics of the ceramic substrate is formed on the surface of the substrate, and the active metal is mainly formed between the reaction product layer and the metal plate. After forming a metal layer made of a metal other than the active metal of the brazing filler metal and joining the metal plate to at least one of the ceramic substrates via the reaction product layer and the metal layer, the reaction product layer and the metal layer are made of metal. Remove the unnecessary part of the metal plate so that it protrudes from the side of the plate, and then eliminate the need for the metal layer so that the reaction product layer protrudes from the side of the metal layer. Forming a fillet comprised of the reaction product layer by removing the portion, the metal layer with the reaction product layer (preferably a reaction product layer between the metal plate and the metal layer) to form a plating film on the exposed surface of. In addition, after removing the unnecessary portion of the metal layer so that the reaction product layer protrudes from the side surface portion of the metal layer, the unnecessary portion of the metal plate is removed so that the metal layer protrudes from the side surface portion of the metal plate, The fillet may be formed as a fillet composed of a metal layer and a reaction product layer.
 また、本発明による金属-セラミックス回路基板の実施の形態では、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板が接合した金属-セラミックス回路基板において、主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層がセラミックス基板上に形成され、主に活性金属含有ろう材の活性金属以外の金属からなる金属層が反応生成物と金属板との間に形成され、反応生成物層が金属層の側面からはみ出してフィレットを形成し、このフィレットの表面にめっき皮膜が形成されている。この金属-セラミックス回路基板では、金属層の平面形状およびその大きさが金属板と略同一であるのが好ましいが、金属層が金属板の側面からはみ出して反応生成物とともにフィレットを形成してもよい。 In the embodiment of the metal-ceramic circuit board according to the present invention, in the metal-ceramic circuit board in which the metal plate is bonded to at least one surface of the ceramic substrate via the active metal-containing brazing material, the active metal-containing brazing is mainly used. A reaction product layer made of a reaction product of the active metal of the material and the ceramic of the ceramic substrate is formed on the ceramic substrate, and a metal layer mainly made of a metal other than the active metal of the active metal-containing brazing material is formed with the reaction product. A reaction product layer protrudes from the side surface of the metal layer to form a fillet, and a plating film is formed on the surface of the fillet. In this metal-ceramic circuit board, the planar shape and size of the metal layer are preferably substantially the same as the metal plate, but the metal layer may protrude from the side surface of the metal plate to form a fillet with the reaction product. Good.
 活性金属含有ろう材(例えば、活性金属と銀と銅からなるろう材)によりセラミックス基板に(銅板などの)金属板を接合した金属-セラミックス回路基板では、無電解Ni-Pめっきにより金属板と活性金属含有ろう材を覆うようにめっき皮膜を形成しても、このめっき皮膜は、セラミックス基板と接触しているだけで、セラミックス基板との密着力が非常に弱いと考えられる。そのため、金属-セラミックス回路基板をパワーモジュールに組み込む際のアセンブリ工程における熱履歴などによって応力が生じると、めっき皮膜のセラミックス基板との接触面がセラミックス基板から離れて、めっき皮膜とセラミックス基板の間に微細な間隙が生じて、活性金属含有ろう材が露出することがわかった。 In a metal-ceramic circuit board in which a metal plate (such as a copper plate) is joined to a ceramic substrate with an active metal-containing brazing material (for example, a brazing material made of active metal, silver and copper), the metal plate is formed by electroless Ni-P plating. Even if the plating film is formed so as to cover the active metal-containing brazing material, it is considered that the plating film is only in contact with the ceramic substrate and has a very weak adhesion to the ceramic substrate. Therefore, if stress is generated due to thermal history in the assembly process when the metal-ceramic circuit board is assembled in the power module, the contact surface of the plating film with the ceramic substrate separates from the ceramic substrate, and the space between the plating film and the ceramic substrate It was found that a fine gap was formed and the active metal-containing brazing material was exposed.
 このように露出した活性金属ろう材が硫黄と接触すると、活性金属含有ろう材中の金属(例えば、活性金属と銀と銅からなるろう材を使用した場合に銀または銅)が硫黄と反応して、マイグレーションが生じる。そのため、本発明による金属-セラミックス回路基板およびその製造方法の実施の形態では、金属板の側面部からはみ出したろう材(反応生成物層と金属層)から金属層の不要な部分を除去して金属板の側面部に反応生成物層からなるフィレットを形成し、金属層と反応生成物層(好ましくは金属板と金属層と反応生成物層)の露出面にめっき皮膜を形成することにより、めっき皮膜とセラミックス基板の間に微細な間隙が生じても、活性金属ろう材の金属層が露出しないようにして、マイグレーションを防止している。 When the exposed active metal brazing material comes into contact with sulfur, the metal in the active metal-containing brazing material (for example, silver or copper when using a brazing material composed of active metal, silver and copper) reacts with sulfur. Migration occurs. Therefore, in the embodiment of the metal-ceramic circuit board and the manufacturing method thereof according to the present invention, unnecessary portions of the metal layer are removed from the brazing material (reaction product layer and metal layer) protruding from the side surface of the metal plate. By forming a fillet composed of a reaction product layer on the side surface of the plate and forming a plating film on the exposed surface of the metal layer and the reaction product layer (preferably the metal plate, the metal layer, and the reaction product layer) Even if a fine gap is formed between the film and the ceramic substrate, migration is prevented by preventing the metal layer of the active metal brazing material from being exposed.
 上記の金属-セラミックス回路基板およびその製造方法において、セラミックス基板として、アルミナやシリカなどを主成分とする酸化物、または窒化アルミニウムや窒化ケイ素や炭化ケイ素などを主成分とする非酸化物からなり、5~200mm×5~200mm程度の大きさで0.25~3.0mm(好ましくは0.3~1.0mm)の厚さの基板を使用することができる。 In the metal-ceramic circuit board and the manufacturing method thereof, the ceramic substrate is made of an oxide mainly composed of alumina or silica, or a non-oxide mainly composed of aluminum nitride, silicon nitride, silicon carbide, or the like, A substrate having a size of about 5 to 200 mm × 5 to 200 mm and a thickness of 0.25 to 3.0 mm (preferably 0.3 to 1.0 mm) can be used.
 活性金属含有ろう材は、活性金属含有ろう材中の銀の含有量が30質量%以上であるのが好ましい。この活性金属含有ろう材として、1.0~7.0質量%(好ましくは1.5~6.5質量%)の活性金属と、30~95質量%(好ましくは50~90質量%、さらに好ましくは60~80質量%)の銀と、残部として銅とからなる活性金属含有ろう材を使用することができる。この活性金属含有ろう材の活性金属成分として、チタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種以上を使用することができる。 The active metal-containing brazing material preferably has a silver content in the active metal-containing brazing material of 30% by mass or more. As this active metal-containing brazing material, 1.0 to 7.0% by mass (preferably 1.5 to 6.5% by mass) of active metal, 30 to 95% by mass (preferably 50 to 90% by mass, An active metal-containing brazing material comprising preferably 60 to 80% by mass of silver and the balance copper can be used. As the active metal component of the active metal-containing brazing material, at least one of titanium, zirconium, hafnium and hydrides thereof can be used.
 なお、セラミックス基板が窒化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として窒化チタンが生成されるのが好ましく、セラミックス基板が酸化物からなる場合、活性金属含有ろう材の活性金属がチタンであり、反応生成物として酸化チタンが生成されるのが好ましい。 When the ceramic substrate is made of nitride, it is preferable that the active metal of the active metal-containing brazing material is titanium, and titanium nitride is preferably generated as a reaction product. When the ceramic substrate is made of oxide, the active metal contains It is preferable that the active metal of the brazing material is titanium and titanium oxide is generated as a reaction product.
 また、金属板として、銅、アルミニウム、ニッケルなどの単一金属、マンガニンや黄銅などの銅合金、またはステンレスなどの合金からなり、0.1~2.0mmの厚さの金属箔または金属板を使用することができ、銅または銅合金からなる0.1~0.5mmの厚さの金属箔または金属板を使用するのが好ましい。 The metal plate is made of a single metal such as copper, aluminum or nickel, a copper alloy such as manganin or brass, or an alloy such as stainless steel, and a metal foil or metal plate having a thickness of 0.1 to 2.0 mm. A metal foil or metal plate made of copper or a copper alloy and having a thickness of 0.1 to 0.5 mm is preferably used.
 また、フィレットの幅(反応生成物層がセラミックス基板に沿って延びて金属板の側面からはみ出した部分の長さ)は、20~150μmであるのが好ましく、30~100μmであるのがさらに好ましい。また、フィレットとして形成された反応生成物層のはみ出し部分の厚さは、0.05~2μmであるのが好ましく、0.1~1.0μmであるのがさらに好ましい。 The fillet width (the length of the portion where the reaction product layer extends along the ceramic substrate and protrudes from the side surface of the metal plate) is preferably 20 to 150 μm, and more preferably 30 to 100 μm. . The thickness of the protruding portion of the reaction product layer formed as a fillet is preferably 0.05 to 2 μm, and more preferably 0.1 to 1.0 μm.
 また、金属層と反応生成物層(好ましくは金属板と金属層と反応生成物層)の露出面に形成されるめっき皮膜は、ニッケルめっき皮膜などであるのが好ましい。 The plating film formed on the exposed surfaces of the metal layer and the reaction product layer (preferably the metal plate, the metal layer, and the reaction product layer) is preferably a nickel plating film.
 以下、添付図面を参照して、本発明による金属-セラミックス回路基板の製造方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a method for manufacturing a metal-ceramic circuit board according to the present invention will be described in detail with reference to the accompanying drawings.
[第1の実施の形態]
 図1A~図1Bに示すように、セラミックス基板10の両面にペースト状の活性金属含有ろう材12をスクリーン印刷し、その活性金属含有ろう材12上に金属板14を配置し、実質的に真空または非酸化性雰囲気中において加熱した後に冷却することにより、セラミックス基板10の両面に金属板14を接合する。この接合により、活性金属含有ろう材12は、図1Bに示すように、主に活性金属含有ろう材12の活性金属とセラミックス基板10のセラミックスとの反応生成物によって形成された層(反応生成物層)12aと、主に活性金属含有ろう材12の活性金属以外の金属によって形成された層(金属層)12bになる。反応生成物層12aは、活性金属以外の金属の含有量が低い層であり、金属層12bは、活性金属以外の金属の含有量が高い層である。なお、活性金属含有ろう材12が反応生成物層12aと金属層12bになることは、電子プローブマイクロアナライザ(EPMA)などにより、容易に確認することができる。
[First Embodiment]
As shown in FIGS. 1A to 1B, paste-like active metal-containing brazing filler metal 12 is screen-printed on both surfaces of a ceramic substrate 10, and a metal plate 14 is disposed on the active metal-containing brazing filler metal 12 so as to be substantially vacuum. Alternatively, the metal plate 14 is bonded to both surfaces of the ceramic substrate 10 by cooling after heating in a non-oxidizing atmosphere. As a result of this joining, the active metal-containing brazing material 12 is a layer (reaction product) formed mainly by the reaction product of the active metal of the active metal-containing brazing material 12 and the ceramics of the ceramic substrate 10 as shown in FIG. 1B. Layer) 12a and a layer (metal layer) 12b formed mainly by a metal other than the active metal of the active metal-containing brazing material 12. The reaction product layer 12a is a layer having a low content of metals other than the active metal, and the metal layer 12b is a layer having a high content of metals other than the active metal. In addition, it can be easily confirmed by an electron probe microanalyzer (EPMA) that the active metal-containing brazing material 12 becomes the reaction product layer 12a and the metal layer 12b.
 次に、図1Cに示すように、セラミックス基板10の両面に接合した金属板14の表面に、所望の回路パターンのレジスト16を塗布し、図1Dに示すように、塩化第2銅エッチング液や塩化鉄エッチング液などにより金属板14の不要な部分をエッチング除去した後、図1Eに示すように、レジスト16を除去する。 Next, as shown in FIG. 1C, a resist 16 having a desired circuit pattern is applied to the surface of the metal plate 14 bonded to both surfaces of the ceramic substrate 10, and as shown in FIG. After unnecessary portions of the metal plate 14 are removed by etching with an iron chloride etchant or the like, the resist 16 is removed as shown in FIG. 1E.
 次に、図1Fに示すように、活性金属含有ろう材12の不要な部分を、例えば、フッ酸を含む水溶液や、エチレン時アミン四酢酸(EDTA)などの活性金属と錯体を形成する化合物を含む水溶液により除去した後、図1Gに示すように、金属板14の上面の周縁部が露出するように金属板14より小さいレジスト18を金属板14上に塗布し、図1Hに示すように、塩化第2銅エッチング液や塩化鉄エッチング液などにより金属板14の不要な部分(金属板14の周縁部)をエッチング除去して活性金属含有ろう材12を金属板14の側面部からはみ出させ、その後、図1Iに示すように、レジスト18を除去する。 Next, as shown in FIG. 1F, an unnecessary portion of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or a compound that forms a complex with an active metal such as amine tetraacetic acid (EDTA) during ethylene. After removing with the aqueous solution containing, as shown in FIG. 1G, a resist 18 smaller than the metal plate 14 is applied on the metal plate 14 so that the peripheral edge of the upper surface of the metal plate 14 is exposed, and as shown in FIG. Etching away unnecessary portions of the metal plate 14 (peripheral edge of the metal plate 14) with a cupric chloride etchant or an iron chloride etchant to cause the active metal-containing brazing material 12 to protrude from the side surface of the metal plate 14, Thereafter, as shown in FIG. 1I, the resist 18 is removed.
 次に、図1Jに示すように、活性金属含有ろう材12の金属層12bの不要な部分を、例えば、フッ酸を含む水溶液や、EDTAなどの活性金属と錯体を形成する化合物を含む水溶液により除去した後、図1Kに示すように、金属板14および活性金属含有ろう材12上にめっき皮膜20を形成して、所定の幅の(反応生成物層12aからなる)フィレット(反応生成物層12aがセラミックス基板10の両面の各々に沿って延びて金属層12bの側面からはみ出た部分)が形成された金属-セラミックス回路基板を得る。 Next, as shown in FIG. 1J, an unnecessary portion of the metal layer 12b of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA. After the removal, as shown in FIG. 1K, a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12, and a fillet (reaction product layer 12a) having a predetermined width is formed. A metal-ceramic circuit board is obtained in which 12a extends along each of both surfaces of the ceramic substrate 10 to form a portion protruding from the side surface of the metal layer 12b.
 なお、反応生成物層12aは、金属層12bと比べて、フッ酸を含む水溶液や、EDTAなどの活性金属と錯体を形成する化合物を含む水溶液に溶ける速度が遅いため、金属層12bがこの水溶液に溶けて、反応生成物層12aが露出した時点で、この水溶液による処理を止めれば、図1Jに示すように、活性金属含有ろう材12の反応生成物層12aを残したまま、金属層12bの不要な部分を除去することができる。反応生成物層12aが露出したか否かは、表面の色により目視で簡単に判断することができるが、電子プローブマイクロアナライザ(EPMA)などを使用しても容易に確認することができる。 The reaction product layer 12a is slower in dissolving in an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA, compared to the metal layer 12b. If the treatment with this aqueous solution is stopped when the reaction product layer 12a is exposed to the metal layer 12b, as shown in FIG. 1J, the reaction product layer 12a of the active metal-containing brazing material 12 remains, and the metal layer 12b remains. Unnecessary portions can be removed. Whether or not the reaction product layer 12a is exposed can be easily determined visually by the color of the surface, but can also be easily confirmed using an electronic probe microanalyzer (EPMA) or the like.
[第2の実施の形態]
 図2A~図2Bに示すように、セラミックス基板10の両面の(図2D~図2Gに示す)所望の回路パターンの金属板14に対応する位置に、この回路パターンの金属板14と略同一の形状で且つその回路パターンの金属板14より少し大きいペースト状の活性金属含有ろう材12を、この活性金属含有ろう材12の上面の周縁部がその所望の回路パターンの金属板14から露出するようにスクリーン印刷し、その活性金属含有ろう材12を介してセラミックス基板10の両面にそれぞれ1枚の金属板14を配置し、実質的に真空または非酸化性雰囲気中において加熱した後に冷却することにより、セラミックス基板10の両面に金属板14を接合する。この接合により、活性金属含有ろう材12は、図2Bに示すように、主に活性金属含有ろう材12の活性金属とセラミックス基板10のセラミックスとの反応生成物によって形成された層(反応生成物層)12aと、主に活性金属含有ろう材12の活性金属以外の金属によって形成された層(金属層)12bになる。
[Second Embodiment]
As shown in FIGS. 2A to 2B, at the positions corresponding to the metal plate 14 of the desired circuit pattern (shown in FIGS. 2D to 2G) on both sides of the ceramic substrate 10, substantially the same as the metal plate 14 of this circuit pattern. The paste-like active metal-containing brazing material 12 that is shaped and slightly larger than the metal plate 14 of the circuit pattern is exposed so that the peripheral edge of the upper surface of the active metal-containing brazing material 12 is exposed from the metal plate 14 of the desired circuit pattern. Screen-printed, one metal plate 14 is disposed on each of both surfaces of the ceramic substrate 10 through the active metal-containing brazing material 12, heated in a substantially vacuum or non-oxidizing atmosphere, and then cooled. The metal plate 14 is bonded to both surfaces of the ceramic substrate 10. As a result of this joining, the active metal-containing brazing material 12 is a layer (reaction product) formed mainly by a reaction product of the active metal of the active metal-containing brazing material 12 and ceramics of the ceramic substrate 10 as shown in FIG. 2B. Layer) 12a and a layer (metal layer) 12b formed mainly by a metal other than the active metal of the active metal-containing brazing material 12.
 次に、図2Cに示すように、セラミックス基板10の両面に接合した金属板14の表面(の上記の所望の回路パターンの金属板14に対応する位置)に、上記の所望の回路パターンの金属板14と同じ形状および大きさのレジスト18を塗布し、図2Dに示すように、塩化第2銅エッチング液や塩化鉄エッチング液などにより金属板14の不要な部分をエッチング除去して活性金属含有ろう材12を金属板14の側面部からはみ出させた後、図2Eに示すように、レジスト16を除去する。 Next, as shown in FIG. 2C, the metal of the desired circuit pattern is formed on the surface of the metal plate 14 bonded to both surfaces of the ceramic substrate 10 (the position corresponding to the metal plate 14 of the desired circuit pattern). A resist 18 having the same shape and size as the plate 14 is applied, and as shown in FIG. 2D, unnecessary portions of the metal plate 14 are removed by etching with a cupric chloride etchant or an iron chloride etchant. After the brazing material 12 protrudes from the side surface of the metal plate 14, the resist 16 is removed as shown in FIG. 2E.
 次に、図2Fに示すように、活性金属含有ろう材12の金属層12bの不要な部分を、例えば、フッ酸を含む水溶液や、EDTAなどの活性金属と錯体を形成する化合物を含む水溶液により除去した後、図2Gに示すように、金属板14および活性金属含有ろう材12上にめっき皮膜20を形成して、所定の幅の(反応生成物層12aからなる)フィレット(反応生成物層12aがセラミックス基板10の両面の各々に沿って延びて金属層12bの側面からはみ出た部分)が形成された金属-セラミックス回路基板を得る。 Next, as shown in FIG. 2F, an unnecessary portion of the metal layer 12b of the active metal-containing brazing material 12 is treated with, for example, an aqueous solution containing hydrofluoric acid or an aqueous solution containing a compound that forms a complex with an active metal such as EDTA. After the removal, as shown in FIG. 2G, a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12, and a fillet (reaction product layer 12a) having a predetermined width is formed. A metal-ceramic circuit board is obtained in which 12a extends along each of both surfaces of the ceramic substrate 10 to form a portion protruding from the side surface of the metal layer 12b.
[第3の実施の形態]
 本発明による金属-セラミックス回路基板の製造方法の第1の実施の形態において、図1A~図1Jに示す工程を行った後、図3Aに示すように、金属板14の上面の周縁部が露出するように金属板14より小さいレジスト22を金属板14上に塗布し、図3Bに示すように、塩化第2銅エッチング液や塩化鉄エッチング液などにより金属板14の不要な部分(金属板14の周縁部)をエッチング除去して金属層12bを金属板14の側面部からはみ出させ、その後、図3Cに示すように、レジスト22を除去する。その後、図3Dに示すように、金属板14および活性金属含有ろう材12上にめっき皮膜20を形成して、(所定の幅の反応生成物層12aとその反応生成物層12aより短い金属層12bからなる)フィレット(反応生成物層12aと金属層12bがセラミックス基板10の両面の各々に沿って延びて金属板14の側面からはみ出た部分)が形成された金属-セラミックス回路基板を得る。
[Third Embodiment]
In the first embodiment of the metal-ceramic circuit board manufacturing method according to the present invention, after performing the steps shown in FIGS. 1A to 1J, the peripheral portion of the upper surface of the metal plate 14 is exposed as shown in FIG. 3A. As shown in FIG. 3B, a resist 22 smaller than the metal plate 14 is applied on the metal plate 14, and unnecessary portions of the metal plate 14 (the metal plate 14 are coated with a cupric chloride etchant or an iron chloride etchant as shown in FIG. 3B. 3), the metal layer 12b protrudes from the side surface of the metal plate 14, and then the resist 22 is removed as shown in FIG. 3C. Thereafter, as shown in FIG. 3D, a plating film 20 is formed on the metal plate 14 and the active metal-containing brazing material 12 (a reaction product layer 12a having a predetermined width and a metal layer shorter than the reaction product layer 12a). Thus, a metal-ceramic circuit board is obtained in which fillets (the reaction product layer 12a and the metal layer 12b extend along each of both surfaces of the ceramic substrate 10 and protrude from the side surfaces of the metal plate 14).
 以下、本発明による金属-セラミックス回路基板およびその製造方法の実施例について詳細に説明する。 Hereinafter, embodiments of the metal-ceramic circuit board and the manufacturing method thereof according to the present invention will be described in detail.
[実施例1]
 32mm×22mm×0.6mmの大きさの窒化アルミニウム基板の両面に、活性金属成分として2重量%のチタンを含む活性金属含有ろう材(Ag:Cu:Ti=70:28:2)をスクリーン印刷し、その上に厚さ0.3mmの銅板を配置し、真空中で850℃に加熱して窒化アルミニウム基板の両面に銅板を接合した。
[Example 1]
An active metal-containing brazing material (Ag: Cu: Ti = 70: 28: 2) containing 2% by weight of titanium as an active metal component is screen-printed on both surfaces of an aluminum nitride substrate having a size of 32 mm × 22 mm × 0.6 mm. Then, a copper plate having a thickness of 0.3 mm was placed thereon, and heated to 850 ° C. in a vacuum to join the copper plates to both surfaces of the aluminum nitride substrate.
 次に、両面の銅板上に所定の回路パターンの紫外線硬化アルカリ剥離型レジストをスクリーン印刷により塗布し、レジストに紫外線を照射して硬化させた後、塩化銅と過酸化水素水を含むエッチング液により銅板の不要な部分をエッチングし、水酸化ナトリウム水溶液によりレジストを除去して銅回路を形成した。 Next, an ultraviolet-curing alkali-peeling resist having a predetermined circuit pattern is applied on both sides of the copper plate by screen printing, cured by irradiating the resist with ultraviolet light, and then etched with an etching solution containing copper chloride and hydrogen peroxide. Unnecessary portions of the copper plate were etched, and the resist was removed with an aqueous sodium hydroxide solution to form a copper circuit.
 次に、希硫酸に20秒間浸漬して酸洗し、1.6質量%のEDTA・4Naと3質量%のアンモニア水(28質量%のアンモニアを含むアンモニア水)と5質量%の過酸化水素水(35質量%の過酸化水素を含む過酸化水素水)を含むキレート水溶液に20℃で20分間浸漬し、2質量%のエチレントリアミン五酢酸(DTPA)・5Naと5質量%の過酸化水素水を含むキレート水溶液に20℃で52分間浸漬することにより、活性金属含有ろう材の不要な部分を除去した後、銅板の上面の周縁部が露出するように銅板より小さいレジストを銅板上に塗布し、塩化銅と過酸化水素水を含むエッチング液により銅板の不要な部分をエッチング除去することにより、活性金属含有ろう材を銅板の側面部からはみ出させ、その後、レジストを除去した。なお、銅板の側面部からはみ出した活性金属含有ろう材の厚さは約15μmであった。 Next, it is dipped in dilute sulfuric acid for 20 seconds and pickled, and 1.6% by mass of EDTA.4Na, 3% by mass of ammonia water (ammonia water containing 28% by mass of ammonia) and 5% by mass of hydrogen peroxide. Immerse it in a chelate aqueous solution containing water (hydrogen peroxide containing 35% by mass hydrogen peroxide) at 20 ° C. for 20 minutes, 2% by mass ethylenetriaminepentaacetic acid (DTPA) · 5Na and 5% by mass hydrogen peroxide. After removing unnecessary portions of the active metal-containing brazing material by immersing in an aqueous chelate solution containing water at 20 ° C. for 52 minutes, a resist smaller than the copper plate is applied on the copper plate so that the peripheral edge of the upper surface of the copper plate is exposed. Then, by removing unnecessary portions of the copper plate by etching with an etching solution containing copper chloride and hydrogen peroxide solution, the active metal-containing brazing material protrudes from the side surface of the copper plate, and then the resist is removed. It was. In addition, the thickness of the active metal containing brazing material which protruded from the side part of the copper plate was about 15 micrometers.
 次に、1.6質量%のEDTAと3質量%のアンモニア水と5質量%の過酸化水素水を含むキレート水溶液に20℃で10分間浸漬して活性金属含有ろう材の金属層(主にAgとCuによって形成された層)の不要な部分を除去することにより、厚さ約1μm、幅60μmのフィレット(主にTiとAlNの反応生成物としてのTiNにより形成された反応生成物層が銅板および金属層の側面からはみ出た部分)を形成した後、銅板および活性金属含有ろう材(金属層と反応生成物層)を覆うように無電解Ni-Pめっきにより厚さ3μmのめっき皮膜を形成して、金属-セラミックス回路基板を得た。 Next, it is immersed in an aqueous chelate solution containing 1.6% by mass of EDTA, 3% by mass of ammonia water and 5% by mass of hydrogen peroxide solution at 20 ° C. for 10 minutes to form a metal layer of an active metal-containing brazing material (mainly By removing unnecessary portions of the layer formed of Ag and Cu, a fillet having a thickness of about 1 μm and a width of 60 μm (mainly a reaction product layer formed by TiN as a reaction product of Ti and AlN) After forming the copper plate and the portion of the metal layer protruding from the side surface, a 3 μm thick plating film is formed by electroless Ni-P plating so as to cover the copper plate and the active metal-containing brazing material (metal layer and reaction product layer) As a result, a metal-ceramic circuit board was obtained.
 このようにして作製した金属-セラミックス回路基板について、以下のような硫黄華試験を行って、マイグレーションの発生の有無を評価した。まず、金属-セラミックス回路基板を270℃で3分間熱処理した後、金属-セラミックス回路基板にゲル(モメンティブ社製のTSE3051)を厚さ1~2mm程度に塗布し、150℃で1時間加熱して硬化させた。この金属-セラミックス回路基板を、硫黄華4gと相対湿度制御用の蒸留水20mLを入れておいた容積約1200cmのガラス容器内に投入し、密閉して80℃で500時間静置した。その後、銅板の周縁部の幅1mm程度の部分を上方から電子プローブマイクロアナライザ(EPMA)により500倍で観察し、Ni-Pめっき皮膜からAg(とS)がはみ出した部分(幅5μm以上の点状または線状の部分)を特性X線で確認し、その部分をマイグレーション発生箇所として、その発生箇所の数が0~10個未満の場合はマイグレーションの発生なし、10~20個の場合はマイグレーションの発生軽微、21~100個の場合はマイグレーションの発生多数と評価し、100個を超える場合、幅100μm以上の箇所がある場合、観察領域のほぼ全てにマイグレーション発生箇所がある場合には、マイグレーションの発生顕著として評価した。その結果、本実施例で作製した金属-セラミックス回路基板では、マイグレーション発生箇所は1つもなく、マイグレーションの発生はなかった。 The thus produced metal-ceramic circuit board was subjected to the following sulfur flower test to evaluate the occurrence of migration. First, after heat-treating the metal-ceramic circuit board at 270 ° C. for 3 minutes, a gel (TSE3051 manufactured by Momentive) was applied to the metal-ceramic circuit board to a thickness of about 1 to 2 mm and heated at 150 ° C. for 1 hour. Cured. This metal-ceramic circuit board was put into a glass container having a volume of about 1200 cm 3 containing 4 g of sulfur flower and 20 mL of distilled water for controlling relative humidity, sealed and allowed to stand at 80 ° C. for 500 hours. Thereafter, the portion of the peripheral edge of the copper plate with a width of about 1 mm was observed from above with an electron probe microanalyzer (EPMA) at a magnification of 500 times, and the portion where Ag (and S) protruded from the Ni-P plating film (a point of 5 μm or more in width) If the number of occurrences is 0 to less than 10, no migration occurs, and migration occurs if the number is 10 to 20. If the number of occurrences is 21 to 100, it is evaluated that a large number of migrations occur. If the number exceeds 100, if there are places with a width of 100 μm or more, or if migration occurs in almost all of the observation area, migration occurs. The occurrence was evaluated as remarkable. As a result, in the metal-ceramic circuit board produced in this example, there was no migration occurrence place and no migration occurred.
 また、本実施例で作製した金属-セラミックス回路基板の窒化アルミニウム基板の両面に銅板が接合した部分をその窒化アルミニウム基板の主面に対して略垂直に切断して得られたサンプルを樹脂に埋め込み、サンプルの切断面を回転式研磨機で研磨し、クロスセッションポリッシャで仕上げ研磨した後、サンプルの切断面にカーボンを蒸着させ、電子プローブマイクロアナライザ(EPMA)の加速電圧15.0kV、照射電流3×10-8A、ポイント分析のスポットサイズをφ1μmとし、サンプルの切断面上の活性金属含有ろう材の反応生成物層と金属層のそれぞれの厚さ方向中央部にビームを照射した。このようにビームを照射したときの分光結晶LiFで190~195°の間に検出されるTiのピークと、105~110°の間に検出されるCuのピークの高さの比Cu/Tiを算出したところ、反応生成物層では、Cuのピークの高さが101、Tiのピークの高さが72、Cu/Tiが1.4、金属層では、Cuのピークの高さが600、Tiのピークの高さが25、Cu/Tiが24であった。このように、反応生成物層では、Cu/Tiが5以下であり、金属層では、Cu/Tiが10以上であるので、反応生成物層と金属層を明確に区別することができる。なお、活性金属含有ろう材の厚さ15μm程度のうち、反応生成物層の厚さは1μm程度と非常に薄いため、EPMAで検出される反応生成物層中のCuには金属層中のCuもかなり含まれていると考えられるが、その分(金属層中のCu)を加えても、反応生成物層と金属層を明確に区別することができる結果が得られた。 In addition, a sample obtained by cutting a portion of the metal-ceramic circuit board manufactured in this example where the copper plate is bonded to both surfaces of the aluminum nitride substrate substantially perpendicularly to the main surface of the aluminum nitride substrate is embedded in the resin. After polishing the cut surface of the sample with a rotary polishing machine and finish polishing with a cross session polisher, carbon was vapor-deposited on the cut surface of the sample, and the acceleration voltage of the electron probe microanalyzer (EPMA) was 15.0 kV, irradiation current 3 × 10 −8 A, the spot size of the point analysis was set to φ1 μm, and the beam was irradiated to the center part in the thickness direction of each of the reaction product layer and the metal layer of the active metal-containing brazing material on the cut surface of the sample. Thus, the ratio Cu / Ti between the height of the Ti peak detected between 190 and 195 ° and the height of the Cu peak detected between 105 and 110 ° in the spectral crystal LiF when irradiated with the beam is expressed as follows. When calculated, the reaction product layer has a Cu peak height of 101, Ti peak height of 72, Cu / Ti of 1.4, and the metal layer has a Cu peak height of 600, Ti The peak height was 25 and Cu / Ti was 24. Thus, since Cu / Ti is 5 or less in the reaction product layer and Cu / Ti is 10 or more in the metal layer, the reaction product layer and the metal layer can be clearly distinguished. In addition, since the thickness of the reaction product layer is as thin as about 1 μm out of the thickness of about 15 μm of the active metal-containing brazing material, Cu in the reaction product layer detected by EPMA includes Cu in the metal layer. However, even if the amount (Cu in the metal layer) is added, the reaction product layer and the metal layer can be clearly distinguished.
 また、本実施例で作製した金属-セラミックス回路基板の銅板を剥がして、活性金属ろう材の金属層と反応生成物層(反応生成物層が金属層の側面からはみ出た部分)の表面について、EPMAにより1500倍に拡大してそれぞれの表面を構成する元素固有のX線(特性X線)の面分析(マッピング分析)を行ったところ、金属層にCu、Ag、Tiが含まれることが確認され、反応生成物層にNとTiが含まれることが確認された。なお、反応生成物層にCuとAgを含まれることは確認されなかった。 Also, the copper plate of the metal-ceramic circuit board produced in this example was peeled off, and the surface of the metal layer of the active metal brazing material and the reaction product layer (the part where the reaction product layer protruded from the side surface of the metal layer) Surface analysis (mapping analysis) of X-rays (characteristic X-rays) unique to the elements that are magnified 1500 times by EPMA and constitute each surface confirmed that the metal layer contains Cu, Ag, and Ti. It was confirmed that N and Ti were contained in the reaction product layer. In addition, it was not confirmed that Cu and Ag are contained in the reaction product layer.
[実施例2]
 活性金属成分として2重量%のチタンを含む活性金属含有ろう材(Ag:Cu:Ti:Sn=50:43:2:5)を使用した以外は、実施例1と同様の方法により、金属-セラミックス回路基板を得た。
[Example 2]
In the same manner as in Example 1 except that an active metal-containing brazing material containing 2% by weight of titanium (Ag: Cu: Ti: Sn = 50: 43: 2: 5) was used as the active metal component, the metal- A ceramic circuit board was obtained.
 このようにして作製した金属-セラミックス回路基板について、実施例1と同様の方法により、硫黄華試験を行って、マイグレーションの発生の有無を評価したところ、本実施例で作製した金属-セラミックス回路基板では、マイグレーションの発生箇所の数は11個であり、マイグレーションの発生は軽微であった。 The metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this example was obtained. Then, the number of locations where migration occurred was 11, and the occurrence of migration was negligible.
[比較例1]
 活性金属含有ろう材を銅板の側面部からはみ出させた後に活性金属含有ろう材の金属層(主にAgとCuによって形成された層)の不要な部分を除去しなかった以外は、実施例1と同様の方法により、金属-セラミックス回路基板を得た。
[Comparative Example 1]
Example 1 except that the active metal-containing brazing material was protruded from the side surface portion of the copper plate and unnecessary portions of the metal layer (layer mainly formed of Ag and Cu) of the active metal-containing brazing material were not removed. A metal-ceramic circuit board was obtained by the same method as described above.
 このようにして作製した金属-セラミックス回路基板について、実施例1と同様の方法により、硫黄華試験を行って、マイグレーションの発生の有無を評価したところ、本比較例で作製した金属-セラミックス回路基板では、マイグレーションの発生箇所の数が非常に多く(100個超)、マイグレーションの発生は顕著であった。 The metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this comparative example was obtained. Then, the number of locations where migration occurred was very large (over 100), and the occurrence of migration was significant.
[比較例2]
 活性金属含有ろう材を銅板の側面部からはみ出させなかった以外は、実施例1と同様の方法により、金属-セラミックス回路基板を得た。
[Comparative Example 2]
A metal-ceramic circuit board was obtained in the same manner as in Example 1 except that the active metal-containing brazing material was not protruded from the side surface of the copper plate.
 このようにして作製した金属-セラミックス回路基板について、実施例1と同様の方法により、硫黄華試験を行って、マイグレーションの発生の有無を評価したところ、本比較例で作製した金属-セラミックス回路基板では、マイグレーションの発生箇所の数が非常に多く(100個超)、マイグレーションの発生は顕著であった。 The metal-ceramic circuit board produced in this manner was subjected to a sulfur flower test in the same manner as in Example 1 to evaluate the occurrence of migration. As a result, the metal-ceramic circuit board produced in this comparative example was obtained. Then, the number of locations where migration occurred was very large (over 100), and the occurrence of migration was significant.
 これらの実施例および比較例の結果から、(主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる)反応生成物層を(主に活性金属含有ろう材の活性金属以外の金属からなる)金属層の側面からはみ出させるともに、金属層と反応生成物層の露出面にめっき皮膜を形成すれば、活性金属含有ろう材によりセラミックス基板に金属板を接合した金属-セラミックス回路基板のマイグレーションの発生を十分に抑制することができることがわかる。 From the results of these Examples and Comparative Examples, the reaction product layer (mainly composed of the reaction product of the active metal of the active metal-containing brazing material and the ceramics of the ceramic substrate) was formed (mainly the activity of the active metal-containing brazing material). Metal that is made of metal other than metal (excluding metal) and is formed on the exposed surface of the metal layer and reaction product layer. It can be seen that migration of the ceramic circuit board can be sufficiently suppressed.
 10 セラミックス基板
 12 活性金属含有ろう材
 12a 反応生成物層
 12b 金属層
 14 金属板
 16 レジスト
 18 レジスト
 20 めっき皮膜
 22 レジスト
DESCRIPTION OF SYMBOLS 10 Ceramic substrate 12 Active metal containing brazing material 12a Reaction product layer 12b Metal layer 14 Metal plate 16 Resist 18 Resist 20 Plating film 22 Resist

Claims (17)

  1. セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板を接合する金属-セラミックス回路基板の製造方法において、セラミックス基板の少なくとも一方の面に主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層を形成するとともに、この反応生成物層と金属板との間に主に活性金属含有ろう材の活性金属以外の金属からなる金属層を形成して、セラミックス基板の少なくとも一方に反応生成物層と金属層を介して金属板を接合した後、反応生成物層と金属層が金属板の側面部からはみ出すように金属板の不要部分を除去し、その後、反応生成物層が金属層の側面部からはみ出すように金属層の不要な部分を除去して反応生成物層からなるフィレットを形成し、金属層と反応生成物層の露出面にめっき皮膜を形成することを特徴とする、金属-セラミックス回路基板の製造方法。 In a metal-ceramic circuit board manufacturing method in which a metal plate is joined to at least one surface of a ceramic substrate via an active metal-containing brazing material, the active metal of the active metal-containing brazing material is mainly formed on at least one surface of the ceramic substrate. A reaction product layer made of a reaction product of the ceramic substrate with the ceramic is formed, and a metal layer mainly made of a metal other than the active metal of the active metal-containing brazing material is formed between the reaction product layer and the metal plate. After forming and joining the metal plate to at least one of the ceramic substrates via the reaction product layer and the metal layer, an unnecessary portion of the metal plate is formed so that the reaction product layer and the metal layer protrude from the side surface of the metal plate. After that, unnecessary portions of the metal layer are removed so that the reaction product layer protrudes from the side surface of the metal layer to form a fillet composed of the reaction product layer, And forming a plating film on the exposed surface of the genus layer with the reaction product layer, a metal - method of manufacturing a ceramic circuit board.
  2. 前記反応生成物層が前記金属層の側面部からはみ出すように前記金属層の不要な部分を除去した後に、前記金属層が前記金属板の側面部からはみ出すように前記金属板の不要な部分を除去して、前記フィレットを前記金属層と前記反応生成物層からなるフィレットとして形成することを特徴とする、請求項1に記載の金属-セラミックス回路基板の製造方法。 After removing the unnecessary part of the metal layer so that the reaction product layer protrudes from the side part of the metal layer, the unnecessary part of the metal plate is removed so that the metal layer protrudes from the side part of the metal plate. The method of manufacturing a metal-ceramic circuit board according to claim 1, wherein the fillet is formed as a fillet comprising the metal layer and the reaction product layer by removing the fillet.
  3. 前記金属板が銅または銅合金からなることを特徴とする、請求項1または2に記載の金属-セラミックス回路基板の製造方法。 3. The method for producing a metal-ceramic circuit board according to claim 1, wherein the metal plate is made of copper or a copper alloy.
  4. 前記セラミックス基板が窒化物または酸化物からなることを特徴とする、請求項1乃至3のいずれかに記載の金属-セラミックス回路基板の製造方法。 4. The method for producing a metal-ceramic circuit board according to claim 1, wherein the ceramic substrate is made of a nitride or an oxide.
  5. 前記活性金属含有ろう材が活性金属と銀と銅からなるろう材であることを特徴とする、請求項1乃至4のいずれかに記載の金属-セラミックス回路基板の製造方法。 5. The method for producing a metal-ceramic circuit board according to claim 1, wherein the active metal-containing brazing material is a brazing material composed of an active metal, silver and copper.
  6. 前記活性金属含有ろう材が錫を含むことを特徴とする、請求項5に記載の金属-セラミックス回路基板の製造方法。 6. The method for producing a metal-ceramic circuit board according to claim 5, wherein the active metal-containing brazing material contains tin.
  7. 前記活性金属含有ろう材中の銀の含有量が30質量%以上であることを特徴とする、請求項5または6に記載の金属-セラミックス回路基板の製造方法。 7. The method for producing a metal-ceramic circuit board according to claim 5, wherein the content of silver in the active metal-containing brazing material is 30% by mass or more.
  8. 前記めっき皮膜が無電解Ni合金めっきにより形成されることを特徴とする、請求項1乃至7のいずれかに記載の金属-セラミックス回路基板の製造方法。 The method of manufacturing a metal-ceramic circuit board according to any one of claims 1 to 7, wherein the plating film is formed by electroless Ni alloy plating.
  9. セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属板が接合した金属-セラミックス回路基板において、主に活性金属含有ろう材の活性金属とセラミックス基板のセラミックスとの反応生成物からなる反応生成物層がセラミックス基板上に形成され、主に活性金属含有ろう材の活性金属以外の金属からなる金属層が反応生成物と金属板との間に形成され、反応生成物層が金属層の側面からはみ出してフィレットを形成し、金属層と反応生成物層の露出面にめっき皮膜が形成されていることを特徴とする、金属-セラミックス回路基板。 In a metal-ceramic circuit board in which a metal plate is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, it is mainly composed of a reaction product of the active metal of the active metal-containing brazing material and the ceramic of the ceramic substrate. A reaction product layer is formed on the ceramic substrate, a metal layer mainly composed of a metal other than the active metal of the active metal-containing brazing material is formed between the reaction product and the metal plate, and the reaction product layer is a metal layer. A metal-ceramic circuit board, wherein a fillet is formed protruding from the side surface of the metal layer, and a plating film is formed on the exposed surfaces of the metal layer and the reaction product layer.
  10. 前記金属層の平面形状およびその大きさが前記金属板と略同一であることを特徴とする、請求項9に記載の金属-セラミックス回路基板。 The metal-ceramic circuit board according to claim 9, wherein the planar shape and size of the metal layer are substantially the same as those of the metal plate.
  11. 前記金属層が前記金属板の側面からはみ出して前記反応生成物とともに前記フィレットを形成していることを特徴とする、請求項9に記載の金属-セラミックス回路基板。 The metal-ceramic circuit board according to claim 9, wherein the metal layer protrudes from a side surface of the metal plate to form the fillet together with the reaction product.
  12. 前記金属板が銅または銅合金からなることを特徴とする、請求項9乃至11のいずれかに記載の金属-セラミックス回路基板。 12. The metal-ceramic circuit board according to claim 9, wherein the metal plate is made of copper or a copper alloy.
  13. 前記セラミックス基板が窒化物または酸化物からなることを特徴とする、請求項9乃至12のいずれかに記載の金属-セラミックス回路基板。 13. The metal-ceramic circuit board according to claim 9, wherein the ceramic board is made of a nitride or an oxide.
  14. 前記活性金属含有ろう材が活性金属と銀と銅からなるろう材であることを特徴とする、請求項9乃至13のいずれかに記載の金属-セラミックス回路基板。 14. The metal-ceramic circuit board according to claim 9, wherein the active metal-containing brazing material is a brazing material comprising active metal, silver and copper.
  15. 前記活性金属含有ろう材が錫を含むことを特徴とする、請求項14に記載の金属-セラミックス回路基板。 15. The metal-ceramic circuit board according to claim 14, wherein the active metal-containing brazing material contains tin.
  16. 前記活性金属含有ろう材中の銀の含有量が30質量%以上であることを特徴とする、請求項14または15に記載の金属-セラミックス回路基板。 The metal-ceramic circuit board according to claim 14 or 15, wherein the content of silver in the active metal-containing brazing material is 30% by mass or more.
  17. 前記めっき皮膜がNi合金めっきからなることを特徴とする、請求項9乃至16のいずれかに記載の金属-セラミックス回路基板。 The metal-ceramic circuit board according to any one of claims 9 to 16, wherein the plating film is made of Ni alloy plating.
PCT/JP2015/004976 2014-10-07 2015-09-30 Metal-ceramic circuit board and method of manufacturing same WO2016056203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-206670 2014-10-07
JP2014206670A JP6400422B2 (en) 2014-10-07 2014-10-07 Metal-ceramic circuit board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016056203A1 true WO2016056203A1 (en) 2016-04-14

Family

ID=55652840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004976 WO2016056203A1 (en) 2014-10-07 2015-09-30 Metal-ceramic circuit board and method of manufacturing same

Country Status (2)

Country Link
JP (1) JP6400422B2 (en)
WO (1) WO2016056203A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109315061A (en) * 2016-06-10 2019-02-05 田中贵金属工业株式会社 The manufacturing method of ceramic circuit board and ceramic circuit board
WO2020196616A1 (en) * 2019-03-25 2020-10-01 京セラ株式会社 Circuit board, electronic device, and electronic module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183701A1 (en) * 2019-03-14 2020-09-17 日本碍子株式会社 Bonded substrate
JP7289910B2 (en) * 2019-03-14 2023-06-12 日本碍子株式会社 BONDED SUBSTRATE AND BONDED SUBSTRATE MANUFACTURING METHOD
JP7431387B1 (en) * 2022-03-16 2024-02-14 デンカ株式会社 Ceramic composite substrate and method for manufacturing ceramic composite substrate
JP7431388B1 (en) * 2022-03-16 2024-02-14 デンカ株式会社 Ceramic composite substrate and method for manufacturing ceramic composite substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182172A (en) * 1986-01-31 1987-08-10 日立化成工業株式会社 Method of joining ceramics to metal
JPS62182171A (en) * 1986-01-31 1987-08-10 日立化成工業株式会社 Method of joining ceramics to metal member
JP2000151034A (en) * 1998-11-18 2000-05-30 Kyocera Corp Ceramic circuit board
JP2000323618A (en) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd Copper circuit clad substrate and manufacture thereof
JP2005035874A (en) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd Method for producing metal/ceramic bonding substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299160B2 (en) * 2003-03-27 2013-09-25 Dowaメタルテック株式会社 Method for producing metal / ceramic bonding substrate
JP5741971B2 (en) * 2013-09-30 2015-07-01 Dowaメタルテック株式会社 Method for manufacturing metal-ceramic bonding circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182172A (en) * 1986-01-31 1987-08-10 日立化成工業株式会社 Method of joining ceramics to metal
JPS62182171A (en) * 1986-01-31 1987-08-10 日立化成工業株式会社 Method of joining ceramics to metal member
JP2000151034A (en) * 1998-11-18 2000-05-30 Kyocera Corp Ceramic circuit board
JP2000323618A (en) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd Copper circuit clad substrate and manufacture thereof
JP2005035874A (en) * 2003-03-27 2005-02-10 Dowa Mining Co Ltd Method for producing metal/ceramic bonding substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109315061A (en) * 2016-06-10 2019-02-05 田中贵金属工业株式会社 The manufacturing method of ceramic circuit board and ceramic circuit board
CN109315061B (en) * 2016-06-10 2021-08-06 田中贵金属工业株式会社 Ceramic circuit board and method for manufacturing ceramic circuit board
WO2020196616A1 (en) * 2019-03-25 2020-10-01 京セラ株式会社 Circuit board, electronic device, and electronic module
JPWO2020196616A1 (en) * 2019-03-25 2020-10-01
JP7171894B2 (en) 2019-03-25 2022-11-15 京セラ株式会社 Wiring substrates, electronic devices and electronic modules

Also Published As

Publication number Publication date
JP6400422B2 (en) 2018-10-03
JP2016074565A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US10834823B2 (en) Producing metal/ceramic circuit board by removing residual silver
WO2016056203A1 (en) Metal-ceramic circuit board and method of manufacturing same
US9640511B2 (en) Method for producing a circuit carrier arrangement having a carrier which has a surface formed by an aluminum/silicon carbide metal matrix composite material
JP2003055058A (en) Method of joining ceramic body to copper plate
JP2007324301A (en) Method for manufacturing nitride ceramics circuit board
JP2019016737A (en) Electronic component and manufacturing method thereof
KR100374379B1 (en) Substrate
JP6904094B2 (en) Manufacturing method of insulated circuit board
WO2023234286A1 (en) Ceramic circuit substrate and semiconductor device using same
JPH04343287A (en) Circuit board
US8584924B2 (en) Method for the production of a metal-ceramic substrate, preferably a copper ceramic substrate
JP2008227184A (en) Metal base circuit board
JP2016076603A (en) Metal-ceramics circuit board and method of manufacturing the same
JP4557354B2 (en) Method for manufacturing ceramic copper circuit board
JP2007281219A (en) Ceramic circuit board and its manufacturing method
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
JP2018195784A (en) Method for manufacturing ceramic circuit board
JP3871680B2 (en) Ceramic substrate, ceramic circuit substrate, and power control component using the same.
JP4282627B2 (en) Ceramic circuit board, manufacturing method thereof, and power control component using the same.
JP2000228568A (en) Aluminum-aluminum nitride insulating circuit board
JP2006203230A (en) Wiring board and electronic device using it
JPH0799380A (en) Pattern formation of ceramic-metal bonded body
JP2023045082A (en) Metal-ceramic bonded substrate and manufacturing method thereof
JP2024132810A (en) Semiconductor module manufacturing method, circuit board and manufacturing method thereof
JP3812988B2 (en) Circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849615

Country of ref document: EP

Kind code of ref document: A1