JP4104253B2 - Board integrated structure - Google Patents

Board integrated structure Download PDF

Info

Publication number
JP4104253B2
JP4104253B2 JP21179499A JP21179499A JP4104253B2 JP 4104253 B2 JP4104253 B2 JP 4104253B2 JP 21179499 A JP21179499 A JP 21179499A JP 21179499 A JP21179499 A JP 21179499A JP 4104253 B2 JP4104253 B2 JP 4104253B2
Authority
JP
Japan
Prior art keywords
aluminum
substrate
bonding
alloy
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21179499A
Other languages
Japanese (ja)
Other versions
JP2001044345A (en
Inventor
正浩 伊吹山
陽一 尾形
良三 野々垣
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21179499A priority Critical patent/JP4104253B2/en
Publication of JP2001044345A publication Critical patent/JP2001044345A/en
Application granted granted Critical
Publication of JP4104253B2 publication Critical patent/JP4104253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量にして放熱性に優れ、高信頼性を有する半導体装置用回路基板一体型構造体に関する。
【0002】
【従来の技術】
パワーモジュールを初めとする各種の半導体装置には、セラミックス基板の両面にCuからなる回路を設けたものが、回路基板として利用されている。特に高集積化及び大電力化により、高い放熱性を必要とする場合には、セラミックスとして高熱伝導率の窒化アルミニウムが賞用されている。
【0003】
しかし、前記のCuからなる回路を設けている回路基板においては、Cu回路(或いは、裏面に設けられる放熱用Cu板)と窒化アルミニウム基板の熱膨張係数の差に起因する熱応力の繰り返しによって、窒化アルミニウム基板に微細なクラックが発生することがあるため、高い信頼性を必要とする場合には降伏耐力の低いAl板を接合することが試みられている。
【0004】
また、回路基板は、通常、その放熱用金属板を放熱フィン等に接合するためにベースCu板に半田付けして使用されるが、熱応力の繰り返しに対してベースCu板と回路基板間に発生する半田クラックを避けるため、ベース板に熱膨張係数が小さい材質を用いることも行われ、近年では、炭化珪素多孔体にAlを主成分とする金属を前記炭化珪素多孔体の空隙部に含浸させて得られるアルミニウム−炭化珪素複合体(以下、Al/SiC複合材という)が開発されている。
【0005】
【発明が解決しようとする課題】
近年の半導体装置の高集積化、大電力化に伴って、軽量コンパクトで益々高い放熱性が求められるようになり、(1)セラミックス基板の両面に設けられた金属板のうち片面の金属板を省略し直接ベース板に接合する、(2)ベース板を省略して、セラミックス基板を水冷板や放熱フィン等のヒートシンクに直接搭載する、等の試みが進められている。しかし、これらの試みは、各構成部品の熱膨張率差と組立工程や使用環境の温度変化によって生じる応力に耐えられず、信頼性が確保できないという問題がある。
【0006】
また、回路基板をベース板に取り付けるに際して熱伝導を良くすることを主目的に半田を用いているが、半田は、セラミックス基板とベース板等の間の熱膨張差を吸収して変形し、セラミックス基板やシリコンチップに割れを生じることを防ぐ役割をも持っていた。しかし、今後、環境汚染問題から半田が鉛フリー組成になることが望ましく、この場合には塑性変形を起こす応力が高くなり、応力緩和能が低下する。更に、鉛フリー半田は現在のPb−Sn系に比べて半田濡れ性に劣ることを考えると、回路基板とベース板またはヒートシンク等の放熱部品との間で、密着性に優れた信頼性のある接合がますます必要になってくる。
【0007】
更に、Al/SiC複合材を放熱部品として用いる場合、Alを主成分とする金属を炭化珪素多孔体に含浸させると同時にセラミックス基板と接合させることも検討されているが、複合材の製造自体が非常に高度な技術であるうえ、セラミックス基板が前記Alを主成分とする金属層に埋もれてしまう等、未解決な課題がある。しかも、放熱部品やセラミックス基板の形状が変わると、それに合わせて使用する型枠等を変えなくてはならなくなり、生産上不都合でもある。
【0008】
一方、放熱部品であるベース板とセラミックス基板を接合材で接着する技術については、例えば特開平3−125463号公報のとおりに多くの提案がある。前記技術では、Al−Si系又はAl−Ge系の合金箔を接合材とし、バッチ式真空炉を用いて接合が行われているが、バッチ式真空炉に大きなベース板を投入すると容積効率が悪くなるので、生産性が低下する。また、大型の連続真空炉は、高価であり厳密な温度制御も難しいので、このような接合には不向きである。
【0009】
上記したとおりに、セラミックス回路基板と放熱部品とを直接接合すると、効率的な放熱性を有するモジュールが得られるにもかかわらず、工業的な接合技術がないために、実現していない。
【0010】
本発明は、上記に鑑みてなされたものであり、その目的は、セラミックス回路基板と放熱部品とを接合する、工業的な接合技術を提供し、効率的な放熱性を有する、軽量なモジュールを提供することにある。即ち、窒化アルミニウム基板の少なくとも一方の面にAl回路を形成させてなる回路基板が、半田を使用せずにAl/SiC複合材からなる放熱部品に接合された構造を持ち、軽量にして放熱性に優れた高信頼性の基板一体型構造体を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、少なくとも一面にアルミニウムまたはアルミニウム合金板が接合された窒化アルミニウム基板と、炭化珪素質多孔体にAlを主成分とする金属を含浸してなる放熱部品とからなる基板一体構造体であって、前記アルミニウムまたはアルミニウム合金板と前記放熱部品とが、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有し、液相を形成する温度が500〜630℃であるAl合金を介して接合されていることを特徴とする基板一体型構造体である。
【0012】
また、本発明は、放熱部品は、該放熱部品の主面にAlを主成分とする金属層が厚さ10μm以上設けられていることを特徴とする前記の回路基板一体型構造体である。
【0013】
また、本発明は、放熱部品が、炭化珪素を40〜70体積%で残部がSiを4〜14重量%含むアルミニウム合金からなり、熱伝導率が160W/mK以上であるアルミニウム−炭化珪素複合体からなることを特徴とする前記の回路基板一体型構造体。
【0014】
更に、窒化アルミニウム基板が、熱伝導率130W/mK以上であり、その表面のX線回折ピーク強度比が、2≦(Y23・Al23/AlN)×100≦17、かつ(2Y23・Al23/AlN)×100≦2を有するものであることを特徴とする前記の回路基板一体型構造体である。
【0015】
【発明の実施の形態】
本発明は、少なくとも一面にアルミニウムまたはアルミニウム合金板が接合された窒化アルミニウム基板と、炭化珪素質多孔体にAlを主成分とする金属を含浸してなる放熱部品とからなる基板一体型構造体であって、前記アルミニウムまたはアルミニウム合金板と前記放熱部品とが、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有するAl合金で接合されていることを特徴とする基板一体型構造体である。上記構成を採用することにより、軽量で、放熱性に優れた高信頼性の基板一体型構造体を提供することができる。
【0016】
本発明で使用される窒化アルミニウム基板は、Y23を焼結助剤として焼成されたものであり、熱伝導率が130W/mK以上であることが好ましい。また、その表面のCuKαによるX線回折のメインピークの強度比が、2≦(Y23・Al23/AlN)×100≦17、かつ(2Y23・Al23/AlN)×100≦2であるものが好ましい。このような表面特性を有する窒化アルミニウム基板は、酸化処理等の煩雑な表面処理を施さなくとも、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有し、少なくとも一部が液相を形成する温度が500〜630℃のAl合金を用いて、Alを主成分とする金属と十分に強い強度で接合させることができる。
【0017】
前記窒化アルミニウム基板の表面特性の調整は、原料窒化アルミニウム粉中のAl23とY23分組成比、脱脂後焼成前までの増加酸素量、焼成温度等を調整することによって行うことができる。
【0018】
例えば、2Y23・Al23が多い場合には、相対的にAl23を増やせば良いので、酸素量の多い窒化アルミニウム粉末原料を用いるか、Al23を添加して、Y23を減らす。一方、Y23・Al23が多い場合には、Y23の添加量を減らすか、焼成温度を下げる。その他、脱脂を空気中で行えばAl23を増加させることができる。
【0019】
窒化アルミニウム基板にAl回路を形成させるには、Al板を接合してからエッチングする、Al板から打ち抜かれたパターンを接合する、等によって行うことができる。接合材には、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有し、液相を形成する温度が500〜630℃のAl合金を用いるが、これを含めた接合条件については後述する。生産性向上のためには、放熱部品との接合と同時にAl板又はAlからなるパターンを接合することが好ましい。
【0020】
本発明で使用されるAlを主成分とする金属を炭化珪素多孔体に含浸させてなる複合体からなる放熱部品は、例えば、炭化珪素の多孔体(プリフォームともいう)にAlを主成分とする金属を含浸させることによって製造することができる(例えば、セラミックデータブック‘95、山口雄三、堀三郎、95〜101頁(1995))。放熱部品は、適当な熱膨張率と高い熱伝導率を持つことが望ましく、160W/mK以上の熱伝導率と6〜10ppmの熱膨張率を持つことが望ましい。この物性は、Alを主成分とする金属と炭化珪素の体積比率等によって調節でき、炭化珪素が40〜70体積%で残部がAlを主成分とする金属であることが望ましい。更に、Alを主成分とする金属としては、組立工程や使用環境における温度にさらされた場合でも特性が劣化しない合金組成が望ましく、たとえば、Siを4〜14重量%含むAl合金が望ましい。
【0021】
本発明に於いて、前記放熱部品は、その主面に炭化珪素が露出していない構造のものが好ましく、前記Alを主成分とする金属が10μm以上の層となっている構造であることが望ましい。前記主面とは回路基板がろう付けされる面のことであり、また、放熱部品の表面がメッキされる場合は、メッキされる部分の表面をさす。これらの表面に炭化珪素が露出していると、ろう付け面に欠陥が生じやすい、メッキ被膜が形成しにくい、メッキやろう付けの付着強度が低い等の欠点が生じやすい。
【0022】
本発明の基板一体型構造体の表面は、必要に応じて表面にAlまたはAl合金が露出している部分の全面又は部分にNiメッキされる。特に半田付け部分はNiメッキが必要であり、Alワイヤボンドする部分にはNiメッキがない方が信頼性が高いので、従って部分メッキが好ましい。
【0023】
本発明において、アルミニウムまたはアルミニウム合金板と窒化アルミニウム板の接合には、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有し、液相を形成する温度が500〜630℃のAl合金、例えば、Al−Mg−Cu系合金、Al−Mg−Ge系合金、Al−Mg−Si系合金等を用いる。その理由は、以下のとおりである。
【0024】
前記したとおりの、窒化アルミニウム基板とアルミニウムまたはアルミニウム合金板との接合にはAl−Si系合金やAl−Ge系合金が知られているが、本発明になるMgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有するAl合金には、前記合金に比較して、窒化アルミニウム基板との接合条件の許容幅が広く、真空中でなくとも接合できる特徴があるので、生産性に優れた接合が可能となる。
【0025】
即ち、従来公知のAl−Si系合金やAl−Ge系合金では、比較的多量にSiやGeを添加しないと融点が低下しないが、多量に添加すると硬くて脆くなる問題が生じる。このような問題を起こさせないように、例えばAl−Si系合金において、Siの割合を5%まで下げると融点が615℃となり、加圧を行っても620℃以下の温度での接合は困難となる。
【0026】
これに対し、本発明のMgを含有するAl合金、ことにAl−Mg−Cu系合金、Al−Mg−Ge系合金或いはAl−Mg−Si系合金では、Cu、Ge、Siの割合を4%程度まで下げても適切に加圧等の手段を講じることによって、600℃程度での接合も可能となり、接合条件の許容幅が広がる。更に、Al−Mg−Cu系合金、Al−Mg−Ge系合金並びにAl−Mg−Si系は、SiやGeが単独でAlに添加されている場合に比べて、Cu、Ge、SiやMgがAl中に均一に拡散し易いため、局部的な溶融が生じたり、余分な接合材が押し出されてハミダシが生じ難く、比較的短時間で安定した接合が可能となることによる。
【0027】
本発明において、Mgを含有するAl合金中のMgについては、少量添加することによって、接合状態が良好になる。これはAl表面の酸化物層の除去効果や窒化アルミニウム基板表面と接合材の濡れ性改善効果によると推察される。Mgの割合は、0.05〜3重量%が好ましい。0.05重量%未満では添加効果が顕著でなくなり、3重量%超ではAl又はAl合金の硬度に悪影響を与えるうえ、接合時に多量に揮発して炉操業に支障をきたすことがある。特に好ましくは、0.1〜1.0重量%である。
【0028】
Al−Mg−Cu系合金中のCuの割合は、2〜10重量%であることが好ましい。2重量%未満では、接合温度が高くなってAlの融点に近くなってしまい、また10重量%超では、接合後のろう材の拡散部が特に硬くなって回路基板の信頼性が低下する恐れがある。好ましくは2〜6重量%である。
【0029】
また、Al−Mg−Ge系合金中のGeの割合は、2〜20重量%であることが好ましい。2重量%未満では、接合温度が高くなってAlの融点に近くなってしまい、また20重量%超では、接合後のろう材の拡散部が特に硬くなって回路基板の信頼性が低下する恐れがある。好ましくは2〜10重量%である。
【0030】
Al−Mg−Si系合金中のSiの割合は、4〜14重量%あることが好ましい。4重量%未満では、接合温度が高くなってAlの融点に近くなってしまい、また14重量%超では、接合後のろう材の拡散部が特に硬くなって回路基板の信頼性が低下する恐れがある。好ましくは4〜12重量%である。
【0031】
本発明で使用されるAl−Mg−Cu系合金、Al−Mg−Ge系合金或いはAl−Mg−Si系合金は、Al、Mg、Cu、Ge、Siの主要成分はもとより、それ以外の成分を含んでいてもよい。例えばAl、Mg、Cu、Ge、Si以外に、Zn、In、Mn、Cr、Ti、Bi、B、Fe等の成分を合計で5重量%程度以下を含んでいてもよい。本発明で使用される接合材の組成について日本工業規格の例をあげれば、4重量%程度のCuと0.5重量%程度のMgが含まれる2018合金、更に0.5重量%程度のMn等が含まれる2017合金を始め、2001、2005、2007、2014、2024、2030、2034、2036、2048、2090、2117、2124、2214、2218、2224、2324、7050等が挙げられる。
【0032】
前記Mgを含有する液相温度が500〜630℃のAl合金で窒化アルミニウム基板とアルミニウム板とを接合するときの温度については、液相範囲が500〜630℃にあるのでかなり広範囲の温度が適用できるが、接合材の組成によって適正温度条件は異なる。ZnやIn等の低融点成分が添加されていたり、MgやCu、Ge等の含有量が比較的多い場合には、600℃以下でも十分に接合できる。接合温度が630℃超では、接合時にろう接欠陥(回路に生じる虫食い現象)が生じやすくなるので好ましくない。
【0033】
本発明において、加熱接合時に、窒化アルミニウム基板と垂直な方向に10〜100kgf/cm2、特に15〜80kgf/cm2で加圧することは好ましいことである。加圧方法としては、重しを載せる、治具を用いて機械的に加えることによって行うことができる。加圧は、少なくとも接合が始まる温度、例えば、Al−0.3%Mg−4%Cu合金箔を用いて610℃で接合する場合は、580℃までの温度範囲では前記圧力以内に保たれていることが望ましい。
【0034】
本発明の基板一体型構造体においては、窒化アルミニウム基板の一方の面にAl回路が形成され、他方の反対面にはアルミニウム板を介して、若しくは介さずに、ベース板やヒートシンクなどの放熱部品が接合される。上記のAl−Mg−Cu系合金、Al−Mg−Ge系合金或いはAl−Mg−Si系合金の組成と、Al/SiC複合材に用いるAlを主成分とする金属の組成を適宜選択することにより、アルミニウムからなる回路パターン又は放熱用アルミニウム板と、Al/SiC複合材からなる放熱部品とを、同時に窒化アルミニウム基板の表裏面に接合することができる。この場合、Al−Mg−Cu系合金、Al−Mg−Ge系合金或いはAl−Mg−Si系合金の接合材は、窒化アルミニウム基板とアルミニウム回路パターン、或いはアルミニウム回路形成用のアルミニウム板との間に積層介在させるが、あらかじめアルミニウム板と接合用合金をクラッドしておくと一層使用しやすく、好ましい。
【0035】
放熱部品に用いているAl/SiC複合材のAlを主成分とする金属の融点が低い場合、例えばSi含有量が12重量%になると融点が580℃を下回り、アルミニウムまたはアルミニウム合金板、窒化アルミニウム板並びに放熱部品を同時に接合するための条件は、前記温度を下回る必要がある。Al−Mg−Cu系合金のCu量を10重量%程度に増やせば可能であるが、Al−Mg−Ge系合金ではGeを10重量%まで増やすと520℃でも接合することができ、一層好適である。あるいは、窒化アルミニウム基板より回路基板をあらかじめ製造し、それをAl/SiC複合材からなる放熱部品にAl−Mg−Ge系合金を用いて接合してもよい。
【0036】
本発明の基板一体型構造体は、Mgを含有する液相温度が500〜630℃のAl合金を接合材に用いることによって、その生産性を著しく高めることができる。その理由の一つは、接合が真空炉に限定されないことである。真空炉は元来高価なうえ、連続化が難しく、またバッチ炉では容積効率が悪い。大型炉にすると温度分布が生じ易く、高収率での生産は望めない。これに対し、従来のAl−Si系やAl−Ge系合金の接合材のかわりに、Al−Mg−Cu系合金やAl−Mg−Ge系合金を始めとする、Mgを含有する液相温度が500〜630℃のAl合金をを用いると、真空下でなくとも、N2、H2、不活性ガス及びこれらの混合ガスの低酸素雰囲気下で接合することができるので、炉構造が簡単になり、連続化も容易となる。更に、連続化によって、温度分布等の製品のバラツキ要因を低減させることができ、歩留まりよく、品質の安定した製品を製造することができるという効果を達することができる。
【0037】
また、本発明の基板一体型構造体を製造する際、放熱部品同士と窒化アルミニウム基板同士が隣り合うように積層して加熱することが好ましい。この理由は、放熱部品は回路基板よりも一般に熱膨張係数が大きいので、接合後の冷却によって回路基板側が凸形となりやすく、そのような変形を軽減させるためである。これは、Alが塑性変形の容易な材料である点を利用したものである。この場合において、放熱部品や窒化アルミニウム基板表面に存在するアルミニウム材同士の接着を避けるため、必要に応じてスペーサー材を介在させても良い。
【0038】
尚、本発明の基板一体型構造体の、アルミニウムまたはアルミニウム合金と窒化アルミニウム板との接合界面には、20nm以下の厚さのAl−Mg−O層が接合界面の一部もしくは全面に存在する。ここで、Al−Mg−O層は、Al、Mgと酸素を主成分とするアモルファス層である。Mgを含まない、もしくは少量しか含まないろう材を用いて接合した場合は、AlまたはAl合金と窒化アルミニウムの接合界面には、Al−O層が部分もしくは全面に存在し、この場合には信頼性の高い接合界面を得ることはできない。従って、このAl−Mg−O層が界面の接合に有用な働きをしていると予想される。
【0039】
更に、本発明の基板一体型構造体は、200℃以上、好ましくは300〜350℃程度の温度範囲で焼鈍することによって、窒化アルミニウム基板に残留しがちな熱応力を緩和することができる。
【0040】
【実施例】
以下、実施例と比較例に基づき、本発明を更に詳細に説明する。
【0041】
〔実施例1〜4、比較例1〜3〕
(1)窒化アルミニウム基板
市販の窒化アルミニウム粉にY23を表1に示す割合で混合し、有機バインダーと有機溶剤を加えて混練した後、ロール成形機によってシート状に成形した。これを裁断して離型材(BN粉)を塗布し、積層して1Paの減圧下、450℃で脱脂し、更に大気中で脱炭素した。各試料はN2雰囲気下で表1に示す焼成条件で焼結して、40mm×40mm×0.635mmの窒化アルミニウム基板を製造した。得られた窒化アルミニウム基板について、X線回折により助剤相の生成を調べるとともに、レーザーフラッシュ法により熱伝導率を求めた。それらの結果を表1に示す。
【0042】
【表1】

Figure 0004104253
【0043】
(2)ヒートシンク及びAl回路
50mm×50mm×3mmのAl/SiC複合体(特願平9−288219号に準じて製造したもの)、又は50mm×50mm×10mmのAlブロックを用いた。また、Al回路は市販のAl材(純度≧99.99%)から、回路パターンを打ち抜いて用いた。
【0044】
(3)一体型構造体の作製
表2に示される接合材と、前記の窒化アルミニウム基板、放熱部品及びAl回路とを、図1のように積層した。これを炉外から油圧式の一軸加圧装置でカーボン製の押し棒を介して窒化アルミニウム基板面と垂直方向に加圧しながら加熱を行い、接合した。接合条件は、表3に示すとおりであり、4×10-3Paの真空中(バッチ炉)又はN2ガス中(連続炉)で行った。なお、比較例1では、窒化アルミニウム基板の表裏面にAl板(厚み0.4mm)を接合した後、共晶半田で放熱部品に接合した。
【0045】
【表2】
Figure 0004104253
【0046】
【表3】
Figure 0004104253
【0047】
(4)基板一体型構造体の評価
得られた回路基板一体型構造体について、その接合状態を超音波探傷装置(SAT)で観察し、直径1mm以上の未接合部又は1%以上の未接合面積部が確認できたものを接合不良とした。次に、各試料は、−40℃、30分→室温、10分→125℃、30分→室温、10分を1サイクルとして3000サイクルのヒートサイクルテストを行った後、外観観察して異常の有無を確認し、再びSATで接合状態を調べた。それらの結果を表4に示す。
【0048】
【表4】
Figure 0004104253
【0049】
実施例、比較例から明らかなように、本発明の基板一体型造体では、いずれも良好な接合状態を示した。特に、実施例1、2、4では、簡易的な連続炉を用いたにも拘わらず、接合不良のない基板一体型構造体が得られている。これに対して、比較例1〜3では、ヒートサイクル後には不良品が多発している。
【0050】
【発明の効果】
本発明によれば、軽量にして放熱性に優れた高信頼性の基板一体型構造体が提供され、前記基板上に回路形成するのみで、軽量で放熱性に優れた回路基板が放熱部品に一体化された構造体を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例、比較例の基板一体型構造体を得るときの積層方法を説明する図。
【符号の説明】
1 カーボン製スペーサー
2 Al
3 接合材
4 窒化アルミニウム基板
5 接合材
6 放熱部品[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board integrated structure for a semiconductor device that is lightweight, excellent in heat dissipation, and highly reliable.
[0002]
[Prior art]
In various semiconductor devices including a power module, a ceramic substrate provided with a circuit made of Cu on both surfaces is used as a circuit substrate. In particular, when high heat dissipation is required due to high integration and high power, aluminum nitride having high thermal conductivity is used as a ceramic.
[0003]
However, in the circuit board provided with the circuit made of Cu, due to repeated thermal stress due to the difference in thermal expansion coefficient between the Cu circuit (or the heat dissipation Cu plate provided on the back surface) and the aluminum nitride substrate, Since fine cracks may occur in the aluminum nitride substrate, it has been attempted to join an Al plate having a low yield strength when high reliability is required.
[0004]
In addition, the circuit board is usually used by soldering the heat radiating metal plate to the base Cu plate in order to join the heat radiating fin or the like. In order to avoid the occurrence of solder cracks, it is also possible to use a material with a low thermal expansion coefficient for the base plate. In recent years, the silicon carbide porous body is impregnated with a metal mainly composed of Al in the voids of the silicon carbide porous body. An aluminum-silicon carbide composite (hereinafter referred to as an Al / SiC composite) obtained by the above process has been developed.
[0005]
[Problems to be solved by the invention]
With the recent high integration and high power of semiconductor devices, lighter and more compact and higher heat dissipation is required. (1) One side of the metal plate provided on both sides of the ceramic substrate Attempts have been made such as omitting and directly joining the base plate, and (2) omitting the base plate and directly mounting the ceramic substrate on a heat sink such as a water-cooled plate or a heat radiating fin. However, these attempts have a problem that they cannot withstand the stress caused by the difference in thermal expansion coefficient of each component and the temperature change in the assembly process and the use environment, and the reliability cannot be ensured.
[0006]
Solder is mainly used to improve heat conduction when attaching the circuit board to the base plate, but the solder deforms by absorbing the difference in thermal expansion between the ceramic substrate and the base plate. It also played a role in preventing the substrate and silicon chip from cracking. However, in the future, it is desirable that the solder has a lead-free composition due to environmental pollution problems. In this case, the stress that causes plastic deformation increases, and the stress relaxation ability decreases. Furthermore, considering that lead-free solder is inferior in solder wettability compared with the current Pb-Sn system, there is a reliable and excellent adhesion between a circuit board and a heat radiation component such as a base plate or a heat sink. Joining will become increasingly necessary.
[0007]
Furthermore, in the case where an Al / SiC composite material is used as a heat dissipation component, it is also considered that a silicon carbide porous body is impregnated with a metal containing Al as a main component and simultaneously bonded to a ceramic substrate. In addition to being a very advanced technology, there are unsolved problems such as the ceramic substrate being buried in the metal layer mainly composed of Al. Moreover, if the shape of the heat dissipation component or the ceramic substrate changes, the formwork to be used must be changed accordingly, which is inconvenient in production.
[0008]
On the other hand, with respect to a technique for bonding a base plate, which is a heat dissipation component, and a ceramic substrate with a bonding material, there are many proposals as disclosed in, for example, Japanese Patent Laid-Open No. 3-125463. In the above technique, an Al—Si or Al—Ge alloy foil is used as a bonding material, and bonding is performed using a batch type vacuum furnace. However, when a large base plate is introduced into the batch type vacuum furnace, volume efficiency is improved. Productivity decreases because it gets worse. Also, a large continuous vacuum furnace is expensive and difficult to strictly control temperature, and is not suitable for such joining.
[0009]
As described above, when a ceramic circuit board and a heat dissipation component are directly bonded, a module having efficient heat dissipation is obtained, but this is not realized because there is no industrial bonding technique.
[0010]
The present invention has been made in view of the above, and an object of the present invention is to provide an industrial joining technique for joining a ceramic circuit board and a heat dissipation component, and to provide a lightweight module having efficient heat dissipation. It is to provide. That is, a circuit board formed by forming an Al circuit on at least one surface of an aluminum nitride substrate has a structure in which it is joined to a heat radiating component made of an Al / SiC composite material without using solder, making it lightweight and radiating heat. It is an object of the present invention to provide a highly reliable substrate integrated structure.
[0011]
[Means for Solving the Problems]
The present invention is a substrate integrated structure comprising an aluminum nitride substrate having an aluminum or aluminum alloy plate bonded to at least one surface and a heat dissipation component formed by impregnating a silicon carbide based porous material with a metal mainly composed of Al. The aluminum or aluminum alloy plate and the heat dissipating part contain at least one selected from the group consisting of Mg and Cu, Ge and Si, and the temperature at which the liquid phase is formed is 500 to 630 ° C. A substrate-integrated structure characterized by being bonded through an alloy.
[0012]
Further, the present invention is the above-described circuit board integrated structure, wherein the heat dissipation component is provided with a metal layer mainly composed of Al of 10 μm or more on the main surface of the heat dissipation component.
[0013]
Further, the present invention provides an aluminum-silicon carbide composite in which the heat dissipation component is made of an aluminum alloy containing 40 to 70% by volume of silicon carbide and the balance of 4 to 14% by weight of Si, and the thermal conductivity is 160 W / mK or more. The circuit board integrated structure described above, characterized by comprising:
[0014]
Furthermore, the aluminum nitride substrate has a thermal conductivity of 130 W / mK or more, and the surface has an X-ray diffraction peak intensity ratio of 2 ≦ (Y 2 O 3 .Al 2 O 3 / AlN) × 100 ≦ 17, and ( 2Y 2 O 3 · Al 2 O 3 / AlN) × 100 ≦ 2 is the circuit board integrated structure described above.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a substrate integrated structure comprising an aluminum nitride substrate having an aluminum or aluminum alloy plate bonded to at least one surface, and a heat dissipation component formed by impregnating a silicon carbide porous body with a metal mainly composed of Al. The aluminum or aluminum alloy plate and the heat dissipation component are joined by an Al alloy containing Mg and one or more selected from the group consisting of Cu, Ge, and Si. It is a body structure. By adopting the above configuration, it is possible to provide a highly reliable substrate-integrated structure that is lightweight and excellent in heat dissipation.
[0016]
The aluminum nitride substrate used in the present invention is fired using Y 2 O 3 as a sintering aid, and preferably has a thermal conductivity of 130 W / mK or more. Further, the intensity ratio of the main peak of X-ray diffraction by CuKα on the surface is 2 ≦ (Y 2 O 3 .Al 2 O 3 / AlN) × 100 ≦ 17, and (2Y 2 O 3 .Al 2 O 3 / It is preferable that AlN) × 100 ≦ 2. The aluminum nitride substrate having such surface characteristics contains Mg and one or more selected from the group consisting of Cu, Ge, and Si without performing complicated surface treatment such as oxidation treatment, and at least a part thereof. Using an Al alloy having a liquid phase forming temperature of 500 to 630 ° C., it can be bonded to a metal mainly composed of Al with a sufficiently strong strength.
[0017]
The surface characteristics of the aluminum nitride substrate are adjusted by adjusting the composition ratio of Al 2 O 3 and Y 2 O 3 in the raw material aluminum nitride powder, the amount of oxygen increased after degreasing and before firing, the firing temperature, etc. Can do.
[0018]
For example, when 2Y 2 O 3 · Al 2 O 3 is large, it is sufficient to increase the amount of Al 2 O 3 relatively, so use an aluminum nitride powder raw material with a large amount of oxygen or add Al 2 O 3. , Reduce Y 2 O 3 . On the other hand, when the amount of Y 2 O 3 .Al 2 O 3 is large, the amount of Y 2 O 3 added is reduced or the firing temperature is lowered. In addition, Al 2 O 3 can be increased by degreasing in air.
[0019]
An Al circuit can be formed on the aluminum nitride substrate by bonding an Al plate and then etching, bonding a pattern punched from the Al plate, or the like. The bonding material contains Mg and at least one selected from the group consisting of Cu, Ge, and Si, and uses an Al alloy having a temperature of 500 to 630 ° C. for forming a liquid phase. Will be described later. In order to improve productivity, it is preferable to join an Al plate or a pattern made of Al at the same time as joining with a heat dissipation component.
[0020]
A heat dissipation component made of a composite formed by impregnating a silicon carbide porous body with a metal mainly composed of Al used in the present invention includes, for example, a silicon carbide porous body (also called a preform) containing Al as a main component. For example, ceramic data book '95, Yuzo Yamaguchi, Saburo Hori, pages 95 to 101 (1995)). The heat dissipating part desirably has an appropriate thermal expansion coefficient and high thermal conductivity, and desirably has a thermal conductivity of 160 W / mK or more and a thermal expansion coefficient of 6 to 10 ppm. This physical property can be adjusted by a volume ratio of a metal containing Al as a main component and silicon carbide, and is preferably 40-70% by volume of silicon carbide and the balance being a metal containing Al as a main component. Further, as the metal having Al as a main component, an alloy composition whose characteristics do not deteriorate even when exposed to temperature in an assembly process or a use environment is desirable, for example, an Al alloy containing 4 to 14% by weight of Si is desirable.
[0021]
In the present invention, the heat dissipating part preferably has a structure in which silicon carbide is not exposed on the main surface thereof, and the heat dissipating part may have a structure in which the Al-based metal is a layer of 10 μm or more. desirable. The main surface is a surface to which the circuit board is brazed, and when the surface of the heat dissipation component is plated, it refers to the surface of the portion to be plated. If silicon carbide is exposed on these surfaces, defects such as defects on the brazed surface, difficulty in forming a plating film, and low adhesion strength of plating and brazing are likely to occur.
[0022]
The surface of the substrate integrated structure according to the present invention is Ni-plated on the entire surface or a portion where Al or an Al alloy is exposed on the surface, if necessary. Particularly, the soldered portion needs to be Ni-plated, and the portion to be bonded with Al wire is more reliable when there is no Ni-plating. Therefore, partial plating is preferable.
[0023]
In the present invention, the bonding of the aluminum or aluminum alloy plate and the aluminum nitride plate contains Mg and one or more selected from the group consisting of Cu, Ge and Si, and the temperature for forming the liquid phase is 500 to 630 ° C. Al alloys such as Al—Mg—Cu alloys, Al—Mg—Ge alloys, Al—Mg—Si alloys, and the like are used. The reason is as follows.
[0024]
As described above, Al—Si based alloys and Al—Ge based alloys are known for joining an aluminum nitride substrate and an aluminum or aluminum alloy plate, but are composed of Mg, Cu, Ge and Si according to the present invention. Since the Al alloy containing at least one selected from the group has a wider tolerance range for bonding conditions with the aluminum nitride substrate than the alloy, it can be bonded without being in a vacuum. Excellent bonding is possible.
[0025]
In other words, conventionally known Al—Si alloys and Al—Ge alloys do not lower the melting point unless a relatively large amount of Si or Ge is added, but if they are added in a large amount, they become hard and brittle. In order not to cause such a problem, for example, in an Al—Si alloy, if the Si ratio is lowered to 5%, the melting point becomes 615 ° C., and it is difficult to join at a temperature of 620 ° C. or lower even if pressure is applied. Become.
[0026]
On the other hand, in the Al alloy containing Mg of the present invention, in particular, the Al—Mg—Cu alloy, the Al—Mg—Ge alloy, or the Al—Mg—Si alloy, the ratio of Cu, Ge, Si is 4 Even if the pressure is reduced to about%, it is possible to perform bonding at about 600 ° C. by appropriately applying means such as pressurization, and the allowable range of bonding conditions is widened. Furthermore, the Al—Mg—Cu based alloy, Al—Mg—Ge based alloy and Al—Mg—Si based have Cu, Ge, Si and Mg compared to the case where Si or Ge is added alone to Al. Since it is easy to diffuse uniformly in Al, local melting occurs, or excess bonding material is not pushed out, and it is difficult to cause creaking, and stable bonding is possible in a relatively short time.
[0027]
In this invention, about Mg in Al alloy containing Mg, a joining state becomes favorable by adding a small amount. This is presumed to be due to the effect of removing the oxide layer on the Al surface and the effect of improving the wettability between the surface of the aluminum nitride substrate and the bonding material. The proportion of Mg is preferably 0.05 to 3% by weight. If it is less than 0.05% by weight, the effect of addition becomes inconspicuous, and if it exceeds 3% by weight, the hardness of Al or Al alloy is adversely affected, and a large amount of volatilization may occur during bonding, thereby hindering furnace operation. Particularly preferred is 0.1 to 1.0% by weight.
[0028]
The proportion of Cu in the Al—Mg—Cu alloy is preferably 2 to 10% by weight. If it is less than 2% by weight, the bonding temperature becomes high and close to the melting point of Al, and if it exceeds 10% by weight, the diffusion part of the brazing material after bonding becomes particularly hard and the reliability of the circuit board may be lowered. There is. Preferably it is 2 to 6% by weight.
[0029]
Moreover, it is preferable that the ratio of Ge in an Al-Mg-Ge type alloy is 2 to 20 weight%. If it is less than 2% by weight, the bonding temperature becomes high and close to the melting point of Al, and if it exceeds 20% by weight, the diffusion part of the brazing material after bonding becomes particularly hard and the reliability of the circuit board may be lowered. There is. Preferably it is 2 to 10% by weight.
[0030]
The proportion of Si in the Al—Mg—Si alloy is preferably 4 to 14% by weight. If it is less than 4% by weight, the bonding temperature becomes high and close to the melting point of Al. If it exceeds 14% by weight, the diffusion part of the brazing material after bonding becomes particularly hard and the reliability of the circuit board may be lowered. There is. Preferably, it is 4 to 12% by weight.
[0031]
The Al—Mg—Cu based alloy, Al—Mg—Ge based alloy or Al—Mg—Si based alloy used in the present invention is not only the main components of Al, Mg, Cu, Ge and Si but also other components. May be included. For example, in addition to Al, Mg, Cu, Ge, and Si, components such as Zn, In, Mn, Cr, Ti, Bi, B, and Fe may be included in a total of about 5% by weight or less. Examples of Japanese Industrial Standards for the composition of the bonding material used in the present invention include a 2018 alloy containing about 4% by weight of Cu and about 0.5% by weight of Mg, and further about 0.5% by weight of Mn. And the like, and 2001, 2005, 2007, 2014, 2024, 2030, 2034, 2036, 2048, 2090, 2117, 2124, 2214, 2218, 2224, 2324, 7050 and the like.
[0032]
As for the temperature when the aluminum nitride substrate and the aluminum plate are joined with the Al alloy containing Mg at a liquid phase temperature of 500 to 630 ° C., the liquid phase range is 500 to 630 ° C. However, the appropriate temperature condition varies depending on the composition of the bonding material. When a low melting point component such as Zn or In is added, or when the content of Mg, Cu, Ge or the like is relatively high, sufficient bonding can be achieved even at 600 ° C. or lower. When the bonding temperature is higher than 630 ° C., it is not preferable because a soldering defect (a worm-eating phenomenon generated in a circuit) is likely to occur during bonding.
[0033]
In the present invention, at the time of heat-bonding, 10~100kgf / cm 2 in a direction perpendicular and the aluminum nitride substrate, it is preferred in particular pressurized with 15~80kgf / cm 2. As a pressurizing method, a weight can be placed, or mechanically applied using a jig. Pressurization is maintained at the temperature at which the joining starts, for example, when joining at 610 ° C. using an Al-0.3% Mg-4% Cu alloy foil within the temperature range up to 580 ° C. It is desirable.
[0034]
In the substrate integrated structure of the present invention, an Al circuit is formed on one surface of an aluminum nitride substrate, and a heat radiating component such as a base plate or a heat sink is provided with or without an aluminum plate on the other surface. Are joined. The composition of the above Al-Mg-Cu alloy, Al-Mg-Ge alloy or Al-Mg-Si alloy and the composition of the metal mainly composed of Al used for the Al / SiC composite material should be selected as appropriate. Thus, the circuit pattern made of aluminum or the heat radiating aluminum plate and the heat radiating component made of the Al / SiC composite material can be simultaneously bonded to the front and back surfaces of the aluminum nitride substrate. In this case, the bonding material of the Al—Mg—Cu alloy, Al—Mg—Ge alloy or Al—Mg—Si alloy is used between the aluminum nitride substrate and the aluminum circuit pattern or the aluminum plate for forming the aluminum circuit. However, it is preferable to clad an aluminum plate and a bonding alloy in advance because it is easier to use.
[0035]
When the melting point of the metal mainly composed of Al of the Al / SiC composite material used for the heat dissipation component is low, for example, when the Si content is 12% by weight, the melting point is lower than 580 ° C., and aluminum or aluminum alloy plate, aluminum nitride The conditions for joining the plate and the heat dissipation component at the same time need to be lower than the above temperature. It is possible to increase the amount of Cu in the Al-Mg-Cu alloy to about 10% by weight, but in the case of Al-Mg-Ge alloy, if Ge is increased to 10% by weight, bonding can be performed even at 520 ° C, which is more preferable. It is. Alternatively, a circuit board may be manufactured in advance from an aluminum nitride substrate, and it may be bonded to a heat dissipation component made of an Al / SiC composite material using an Al—Mg—Ge alloy.
[0036]
The substrate integrated structure according to the present invention can significantly increase the productivity by using an Al alloy containing Mg and having a liquidus temperature of 500 to 630 ° C. as a bonding material. One reason is that bonding is not limited to a vacuum furnace. Vacuum furnaces are inherently expensive, difficult to continue, and batch furnaces have poor volumetric efficiency. When a large furnace is used, temperature distribution tends to occur, and high yield production cannot be expected. On the other hand, liquid phase temperature containing Mg, such as Al-Mg-Cu alloy and Al-Mg-Ge alloy, instead of the conventional Al-Si or Al-Ge alloy bonding material. If an Al alloy with a temperature of 500 to 630 ° C. is used, the furnace structure can be simplified because bonding can be performed in a low oxygen atmosphere of N 2, H 2, an inert gas, and a mixed gas thereof, even without a vacuum. Also, continuation is easy. Furthermore, the continuation can reduce the variation factor of the product such as the temperature distribution, and can achieve an effect that a product with high yield and stable quality can be manufactured.
[0037]
Moreover, when manufacturing the board | substrate integrated structure of this invention, it is preferable to laminate | stack and heat so that heat dissipation components and aluminum nitride board | substrates may adjoin. This is because the heat dissipation component generally has a larger coefficient of thermal expansion than the circuit board, so that the circuit board side tends to be convex due to cooling after bonding, and this deformation is reduced. This utilizes the point that Al is a material that is easily plastically deformed. In this case, a spacer material may be interposed as necessary in order to avoid adhesion between the heat radiating parts and the aluminum materials existing on the surface of the aluminum nitride substrate.
[0038]
In the substrate-integrated structure of the present invention, an Al—Mg—O layer having a thickness of 20 nm or less exists on a part of or the entire surface of the bonding interface between aluminum or an aluminum alloy and an aluminum nitride plate. . Here, the Al—Mg—O layer is an amorphous layer mainly composed of Al, Mg, and oxygen. When bonding is performed using a brazing material that does not contain Mg or contains only a small amount, an Al-O layer is present partially or entirely at the bonding interface between Al or Al alloy and aluminum nitride. A highly bonded interface cannot be obtained. Therefore, it is expected that the Al—Mg—O layer has a useful function for bonding at the interface.
[0039]
Furthermore, the substrate integrated structure of the present invention can relieve thermal stress that tends to remain on the aluminum nitride substrate by annealing at a temperature range of 200 ° C. or higher, preferably about 300 to 350 ° C.
[0040]
【Example】
Hereinafter, based on an Example and a comparative example, this invention is demonstrated still in detail.
[0041]
[Examples 1-4, Comparative Examples 1-3]
(1) Aluminum Nitride Substrate Y 2 O 3 was mixed with commercially available aluminum nitride powder in the ratio shown in Table 1, an organic binder and an organic solvent were added and kneaded, and then formed into a sheet by a roll molding machine. This was cut, a release material (BN powder) was applied, laminated, degreased at 450 ° C. under a reduced pressure of 1 Pa, and decarbonized in the air. Each sample was sintered under the firing conditions shown in Table 1 under an N 2 atmosphere to produce a 40 mm × 40 mm × 0.635 mm aluminum nitride substrate. About the obtained aluminum nitride board | substrate, while producing | generating the auxiliary | assistant phase by X-ray diffraction, the thermal conductivity was calculated | required by the laser flash method. The results are shown in Table 1.
[0042]
[Table 1]
Figure 0004104253
[0043]
(2) A heat sink and an Al circuit 50 mm × 50 mm × 3 mm Al / SiC composite (manufactured according to Japanese Patent Application No. 9-288219) or an Al block of 50 mm × 50 mm × 10 mm was used. The Al circuit was used by punching a circuit pattern from a commercially available Al material (purity ≧ 99.99%).
[0044]
(3) Production of integrated structure The bonding material shown in Table 2, the aluminum nitride substrate, the heat dissipation component, and the Al circuit were laminated as shown in FIG. This was heated from outside the furnace with a hydraulic uniaxial pressurizing device through a carbon push rod in a direction perpendicular to the surface of the aluminum nitride substrate, and joined. The bonding conditions were as shown in Table 3, and were performed in a vacuum of 4 × 10 −3 Pa (batch furnace) or in N 2 gas (continuous furnace). In Comparative Example 1, Al plates (thickness 0.4 mm) were bonded to the front and back surfaces of the aluminum nitride substrate, and then bonded to the heat dissipation component with eutectic solder.
[0045]
[Table 2]
Figure 0004104253
[0046]
[Table 3]
Figure 0004104253
[0047]
(4) Evaluation of board-integrated structure The bonded state of the obtained circuit board-integrated structure is observed with an ultrasonic flaw detector (SAT), and a non-bonded portion having a diameter of 1 mm or more or 1% or more is not bonded. What the area part was able to confirm was made into the joining defect. Next, after each sample was subjected to a heat cycle test of 3000 cycles with −40 ° C., 30 minutes → room temperature, 10 minutes → 125 ° C., 30 minutes → room temperature, 10 minutes as one cycle, the appearance was observed and abnormal The presence or absence was confirmed, and the bonding state was examined again by SAT. The results are shown in Table 4.
[0048]
[Table 4]
Figure 0004104253
[0049]
As is clear from the examples and comparative examples, the substrate-integrated structure of the present invention showed a good bonded state. In particular, in Examples 1, 2, and 4, a substrate-integrated structure with no poor bonding is obtained despite the use of a simple continuous furnace. On the other hand, in Comparative Examples 1 to 3, defective products frequently occur after the heat cycle.
[0050]
【The invention's effect】
According to the present invention, a highly reliable board-integrated structure that is lightweight and excellent in heat dissipation is provided. A circuit board that is lightweight and excellent in heat dissipation can be used as a heat dissipation component simply by forming a circuit on the substrate. An integrated structure can be obtained.
[Brief description of the drawings]
FIG. 1 is a view for explaining a stacking method for obtaining a substrate integrated structure according to an embodiment of the present invention and a comparative example.
[Explanation of symbols]
1 Carbon spacer 2 Al
3 Bonding material 4 Aluminum nitride substrate 5 Bonding material 6 Heat dissipation component

Claims (2)

少なくとも一面にアルミニウムまたはアルミニウム合金板が接合された窒化アルミニウム基板と、炭化珪素質多孔体にAlを主成分とする金属を含浸してなる放熱部品とからなる基板一体型構造体の製造方法であって、前記窒化アルミニウム基板の表面のX線回折ピーク強度比が、2≦(Y 2 3 ・Al 2 3 /AlN)×100≦17、かつ(2Y 2 3 ・Al 2 3 /AlN)×100≦2であり、前記放熱部品が、炭化珪素を40〜70体積%で残部がSiを4〜14重量%含むアルミニウム合金からなり、熱伝導率が160W/mK以上であるアルミニウム−炭化珪素複合体で、かつ、前記放熱部品の主面に前記Alを主成分とする金属層が厚さ10μm以上設けられていることを特徴とし、前記アルミニウムまたはアルミニウム合金板と前記放熱部品とが、MgとCu、Ge及びSiからなる群から選ばれる1種以上とを含有し、液相を形成する温度が500〜630℃であるAl合金を介して、N 、H 、不活性ガス及びこれらの混合ガスの低酸素雰囲気下で接合されることを特徴とする接合処理の連続化が可能な基板一体型構造体の製造方法。A method of manufacturing a substrate-integrated structure comprising an aluminum nitride substrate having an aluminum or aluminum alloy plate bonded to at least one surface and a heat dissipation component formed by impregnating a silicon carbide based porous material with a metal mainly composed of Al. The X-ray diffraction peak intensity ratio of the surface of the aluminum nitride substrate is 2 ≦ (Y 2 O 3 .Al 2 O 3 / AlN) × 100 ≦ 17 and (2Y 2 O 3 .Al 2 O 3 / AlN) ) × 100 ≦ 2, the heat dissipation component is made of an aluminum alloy containing 40 to 70% by volume of silicon carbide and the balance of 4 to 14% by weight of Si, and the thermal conductivity is 160 W / mK or more. in silicon composite, and the said Al to the main surface of the heat radiation member and wherein a metal layer mainly composed is provided over a thickness of 10 [mu] m, the aluminum or aluminum alloy plate And the heat radiating component contains at least one selected from the group consisting of Mg and Cu, Ge, and Si, and through an Al alloy having a liquid phase temperature of 500 to 630 ° C. , N 2 , A method for manufacturing a substrate-integrated structure capable of continuous bonding processing, characterized in that bonding is performed in a low oxygen atmosphere of H 2 , an inert gas, and a mixed gas thereof. 放熱部品同士と窒化アルミニウム基板同士が隣り合うように積層して加熱することを特徴とする請求項1項記載の基板一体型構造体の製造方法。2. The method for manufacturing a substrate-integrated structure according to claim 1, wherein the heat dissipating parts and the aluminum nitride substrate are laminated and heated so as to be adjacent to each other.
JP21179499A 1999-07-27 1999-07-27 Board integrated structure Expired - Fee Related JP4104253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179499A JP4104253B2 (en) 1999-07-27 1999-07-27 Board integrated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179499A JP4104253B2 (en) 1999-07-27 1999-07-27 Board integrated structure

Publications (2)

Publication Number Publication Date
JP2001044345A JP2001044345A (en) 2001-02-16
JP4104253B2 true JP4104253B2 (en) 2008-06-18

Family

ID=16611727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179499A Expired - Fee Related JP4104253B2 (en) 1999-07-27 1999-07-27 Board integrated structure

Country Status (1)

Country Link
JP (1) JP4104253B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674999B2 (en) * 2001-06-18 2011-04-20 電気化学工業株式会社 Integrated ceramic circuit board manufacturing method
JP2002334959A (en) * 2001-05-10 2002-11-22 Denki Kagaku Kogyo Kk Module structure
JP4543275B2 (en) * 2004-03-08 2010-09-15 Dowaメタルテック株式会社 Aluminum-ceramic bonding substrate and manufacturing method thereof
JP6102271B2 (en) * 2013-01-17 2017-03-29 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6024477B2 (en) * 2013-01-25 2016-11-16 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6020256B2 (en) * 2013-02-28 2016-11-02 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6287216B2 (en) * 2014-01-08 2018-03-07 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP5949817B2 (en) * 2014-03-20 2016-07-13 三菱マテリアル株式会社 Power module substrate manufacturing method
JP6656657B2 (en) 2015-11-06 2020-03-04 三菱マテリアル株式会社 Ceramic / aluminum joint, power module substrate, and power module
JP6531644B2 (en) * 2015-12-28 2019-06-19 三菱マテリアル株式会社 Method of manufacturing joined body, method of manufacturing power module substrate with heat sink, joined body and substrate of power module with heat sink
JP6572810B2 (en) * 2016-03-15 2019-09-11 三菱マテリアル株式会社 Manufacturing method of joined body and manufacturing method of power module substrate
JP6658400B2 (en) * 2016-08-24 2020-03-04 三菱マテリアル株式会社 Method for producing ceramic / Al-SiC composite material joined body and method for producing substrate for power module with heat sink
JP6680144B2 (en) * 2016-08-24 2020-04-15 三菱マテリアル株式会社 Method for manufacturing ceramic / Al-SiC composite material joined body and method for manufacturing power module substrate with heat sink
JP6973158B2 (en) * 2018-02-19 2021-11-24 三菱マテリアル株式会社 How to manufacture a board for a power module with a heat sink
JP6973218B2 (en) * 2018-03-19 2021-11-24 三菱マテリアル株式会社 How to manufacture a board for a power module with a heat sink

Also Published As

Publication number Publication date
JP2001044345A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
KR102232098B1 (en) Substrate for heat sink-equipped power module, and production method for same
EP2214201B1 (en) Process for producing substrate for power module, substrate for power module, and power module
JP4104253B2 (en) Board integrated structure
EP2296177B1 (en) Method for manufacturing a power module substrate
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
EP2978019B1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
EP1089334A2 (en) Ceramic circuit board
WO2003046981A1 (en) Module structure and module comprising it
JP2017183716A (en) Manufacturing method of insulation circuit board with heat sink, and insulation circuit board with heat sink
JP6958441B2 (en) Manufacturing method of insulated circuit board with heat sink
TW201644017A (en) Method of producing power module substrate with heat sink
JP4293406B2 (en) Circuit board
JPH0786703A (en) Ceramic circuit board
JP2019081690A (en) Joint body and insulating circuit substrate
JPH02196074A (en) Production of ceramics-metal joined body
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
WO2021200866A1 (en) Circuit board, joined body, and methods for producing same
JP3797823B2 (en) Circuit board composite
WO2019082970A1 (en) Bonded body and insulated circuit board
JPH08102570A (en) Ceramic circuit board
JP3190282B2 (en) Circuit board manufacturing method
JP3302714B2 (en) Ceramic-metal joint
WO2022224949A1 (en) Copper/ceramic bonded body and insulated circuit board
WO2022224958A1 (en) Copper/ceramic bonded body and insulated circuit board
JPH06329480A (en) Joined body of ceramics and metal and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees