JP5949817B2 - Power module substrate manufacturing method - Google Patents

Power module substrate manufacturing method Download PDF

Info

Publication number
JP5949817B2
JP5949817B2 JP2014058537A JP2014058537A JP5949817B2 JP 5949817 B2 JP5949817 B2 JP 5949817B2 JP 2014058537 A JP2014058537 A JP 2014058537A JP 2014058537 A JP2014058537 A JP 2014058537A JP 5949817 B2 JP5949817 B2 JP 5949817B2
Authority
JP
Japan
Prior art keywords
power module
module substrate
metal plate
stacked
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014058537A
Other languages
Japanese (ja)
Other versions
JP2014132687A (en
Inventor
慎介 青木
慎介 青木
長瀬 敏之
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014058537A priority Critical patent/JP5949817B2/en
Publication of JP2014132687A publication Critical patent/JP2014132687A/en
Application granted granted Critical
Publication of JP5949817B2 publication Critical patent/JP5949817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、パワーモジュール用基板の製造方法に関する。   The present invention relates to a method for manufacturing a power module substrate.

一般に、電力供給のためのパワーモジュールは、発熱量が比較的高い半導体素子である。このパワーモジュール用基板としては、例えば、AlN、Al23、Si34、SiC等からなるセラミックス基板の両面に、アルミニウム板等の金属板をろう材を介して接合させたものが用いられる。セラミックス基板に接合された金属板の一方は、後工程のエッチング処理によって所望パターンの回路が形成されて回路層となり、電子部品(半導体チップ等のパワー素子)が搭載される。また、セラミックス基板に接合された金属板の他方(回路層)には、ヒートシンクが接合される。 In general, a power module for supplying power is a semiconductor element that generates a relatively large amount of heat. As this power module substrate, for example, a ceramic substrate made of AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like, on which a metal plate such as an aluminum plate is bonded via a brazing material is used. It is done. One of the metal plates bonded to the ceramic substrate is formed with a circuit having a desired pattern by a subsequent etching process to form a circuit layer, and an electronic component (power element such as a semiconductor chip) is mounted thereon. In addition, a heat sink is bonded to the other (circuit layer) of the metal plate bonded to the ceramic substrate.

電子部品およびヒートシンクが接合されてなるパワーモジュールにおいて、電子部品から発生する熱は、ヒートシンクによって放散される。従来、パワーモジュールにおいては回路層及び放熱層とも同じ板材で形成されるのが一般的であったが、近年では、放熱層の熱伸縮によってセラミックス基板に生じる熱応力を緩和するために、放熱層を肉厚に形成して緩衝機能を持たせることが検討されている。   In a power module in which an electronic component and a heat sink are joined, heat generated from the electronic component is dissipated by the heat sink. Conventionally, in a power module, the circuit layer and the heat dissipation layer are generally formed of the same plate material. However, in recent years, in order to relieve the thermal stress generated in the ceramic substrate due to the thermal expansion and contraction of the heat dissipation layer, the heat dissipation layer It has been studied to form a thick wall with a buffer function.

回路層の厚さと放熱層の厚さとが異なる場合、ろう付けのための加熱処理を経由することにより、薄肉側(回路層側)を凸とする反りが生じる(特許文献1参照)。このため、その後のヒートシンクへの取り付けを阻害するという問題が生じる。また、ろう付け等の製造時に加わる熱だけでなく、使用環境においても、例えば50℃の比較的高温の状態で長期間使用され続けると、同様の反りが生じる。   When the thickness of the circuit layer and the thickness of the heat dissipation layer are different, a warp with the thin-walled side (circuit layer side) convex occurs through the heat treatment for brazing (see Patent Document 1). For this reason, the problem of inhibiting the subsequent attachment to a heat sink arises. In addition to the heat applied during manufacturing such as brazing, the same warp occurs in the environment of use as long as it is used for a long time at a relatively high temperature of, for example, 50 ° C.

特開2002−252433号公報JP 2002-252433 A

パワーモジュール用基板とヒートシンクとを接合する際には、ヒートシンクの天板上にパワーモジュール用基板を載置して、ヒートシンクの天板とパワーモジュール用基板の放熱層とをろう付する方法が採用できる。この場合、パワーモジュール用基板が大きく反っていると前述のようにヒートシンクの取付が阻害されるが、パワーモジュール用基板が平坦である場合も、ヒートシンクへのろう付作業の際、ヒートシンクとパワーモジュール用基板とが固着されるまでの間にずれやすいという問題がある。   When joining the power module substrate and the heat sink, a method is adopted in which the power module substrate is placed on the heat sink top plate and the heat sink top plate and the power module substrate heat dissipation layer are brazed. it can. In this case, if the power module substrate is greatly warped, the mounting of the heat sink is hindered as described above. However, even when the power module substrate is flat, the heat sink and the power module are used when brazing to the heat sink. There is a problem that it is likely to be displaced before the substrate is fixed.

本発明は、このような事情に鑑みてなされたもので、容易かつ確実にヒートシンクを接合することができるパワーモジュール用基板の製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of the board | substrate for power modules which can join a heat sink easily and reliably.

本発明の方法により製造されるパワーモジュール用基板は、セラミックス基板の両面にそれぞれ回路層用金属板および放熱層用金属板が厚さ方向に積層され接合されてなるパワーモジュール用基板であって、前記回路層用金属板側が凸となるように反っており、その反り量が前記パワーモジュール用基板の長辺方向の長さに対して厚さ方向に0.1%以上0.3%以下の大きさである。このパワーモジュール用基板によれば、ヒートシンクの取付を阻害しない適切な大きさの反り形状を有するので、ヒートシンクの天板上に安定して配置され、ヒートシンクが確実に接合される。   The power module substrate manufactured by the method of the present invention is a power module substrate in which a circuit layer metal plate and a heat dissipation layer metal plate are laminated and bonded to both surfaces of a ceramic substrate, respectively, The circuit layer metal plate side is warped so as to be convex, and the amount of warpage is 0.1% or more and 0.3% or less in the thickness direction with respect to the length of the long side direction of the power module substrate. It is a size. According to this power module substrate, since it has a warped shape of an appropriate size that does not obstruct the mounting of the heat sink, it is stably placed on the top plate of the heat sink, and the heat sink is securely bonded.

そして、本発明は、このようなパワーモジュール用基板を製造するために、セラミックス基板の両面にそれぞれAl−SI系ろう材を介在させて純度が99.99質量%以上のアルミニウム板からなる回路層用金属板およびこの回路層用金属板よりも厚い純度が99.0質量%以上のアルミニウム板からなる放熱層用金属板を積層してなる積層体を形成し、複数組の前記積層体を積み重ねた状態で加熱しながら積層方向に加圧することにより、各前記積層体における前記セラミックス基板と各金属板とを接合するろう付工程を有し、前記ろう付工程において、前記積層体は、前記回路層用金属板同士または前記放熱層用金属板同士が対向するように積み重ねられ、反り量が長辺方向の長さに対して厚さ方向に0.1%以上0.3%以下のパワーモジュール用基板を製造するパワーモジュール用基板の製造方法である。 In order to manufacture such a power module substrate, the present invention provides a circuit layer made of an aluminum plate having a purity of 99.99% by mass or more by interposing an Al-SI brazing material on both sides of the ceramic substrate. A laminated body formed by laminating metal plates for heat dissipation layers made of an aluminum plate having a purity higher than that of a metal plate for circuit layers and a metal plate for circuit layers of 99.0% by mass or more, and stacking a plurality of sets of the laminated bodies And pressurizing in the laminating direction while heating in a heated state to join the ceramic substrate and each metal plate in each laminate, and in the brazing step, the laminate includes the circuit The metal plates for the layers or the metal plates for the heat dissipation layer are stacked so as to face each other, and the amount of warpage is 0.1% or more and 0.3% or less in the thickness direction with respect to the length in the long side direction. A method for manufacturing a power module substrate of manufacturing the module substrate.

このパワーモジュール用基板の製造方法によれば、接合時の加熱により各部材に熱応力が生じ、厚さが小さい回路層用金属板側が凸となる反りが小さいパワーモジュール用基板が製造される。すなわち、回路層用金属板同士または放熱層用金属板同士がクッションシートを介して隣接するように積み重ねられることにより、反りを生じさせる応力の方向が隣接する積層体間で逆向きとなり、その逆向きの応力が相互に干渉しあうことで一部相殺され、その結果、積層体の全てを同じ向きに積み重ねた場合に比べて反りの量を少なくすることができる。これにより、ヒートシンクの取付を阻害せず、かつヒートシンクの天板上に配置された際に安定する適切な反り形状を有するパワーモジュール用基板が製造される。なお、回路層用金属板と放熱層用金属板との間には、各積層体間の圧力伝達を均一にするために、弾性および耐熱性を有するカーボン板、グラファイト板、あるいはこれらの積層板などからなるクッションシートが挟装されてもよい。   According to this method for manufacturing a power module substrate, a thermal stress is generated in each member by heating at the time of joining, and a power module substrate with a small warp that the metal layer side for a circuit layer having a small thickness is convex is manufactured. That is, when the metal plates for circuit layers or the metal plates for heat dissipation layer are stacked so as to be adjacent to each other via a cushion sheet, the direction of stress causing warping is reversed between adjacent laminates, and vice versa. Part of the stresses in the direction cancel each other, and as a result, the amount of warpage can be reduced as compared with a case where all of the stacked bodies are stacked in the same direction. As a result, a power module substrate having an appropriate warp shape that is stable when placed on the top plate of the heat sink without obstructing the mounting of the heat sink is manufactured. In addition, in order to make the pressure transmission between each laminated body uniform between the metal plate for circuit layers and the metal plate for heat dissipation layers, it is a carbon plate, a graphite plate, or these laminated plates which have elasticity and heat resistance. A cushion sheet composed of the above may be sandwiched.

このパワーモジュール用基板の製造方法において、前記ろう付工程において積み重ねられる前記積層体が偶数個であることが好ましい。積層数は2個以上36個以下が好ましく、より好ましくは12個である。なお、隣接する積層体間で反りが生じる応力を均衡させるために、積層数は偶数であることが好ましい。積層数が36個を超えると、加圧時に崩れるおそれがあるので好ましくない。   In this method for manufacturing a power module substrate, it is preferable that the number of the stacked bodies stacked in the brazing step is an even number. The number of stacked layers is preferably 2 or more and 36 or less, more preferably 12. Note that the number of stacked layers is preferably an even number in order to balance the stress that causes warpage between adjacent stacked bodies. When the number of laminated layers exceeds 36, it is not preferable because there is a possibility of collapse during pressurization.

また、このパワーモジュール用基板の製造方法において、圧力24×104Pa以上59×104Pa以下、温度640℃以上655℃以下の条件下で前記ろう付工程を行うことが好ましい。このような条件でろう付を行うことにより、パワーモジュール用基板の反り量を、長辺方向の長さに対して厚さ方向に0.1%以上0.3%以下、たとえば長辺方向の長さ28mmに対して厚さ方向に30μm以上90μm以下の適切な大きさに制御することができる。ろう付工程における圧力が大きすぎると金属板が変形したり割れが生じたりしやすく、小さすぎると反りが大きくなり接合不良が生じるおそれがある。またろう付工程における温度が高すぎると破損を生じやすく、低すぎるとろう付不十分となるおそれがある。 In the method for manufacturing a power module substrate, the brazing step is preferably performed under conditions of a pressure of 24 × 10 4 Pa to 59 × 10 4 Pa and a temperature of 640 ° C. to 655 ° C. By brazing under such conditions, the warpage amount of the power module substrate is 0.1% or more and 0.3% or less in the thickness direction with respect to the length in the long side direction, for example, in the long side direction. It can be controlled to an appropriate size of 30 μm or more and 90 μm or less in the thickness direction with respect to the length of 28 mm. If the pressure in the brazing process is too large, the metal plate is likely to be deformed or cracked, and if it is too small, the warpage increases and there is a risk of poor bonding. Further, if the temperature in the brazing process is too high, breakage tends to occur, and if it is too low, brazing may be insufficient.

本発明によれば、容易かつ確実にヒートシンクを接合できるパワーモジュール用基板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for power modules which can join a heat sink easily and reliably can be provided.

本発明に係るパワーモジュール用基板を用いて製造されたパワーモジュールを示す断面図である。It is sectional drawing which shows the power module manufactured using the board | substrate for power modules which concerns on this invention. 本発明に係るパワーモジュール用基板を示す側面図である。It is a side view which shows the board | substrate for power modules which concerns on this invention. 本発明にかかるパワーモジュール用基板の製造方法を示す側面図である。It is a side view which shows the manufacturing method of the board | substrate for power modules concerning this invention.

以下、本発明に係るパワーモジュール用基板およびその製造方法の実施形態について説明する。図1に示すパワーモジュール100は、本発明に係るパワーモジュール用基板10と、パワーモジュール用基板10の表面に搭載された半導体チップ等の電子部品20と、パワーモジュール用基板10の裏面に接合されたヒートシンク30とから構成されている。ヒートシンク30は、アルミニウム合金の押し出し成形によって形成され、その長さ方向に沿って冷却水を流通させるための多数の流路30aが形成されている。   Hereinafter, embodiments of a power module substrate and a method for manufacturing the same according to the present invention will be described. A power module 100 shown in FIG. 1 is bonded to the power module substrate 10 according to the present invention, an electronic component 20 such as a semiconductor chip mounted on the surface of the power module substrate 10, and the back surface of the power module substrate 10. And the heat sink 30. The heat sink 30 is formed by extrusion molding of an aluminum alloy, and a large number of flow paths 30a are formed along the length direction for circulating cooling water.

パワーモジュール用基板10は、セラミックス基板11の両面にそれぞれ回路層用金属板12および放熱層用金属板13が厚さ方向に積層され、Alよりも低融点のろう材(好ましくはAl−SI系ろう材)によって接合されてなる。各部材の厚さは、たとえばセラミックス基板11が0.635mm、回路層用金属板12が0.6mm、放熱層用金属板13が1.2mmに設定される。   The power module substrate 10 has a circuit layer metal plate 12 and a heat dissipation layer metal plate 13 laminated on both sides of a ceramic substrate 11 in the thickness direction, respectively, and has a lower melting point than Al (preferably an Al-SI system). It is joined by brazing material. For example, the thickness of each member is set to 0.635 mm for the ceramic substrate 11, 0.6 mm for the metal plate 12 for the circuit layer, and 1.2 mm for the metal plate 13 for the heat dissipation layer.

セラミックス基板11は、厚さ0.5mm以上1.0mm以下のAlN,Si34,Al23などからなる。 The ceramic substrate 11 is made of AlN, Si 3 N 4 , Al 2 O 3 or the like having a thickness of 0.5 mm to 1.0 mm.

回路層用金属板12は、厚さ0.1mm以上1.1mm以下のアルミニウム合金板(好ましくは4N−Al板)からなる。パワーモジュール100においては、回路層用金属板12はエッチング等により所定の回路パターン状に成形されており、その上に電子部品20がはんだ材等によって接合されている。   The circuit layer metal plate 12 is made of an aluminum alloy plate (preferably a 4N—Al plate) having a thickness of 0.1 mm to 1.1 mm. In the power module 100, the circuit layer metal plate 12 is formed into a predetermined circuit pattern by etching or the like, and the electronic component 20 is joined thereto by a solder material or the like.

放熱層用金属板13は、回路層用金属板12よりも厚く、厚さ0.1mm以上5.0mm以下の純度99.0wt%以上の純アルミニウム板からなる。パワーモジュール100においては、この放熱層用金属板13の上にヒートシンク30がろう付等によって接合されている。   The heat radiation layer metal plate 13 is made of a pure aluminum plate having a thickness of 0.1 mm or more and 5.0 mm or less and a purity of 99.0 wt% or more, which is thicker than the circuit layer metal plate 12. In the power module 100, the heat sink 30 is joined to the heat radiating layer metal plate 13 by brazing or the like.

セラミックス基板11に各金属板12,13が接合されてなるパワーモジュール用基板10は、図2に示すように、回路層用金属板12側が凸となるように反っている。その反り量Cは、パワーモジュール用基板10の長辺方向の長さ(平面が正方形の場合は一辺の長さ)に対して厚さ方向に0.1%以上0.3%以下の大きさ(たとえば長辺方向の長さL=28mmに対して厚さ方向の大きさ30μm以上90μm以下)である。なお、図2は、パワーモジュール用基板10の形状の特徴が明確になるように、長さLに対する反り量Cを大きく誇張して示している。   As shown in FIG. 2, the power module substrate 10 in which the metal plates 12 and 13 are bonded to the ceramic substrate 11 is warped so that the circuit layer metal plate 12 side is convex. The warpage amount C is 0.1% or more and 0.3% or less in the thickness direction with respect to the length of the power module substrate 10 in the long side direction (the length of one side when the plane is square). (For example, the size in the thickness direction is 30 μm or more and 90 μm or less with respect to the length L = 28 mm in the long side direction). Note that FIG. 2 greatly exaggerates the warpage amount C with respect to the length L so that the shape characteristics of the power module substrate 10 become clear.

このパワーモジュール用基板10は、図2に示すように、若干の反り形状を有しているのでヒートシンク30上に安定して配置されるとともに、ヒートシンク30に対する接合が妨げられるほどは反り量が大きくないので、正確な位置で、かつ確実にヒートシンク30を接合することができる。   As shown in FIG. 2, the power module substrate 10 has a slight warping shape, so that the power module substrate 10 is stably disposed on the heat sink 30, and the warpage amount is large enough to prevent the bonding to the heat sink 30. Therefore, the heat sink 30 can be joined accurately and accurately.

このような反り形状を有するパワーモジュール用基板10の製造方法について説明する。パワーモジュール用基板10は、セラミックス基板11の両面にそれぞれろう材を介在させて回路層用金属板12およびこの回路層用金属板12よりも厚い放熱層用金属板13を積層してなる積層体10Aを形成し、複数組の積層体10Aを積み重ねた状態で加熱しながら積層方向に加圧することにより、前記積層体10Aにおけるセラミックス基板11と各金属板12,13とを接合するろう付工程を有する。   A method for manufacturing the power module substrate 10 having such a warped shape will be described. The power module substrate 10 is a laminate formed by laminating a metal plate 12 for a circuit layer and a metal plate 13 for a heat dissipation layer thicker than the metal plate 12 for a circuit layer with a brazing material interposed between both surfaces of the ceramic substrate 11. A brazing step of joining the ceramic substrate 11 and the metal plates 12 and 13 in the laminate 10A by forming 10A and applying pressure in the lamination direction while heating in a state where a plurality of sets of laminates 10A are stacked. Have.

このろう付工程において、積層体10Aは、図3に示すように回路層用金属板12同士または放熱層用金属板13同士が対向するように積み重ねられる。ろう付工程における製造条件は、以下のように設定することが好ましい。
圧力(荷重):24.5×104Pa以上58.8×104Pa以下
温度:640℃以上655℃以下
積層体10Aの積層数:2個以上36個以下、好ましくは偶数個、特に好ましくは12個
In this brazing step, the laminated body 10A is stacked such that the circuit layer metal plates 12 or the heat dissipation layer metal plates 13 face each other as shown in FIG. The manufacturing conditions in the brazing process are preferably set as follows.
Pressure (load): 24.5 × 10 4 Pa or more and 58.8 × 10 4 Pa or less Temperature: 640 ° C. or more and 655 ° C. or less Number of layers of the laminate 10A: 2 or more, 36 or less, preferably even number, particularly preferably 12

積層された積層体10Aの間には、クッションシートPが配置されている。クッションシートPとしては、たとえば、耐熱性を有するカーボン板又はグラファイト板、あるいはこれらの積層板を用いることができる。   A cushion sheet P is disposed between the stacked laminates 10A. As the cushion sheet P, for example, a heat-resistant carbon plate or graphite plate, or a laminated plate thereof can be used.

そして、これら積層体10Aを表裏交互に積層した状態で、図3に矢印で示すように加圧しながら加熱してろう付することにより、長辺方向の長さL=28mmに対して厚さ方向の反り量Cが30μm以上90μm以下(すなわち、長辺方向の長さLに対して厚さ方向の反り量Cが0.1%以上0.3%以下)であるパワーモジュール用基板10を製造することができる。   Then, in a state where these laminates 10A are alternately laminated, heating and brazing while applying pressure as shown by arrows in FIG. 3, the thickness direction with respect to the length L = 28 mm in the long side direction The power module substrate 10 having a warpage amount C of 30 μm or more and 90 μm or less (that is, a warpage amount C in the thickness direction with respect to the length L in the long side direction is 0.1% or more and 0.3% or less) is manufactured. can do.

厚さの異なる金属板12,13がそれぞれ熱膨張および収縮してろう付されるため熱応力が生じ、各パワーモジュール用基板10は、図2に示すように、厚さが小さい回路層用金属板12側に凸形状となる。しかしながら、積層体10Aを表裏交互に積層してろう付することにより、反り量を低減させることができる。   As the metal plates 12 and 13 having different thicknesses are thermally expanded and contracted to be brazed, a thermal stress is generated. As shown in FIG. A convex shape is formed on the plate 12 side. However, the amount of warpage can be reduced by alternately laminating and brazing the laminated body 10A.

たとえば、従来のように複数の積層体10Aの表裏を同じにして積層した状態でろう付した場合、製造されたパワーモジュール用基板は、長辺方向の長さ28mmに対して反り量は150μmとなった。これに対して、前述のように積層体10Aの表裏を交互にして積層した状態でろう付した場合、製造されたパワーモジュール用基板10は、長辺方向の長さ28mmに対して反り量を30μmにまで低減することができた。   For example, when brazing in the state where the front and back of a plurality of laminated bodies 10A are laminated in the same manner as in the past, the manufactured power module substrate has a warpage amount of 150 μm with respect to a length of 28 mm in the long side direction. became. On the other hand, when brazed in a state where the front and back of the laminate 10A are alternately laminated as described above, the manufactured power module substrate 10 has a warpage amount with respect to a length of 28 mm in the long side direction. It could be reduced to 30 μm.

以上説明したように、本発明によれば、容易かつ確実にヒートシンクを接合できるパワーモジュール用基板を提供することができる。
なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
As described above, according to the present invention, it is possible to provide a power module substrate capable of easily and reliably joining a heat sink.
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.

10 パワーモジュール用基板
10A 積層体
11 セラミックス基板
12 回路層用金属板
13 放熱層用金属板
20 電子部品
30 ヒートシンク
30a 流路
100 パワーモジュール
C 反り量
L 長辺方向の長さ
P クッションシート
DESCRIPTION OF SYMBOLS 10 Power module substrate 10A Laminate body 11 Ceramic substrate 12 Circuit layer metal plate 13 Heat radiation layer metal plate 20 Electronic component 30 Heat sink 30a Flow path 100 Power module C Warpage amount L Long side length P Cushion sheet

Claims (3)

セラミックス基板の両面にそれぞれAl−SI系ろう材を介在させて純度が99.99質量%以上のアルミニウム板からなる回路層用金属板およびこの回路層用金属板よりも厚い純度が99.0質量%以上のアルミニウム板からなる放熱層用金属板を積層してなる積層体を形成し、複数組の前記積層体を積み重ねた状態で加熱しながら積層方向に加圧することにより、各前記積層体における前記セラミックス基板と各金属板とを接合するろう付工程を有し、
前記ろう付工程において、前記積層体は、前記回路層用金属板同士または前記放熱層用金属板同士が対向するように積み重ねられ、反り量が長辺方向の長さに対して厚さ方向に0.1%以上0.3%以下のパワーモジュール用基板を製造することを特徴とするパワーモジュール用基板の製造方法。
A metal plate for a circuit layer made of an aluminum plate having a purity of 99.99% by mass or more by interposing an Al—SI brazing material on both sides of the ceramic substrate, and a purity higher than that of the metal plate for a circuit layer is 99.0 % by mass. % In each laminate by forming a laminate formed by laminating metal plates for heat dissipation layers composed of aluminum plates of at least%, and pressing in the stacking direction while heating in a state where a plurality of sets of the laminates are stacked. Having a brazing step of joining the ceramic substrate and each metal plate;
In the brazing step, the laminated body is stacked such that the metal plates for circuit layers or the metal plates for heat dissipation layer face each other, and the amount of warpage is in the thickness direction with respect to the length in the long side direction. A power module substrate manufacturing method, characterized by manufacturing a power module substrate of 0.1% to 0.3%.
前記ろう付工程において積み重ねられる前記積層体が偶数個であることを特徴とする請求項1に記載のパワーモジュール用基板の製造方法。   The method for manufacturing a power module substrate according to claim 1, wherein the number of the stacked bodies stacked in the brazing step is an even number. 圧力24×104Pa以上59×104Pa以下、温度640℃以上655℃以下の条件下で前記ろう付工程を行うことを特徴とする請求項1または2に記載のパワーモジュール用基板の製造方法。
3. The power module substrate according to claim 1, wherein the brazing step is performed under conditions of a pressure of 24 × 10 4 Pa to 59 × 10 4 Pa and a temperature of 640 ° C. to 655 ° C. 4. Method.
JP2014058537A 2014-03-20 2014-03-20 Power module substrate manufacturing method Active JP5949817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058537A JP5949817B2 (en) 2014-03-20 2014-03-20 Power module substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058537A JP5949817B2 (en) 2014-03-20 2014-03-20 Power module substrate manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010192146A Division JP2012049437A (en) 2010-08-30 2010-08-30 Substrate for power module and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014132687A JP2014132687A (en) 2014-07-17
JP5949817B2 true JP5949817B2 (en) 2016-07-13

Family

ID=51411589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058537A Active JP5949817B2 (en) 2014-03-20 2014-03-20 Power module substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5949817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312345B2 (en) 2018-09-18 2023-07-21 株式会社Lsiメディエンス Maintenance management device, maintenance management method and maintenance management program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104253B2 (en) * 1999-07-27 2008-06-18 電気化学工業株式会社 Board integrated structure
JP4557398B2 (en) * 2000-09-07 2010-10-06 株式会社東芝 Electronic element
JP3915722B2 (en) * 2003-03-20 2007-05-16 三菱マテリアル株式会社 Circuit board manufacturing method and manufacturing apparatus
JP2008235852A (en) * 2007-02-23 2008-10-02 Hitachi Metals Ltd Ceramic substrate and semiconductor module using the same
KR101610973B1 (en) * 2008-03-17 2016-04-08 미쓰비시 마테리알 가부시키가이샤 Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module

Also Published As

Publication number Publication date
JP2014132687A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5892281B2 (en) Power module substrate with heat sink and power module
JP6137267B2 (en) Power module substrate with heat sink and power module
JP5515947B2 (en) Cooling system
JP6455056B2 (en) Manufacturing method and pressure device for power module substrate with heat sink
JP2008235852A (en) Ceramic substrate and semiconductor module using the same
WO2011065457A1 (en) Laminate and manufacturing method for same
JP6361532B2 (en) Manufacturing method of power module substrate with heat sink
JP6146242B2 (en) Power module substrate manufacturing method
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
JP6330951B2 (en) Joints for manufacturing power module substrates
JP6149654B2 (en) Power module substrate manufacturing method
JP5949817B2 (en) Power module substrate manufacturing method
JP2019087586A (en) Method of manufacturing insulated circuit board, method of manufacturing insulated circuit board with heat sink, insulated circuit board, insulated circuit board with heat sink, and method of manufacturing laminated structure of insulated circuit board
JP2012049437A (en) Substrate for power module and method of manufacturing the same
JP5803484B2 (en) Power module substrate and manufacturing method thereof
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP2010238965A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP2010238963A (en) Substrate for power module, method for manufacturing substrate for power module, and power module
JP5678684B2 (en) Power module substrate manufacturing method
JP6287216B2 (en) Manufacturing method of power module substrate with heat sink
JP5613913B2 (en) Power module substrate, power module substrate manufacturing method, and power module
JP6237058B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP2012009787A (en) Substrate for power module and method of manufacturing the same
TW202141714A (en) Heat sink integrated insulating circuit board
JP6149655B2 (en) Power module substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5949817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150