JPS6334963A - Method of manufacturing ceramic substrate for semiconductor device and clad material therefor - Google Patents

Method of manufacturing ceramic substrate for semiconductor device and clad material therefor

Info

Publication number
JPS6334963A
JPS6334963A JP17845786A JP17845786A JPS6334963A JP S6334963 A JPS6334963 A JP S6334963A JP 17845786 A JP17845786 A JP 17845786A JP 17845786 A JP17845786 A JP 17845786A JP S6334963 A JPS6334963 A JP S6334963A
Authority
JP
Japan
Prior art keywords
layer
alloy
ceramic
alumina substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17845786A
Other languages
Japanese (ja)
Inventor
Takayuki Oota
太田 隆之
Tomio Iizuka
飯塚 富雄
Nobuo Sato
伸雄 佐藤
Sadahiko Sanki
参木 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP17845786A priority Critical patent/JPS6334963A/en
Publication of JPS6334963A publication Critical patent/JPS6334963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To achieve a process to bond a Cu layer onto a ceramic substrate easily, in a short time and in one process by a method wherein a Cu alloy as a clad material is set face to face with an alumina substrate and the Cu alloy is heat-bonded directly onto the alumina substrate so that the Cu layer can be formed on the alumina substrate. CONSTITUTION:If a Cu layer 1 for a Cu alloy/Cu clad material is used as a conductor layer or a heating layer, oxygen-free copper is a preferable material. Also as a Cu alloy it is preferable to select a suitable material which can easily form a stable oxide film having good close adherence to ceramic when the Cu alloy is to be heatbonded to ceramic. Cu-Mn alloy, Cu-Ti alloy and Cu-Si alloy can be enumerated. The preferable thickness ratio of the Cu layer 1 to a Cu alloy layer 5 is 1:1-10:1. The Cu alloy for a clad material is set face to face with a ceramic substrate such as alumina, etc. and is heat-bonded by applying pressure in an inert gas atmosphere, preferably such as argon, etc. so that a copper layer acting as a conductor layer or a heating layer can be formed on an alumina substrate.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はアルミナ基板上に導体層あるいは放熱層として
のCu層を有する半導体装置用セラミック基板の製造方
法に関し、特にアルミナ−銅の接合の信頼性が高く、接
合プロセスが簡素化、高率化される半導体装置用セラミ
ック基板の製造方法およびその方法に使用するクラッド
材に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a ceramic substrate for a semiconductor device having a Cu layer as a conductor layer or a heat dissipation layer on an alumina substrate, and particularly relates to a method for manufacturing a ceramic substrate for a semiconductor device having a Cu layer as a conductor layer or a heat dissipation layer on an alumina substrate. The present invention relates to a method for manufacturing a ceramic substrate for a semiconductor device that has high properties, simplifies the bonding process, and increases the efficiency of the bonding process, and a cladding material used in the method.

〈従来の技術〉 パワーIC、ハイブリッドICでは、素子組込み用の基
板として耐熱性、熱放散性および機械的強度に優れてい
るセラミック基板か多用されている。このようなセラミ
ック基板の中で厚膜ICと呼ばれるものは、アルミナ基
板上に、通常、銀、パラジウム、ルテニウムなどの金属
微粉末に数日σ%のガラス粉末を添加して、これを打機
剤へ均一分散してなる厚l1s1体ペーストを印刷し、
焼結して導体層その他を形成したものである。
<Prior Art> In power ICs and hybrid ICs, ceramic substrates, which are excellent in heat resistance, heat dissipation, and mechanical strength, are often used as substrates for incorporating elements. Among such ceramic substrates, what is called a thick film IC is produced by adding σ% glass powder to fine metal powder such as silver, palladium, or ruthenium for several days on an alumina substrate, and then applying it to a molding machine. Print a thick l1s1-body paste that is uniformly dispersed in the agent,
It is sintered to form a conductor layer and other parts.

また、より一般的に使用されているのは、アルミナ基板
上にW、Moなとの金属微粉末からなる導体ペーストを
印刷、焼成してW、Mo導体を形成し、このW、Mo導
体にNi、 Gu、へuメツキを施したものがある。
In addition, what is more commonly used is to print a conductor paste made of fine metal powder such as W or Mo on an alumina substrate and bake it to form a W or Mo conductor. There are Ni, Gu, and U-plated products.

第4図はこのようなセラミック基板の一例を示すもので
、セラミック基板4の表面には部分的に導体層として働
(Cu層1を、裏面には全面放熱層としてのCu層1を
設ける。
FIG. 4 shows an example of such a ceramic substrate.The surface of the ceramic substrate 4 is partially provided with a Cu layer 1 serving as a conductive layer, and the entire back surface is provided with a Cu layer 1 serving as a heat dissipation layer.

このセラミック基板4の従来の製造法は、アルミナ等の
セラミック基板4め表面および裏面のそれぞれ所定位置
にまずW層3を印刷により形成し、このW層3上にメツ
キによるNi層2を介して無電解メツキによるCu層1
を200μ〜300μ施し、さらにこのCuメツキ上に
メツキによるNi層2を施すものである。W層3および
Niメツキの厚さはそれぞれ数μ〜数十μの範囲である
。W層3はWが金属としてはアルミナとの熱膨張係数の
整合性並びに密着性に優れている関係から設けられる。
The conventional manufacturing method of this ceramic substrate 4 is to first form a W layer 3 by printing at predetermined positions on the front and back surfaces of a ceramic substrate 4 made of alumina, etc., and then to form a Ni layer 2 by plating on this W layer 3. Cu layer 1 by electroless plating
200μ to 300μ is applied, and a Ni layer 2 is further applied by plating on this Cu plating. The thickness of the W layer 3 and the Ni plating each range from several microns to several tens of microns. The W layer 3 is provided because W, as a metal, has excellent thermal expansion coefficient matching and adhesion with alumina.

またNiメツキはCuの下地メツキおよびCuの表面に
耐食性を付与するために設けられる。
Further, Ni plating is provided to impart corrosion resistance to the Cu base plating and the Cu surface.

しかし、このような製造法ではNiメツキ、Cuメッキ
エ桿に著しく時間を要し、とくに無電解Cuメツキ工程
により200〜300μの厚さのCuメツキを施すには
数日を要するという大きな問題がある。なお無電解Cu
メツキの方が膜厚の均一性に優れているという関係から
採用される。
However, with this manufacturing method, there is a major problem in that it takes a considerable amount of time to plate the Ni and Cu plates, and in particular, it takes several days to apply Cu plating with a thickness of 200 to 300 μ using the electroless Cu plating process. . In addition, electroless Cu
Plating is used because it has better uniformity in film thickness.

このような事情は、より構造の簡単な、例えばセラミッ
ク上にニッケルめっき層を介して無電解銅めっき層を接
合したIC基板等においても同様である。
This situation also applies to IC substrates having a simpler structure, such as an IC board in which an electroless copper plating layer is bonded to a ceramic layer via a nickel plating layer.

一方、最近は金属とセラミックの接合に関して盛んに研
究が行われており、例えば銀ろう、An−5i合金ろう
を介して金属とセラミックを接合することが提案されて
いる。しかしここで提案されている金属とセラミックの
接合は、金属としては鉄系の金属例えば電子部品材料の
分野ではインバーや42アロイ、また機械構造用材料の
分野では鋼や超硬合金を対象とするものである。cuと
セラミックとくにCuとアルミナとの接合に関しては実
際に研究された例がなく、不明な点が多い。
On the other hand, recently, research has been actively conducted on joining metals and ceramics, and it has been proposed, for example, to join metals and ceramics through silver solder or An-5i alloy solder. However, the metal-ceramic bonding proposed here targets iron-based metals, such as Invar and 42 alloy in the field of electronic component materials, and steel and cemented carbide in the field of mechanical structural materials. It is something. There is no actual research on bonding Cu and ceramics, especially Cu and alumina, and there are many unknown points.

このようなセラミック基板の製造において、Guのメツ
キ作業を廃止することができればその作業性が飛躍的に
向上することは明らかであり、そういう意味からCuメ
ツキ作業を廃止できる新しいセラミック基板の製造方法
が要望されている。
In the production of such ceramic substrates, it is clear that the workability would be dramatically improved if the Gu plating work could be abolished, and in this sense, a new method for manufacturing ceramic substrates that can eliminate the Cu plating work is being developed. It is requested.

〈発明の目的〉 本発明の目的は、従来技術における問題点を解決し、製
造プロセスを簡素化し、容易に、かつ短時間でセラミッ
ク基板上にCu層を1工程で接合することのできる半導
体装置用セラミック基板の製造方法、およびこの方法に
使用するクラッド材を提供せんとするものである。
<Objective of the Invention> The object of the present invention is to provide a semiconductor device that solves the problems in the prior art, simplifies the manufacturing process, and can easily and quickly bond a Cu layer on a ceramic substrate in one step. The present invention aims to provide a method for manufacturing a ceramic substrate for use in the present invention, and a cladding material used in the method.

く問題点を解決するための手段〉 パワーtC、ハイブリッドICの分野では従来から耐熱
性、熱放散性および機械的強度の面からアルミナのセラ
ミック基板が使用され、さらにその導体層および熱放散
層としてCuが使用されているにもかかわらず、このC
uを箔もしくはシートとして使用し、これを例えば銀ろ
う、 Afl−5i合金ろうを介してアルミナ基板上に
直接接合したという例がない。
Alumina ceramic substrates have traditionally been used in the fields of power TC and hybrid ICs due to their heat resistance, heat dissipation properties, and mechanical strength. Although Cu is used, this C
There is no example of using U as a foil or sheet and directly bonding it to an alumina substrate via, for example, silver solder or Afl-5i alloy solder.

本発明者等は、 1203等のセラミック基板とCu板
を接合する際に、あらかじめCu板にインサート金属と
してのCu合金層を接合し、クラッド材としておけば、
セラミック板とCu板との接合か効率良く行えることを
知見し、本発明に至った。
The present inventors believe that when bonding a ceramic substrate such as 1203 and a Cu plate, if a Cu alloy layer as an insert metal is bonded to the Cu plate in advance and used as a cladding material,
It was discovered that a ceramic plate and a Cu plate can be bonded efficiently, leading to the present invention.

本発明の第1の態様は、アルミナ基板上にCu層を形成
して半導体装置用セラミック基板を製造するに際し、予
め、Cu合金/Cu 、 Cu合金/[:u/Ni、 
Cu合金/Cu/インバー/Cuの群から選択されたい
ずれかのクラッド材を用意し、該クラッド材のCu合金
側をアルミナ基板側に配置し、アルミナ基板−トに直接
加熱接合して、アルミナ基板上にCu層を形成すること
を特徴とする半導体装置用セラミック基板の製造方法を
提供する。
A first aspect of the present invention is that when manufacturing a ceramic substrate for a semiconductor device by forming a Cu layer on an alumina substrate, Cu alloy/Cu, Cu alloy/[:u/Ni,
A cladding material selected from the group Cu alloy/Cu/Invar/Cu is prepared, the Cu alloy side of the cladding material is placed on the alumina substrate side, and the alumina substrate is directly heat-bonded to the alumina substrate. A method for manufacturing a ceramic substrate for a semiconductor device is provided, which comprises forming a Cu layer on the substrate.

本発明の第2の態様は、アルミナ基板上にCu層を形成
するために用いられるクラッド材であって、Cu合金層
とCu層が冷間圧接により一体化されていることを特徴
とするクラッド材を提供する。
A second aspect of the present invention is a cladding material used for forming a Cu layer on an alumina substrate, characterized in that a Cu alloy layer and a Cu layer are integrated by cold pressure welding. provide materials.

本発明の第3の態様は、アルミナ基板上にCu層を形成
するために用いられるクラッド材であって、Cu合金層
上にCu層さらにその上にNi層が冷間圧接により一体
化されていることを特徴とするクラッド材を提供する。
A third aspect of the present invention is a cladding material used to form a Cu layer on an alumina substrate, in which a Cu layer is formed on a Cu alloy layer, and a Ni layer is integrated thereon by cold welding. To provide a cladding material characterized by:

本発明の第4の態様は、アルミナ基板上にCu層を形成
するために用いられるクラッド材であって、Cu合金層
とCu層とインバー層とCu層とがこの順序で冷間圧接
により一体化されていることを特徴とするクラッド材を
提供する。
A fourth aspect of the present invention is a cladding material used to form a Cu layer on an alumina substrate, in which a Cu alloy layer, a Cu layer, an Invar layer, and a Cu layer are integrated in this order by cold pressure welding. To provide a cladding material characterized by:

〈発明の構成〉 以下に図面に示す好適実施例を用いて、本発明を詳述す
る。
<Configuration of the Invention> The present invention will be described in detail below using preferred embodiments shown in the drawings.

本発明の製造方法は従来IC等を製造する際に、セラミ
ック基板上に順次設けられてきたインサート金属層、C
u層等をあらかじめクラッド材としておき、このクラッ
ド材をセラミック基板上に1工程で接合することを特徴
とする。
The manufacturing method of the present invention is based on the insert metal layer, C
The method is characterized in that the U layer and the like are prepared in advance as a cladding material, and this cladding material is bonded onto a ceramic substrate in one step.

セラミック基板上のCu層は片面に設けられてもよいし
、両面に設けられてもよい。
The Cu layer on the ceramic substrate may be provided on one side or both sides.

ろう材を介してCuとアルミナを接合する場合、ろう材
としてはe14とアルミナの双方に接合しやすいことが
必要である。実験によると安定した酸化1漠が形成され
やすいCu合金はGuとアルミナの双方に接合しやすい
ことか判明した。
When bonding Cu and alumina via a brazing filler metal, the brazing filler metal must be able to easily bond to both e14 and alumina. Experiments have revealed that Cu alloys, which tend to form stable oxides, are easily bonded to both Gu and alumina.

第1図は本発明の第2の態様のCu合金/Cuクラッド
材を示す断面図である。
FIG. 1 is a sectional view showing a Cu alloy/Cu clad material according to a second embodiment of the present invention.

00層1はいかなる銅を用いてもよいが、半導体デバイ
スの導体層あるいは放熱層として用いる場合は無酸素銅
が好ましい。
Although any copper may be used for the 00 layer 1, oxygen-free copper is preferable when used as a conductor layer or a heat dissipation layer of a semiconductor device.

Cu合金層5は、AJ2203等のセラミック板との接
合の際にセラミックとの接合性が良く熱膨張が少ないの
でインサート金属として作用する。
When bonded to a ceramic plate such as AJ2203, the Cu alloy layer 5 acts as an insert metal because it has good bonding properties with the ceramic and has little thermal expansion.

用いるCu合金はセラミックとの加熱接合の際に、セラ
ミックとの密着性が良好な安定した酸化膜が形成されや
すいものが好ましく、Cu−Mn合金、Cu−Ti合金
、Cu−5i合金が代表的に挙げられる。安定な酸化1
1iの形成は難しい合金であるが、接合性あるいはぬわ
性の面で利点があるCu−Ni−へ2合金、Cu−N1
(モネル/7#A>合金も好ましい。
The Cu alloy used is preferably one that easily forms a stable oxide film with good adhesion to the ceramic during heat bonding with the ceramic, and representative examples include Cu-Mn alloy, Cu-Ti alloy, and Cu-5i alloy. It is mentioned in Stable oxidation 1
1i is a difficult alloy to form, but Cu-Ni-2 alloy, Cu-N1, has advantages in terms of bondability and wettability.
(Monel/7#A>alloy is also preferred.

合金中の銅以外の成分の含有率は2〜18wt!t;が
好ましい。それは2%未満では融点が高くなり、18%
超では加工性が悪化し、ろう材としてもろくなるなどの
欠点があるためである。
The content of components other than copper in the alloy is 2 to 18wt! t; is preferred. If it is less than 2%, the melting point will be high, and 18%
This is because there are disadvantages such as poor workability and brittleness as a brazing material.

銅合金層5はCu層層上上冷間圧延圧接法によるクラッ
ド技術を使って接合する。
The copper alloy layer 5 is bonded onto the Cu layer using a cladding technique by cold rolling welding.

圧延圧接法によるクラッド材の製造は、圧延材の形状や
加工硬化曲線を勘案した圧延スケジュールや、圧延ロー
ル径などを配慮した圧延条件を適切に選定することが重
要である。
When producing cladding materials using the rolling pressure welding method, it is important to appropriately select a rolling schedule that takes into account the shape of the rolled material and work hardening curve, and rolling conditions that take into account the diameter of the rolling rolls.

00層1とCu合金層5の厚さは、1:1〜10:1が
好ましい。
The thickness of the 00 layer 1 and the Cu alloy layer 5 is preferably 1:1 to 10:1.

第2図は本発明の第3の態様のCu合金/Cu/N i
クラッド材を示す断面図である。
FIG. 2 shows the Cu alloy/Cu/N i of the third embodiment of the present invention.
It is a sectional view showing a cladding material.

00層1の1方の面にはCu合金層5を、他方の面には
Ni層2を冷間圧延圧接法により接合し、クラッド材と
する。
A Cu alloy layer 5 is bonded to one surface of the 00 layer 1, and a Ni layer 2 is bonded to the other surface by cold rolling welding to form a cladding material.

接合の順序は三層同時に冷間圧延圧接してもよいし、順
次に冷間圧延圧接してもよい。
Regarding the joining order, the three layers may be cold rolled and welded at the same time, or the three layers may be cold rolled and welded sequentially.

Cu合金層5.011層1およびNi層2の厚さは、1
:1:O,1〜1:10:0.1とするのが好ましい。
The thickness of Cu alloy layer 5.011 layer 1 and Ni layer 2 is 1
:1:O, 1 to 1:10:0.1 is preferable.

第3図は、本発明の第4の態様のCu合金/Cu/イン
バー/Cuクラッド材を示す断面図である。
FIG. 3 is a sectional view showing a Cu alloy/Cu/Invar/Cu cladding material according to the fourth embodiment of the present invention.

Cu合金層5.00層1、インバー層6.00層1をこ
の順序で接合して一体とする。
The Cu alloy layer 5.00 layer 1 and the Invar layer 6.00 layer 1 are joined in this order to be integrated.

上記の各層は4層同時に冷間圧延圧接してもよいし、部
分的にクラッド材としそのクラッド材同士をクラッドし
てもよいし、順次に冷間圧延圧接してもよい。
The above-mentioned four layers may be cold rolled and welded at the same time, partially made of cladding material and the cladding materials may be cladded together, or they may be cold rolled and welded sequentially.

各層の厚さの比は0.1:1:1:1〜0.1  : 
1:5:1とするのが好ましい。
The thickness ratio of each layer is 0.1:1:1:1~0.1:
The ratio is preferably 1:5:1.

Cu合金/Cu/インバー/Cuクラッド材とすること
によりセラミックと銅との接合時の熱膨張の差をインバ
ー層で緩和することができ、セラミックと銅を一層なめ
らかに接合することかできる。
By using the Cu alloy/Cu/Invar/Cu clad material, the difference in thermal expansion during bonding between the ceramic and copper can be alleviated by the Invar layer, and the ceramic and copper can be bonded more smoothly.

本発明の第1の態様である製造方法は、以上の本発明の
第2、第3、第4の態様のいずれかのクラッド材をあら
かじめ用意し、このクラッド材のCu合金側をアルミナ
等のセラミック基板側に配置し、好ましくはアルゴン等
の不活性ガス容囲気中で、850℃以上好ましくは90
0℃前後で加熱圧接して、短時間で接合し、アルミナ基
板上に銅層な導体層あるいは放熱層等として有する半導
体装置用セラミック基板を得るものである。
In the manufacturing method according to the first aspect of the present invention, the cladding material according to any one of the second, third, and fourth aspects of the present invention is prepared in advance, and the Cu alloy side of the cladding material is coated with alumina or the like. Placed on the ceramic substrate side, preferably in an atmosphere of an inert gas such as argon, at a temperature of 850°C or higher, preferably 90°C.
The ceramic substrate for a semiconductor device is obtained by heat-pressure welding at around 0° C. and bonding in a short time, and having a copper layer as a conductor layer or a heat dissipation layer on an alumina substrate.

またセラミック基板上に接合されたCu層上のパターン
回路は、従来ではタングステン印刷等で作成しているが
、本発明のクラッド材にあらかじめプレス加工等により
パターン回路を形成しておくことも可能であり、このよ
うな方法によりプロセスの簡素化および大幅なコストダ
ウンができる。
Furthermore, the pattern circuit on the Cu layer bonded to the ceramic substrate has conventionally been created by tungsten printing, etc., but it is also possible to form the pattern circuit in advance on the cladding material of the present invention by pressing, etc. This method can simplify the process and significantly reduce costs.

〈発明の効果〉 本発明の製造方法によれば、 従来のセラミック板上への金属のめっきプロセスに比べ
て、工程が省略でき、効率化がはかれるので、大幅なコ
スト低減が図れる。
<Effects of the Invention> According to the manufacturing method of the present invention, compared to the conventional metal plating process on a ceramic plate, steps can be omitted and efficiency can be improved, so that a significant cost reduction can be achieved.

すなわち、本発明のクラッド材を用いる製造方法により
、短時間で、しかも1工程で、セラミック板と銅との接
合ができる。
That is, by the manufacturing method using the cladding material of the present invention, a ceramic plate and copper can be joined in a short time and in one step.

また、めっき工程不要による廃液処理等の管理上および
設備上のトラブル等が無い。
Furthermore, since no plating process is required, there are no management or equipment problems such as waste liquid treatment.

さらに本発明クラッド材は、あらかじめCJJとインサ
ート金属同士が強力に接合されているうえに、Cu合金
とセラミックとの極めて良い接合性が利用できるので、
このクラッド材を用いて半導体装置用セラミック基板を
製造すれば、セラミック板と鋼材との接合の信頼性が大
幅に向上する。
Furthermore, in the cladding material of the present invention, the CJJ and the insert metal are strongly bonded together in advance, and the extremely good bonding properties between the Cu alloy and the ceramic can be utilized.
If a ceramic substrate for a semiconductor device is manufactured using this cladding material, the reliability of the bond between the ceramic plate and the steel material will be greatly improved.

また本発明のクラッド材にあらかじめパターン回路をプ
レス加工等により形成しておけば、さらにプロセスの簡
素化および大幅なコストダウンが可能である。
Furthermore, if a pattern circuit is formed in advance on the cladding material of the present invention by press processing or the like, it is possible to further simplify the process and significantly reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第2の態様のCu合金/Cuクラッ
ド材の断面図である。 第2図は、本発明の第3の態様のCu合金/Cu/Ni
クラッド材の断面図である。 第3図は、本発明の第4の態様のCu合金/Cu/イン
バー/Cuクラッド材の断面図である。 第4図は従来のセラミックー銅の接合方法を示す断面図
である。 符号の説明 1・・・・Cu層、2・・・・Ni層、3・・・・W層
、4・・・・セラミック基板、
FIG. 1 is a cross-sectional view of a Cu alloy/Cu clad material according to a second embodiment of the present invention. FIG. 2 shows the Cu alloy/Cu/Ni of the third embodiment of the present invention.
FIG. 3 is a cross-sectional view of the cladding material. FIG. 3 is a cross-sectional view of the Cu alloy/Cu/Invar/Cu clad material according to the fourth embodiment of the present invention. FIG. 4 is a sectional view showing a conventional ceramic-copper bonding method. Explanation of symbols 1...Cu layer, 2...Ni layer, 3...W layer, 4...ceramic substrate,

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ基板上にCu層を形成して半導体装置用
セラミック基板を製造するに際し、 予め、Cu合金/Cu、Cu合金/Cu/Ni、Cu合
金/Cu/インバー/Cuの群から選択されたいずれか
のクラッド材を用意し、 該クラッド材のCu合金側をアルミナ基板側に配置し、
アルミナ基板上に直接加熱接合して、アルミナ基板上に
Cu層を形成することを特徴とする半導体装置用セラミ
ック基板の製造方法。
(1) When manufacturing a ceramic substrate for semiconductor devices by forming a Cu layer on an alumina substrate, a layer is selected in advance from the group of Cu alloy/Cu, Cu alloy/Cu/Ni, and Cu alloy/Cu/Invar/Cu. Prepare one of the cladding materials, place the Cu alloy side of the cladding material on the alumina substrate side,
A method for manufacturing a ceramic substrate for a semiconductor device, comprising forming a Cu layer on an alumina substrate by directly heating and bonding the alumina substrate.
(2)アルミナ基板上にCu層を形成するために用いら
れるクラッド材であって、Cu合金層とCu層が冷間圧
接により一体化されていることを特徴とするクラッド材
(2) A cladding material used to form a Cu layer on an alumina substrate, characterized in that the Cu alloy layer and the Cu layer are integrated by cold pressure welding.
(3)アルミナ基板上にCu層を形成するために用いら
れるクラッド材であって、Cu合金層上にCu層さらに
その上にNi層が冷間圧接により一体化されていること
を特徴とするクラッド材。
(3) A cladding material used to form a Cu layer on an alumina substrate, characterized in that a Cu layer is formed on a Cu alloy layer, and a Ni layer is integrated thereon by cold pressure welding. cladding material.
(4)アルミナ基板上にCu層を形成するために用いら
れるクラッド材であって、Cu合金層とCu層とインバ
ー層とCu層とがこの順序で冷間圧接により一体化され
ていることを特徴とするクラッド材。
(4) A cladding material used to form a Cu layer on an alumina substrate, in which a Cu alloy layer, a Cu layer, an invar layer, and a Cu layer are integrated in this order by cold pressure welding. Characteristic clad material.
JP17845786A 1986-07-29 1986-07-29 Method of manufacturing ceramic substrate for semiconductor device and clad material therefor Pending JPS6334963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17845786A JPS6334963A (en) 1986-07-29 1986-07-29 Method of manufacturing ceramic substrate for semiconductor device and clad material therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17845786A JPS6334963A (en) 1986-07-29 1986-07-29 Method of manufacturing ceramic substrate for semiconductor device and clad material therefor

Publications (1)

Publication Number Publication Date
JPS6334963A true JPS6334963A (en) 1988-02-15

Family

ID=16048849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17845786A Pending JPS6334963A (en) 1986-07-29 1986-07-29 Method of manufacturing ceramic substrate for semiconductor device and clad material therefor

Country Status (1)

Country Link
JP (1) JPS6334963A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249669A (en) * 1988-03-30 1989-10-04 Toshiba Corp Ceramic circuit board
JP2004022710A (en) * 2002-06-14 2004-01-22 Dowa Mining Co Ltd Metal ceramic joined body and method for manufacturing the same
CN103660427A (en) * 2013-11-12 2014-03-26 中国科学院电子学研究所 Constantan-oxygen-free copper composite tuning material and preparation method thereof
CN105428188A (en) * 2015-12-18 2016-03-23 中国科学院电子学研究所 Multi-link planar tuning component, and assembly clamp and assembly method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249669A (en) * 1988-03-30 1989-10-04 Toshiba Corp Ceramic circuit board
JP2004022710A (en) * 2002-06-14 2004-01-22 Dowa Mining Co Ltd Metal ceramic joined body and method for manufacturing the same
CN103660427A (en) * 2013-11-12 2014-03-26 中国科学院电子学研究所 Constantan-oxygen-free copper composite tuning material and preparation method thereof
CN105428188A (en) * 2015-12-18 2016-03-23 中国科学院电子学研究所 Multi-link planar tuning component, and assembly clamp and assembly method therefor

Similar Documents

Publication Publication Date Title
JP6753869B2 (en) How to make composites
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JP2003055058A (en) Method of joining ceramic body to copper plate
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP4293406B2 (en) Circuit board
JP4674983B2 (en) Manufacturing method of joined body
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH02196074A (en) Production of ceramics-metal joined body
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JPH09315876A (en) Aluminum-ceramic composite substrate and is production
JPS6318647A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for method thereof
JP2000124585A (en) Manufacture of aluminum-aluminum nitride insulating substrate
JP3302714B2 (en) Ceramic-metal joint
WO2005086218A1 (en) Process for producing semiconductor module
JPH05109947A (en) Heat conducting material and its manufacture
JPH0714015B2 (en) Manufacturing method of aluminum nitride substrate having copper circuit
JP2607700Y2 (en) Lightweight substrates for semiconductor devices
JP2503775B2 (en) Substrate for semiconductor device
JPH05319946A (en) Ceramic substrate joined to metallic plate
JP2020145335A (en) Manufacturing method of circuit substrate
JPH08293654A (en) Formation of metal film on ceramic base material and metal-coated ceramic structure
JPH06172051A (en) Ceramic substrate bound to metal plate and its production
JP2000228568A (en) Aluminum-aluminum nitride insulating circuit board
JPS62161466A (en) Metallic member for joining ceramics