JPH09315876A - Aluminum-ceramic composite substrate and is production - Google Patents

Aluminum-ceramic composite substrate and is production

Info

Publication number
JPH09315876A
JPH09315876A JP15633296A JP15633296A JPH09315876A JP H09315876 A JPH09315876 A JP H09315876A JP 15633296 A JP15633296 A JP 15633296A JP 15633296 A JP15633296 A JP 15633296A JP H09315876 A JPH09315876 A JP H09315876A
Authority
JP
Japan
Prior art keywords
substrate
aluminum
ceramic
composite substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15633296A
Other languages
Japanese (ja)
Other versions
JP4124497B2 (en
Inventor
Giyouzan Tei
暁山 寧
Yuji Ogawa
裕司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP15633296A priority Critical patent/JP4124497B2/en
Publication of JPH09315876A publication Critical patent/JPH09315876A/en
Application granted granted Critical
Publication of JP4124497B2 publication Critical patent/JP4124497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5111Ag, Au, Pd, Pt or Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Abstract

PROBLEM TO BE SOLVED: To improve heat cycle resistance and thermal conductivity by joining a specified metalized layer on one main surface of a ceramic substrate and joining molten aluminum on the other surface. SOLUTION: One kind solder material selected from W, Mo-MnO and Ag-Cu based alloy is applied on the one main surface of the ceramic substrate 1 and burned at 800-950 deg.C under vacuum to form a metallized layer 11 having 560μm thickness. Then, after directly joining molten aluminum on the other surface of the ceramic substrate 1, the molten aluminum is solidified to obtain a metal- ceramic composite substrate. Then, an etching resist is press-fixed by heating on the surface of the aluminum material of the composite substrate, and after forming a prescribed circuit 4 by light shielding, developing and etching, an electronic mounting part 3 is formed by subjecting a surface of the circuit 4 to plating, and also a heat radiating plate 5 is joined on the metallized layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パワーモジュール
等の大電力電子部品の実装に好適な金属−セラミックス
複合基板及びその製造方法に関し、更に詳しくは特に優
れたヒートサイクル耐量が要求される自動車又は電車用
電子部品の実装に好適な複合基板及びその製造方法を提
供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite substrate suitable for mounting high-power electronic components such as power modules and a method for producing the same, and more particularly to an automobile or a vehicle that requires particularly excellent heat cycle resistance. An object of the present invention is to provide a composite substrate suitable for mounting electronic components for electric trains and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, as a substrate used for mounting a high-power electronic component such as a power module, a copper-clad ceramic composite substrate produced by bonding a copper plate to a surface of a ceramic substrate has been used. This composite substrate further depends on the type of ceramic substrate used and its manufacturing method.
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】このうち、銅/アルミナ直接接合基板は、
特開昭52−37914号公報に開示されるように、酸
素を含有する銅板を使用するか、無酸素銅板を使用して
酸化性雰囲気中で加熱することによって無酸素銅板の表
面に酸化銅を発生させてから、銅板とアルミナ基板を重
ねて不活性雰囲気中で加熱し、銅板とアルミナ基板との
界面に銅とアルミニウムとの複合酸化物を生成させ銅板
とアルミナ基板とを接合するものである。
Of these, the copper / alumina direct bonding substrate is:
As disclosed in JP-A-52-37914, copper oxide is used on the surface of an oxygen-free copper plate by using a copper plate containing oxygen or by using an oxygen-free copper plate and heating in an oxidizing atmosphere. After the generation, the copper plate and the alumina substrate are superposed and heated in an inert atmosphere to generate a composite oxide of copper and aluminum at the interface between the copper plate and the alumina substrate and join the copper plate and the alumina substrate. .

【0004】一方、銅/窒化アルミニウム直接接合基板
の場合には、予め窒化アルミニウム基板の表面に酸化物
を形成する必要がある。例えば特開平3−93687号
公報に開示するように、予め空気中において、約100
0℃の温度で窒化アルミニウム基板を処理し、表面に酸
化物を生成させてから、この酸化物層を介して上述の方
法により銅板と窒化アルミニウム基板とを接合してい
る。
On the other hand, in the case of a copper / aluminum nitride direct bonding substrate, it is necessary to previously form an oxide on the surface of the aluminum nitride substrate. For example, as disclosed in Japanese Patent Application Laid-Open No. 3-93687, about 100
After treating the aluminum nitride substrate at a temperature of 0 ° C. to generate an oxide on the surface, the copper plate and the aluminum nitride substrate are joined via the oxide layer by the above-described method.

【0005】また銅/アルミナろう接基板及び銅/窒化
アルミニウムろう接基板は、銅板とセラミックス基板と
の間に低触点のろう材を用いて接合するが、この場合、
使用するろう材に銅の他、融点を下げる為の合金元素及
びセラミックスとの濡れを良くする為の合金元素が添加
され、一例としてAg−Cu−Ti系のような活性金属
ろう材はよく使用されている。
A copper / alumina brazing substrate and a copper / aluminum nitride brazing substrate are joined between a copper plate and a ceramic substrate by using a brazing material having a low contact point.
In addition to copper, an alloying element for lowering the melting point and an alloying element for improving the wettability with ceramics are added to the brazing material to be used. For example, active metal brazing materials such as Ag-Cu-Ti are often used. Have been.

【0006】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems during manufacturing and practically. The most serious problem among them is a failure due to the formation of cracks inside the ceramic substrate during the mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0007】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因するが接合の場合、セラ
ミックス基板と銅が1000℃近くまで加熱され、接合
温度から室温に冷却する時に、熱膨張係数の違いにより
複合基板の内部に多大の熱応力が発生する。
This is because the coefficient of thermal expansion of copper is about one digit larger than that of ceramics, but in the case of bonding, when the ceramics substrate and copper are heated to close to 1000 ° C. Due to the difference in expansion coefficient, a large amount of thermal stress is generated inside the composite substrate.

【0008】また、パワーモジュール等の電子部品を実
装するときに、銅・セラミックス複合基板は400℃近
くまで加熱されるため、さらに使用環境や使用中の発熱
により、同複合基板の温度が常に変化し、同複合基板に
変動熱応力が掛けられる。これらの熱応力によってセラ
ミックス基板にクラックが発生する。
Further, when mounting electronic components such as power modules, the copper / ceramic composite substrate is heated to nearly 400 ° C., and the temperature of the composite substrate constantly changes due to the use environment and heat generation during use. Then, a fluctuating thermal stress is applied to the composite substrate. Cracks occur in the ceramic substrate due to these thermal stresses.

【0009】近年、電気自動車用パワーモジュールの開
発により、ヒートサイクル耐量の優れた複合基板への要
望が特に高まっており、例えば電気自動車の様に温度変
化が激しく、振動が大きい使用条件の場合、複合基板の
ヒートサイクル耐量が500回以上必要であると言われ
ているが現在使用されている銅・セラミックス複合基板
では、このような要望に対応できない。
In recent years, with the development of power modules for electric vehicles, the demand for composite substrates having excellent heat cycle resistance has been particularly increased. For example, in the case of use conditions in which temperature changes are severe and vibration is large, as in electric vehicles, It is said that the heat resistance of the composite substrate is required to be 500 times or more, but the copper / ceramic composite substrate currently used cannot meet such a demand.

【0010】銅と同じような優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり、例えば特開昭59−121890号にこのよ
うな構想が記述されている。アルミニウムとセラミック
スとの接合に一般的にろう接法は使用され、特開平3−
125463号、特開平4−12554号及び特開平4
−18746号にろう接法で作製したアルミニウム−セ
ラミックス基板を開示している。
The concept of using aluminum having excellent electrical and thermal conductivity similar to copper as a conductive circuit material has been known for a long time, and such a concept is described in, for example, Japanese Patent Application Laid-Open No. Sho 59-121890. Generally, a brazing method is used for joining aluminum and ceramics.
125463, JP-A-4-12554 and JP-A-4-12554
No. 18746 discloses an aluminum-ceramic substrate manufactured by a brazing method.

【0011】しかし、この方法の場合、接合は真空中で
行わなければならないし、また非酸化物セラミックスの
場合、あらかじめ予備処理を施し、セラミックスの表面
に酸化物を形成しなければならないという問題があり、
製造コストおよび熱伝導性の面においても満足できない
ところがあった。
However, in the case of this method, there is a problem in that the bonding must be performed in a vacuum, and in the case of non-oxide ceramics, pretreatment must be performed in advance to form an oxide on the surface of the ceramics. Yes,
There were some unsatisfactory points in terms of manufacturing cost and thermal conductivity.

【0012】[0012]

【発明が解決しようとする課題】アルミニウム−セラミ
ックス基板が優れたヒートサイクル耐量を持つ一方、銅
と比べてAlの熱伝導率や電気伝導率が小さいため、同
じ量の電流を流すためには回路側のAlの厚さを1.6
倍にしなければならない。従って電子部品に電力をかけ
る時に発生した熱の放熱能力は銅張基板より劣ってい
る。
While the aluminum-ceramic substrate has an excellent heat cycle resistance, the thermal conductivity and electrical conductivity of Al are smaller than that of copper. The thickness of Al on the side is 1.6
Must be doubled. Therefore, the ability to dissipate heat generated when power is applied to electronic components is inferior to that of copper clad substrates.

【0013】従って本発明は、ヒートサイクル耐量に優
れた特性の他、熱伝導特性も併せて優れている新規な金
属−セラミックス複合基板を開発することを目的とす
る。
Therefore, it is an object of the present invention to develop a novel metal-ceramic composite substrate which is excellent not only in heat cycle resistance but also in heat conductivity.

【0014】[0014]

【課題を解決するための手段】上記の問題を解決するた
め鋭意研究したところ、従来の銅張り接合基板やアルミ
ニウムろう接合基板に比べ、アルミニウム溶湯をセラミ
ックス基板の少なくとも一面に接合して凝固させ、また
反対面に銀−銅系ろう材等からなるメタライズ層を所定
厚み(5〜60μm厚)に接合し、最終的に銅板からな
る放熱板を該メタライズ層に接合することによって、そ
りの少ない且つヒートサイクル耐性や熱伝導性の両特性
に優れた新規な金属−セラミックス複合基板を開発する
ことができた。
[Means for Solving the Problems] As a result of intensive research to solve the above problems, as compared with conventional copper-clad bonded substrates and aluminum brazed bonded substrates, aluminum molten metal is bonded and solidified on at least one surface of a ceramic substrate, Further, a metallized layer made of a silver-copper brazing material or the like is bonded to the opposite surface to a predetermined thickness (5 to 60 μm thickness), and finally a heat radiation plate made of a copper plate is bonded to the metallized layer to reduce warpage. We were able to develop a new metal-ceramics composite substrate with excellent heat cycle resistance and thermal conductivity.

【0015】即ち、本発明の第1は、セラミックス基板
の一主面にアルミニウム材からなる電気導通及び電子部
品搭載のための金属部分を形成し、他面に放熱板を接合
するためのメタライズ層を設けてあることを特徴とする
金属−セラミックス複合基板に関する。
That is, the first aspect of the present invention is to form a metal part made of an aluminum material for electrical conduction and mounting of electronic parts on one main surface of a ceramic substrate and to a metallization layer for joining a heat sink to the other surface. And a metal-ceramics composite substrate.

【0016】本発明の第2は、上記メタライズ層がW,
Mo−MnO,Ag−Cu系合金の少なくとも一種のろ
う材であることを特徴とする金属−セラミックス複合基
板に関する。
In a second aspect of the present invention, the metallization layer is W,
The present invention relates to a metal-ceramic composite substrate which is a brazing material of at least one of Mo-MnO and Ag-Cu based alloys.

【0017】本発明の第3は、セラミックス基板の一主
面にメタライズ層としてW,Mo−MnO,Ag−Cu
系合金から選ばれる一種の合金層を形成せしめる第1工
程、次いで上記基板の他面に溶湯アルミニウムを接合さ
せた後、凝固して複合基板とする第2工程、次いで得ら
れた複合基板において、アルミニウム材表面をエッチン
グ処理することにより所定の回路を形成する第3工程、
次いで得られたアルミニウム回路の表面をメッキ処理す
る第4工程、とから成ることを特徴とする金属−セラミ
ックス複合基板の製造法に関する。
The third aspect of the present invention is to use W, Mo-MnO, Ag-Cu as a metallized layer on one main surface of the ceramic substrate.
A first step for forming a kind of alloy layer selected from the group-based alloys, then a second step of joining molten aluminum to the other surface of the above substrate and then solidifying to form a composite substrate, and then the obtained composite substrate, A third step of forming a predetermined circuit by etching the surface of the aluminum material,
Next, a fourth step of plating the surface of the obtained aluminum circuit, and a method for producing a metal-ceramic composite substrate.

【0018】[0018]

【作用】本発明において使用する基板としては、アルミ
ナ、窒化アルミニウム、炭化硅素、ジルコニア等のセラ
ミックス基板やガラス等であり、この場合、高純度の素
材であればなおさら好ましい。
The substrate used in the present invention is a ceramic substrate made of alumina, aluminum nitride, silicon carbide, zirconia or the like, glass or the like. In this case, a high-purity material is more preferable.

【0019】上記セラミックス基板の一面にW,Mo−
MnO合金、あるいはAg−Cu系合金の少なくとも一
種以上のろう材を合金箔状やペースト状として、真空
下、800〜950℃で焼成することによって5〜60
μm、好ましくは10〜50μmの厚みでメタライズ化
する。
On one surface of the ceramic substrate, W, Mo-
5 to 60 by baking at least one or more brazing filler metal of MnO alloy or Ag-Cu alloy in the form of alloy foil or paste at 800 to 950 ° C under vacuum
The metallization is performed with a thickness of μm, preferably 10 to 50 μm.

【0020】この場合、メタライズ層の厚みを5μm以
下にすると、ぬれ性が悪くセラミックス基板との接着力
が弱く、逆に100μm以上であれば印刷時において応
力がかかりすぎることによる。そして厚みが上記範囲に
あると最終製品において熱抵抗をできるだけ小さくする
ことができる他、複合基板のそりを小さくすることがで
きるという効果を併せて有する。
In this case, if the thickness of the metallized layer is 5 μm or less, the wettability is poor and the adhesion to the ceramic substrate is weak, and if it is 100 μm or more, too much stress is applied during printing. When the thickness is in the above range, the thermal resistance of the final product can be reduced as much as possible, and the warpage of the composite substrate can be reduced.

【0021】上記ろう材のうち特に銀−銅系合金ろう材
をペースト状にして用いる場合には、銀と銅の混合比は
重量割合で、銀55〜85%、銅15〜45%の範囲が
好ましく、更に活性金属としてのチタン、ジルコニウ
ム、ハフニウムやこれらの水素化物や酸化物を銀と銅の
合金100重量部に対して1〜20重量部とした合金粉
末を用い、これらの合金粉末を15〜30容量部、有機
溶剤(トルエン、テレピネオール等)60〜70容量
部、有機結合材0〜20容量部の合計100容量部とし
たものを用いるとよい。
When a silver-copper alloy brazing material is used as a paste among the above brazing materials, the mixing ratio of silver and copper is 55 to 85% silver and 15 to 45% copper in weight ratio. More preferably, titanium, zirconium, hafnium as an active metal, or an alloy powder containing 1 to 20 parts by weight of hydride or oxide of these and 100 parts by weight of an alloy of silver and copper is used. A total of 100 parts by volume of 15 to 30 parts by volume, 60 to 70 parts by volume of organic solvent (toluene, terpineol, etc.), and 0 to 20 parts by volume of organic binder may be used.

【0022】また、本発明で回路を形成するための金属
はアルミニウムの純金属又は合金であるが、これにより
導電性が向上し、且つ軟らかさを得るものである。この
場合、純度が高い程導電性が向上するが逆に価格が高く
なるため本発明では99.9%(3N)の純アルミニウ
ムを使用した。
Further, the metal for forming the circuit in the present invention is a pure metal or alloy of aluminum, which improves conductivity and obtains softness. In this case, the higher the purity, the higher the conductivity, but on the contrary, the price becomes higher. Therefore, in the present invention, 99.9% (3N) of pure aluminum was used.

【0023】この金属とセラミックス基板との接合は溶
湯接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板とすることができる上、窒化アルミニ
ウム基板や窒化硅素基板にも表面改質することなく直接
に接合することができる(第2工程)。
The metal and the ceramics substrate are joined by the melt joining method, whereby a composite substrate having high joining strength and few uncontacted defects can be obtained, and the aluminum nitride substrate and the silicon nitride substrate are surface-modified. It is possible to join directly without doing (second step).

【0024】次いで、上記溶湯接合法で得られた金属−
セラミックス複合基板の両主面にエッチングレジストを
加熱圧着した後、アルミニウム材表面のみ遮光・現像処
理を行なって所望のパターンを形成し、塩化第2鉄溶液
にてエッチングを行なって回路4を形成する(第3工
程)。
Next, the metal obtained by the above-mentioned molten metal joining method
After heating and pressure-bonding the etching resist to both main surfaces of the ceramic composite substrate, only the surface of the aluminum material is subjected to light-shielding and developing treatment to form a desired pattern, and etching is performed with a ferric chloride solution to form the circuit 4. (Third step).

【0025】本発明において得られた回路のうち、特に
電子部品搭載部3としてのアルミニウム材の上に銅、モ
リブデン、ニッケル等から選ばれる一種のメッキを積層
し、ヒートサイクル耐量及び耐熱衝撃特性の優れた複合
基板とすることもできる(第4工程)。
Among the circuits obtained in the present invention, a kind of plating selected from copper, molybdenum, nickel and the like is laminated on an aluminum material as the electronic component mounting portion 3 to obtain heat cycle resistance and thermal shock resistance. It is also possible to obtain an excellent composite substrate (fourth step).

【0026】[0026]

【発明の実施の形態】以下、図面を参照して本発明複合
基板(以下金属−セラミックス直接接合基板とする)に
ついて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite substrate of the present invention (hereinafter referred to as a metal-ceramic direct bonding substrate) will be described in detail below with reference to the drawings.

【0027】(実施例1)(Example 1)

【0028】先ず、36mm×52mm×0.635m
mのアルミナ基板に予め、銀27.5wt%、銅27.
0wt%、Ti0.5wt%からなるろう材ペーストを
前面塗布したものを真空炉中で830℃一定で焼成して
厚み20μmのメタライズ層11を得た(第1工程)。
First, 36 mm × 52 mm × 0.635 m
27.5 wt% silver, copper 27.
A brazing material paste consisting of 0 wt% and 0.5 wt% Ti was applied on the front surface and baked at 830 ° C. in a vacuum furnace to obtain a metallized layer 11 having a thickness of 20 μm (first step).

【0029】得られたセラミックス基板1を図3に示す
金属−セラミックス直接接合基板を製造装置(原理図)
に挿入する。先ず、純度99.9%のアルミニウム2を
ヒーター7を有するルツボ6にセットしてから蓋9をし
めて、ケース8の内部に窒素ガスを充填した後、ルツボ
6に設けたガイド一体型ダイス10の左側入口から上記
第1工程で得たアルミナ基板をメタライズ11側を下面
にして順次挿入した。ルツボ6内に入った該アルミナ基
板にアルミニウム溶湯を接触させ、次いで、出口側にお
いて凝固させることによって厚さ0.5mmのアルミニ
ウム板がアルミナ基板上面に接合された金属−セラミッ
クス直接接合基板を得た(第2工程)。
The obtained ceramics substrate 1 is shown in FIG. 3, which is an apparatus for manufacturing a metal-ceramics direct bonding substrate (principle diagram).
To insert. First, aluminum 2 having a purity of 99.9% is set in the crucible 6 having the heater 7, the lid 9 is closed, nitrogen gas is filled in the case 8, and then the guide-integrated die 10 provided in the crucible 6 is attached. The alumina substrate obtained in the first step was sequentially inserted from the inlet on the left side with the metallization 11 side facing down. A molten aluminum was brought into contact with the alumina substrate contained in the crucible 6 and then solidified on the outlet side to obtain a metal-ceramic direct bonding substrate in which an aluminum plate having a thickness of 0.5 mm was bonded to the upper surface of the alumina substrate. (Second step).

【0030】次いで得られた直接接合基板の両面にエッ
チングレジストを加熱圧着した後、表面のアルミニウム
板のみ遮光・現像処理を行なって所望のパターンを形成
して、塩化第2鉄溶液にてエッチング処理を行なって回
路4を形成した(第3工程)。
Then, an etching resist is heat-pressed onto both surfaces of the obtained direct-bonded substrate, and then only the aluminum plate on the surface is subjected to light-shielding / development treatment to form a desired pattern and etching treatment with a ferric chloride solution. Was performed to form the circuit 4 (third step).

【0031】次いで上記回路面を亜鉛置換した後Niメ
ッキ処理を施すと共に、裏面のメタライズ層11に厚さ
4mmの銅板をヒートシンク板5として接合せしめて、
目的とする金属−セラミックス複合基板を得た(第4工
程)。
Next, after the circuit surface is replaced with zinc, Ni plating is applied, and a copper plate having a thickness of 4 mm is bonded as a heat sink plate 5 to the metallized layer 11 on the back surface.
A target metal-ceramics composite substrate was obtained (fourth step).

【0032】得られた上記接合基板のヒートサイクル耐
量及び熱伝導性を調べたところヒートサイクル1000
回でもクラックの発生はなく、また熱伝導率を少なく、
製品自体のそり量も従来品に比較して少ないという効果
を併せて有していた。
When the heat cycle resistance and heat conductivity of the above-mentioned bonded substrate thus obtained were examined, a heat cycle of 1000 was obtained.
No cracks are generated even after turning, and the thermal conductivity is low,
It also had the effect that the amount of warpage of the product itself was smaller than that of conventional products.

【0033】(実施例2)(Example 2)

【0034】セラミックス基板としてアルミナに代えて
窒化アルミニウム基板(36mm×52mm×0.63
5mm)を用いた他は、実施例1と同様な手段で金属−
窒化アルミニウム直接接合基板を得、この接合基板のヒ
ートサイクル耐量を調べたところ3000回でもクラッ
クの発生はなく、また熱伝導率を少なく、製品自体のそ
り量も従来品に比較して少なかった。
An aluminum nitride substrate (36 mm × 52 mm × 0.63) is used instead of alumina as a ceramic substrate.
5 mm) except that the same procedure as in Example 1 was performed.
When an aluminum nitride direct bonding substrate was obtained and the heat cycle resistance of this bonding substrate was examined, cracks did not occur even after 3000 times, the thermal conductivity was small, and the amount of warpage of the product itself was smaller than that of the conventional product.

【0035】(比較例1)(Comparative Example 1)

【0036】比較のため実施例2に示す窒化アルミニウ
ム基板を用いて厚さ0.3mmの銅板を基板の両面にA
g−Cu−Tiろう材ペーストを介して780℃で真空
炉中で焼成して得た銅張り基板を得、ヒートサイクル耐
量を求めたところ数十回でクラックが発生し、基板のそ
り量は大きかった。
For comparison, the aluminum nitride substrate shown in Example 2 was used to form a copper plate having a thickness of 0.3 mm on both sides of the substrate.
A copper-clad substrate obtained by firing in a vacuum furnace at 780 ° C. through a g-Cu-Ti brazing filler paste was used, and when the heat cycle resistance was determined, cracks occurred in several tens of times, and the amount of warpage of the substrate was It was great.

【0037】[0037]

【発明の効果】上述のように本発明法によって得た金属
−セラミックス直接接合基板は、従来の複合基板では得
られなかったヒートサイクル耐量に富み、電気自動車や
電車向けの大電力パワーモジュール基板として特に好ま
しいものである。
As described above, the metal-ceramic direct bonding substrate obtained by the method of the present invention has a high heat cycle resistance which cannot be obtained by the conventional composite substrate, and is used as a high power power module substrate for electric vehicles and trains. It is particularly preferable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属−セラミックス直接接合基板
の模式平面図である。
FIG. 1 is a schematic plan view of a metal / ceramics direct bonding substrate according to the present invention.

【図2】図1の金属−セラミックス直接接合基板の側面
図である。
FIG. 2 is a side view of the metal-ceramics direct bonding substrate of FIG.

【図3】本発明接合基板の製造装置の原理図である。FIG. 3 is a principle view of an apparatus for manufacturing a bonded substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 アルミニウム 3 電子部品搭載部 4 回路 5 ヒートシンク板 6 ルツボ 7 ヒーター 8 ケース 9 蓋 10 ガイド一体型ダイス 11 メタライズ層 DESCRIPTION OF SYMBOLS 1 Ceramics substrate 2 Aluminum 3 Electronic component mounting part 4 Circuit 5 Heat sink plate 6 Crucible 7 Heater 8 Case 9 Lid 10 Guide integrated die 11 Metallized layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/91 C04B 41/91 B H05K 1/03 610 H05K 1/03 610D // H01L 23/14 H01L 23/14 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 41/91 C04B 41/91 B H05K 1/03 610 H05K 1/03 610D // H01L 23/14 H01L 23/14 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の一主面にアルミニウ
ム材からなる電気導通及び電子部品搭載のための金属部
分を形成し、他面に放熱板を接合するためのメタライズ
層を設けてあることを特徴とする金属−セラミックス複
合基板。
1. A ceramic substrate is provided with a metal portion made of an aluminum material for electrical conduction and mounting of electronic components, and a metallized layer for joining a heat sink is provided on the other surface of the ceramic substrate. And a metal-ceramic composite substrate.
【請求項2】 上記メタライズ層がW,Mo−MnO,
Ag−Cu系合金の少なくとも一種のろう材であること
を特徴とする請求1記載の金属−セラミックス複合基
板。
2. The metallized layer comprises W, Mo--MnO,
The metal-ceramic composite substrate according to claim 1, which is at least one brazing material of an Ag-Cu alloy.
【請求項3】 セラミックス基板の一主面にメタライズ
層としてW,Mo−MnO,Ag−Cu系合金から選ば
れる一種の合金層を形成せしめる第1工程、 次いで上記基板の他面に溶湯アルミニウムを接合させた
後、凝固して複合基板とする第2工程、 次いで得られた複合基板において、アルミニウム材表面
をエッチング処理することにより所定の回路を形成する
第3工程、 次いで得られたアルミニウム回路の表面をメッキ処理す
る第4工程、 とから成ることを特徴とする金属−セラミックス複合基
板の製造法。
3. A first step of forming a kind of alloy layer selected from W, Mo—MnO and Ag—Cu alloys as a metallization layer on one main surface of a ceramic substrate, and then molten aluminum on the other surface of the substrate. Second step of solidifying into a composite substrate after joining, then, in the obtained composite substrate, a third step of forming a predetermined circuit by etching the surface of the aluminum material, and then of the obtained aluminum circuit A fourth step of plating the surface, and a method for producing a metal-ceramic composite substrate, comprising:
JP15633296A 1996-05-29 1996-05-29 Metal-ceramic composite substrate and manufacturing method thereof Expired - Fee Related JP4124497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15633296A JP4124497B2 (en) 1996-05-29 1996-05-29 Metal-ceramic composite substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15633296A JP4124497B2 (en) 1996-05-29 1996-05-29 Metal-ceramic composite substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09315876A true JPH09315876A (en) 1997-12-09
JP4124497B2 JP4124497B2 (en) 2008-07-23

Family

ID=15625473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15633296A Expired - Fee Related JP4124497B2 (en) 1996-05-29 1996-05-29 Metal-ceramic composite substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4124497B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004851A1 (en) * 2006-07-06 2008-01-10 Globetronics Industries Sdn Bhd (17765-H) A hybrid substrate and method of manufacturing the same
JP2008045218A (en) * 2007-10-01 2008-02-28 Dowa Holdings Co Ltd Plating method and patterning method on metal-ceramic composite member, wet treatment apparatus and metal-ceramic composite member for power module
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board
JP2012164709A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
JP2012164708A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
JP2012164710A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
KR20150092150A (en) * 2012-12-06 2015-08-12 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
CN107889559A (en) * 2015-04-24 2018-04-06 阿莫善斯有限公司 The manufacture method of ceramic substrate and as the ceramic substrate manufactured by it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004851A1 (en) * 2006-07-06 2008-01-10 Globetronics Industries Sdn Bhd (17765-H) A hybrid substrate and method of manufacturing the same
JP2008045218A (en) * 2007-10-01 2008-02-28 Dowa Holdings Co Ltd Plating method and patterning method on metal-ceramic composite member, wet treatment apparatus and metal-ceramic composite member for power module
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board
JP2012164709A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
JP2012164708A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
JP2012164710A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Manufacturing method for substrate for power module, and substrate for power module
KR20150092150A (en) * 2012-12-06 2015-08-12 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
CN107889559A (en) * 2015-04-24 2018-04-06 阿莫善斯有限公司 The manufacture method of ceramic substrate and as the ceramic substrate manufactured by it
CN107889559B (en) * 2015-04-24 2020-04-28 阿莫善斯有限公司 Method for manufacturing ceramic substrate and ceramic substrate manufactured thereby

Also Published As

Publication number Publication date
JP4124497B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US5111277A (en) Surface mount device with high thermal conductivity
EP0153618A2 (en) Method for preparing highly heat-conductive substrate and copper wiring sheet usable in the same
US5188985A (en) Surface mount device with high thermal conductivity
KR100374379B1 (en) Substrate
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH02500907A (en) Ceramic/glass/metal composite
JP3613759B2 (en) Metal-ceramic composite substrate
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JPH107480A (en) Composite metal-ceramic substrate and its production
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP2002043478A (en) Ceramic circuit board
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JP3430348B2 (en) Metal-ceramic composite substrate
JP4295409B2 (en) Manufacturing method of ceramic circuit board
JP4299421B2 (en) Manufacturing method of ceramic circuit board
JP2001210923A (en) Ceramic circuit board
JP2006028018A (en) Aluminum-ceramic compound substrate
JPH09286681A (en) Metal-ceramic composite substrate
JPH09315874A (en) Aluminum-ceramic composite substrate
JPS60198893A (en) Method of producing multilayer ceramic board with pin
JP2001177194A (en) Ceramic circuit board
JP2002246714A (en) Ceramic circuit board
JPS6318647A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees