JP4299421B2 - Manufacturing method of ceramic circuit board - Google Patents
Manufacturing method of ceramic circuit board Download PDFInfo
- Publication number
- JP4299421B2 JP4299421B2 JP32894599A JP32894599A JP4299421B2 JP 4299421 B2 JP4299421 B2 JP 4299421B2 JP 32894599 A JP32894599 A JP 32894599A JP 32894599 A JP32894599 A JP 32894599A JP 4299421 B2 JP4299421 B2 JP 4299421B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- metal
- ceramic substrate
- brazing material
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Combinations Of Printed Boards (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、セラミック基板に金属回路板を活性金属ロウ材により接合したセラミック回路基板の製造方法に関するものである。
【0002】
【従来の技術】
近年、パワーモジュール用基板やスイッチングモジュール用基板等の回路基板として、セラミック基板上に銀−銅合金にチタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属ロウ材を介して銅等から成る金属回路板を直接接合させたセラミック回路基板が用いられている。
【0003】
かかるセラミック回路基板は、一般に酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体、ムライト質焼結体等の電気絶縁性のセラミックス材料から成っており、例えば、酸化アルミニウム質焼結体から成る場合には、具体的には以下の方法によって製作される。
【0004】
即ち、
(1)まず、銀−銅合金にチタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属粉末に有機溶剤、溶媒を添加混合してロウ材ペーストを作製する。
(2)次に、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化カルシウム等のセラミック原料粉末に適当な有機バインダー、可塑剤、溶剤等を添加混合して泥漿状と成すとともにこれを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術を採用して複数のセラミックグリーンシートを得た後、所定寸法に形成し、次に前記セラミックグリーンシートを必要に応じて上下に積層するとともに還元雰囲気中、約1600℃の温度で焼成し、セラミックグリーンシートを焼結一体化させて酸化アルミニウム質焼結体から成るセラミック基板を形成する。
(3)次に、前記セラミック基板上に前記ロウ材ペーストを間に挟んで銅等から成る金属回路板を載置させる。
(4)そして最後に、前記セラミック基板と金属回路板との間に配されているロウ材ペーストを非酸化性雰囲気中で約900℃の温度に加熱し、セラミック基板に活性金属粉末を介して銀−銅合金から成るロウ材を接合させるとともに該ロウ材を金属回路板に接合させることによってセラミック回路基板が製作される。
【0005】
なお、前記ロウ材および金属回路板の露出表面には酸化腐食を有効に防止すると同時に金属回路板に半導体素子等の電子部品を接着固定する半田等の接着材との接合を強固にするため、ニッケル等の金属がメッキ法等の技術を用いることによって被着されている。
【0006】
【発明が解決しようとする課題】
しかしながら、この従来のセラミック回路基板の製造方法においては、セラミック基板への金属回路板の接合はセラミック基板上にロウ材ペーストを挟んで銅等から成る所定パターンの金属回路板を載置させた後、これを還元雰囲気中、約900℃の温度に加熱することによって行われており、前記ロウ材ペーストは液相線温度以上の温度で加熱されることから、大きく熔け広がり、この熔け広がったロウ材ペーストによって隣接する金属回路板間が電気的に短絡するという欠点を有していた。
【0007】
そこで上記欠点を解消するためにロウ材ペーストの厚みを、例えば、10μm未満に薄くすることが考えられる。
【0008】
しかしながら、ロウ材ペーストの厚みを薄くすると、セラミック基板上に金属回路板を取着する際、セラミック基板と金属回路板との間に発生する両者の熱膨張係数の相違に起因する応力を前記ロウ材が有効に吸収することができなくなり、その結果、前記応力によってセラミック基板にクラックや割れが発生するという欠点が誘発されてしまう。
【0009】
本発明は上記欠点に鑑み案出されたもので、その目的はセラミック基板上に金属回路板を、隣接する金属回路板間に電気的短絡を発生することなく、またセラミック基板に割れ等を発生することなく強固に接着させることができるセラミック回路基板の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明のセラミック回路基板の製造方法は、
(1)銀粉末と銅粉末および/または銀−銅合金粉末から成るロウ材粉末と、チタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種より成る活性金属粉末とから成る活性金属ロウ材と、融点が1200℃以上の高融点金属粉末を点接合で接合して成る凝集体とを含有するロウ材ペーストを作製する工程と、
(2)セラミック基板上に前記ロウ材ペーストを間に挟んで金属回路板を載置させる工程と、
(3)前記セラミック基板と金属回路板との間に配されているロウ材ペーストを非酸化性雰囲気中で加熱し、セラミック基板に活性金属粉末を介して凝集体を含有する銀−銅合金から成るロウ材を接合させるとともに該ロウ材を金属回路板に接合させる工程と、
から成ることを特徴とするものである。
【0011】
また、本発明のセラミック回路基板の製造方法は、前記凝集体が活性金属ロウ材に対して3乃至20重量%含有されていることを特徴とするものである。
【0012】
更に、本発明のセラミック回路基板の製造方法は、前記凝集体の平均径が10乃至100μmの平均径であること特徴とするものである。
【0013】
本発明のセラミック回路基板の製造方法によれば、セラミック基板への金属回路板の接合は、セラミック基板上に融点が1200℃以上の高融点金属粉末を点接合で接合して成る平均径が10乃至100μmの凝集体を活性金属ロウ材に対して3乃至20重量%含有したロウ材ペーストを挟んで銅等から成る所定パターンの金属回路板を載置させた後、これを還元雰囲気中、約900℃の温度に加熱することによって行われることから、前記ロウ材ペーストがロウ材の液相線温度以上の温度で加熱されたとしても、前記凝集体がセラミック基板と金属回路板との間でスペーサの役目を果たして前記ロウ材ペーストが大きく熔け広がることはなく、その結果、隣接する金属回路板間に電気的な短絡が発生するのが有効に防止される。
【0014】
また同時に、融点が1200℃以上の高融点金属粉末を点接合で接合させた凝集体によって金属回路板とセラミック基板との間に所定厚みのスペースが確保され、該スペースに所定量のロウ材が介在することから金属回路板とセラミック基板の熱膨張係数の相違によって発生する応力は前記ロウ材に吸収され、セラミック基板にクラックや割れ等が発生するのを有効に防止することができる。
【0015】
【発明の実施の形態】
次に、本発明を添付図面に基づき詳細に説明する。
図1及び図2は、本発明の製造方法によって作製した配線基板の一実施例を示す断面図であり、1はセラミック基板、2はロウ材層、3は金属回路板である。
【0016】
前記セラミック基板1は酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体等の電気絶縁材料からなり、その上面に金属回路板3が活性金属ロウ材層2を介してロウ付けされている。
【0017】
前記セラミック基板1はその上面にロウ付けされる金属回路板3を支持する支持部材として作用する。
【0018】
また前記セラミック基板1の上面にロウ付けされている金属回路板3は銅等の金属材料から成り、セラミック回路基板に実装される半導体素子等に電気信号や電力を供給する作用をなす。
【0019】
更に前記セラミック基板1の上面に金属回路板3をロウ付けするロウ材は活性金属ロウ材からなり、ロウ材自身が活性を有していることからセラミック基板1上に直接取着することになる。
【0020】
かくして上述のセラミック回路基板によれば、セラミック基板1上面の金属回路板3に半田等の接着材を介して半導体素子等の電子部品を電気的に接続させるとともに金属回路板3を外部電気回路に接続すれば半導体素子等の電子部品は金属回路板3を介して外部電気回路に電気的に接続されることとなる。
【0021】
次に上記セラミック回路基板の製造方法について説明する。
(1)先ず、セラミック基板1を製作する。
前記セラミック基板1は酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体等の電気絶縁材料からなり、例えば、酸化アルミニウム質焼結体から成る場合には、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化カルシウム等の原料粉末に適当な有機バインダー、可塑剤、溶剤を添加混合して泥漿状となすとともに該泥漿物を従来周知のドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を形成し、しかる後、前記セラミックグリーンシートに適当な打ち抜き加工を施すとともにこれを複数枚積層し、約1600℃の高温で焼成することによって製作される。
(2)次に、金属回路板3を製作する。
前記金属回路板3は銅等の金属材料から成り、例えば、銅等のインゴット(塊)に圧延加工法や打ち抜き加工法等、従来周知の金属加工法を施すことによって、厚さが500μmの所定パターンに形状される。
【0022】
なお、前記金属回路板3はこれを無酸素銅で形成しておくと、該無酸素銅はロウ付けの際に銅の表面が銅中に存在する酸素により酸化されることなく活性金属ロウ材との濡れ性が良好となり、セラミック基板1へのロウ材層2を介しての接合が強固となる。従って、前記金属回路板3はこれを無酸素銅で形成しておくことが好ましい。
(3)次に、活性金属ロウ材ペーストを製作する。
前記活性金属ロウ材ペーストは、銀粉末と銅粉末および/または銀−銅合金粉末から成るロウ材粉末と、チタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種より成る活性金属粉末とから成る活性金属ロウ材に、融点が1200℃以上の高融点金属粉末を点接合で接合して成る平均径が10乃至100μmの凝集体2aを3乃至20重量%と適当な有機溶剤、溶媒を添加混合し、混練することによって製作される。
(4)次に、前記セラミック基板1上面に前記活性金属ロウ材ペーストを従来周知のスクリーン印刷技法を用いて、例えば、30乃至50μmの厚さで所定パターに印刷塗布するとともに該所定パターに印刷塗布された活性金属ロウ材ペースト上に前記金属回路板3を載置する。
【0023】
そして最後に、前記セラミック基板1と金属回路板3との間に配されている活性金属ロウ材ペーストを、前記金属回路板3に50乃至100gの荷重をかけながら水素ガス雰囲気や水素・窒素ガス雰囲気の非酸化性雰囲気中で、900℃に加熱し、前記活性金属ロウ材ペーストの有機溶剤や溶媒を気散させるとともにロウ材を溶融せしめセラミック基板1の上面と金属回路板3の下面とに接合させることによって、セラミック基板1の上面に金属回路板が取着されることとなる。この場合、活性金属ロウ材ペーストの中には、融点が1200℃以上の高融点金属粉末を点接合で接合して成る凝集体2aが添加されていることからセラミック基板1と金属回路板3との間に所定厚みのスペースが確保されてロウ材が大きく熔け広がることはなく、その結果、隣接する金属回路板間に電気的な短絡が発生するのが有効に防止される。また同時に、融点が1200℃以上の高融点金属粉末を点接合で接合させた凝集体2aによって金属回路板3とセラミック基板1との間に所定厚みのスペースが確保され、該スペースに所定量のロウ材が介在することから金属回路板3とセラミック基板1の熱膨張係数の相違によって発生する応力は前記ロウ材に吸収され、セラミック基板1にクラックや割れ等が発生するすることはない。
【0024】
なお、前記活性金属ロウ材の銀粉末と銅粉末および/または銀−銅合金粉末から成るロウ材粉末は前記セラミック基板1と金属回路板3とを接合する作用をなし、例えば、共晶合金から成る場合は銀と銅がそれぞれ72重量%と28重量%含有されている共晶合金で形成されている。
【0025】
また、前記ロウ材粉末の粒径は1μm未満となるとロウ材粉末の比表面積が大きくなってロウ材粉末表面に形成される酸化皮膜中に多くの酸素が存在し、該酸素によって活性金属ロウ材のセラミック基板1や金属回路板3に対する濡れ性が低下して、前記セラミック基板1と金属回路板3との接合強度が低下してしまう危険性がある。従って、前記ロウ材粉末はその粒径を1μm以上としておくことが好ましい。
【0026】
更に前記チタン、ジルコニウム、ハフニウムおよびこれらの水素化物の少なくとも1種より成る活性金属粉末はロウ材をセラミック基板1に強固に接着する作用をなし、活性金属粉末が2重量%未満となると活性金属の絶対量が不足してロウ材をセラミック基板1に強固に接着させることができなくなる危険性があり、また5重量%を超えると活性金属とセラミック基板1との間に脆弱な反応層が厚く形成され、結果的にロウ材とセラミック基板1との接着強度が低下してしまう危険性がある。従って、前記活性金属の添加量は2乃至5重量%の範囲にしておくことが好ましい。
【0027】
また更に、前記凝集体2aはタングステン、モリブデン、マンガン等の融点が1200℃以上の高融点金属の粉末から形成されており、例えば、高融点金属粉末がモリブデンの場合であれば還元雰囲気中で約2000℃の温度に加熱し、約5分間保持することにより、粉体同士を点接合で接合した後、室温まで徐冷し、所定の径に分級することによって製作される。
【0028】
前記高融点金属はその融点が1200℃とロウ材の液相線温度よりも充分に高い融点を有することから、ロウ材が液相温度以上の温度に加熱され場合でも凝集体2aは溶融することなく前記セラミック基板1と金属回路板3との間に所定厚みのスペーサを確実に確保することができる。
【0029】
前記凝集体2aはまたその径が10μm未満となるとセラミック基板1と金属回路板3との間の所定厚みのスペースを確保するのが困難となり、また100μmを超えると活性金属ロウ材ペーストをセラミック基板1上面に従来周知のスクリーン印刷法等の印刷技術を用いて印刷塗布する際、凝集体2aがスクリーンのメッシュに引っかかって所定のパターンに印刷塗布するのが困難となる。従って、前記凝集体2aはその径を10乃至100μmの範囲に、より好適には20乃至50μmの範囲にしておくことが好ましい。
【0030】
更に、前記凝集体2aを形成するタングステン、モリブデン、マンガン等の高融点金属粉末はその径が1μm未満となると比表面積が大きくなって、高融点金属粉末表面に形成される酸化皮膜中に多くの酸素が存在し、該酸素によって活性金属ロウ材のセラミック基板1や金属回路板3に対する濡れ性が低下して、前記セラミック基板1と金属回路板3との接合強度が低下してしまう危険性があり、また6μmを超えると高融点金属粉末間の接合点が少なくて凝集体2aの機械的強度が弱くなり、セラミック基板1に金属回路板3をロウ付けする際に凝集体2aの高融点金属粉末間にばらけが発生してセラミック基板1と金属回路板3との間に所定厚みのスペースを確保することが困難となってしまう。従って、前記凝集体2aを形成する各高融点金属粉末はその径を1乃至6μmの範囲としておくことが好ましい。
【0031】
また更に、前記凝集体2aのロウ材への添加量は3重量%未満となると、前記セラミック基板1と金属回路板3との間に所定厚みのスペースを確保するのが困難となり、また20重量%を超えるとセラミック基板1及び金属回路板3に対するロウ材の接合面積が狭くなってセラミック基板1への金属回路板3のロウ付け強度が低下してしまう傾向にある。従って、前記凝集体2aのロウ材への添加量は3乃至20重量%の範囲としておくことが好ましい。
【0032】
なお、本発明は上述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、上述の実施例ではセラミック基板1がアルミニウム質焼結体で形成された例を示したが、電子部品が多量の熱を発し、この熱を効率良く除去したい場合にはセラミック基板1を熱伝導率の高い窒化アルミニウム質焼結体や窒化珪素質焼結体で形成すれば良く、金属回路板3に高速で電気信号を伝播させたい場合にはセラミック基板1を誘電率の低いムライト質焼結体で形成すれば良い。
【0033】
また前記金属回路板3の表面にニッケルから成る、良導電性で、かつ耐蝕性及びロウ材との濡れ性が良好な金属をメッキ法により被着させておくと、金属回路板3と外部電気回路との電気的接続を良好と成すとともに金属回路板3に半導体素子等の電子部品を強固に接着させることができる。
【0034】
更に前記ニッケルメッキ層は燐を8〜15重量%含有させたニッケル−燐のアモルファス合金としておくとニッケル層の表面酸化を良好に防止することができ、前記ニッケルメッキ層に含有される燐(P)が8重量%未満となるとニッケルメッキ層は酸化しやすいニッケル−燐の多結晶構造と成って金属回路板3に半導体素子等の電子部品を半田等の接着材を介して強固に電気的に接続することができず、また15重量%を超えるとニッケルメッキ層を形成する際、燐が単独に、また優先的に析出してニッケル−燐のアモルファス合金を形成することができなくなる。従って、前記ニッケルメッキ層の内部に含有される燐の量は8〜15重量%の範囲に特定され、好適には10〜15重量%の範囲がよい。
【0035】
また更に、前記金属回路板3の表面に被着されるニッケルメッキ層は、その厚みが1.5μm未満の場合、金属回路板3の表面をニッケルメッキ層で完全に被覆することができず、金属回路板3の酸化腐蝕を有効に防止することができなくなり、また3μmを超えるとニッケルメッキ層の内部に内在する内在応力が大きくなってセラミック基板1に反りや割れ等が発生してしまう。特にセラミック基板1の厚さが700μm以下の薄いものになった場合にはこのセラミック基板1の反りや割れ等が顕著となってしまう。従って、前記金属回路板3の表面に被着されるニッケルメッキ層は、はその厚みを1.5μm乃至3μmの範囲としておくことが好ましい。
【0036】
【発明の効果】
本発明のセラミック回路基板の製造方法によれば、セラミック基板への金属回路板の接合は、セラミック基板上に融点が1200℃以上の高融点金属粉末を点接合で接合して成る平均径が10乃至100μmの凝集体を活性金属ロウ材に対して3乃至20重量%含有したロウ材ペーストを挟んで銅等から成る所定パターンの金属回路板を載置させた後、これを還元雰囲気中、約900℃の温度に加熱することによって行われることから、前記ロウ材ペーストがロウ材の液相線温度以上の温度で加熱されたとしても、前記凝集体がセラミック基板と金属回路板との間でスペーサの役目を果たして前記ロウ材ペーストが大きく熔け広がることはなく、その結果、隣接する金属回路板間に電気的な短絡が発生するのが有効に防止される。
【0037】
また同時に、融点が1200℃以上の高融点金属粉末を点接合で接合させた凝集体によって金属回路板とセラミック基板との間に所定厚みのスペースが確保され、該スペースに所定量のロウ材が介在することから金属回路板とセラミック基板の熱膨張係数の相違によって発生する応力は前記ロウ材に吸収され、セラミック基板にクラックや割れ等が発生するのを有効に防止することができる。
【図面の簡単な説明】
【図1】本発明の製造方法によって製作されたセラミック回路基板の一実施例を示す断面図である。
【図2】図1の要部拡大断面図である。
【符号の説明】
1・・・・セラミック基板
2・・・・ロウ材層
2a・・・凝集体
3・・・・金属回路板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic circuit board in which a metal circuit board is joined to a ceramic board with an active metal brazing material.
[0002]
[Prior art]
In recent years, as circuit boards such as power module boards and switching module boards, through an active metal brazing material in which at least one of titanium, zirconium, hafnium and hydrides thereof is added to a silver-copper alloy on a ceramic board. A ceramic circuit board in which a metal circuit board made of copper or the like is directly bonded is used.
[0003]
Such a ceramic circuit board is generally made of an electrically insulating ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, and a mullite sintered body. In the case of a sintered material, it is specifically manufactured by the following method.
[0004]
That is,
(1) First, an organic solvent and a solvent are added to and mixed with an active metal powder obtained by adding at least one of titanium, zirconium, hafnium and a hydride thereof to a silver-copper alloy to prepare a brazing paste.
(2) Next, a ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide is mixed with an appropriate organic binder, plasticizer, solvent, etc. to form a mud and this is a well-known doctor blade. After obtaining a plurality of ceramic green sheets by adopting a tape forming technique such as a method and a calender roll method, it is formed into a predetermined dimension, and then the ceramic green sheets are stacked up and down as necessary and in a reducing atmosphere. Firing is performed at a temperature of about 1600 ° C., and the ceramic green sheet is sintered and integrated to form a ceramic substrate made of an aluminum oxide sintered body.
(3) Next, a metal circuit board made of copper or the like is placed on the ceramic substrate with the brazing paste interposed therebetween.
(4) Finally, the brazing paste disposed between the ceramic substrate and the metal circuit board is heated to a temperature of about 900 ° C. in a non-oxidizing atmosphere, and the active metal powder is passed through the ceramic substrate. A ceramic circuit board is manufactured by joining a brazing material made of silver-copper alloy and joining the brazing material to a metal circuit board.
[0005]
In order to effectively prevent oxidative corrosion on the exposed surface of the brazing material and the metal circuit board, and at the same time, to strengthen the bonding with an adhesive material such as solder for bonding and fixing an electronic component such as a semiconductor element to the metal circuit board, A metal such as nickel is deposited by using a technique such as plating.
[0006]
[Problems to be solved by the invention]
However, in this conventional method of manufacturing a ceramic circuit board, the metal circuit board is bonded to the ceramic board after a metal circuit board having a predetermined pattern made of copper or the like is placed on the ceramic board with a brazing paste interposed therebetween. The brazing paste is heated at a temperature equal to or higher than the liquidus temperature in a reducing atmosphere. The metal paste has a drawback that the adjacent metal circuit boards are electrically short-circuited.
[0007]
Therefore, in order to eliminate the above-described drawbacks, it is conceivable to reduce the thickness of the brazing paste to, for example, less than 10 μm.
[0008]
However, if the thickness of the brazing material paste is reduced, when the metal circuit board is mounted on the ceramic substrate, the stress due to the difference in thermal expansion coefficient between the ceramic substrate and the metal circuit board is reduced. As a result, the material cannot absorb effectively, and as a result, the above-described stress induces a defect that the ceramic substrate is cracked or broken.
[0009]
The present invention has been devised in view of the above-mentioned drawbacks, and its purpose is to generate a metal circuit board on a ceramic substrate without causing an electrical short between adjacent metal circuit boards, and to generate cracks in the ceramic substrate. It is an object of the present invention to provide a method of manufacturing a ceramic circuit board that can be firmly bonded without being performed.
[0010]
[Means for Solving the Problems]
The method for producing a ceramic circuit board of the present invention comprises:
(1) An active metal brazing material comprising a silver powder, a copper powder and / or a silver-copper alloy powder, and an active metal powder comprising at least one of titanium, zirconium, hafnium and hydrides thereof; Producing a brazing paste containing an agglomerate formed by joining high melting point metal powder having a melting point of 1200 ° C. or higher by point joining;
(2) placing a metal circuit board on the ceramic substrate with the brazing paste interposed therebetween;
(3) A brazing paste disposed between the ceramic substrate and the metal circuit board is heated in a non-oxidizing atmosphere, and the ceramic substrate is made of a silver-copper alloy containing aggregates via active metal powder. Joining the brazing material and joining the brazing material to the metal circuit board;
It is characterized by comprising.
[0011]
The method for producing a ceramic circuit board according to the present invention is characterized in that the agglomerates are contained in an amount of 3 to 20% by weight based on the active metal brazing material.
[0012]
Furthermore, the method for producing a ceramic circuit board according to the present invention is characterized in that the aggregate has an average diameter of 10 to 100 μm.
[0013]
According to the method for producing a ceramic circuit board of the present invention, the metal circuit board is bonded to the ceramic substrate by an average diameter of 10 formed by bonding high melting point metal powder having a melting point of 1200 ° C. or higher on the ceramic substrate by spot bonding. A metal circuit board having a predetermined pattern made of copper or the like is placed with a brazing paste containing 3 to 20% by weight of agglomerates of 100 to 100 μm in the active metal brazing material, and then placed in a reducing atmosphere in a reducing atmosphere. Since it is performed by heating to a temperature of 900 ° C., even if the brazing paste is heated at a temperature equal to or higher than the liquidus temperature of the brazing material, the aggregate is formed between the ceramic substrate and the metal circuit board. The brazing material paste does not greatly melt and spread as a spacer, and as a result, the occurrence of an electrical short circuit between adjacent metal circuit boards is effectively prevented.
[0014]
At the same time, a space having a predetermined thickness is secured between the metal circuit board and the ceramic substrate by an agglomerate in which high melting point metal powder having a melting point of 1200 ° C. or higher is joined by spot bonding, and a predetermined amount of brazing material is placed in the space. Because of the interposition, the stress generated by the difference in thermal expansion coefficient between the metal circuit board and the ceramic substrate is absorbed by the brazing material, and it is possible to effectively prevent the ceramic substrate from being cracked or cracked.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the accompanying drawings.
1 and 2 are cross-sectional views showing an embodiment of a wiring board produced by the manufacturing method of the present invention, wherein 1 is a ceramic substrate, 2 is a brazing material layer, and 3 is a metal circuit board.
[0016]
The ceramic substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body, and has a metal on its upper surface. A circuit board 3 is brazed via an active metal brazing
[0017]
The ceramic substrate 1 functions as a support member for supporting the metal circuit board 3 brazed to the upper surface thereof.
[0018]
The metal circuit board 3 brazed to the upper surface of the ceramic substrate 1 is made of a metal material such as copper and serves to supply electric signals and electric power to semiconductor elements and the like mounted on the ceramic circuit substrate.
[0019]
Further, the brazing material for brazing the metal circuit board 3 to the upper surface of the ceramic substrate 1 is made of an active metal brazing material, and since the brazing material itself is active, it is directly attached on the ceramic substrate 1. .
[0020]
Thus, according to the above-described ceramic circuit board, electronic components such as semiconductor elements are electrically connected to the metal circuit board 3 on the upper surface of the ceramic substrate 1 through an adhesive such as solder, and the metal circuit board 3 is used as an external electric circuit. If connected, electronic components such as semiconductor elements are electrically connected to an external electric circuit through the metal circuit board 3.
[0021]
Next, a method for manufacturing the ceramic circuit board will be described.
(1) First, the ceramic substrate 1 is manufactured.
The ceramic substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body. In the case of a sintered material, an appropriate organic binder, plasticizer and solvent are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide and calcium oxide to form a mud and the mud A ceramic green sheet (ceramic green sheet) is formed by adopting a well-known doctor blade method or calendar roll method. Thereafter, the ceramic green sheet is appropriately punched and laminated, and about 1600 are laminated. Manufactured by firing at a high temperature of ℃.
(2) Next, the metal circuit board 3 is manufactured.
The metal circuit board 3 is made of a metal material such as copper. For example, by applying a conventionally known metal processing method such as a rolling method or a punching method to an ingot such as copper, a predetermined thickness of 500 μm is provided. Shaped into a pattern.
[0022]
When the metal circuit board 3 is formed of oxygen-free copper, the oxygen-free copper is not oxidized by the oxygen present in the copper during the brazing process, and the active metal brazing material And the bonding to the ceramic substrate 1 through the
(3) Next, an active metal brazing paste is produced.
The active metal brazing paste comprises a brazing powder composed of silver powder and copper powder and / or a silver-copper alloy powder, and an active metallic powder composed of at least one of titanium, zirconium, hafnium and hydrides thereof. 3-20% by weight of an aggregate 2a having an average diameter of 10 to 100 μm formed by joining high melting point metal powder having a melting point of 1200 ° C. or higher to the active metal brazing material by point joining, and adding an appropriate organic solvent and solvent And kneaded.
(4) Next, the active metal brazing paste is applied onto a predetermined pattern on the upper surface of the ceramic substrate 1 by using a conventionally known screen printing technique, for example, with a thickness of 30 to 50 μm and printed on the predetermined pattern. The metal circuit board 3 is placed on the applied active metal brazing paste.
[0023]
Finally, an active metal brazing paste disposed between the ceramic substrate 1 and the metal circuit board 3 is applied to a hydrogen gas atmosphere or hydrogen / nitrogen gas while applying a load of 50 to 100 g to the metal circuit board 3. In a non-oxidizing atmosphere of the atmosphere, it is heated to 900 ° C. to disperse the organic solvent or solvent of the active metal brazing material paste and melt the brazing material to form the upper surface of the ceramic substrate 1 and the lower surface of the metal circuit board 3. By joining, the metal circuit board is attached to the upper surface of the ceramic substrate 1. In this case, in the active metal brazing material paste, an aggregate 2a formed by joining high melting point metal powders having a melting point of 1200 ° C. or higher by point joining is added, so that the ceramic substrate 1 and the metal circuit board 3 A space having a predetermined thickness is ensured between the two, and the brazing material is not greatly melted and spread. As a result, the occurrence of an electrical short circuit between adjacent metal circuit boards is effectively prevented. At the same time, a space having a predetermined thickness is secured between the metal circuit board 3 and the ceramic substrate 1 by the aggregate 2a in which high melting point metal powder having a melting point of 1200 ° C. or more is bonded by spot bonding, and a predetermined amount of space is secured in the space Since the brazing material is interposed, the stress generated by the difference in the thermal expansion coefficient between the metal circuit board 3 and the ceramic substrate 1 is absorbed by the brazing material, and the ceramic substrate 1 is not cracked or cracked.
[0024]
The brazing material powder made of the active metal brazing material silver powder and the copper powder and / or the silver-copper alloy powder serves to join the ceramic substrate 1 and the metal circuit board 3, for example, from eutectic alloy. In this case, it is formed of a eutectic alloy containing 72% by weight and 28% by weight of silver and copper, respectively.
[0025]
Further, when the particle size of the brazing material powder is less than 1 μm, the specific surface area of the brazing material powder is increased, and a large amount of oxygen is present in the oxide film formed on the surface of the brazing material powder. There is a risk that the wettability of the ceramic substrate 1 and the metal circuit board 3 will be reduced, and the bonding strength between the ceramic substrate 1 and the metal circuit board 3 will be reduced. Accordingly, the particle size of the brazing material powder is preferably 1 μm or more.
[0026]
Further, the active metal powder made of at least one of titanium, zirconium, hafnium and hydrides thereof has a function of firmly bonding the brazing material to the ceramic substrate 1, and when the active metal powder is less than 2% by weight, If the absolute amount is insufficient, there is a risk that the brazing material cannot be firmly bonded to the ceramic substrate 1, and if it exceeds 5% by weight, a fragile reaction layer is formed between the active metal and the ceramic substrate 1. As a result, there is a risk that the adhesive strength between the brazing material and the ceramic substrate 1 is lowered. Therefore, the amount of the active metal added is preferably in the range of 2 to 5% by weight.
[0027]
Furthermore, the agglomerate 2a is formed of a powder of a refractory metal having a melting point of 1200 ° C. or higher, such as tungsten, molybdenum, manganese, etc. For example, if the refractory metal powder is molybdenum, about It is manufactured by heating to a temperature of 2000 ° C. and holding it for about 5 minutes to join the powders together by point joining, then gradually cooling to room temperature and classifying them to a predetermined diameter.
[0028]
Since the refractory metal has a melting point of 1200 ° C., which is sufficiently higher than the liquidus temperature of the brazing material, the agglomerate 2a melts even when the brazing material is heated to a temperature higher than the liquidus temperature. In addition, a spacer having a predetermined thickness can be reliably ensured between the ceramic substrate 1 and the metal circuit board 3.
[0029]
If the diameter of the agglomerate 2a is less than 10 μm, it becomes difficult to secure a space of a predetermined thickness between the ceramic substrate 1 and the metal circuit board 3, and if it exceeds 100 μm, the active metal brazing paste is applied to the ceramic substrate. When printing and coating on the upper surface of the upper surface using a conventionally known printing technique such as a screen printing method, it is difficult for the aggregate 2a to be caught by a mesh of the screen and to be printed and coated in a predetermined pattern. Therefore, the diameter of the aggregate 2a is preferably in the range of 10 to 100 μm, more preferably in the range of 20 to 50 μm.
[0030]
Furthermore, when the diameter of the refractory metal powder such as tungsten, molybdenum, manganese, etc. forming the aggregate 2a is less than 1 μm, the specific surface area increases, and many oxide films are formed on the surface of the refractory metal powder. There is a risk that oxygen is present, and the wettability of the active metal brazing material to the ceramic substrate 1 and the metal circuit board 3 is reduced by the oxygen, and the bonding strength between the ceramic substrate 1 and the metal circuit board 3 is reduced. If the thickness exceeds 6 μm, the number of joints between the refractory metal powders is small and the mechanical strength of the agglomerate 2a becomes weak. When the metal circuit board 3 is brazed to the ceramic substrate 1, the refractory metal of the agglomerate 2a It is difficult to ensure a space with a predetermined thickness between the ceramic substrate 1 and the metal circuit board 3 due to scattering between the powders. Therefore, it is preferable that each refractory metal powder forming the aggregate 2a has a diameter in the range of 1 to 6 μm.
[0031]
Furthermore, when the amount of the aggregate 2a added to the brazing material is less than 3% by weight, it becomes difficult to secure a space having a predetermined thickness between the ceramic substrate 1 and the metal circuit board 3, and 20% by weight. If it exceeds%, the bonding area of the brazing material to the ceramic substrate 1 and the metal circuit board 3 becomes narrow, and the brazing strength of the metal circuit board 3 to the ceramic substrate 1 tends to decrease. Therefore, the amount of the aggregate 2a added to the brazing material is preferably in the range of 3 to 20% by weight.
[0032]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiments, the ceramic substrate 1 is made of an aluminum-based ceramic. In the example shown in the figure, the electronic component generates a large amount of heat, and when it is desired to efficiently remove this heat, the ceramic substrate 1 is made of an aluminum nitride sintered body or silicon nitride having high thermal conductivity. The ceramic substrate 1 may be formed of a mullite sintered body having a low dielectric constant when the electric signal is to be propagated through the metal circuit board 3 at a high speed.
[0033]
Further, if a metal made of nickel and having good conductivity, corrosion resistance and good wettability with the brazing material is deposited on the surface of the metal circuit board 3 by a plating method, the metal circuit board 3 and the external electric circuit 3 The electrical connection with the circuit is good, and electronic components such as semiconductor elements can be firmly bonded to the metal circuit board 3.
[0034]
Further, if the nickel plating layer is an amorphous alloy of nickel-phosphorus containing 8 to 15% by weight of phosphorus, the surface oxidation of the nickel layer can be prevented well, and the phosphorus (P ) Is less than 8% by weight, the nickel plating layer has a nickel-phosphorus polycrystal structure which is easily oxidized, and the electronic components such as semiconductor elements are firmly and electrically connected to the metal circuit board 3 via an adhesive such as solder. When the nickel plating layer is formed when the nickel plating layer is formed, it is impossible to form a nickel-phosphorus amorphous alloy by precipitating phosphorus alone or preferentially. Therefore, the amount of phosphorus contained in the nickel plating layer is specified in the range of 8 to 15% by weight, and preferably in the range of 10 to 15% by weight.
[0035]
Furthermore, if the thickness of the nickel plating layer deposited on the surface of the metal circuit board 3 is less than 1.5 μm, the surface of the metal circuit board 3 cannot be completely covered with the nickel plating layer, The oxidative corrosion of the metal circuit board 3 cannot be effectively prevented, and if it exceeds 3 μm, the internal stress inside the nickel plating layer becomes large, and the ceramic substrate 1 is warped or cracked. In particular, when the thickness of the ceramic substrate 1 is as thin as 700 μm or less, warping or cracking of the ceramic substrate 1 becomes remarkable. Therefore, the nickel plating layer deposited on the surface of the metal circuit board 3 preferably has a thickness in the range of 1.5 μm to 3 μm.
[0036]
【The invention's effect】
According to the method for producing a ceramic circuit board of the present invention, the metal circuit board is bonded to the ceramic substrate by an average diameter of 10 formed by bonding high melting point metal powder having a melting point of 1200 ° C. or higher on the ceramic substrate by spot bonding. A metal circuit board having a predetermined pattern made of copper or the like is placed with a brazing paste containing 3 to 20% by weight of agglomerates of 100 to 100 μm in the active metal brazing material, and then placed in a reducing atmosphere in a reducing atmosphere. Since it is performed by heating to a temperature of 900 ° C., even if the brazing paste is heated at a temperature equal to or higher than the liquidus temperature of the brazing material, the aggregate is formed between the ceramic substrate and the metal circuit board. The brazing material paste does not greatly melt and spread as a spacer, and as a result, the occurrence of an electrical short circuit between adjacent metal circuit boards is effectively prevented.
[0037]
At the same time, a space having a predetermined thickness is secured between the metal circuit board and the ceramic substrate by an agglomerate in which high melting point metal powder having a melting point of 1200 ° C. or higher is joined by spot bonding, and a predetermined amount of brazing material is placed in the space. Because of the interposition, the stress generated by the difference in thermal expansion coefficient between the metal circuit board and the ceramic substrate is absorbed by the brazing material, and it is possible to effectively prevent the ceramic substrate from being cracked or cracked.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a ceramic circuit board manufactured by the manufacturing method of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
Claims (3)
(2)セラミック基板上に前記ロウ材ペーストを間に挟んで金属回路板を載置させる工程と、
(3)前記セラミック基板と金属回路板との間に配されているロウ材ペーストを非酸化性雰囲気中で加熱し、セラミック基板に活性金属粉末を介して凝集体を含有する銀−銅合金から成るロウ材を接合させるとともに該ロウ材を金属回路板に接合させる工程と、
から成るセラミック回路基板の製造方法。(1) An active metal brazing material comprising a silver powder, a copper powder and / or a silver-copper alloy powder, and an active metal powder comprising at least one of titanium, zirconium, hafnium and hydrides thereof; Producing a brazing paste containing an agglomerate formed by joining high melting point metal powder having a melting point of 1200 ° C. or higher by point joining;
(2) placing a metal circuit board on the ceramic substrate with the brazing paste interposed therebetween;
(3) A brazing paste disposed between the ceramic substrate and the metal circuit board is heated in a non-oxidizing atmosphere, and the ceramic substrate is made of a silver-copper alloy containing aggregates via active metal powder. Joining the brazing material and joining the brazing material to the metal circuit board;
A method of manufacturing a ceramic circuit board comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32894599A JP4299421B2 (en) | 1999-11-19 | 1999-11-19 | Manufacturing method of ceramic circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32894599A JP4299421B2 (en) | 1999-11-19 | 1999-11-19 | Manufacturing method of ceramic circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001148568A JP2001148568A (en) | 2001-05-29 |
JP4299421B2 true JP4299421B2 (en) | 2009-07-22 |
Family
ID=18215863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32894599A Expired - Fee Related JP4299421B2 (en) | 1999-11-19 | 1999-11-19 | Manufacturing method of ceramic circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4299421B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4772611B2 (en) * | 2006-07-19 | 2011-09-14 | 本田技研工業株式会社 | Method for joining members with different coefficients of thermal expansion |
JP5743503B2 (en) * | 2010-11-29 | 2015-07-01 | 京セラ株式会社 | Brazing material, circuit board using the same, and electronic device |
CN115870660A (en) * | 2021-09-29 | 2023-03-31 | 比亚迪股份有限公司 | Active metal soldering paste composition, soldering paste and method for soldering ceramic and metal |
-
1999
- 1999-11-19 JP JP32894599A patent/JP4299421B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001148568A (en) | 2001-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6787706B2 (en) | Ceramic circuit board | |
JP2000340912A (en) | Ceramic circuit board | |
JP4299421B2 (en) | Manufacturing method of ceramic circuit board | |
JP4646417B2 (en) | Ceramic circuit board | |
JP4493158B2 (en) | Ceramic circuit board | |
JP4471470B2 (en) | Semiconductor device | |
JP4295409B2 (en) | Manufacturing method of ceramic circuit board | |
JP3939979B2 (en) | Nitride ceramic copper circuit board and power module | |
JP4721533B2 (en) | Ceramic circuit board | |
JP3954912B2 (en) | Manufacturing method of ceramic circuit board | |
JP2001024296A (en) | Ceramic circuit board | |
JP2001210948A (en) | Ceramic circuit board | |
JP2001177194A (en) | Ceramic circuit board | |
JP4427467B2 (en) | Wiring board and electric element module using the same | |
JP4191860B2 (en) | Ceramic circuit board | |
JP2006066752A (en) | Ceramic circuit board | |
JP2001094223A (en) | Ceramic circuit board | |
JP4721534B2 (en) | Ceramic circuit board | |
JP2006319313A (en) | Circuit board and electronic parts module | |
JP2000340913A (en) | Ceramic circuit board | |
JP2001210923A (en) | Ceramic circuit board | |
JP2001102694A (en) | Ceramic circuit board | |
JP2004221407A (en) | Wiring board | |
JP2001102709A (en) | Ceramic circuit board | |
JP2001308475A (en) | Ceramic circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090417 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |