JPH01290567A - Method for bonding carbon materials - Google Patents

Method for bonding carbon materials

Info

Publication number
JPH01290567A
JPH01290567A JP12010588A JP12010588A JPH01290567A JP H01290567 A JPH01290567 A JP H01290567A JP 12010588 A JP12010588 A JP 12010588A JP 12010588 A JP12010588 A JP 12010588A JP H01290567 A JPH01290567 A JP H01290567A
Authority
JP
Japan
Prior art keywords
carbon
iron
materials
bonding
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12010588A
Other languages
Japanese (ja)
Other versions
JPH0521870B2 (en
Inventor
Toru Yoshida
亨 吉田
Hirohiko Omura
大村 博彦
Osamu Yoshimoto
修 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP12010588A priority Critical patent/JPH01290567A/en
Publication of JPH01290567A publication Critical patent/JPH01290567A/en
Publication of JPH0521870B2 publication Critical patent/JPH0521870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To bond carbon materials with high bonding strength with simple operation by interposing iron (alloy) between materials to be bonded through the intervention of a bonding material contg. a specified amt. of copper at the time of bonding carbon materials contg. a specified amt. of free carbon or bonding the carbon material and a metallic material. CONSTITUTION:A bonding material 4 contg. >=25wt.% copper and other metallic components is interposed between the carbon materials 2 contg. >=0.2wt.% free carbon in an airtight vessel 1, and further iron or an iron alloy 5 is placed between the bonding materials 4. Under such conditions, the assembly is heated by a heater 3 while being pressed by a weight, a jig 6, etc. By this process, an iron-based alloy is crystallized in the bonding material 4 between the carbon material 2 and iron or the iron alloy 5. Consequently, the carbon material 2 and the bonding material 4 and the iron or the iron alloy 5 and the bonding material 4 are firmly attached by the bridging effect, and the materials are integrally bonded. In addition, symbol 7 in the figure shows an iron alloy layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素材の接合方法に関し、更に詳しくはフリー
カーボンを0.2重量%以上含有する炭素材と、該炭素
材または金属材とを接合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining carbon materials, and more specifically, the present invention relates to a method for joining carbon materials, and more specifically, a method for joining carbon materials containing 0.2% by weight or more of free carbon, and the carbon material or metal material. Concerning the method of joining.

〔従来の技術〕[Conventional technology]

炭素材料は、その特性が広く、工業用の用途で広く使わ
れている。
Carbon materials have a wide range of properties and are widely used in industrial applications.

その形態としては、−aに、炭素材として、定義されて
いるが、より細か(は、黒鉛単独、炭素単独、各種金属
との炭化物、又は、これらを含む複合材として用いられ
るのが普通である。
Its form is defined in -a as a carbon material, but it is usually used in finer details (i.e. graphite alone, carbon alone, carbides with various metals, or composite materials containing these). be.

たとえば、黒鉛単独材としては、その高温での耐熱衝撃
性に優れている事から、核燃料炉の構造材として使われ
たり、熱伝導率が大きく、かつ潤滑性が良好な所から、
鋳造のモールド、スリーブに、高温強度に優れている点
で、ホットプレスのモールドに、導電性が大きい事から
スッパタリング用ターゲットに用いられたりしている。
For example, graphite alone is used as a structural material for nuclear fuel reactors due to its excellent thermal shock resistance at high temperatures, and due to its high thermal conductivity and good lubricity,
It is used in casting molds and sleeves, in hot press molds due to its excellent high-temperature strength, and in sputtering targets due to its high conductivity.

炭素単独材としては、その耐食性より、化学装置のライ
ニング材に用いられたり、その電気抵抗に見合った電気
ブラシ材などの用途がある。
Carbon-based materials have applications such as being used as lining materials for chemical equipment due to their corrosion resistance, and as electric brush materials due to their electrical resistance.

炭化物としては、例えばチタンカーバイドは、その高温
強度に優れる点でサーメットなどの硬質耐熱合金の主要
成分として用いられ、シリコンカ−バイトはその耐食性
に着目し、熱交換機隔壁に、又タングステンカーバイド
は、その硬度が大きい事からチップ材、カム接触部、ダ
イス材、及びピストンヘッドに用いられている。
As carbides, for example, titanium carbide is used as a main component of hard heat-resistant alloys such as cermets due to its excellent high-temperature strength, silicon carbide is used for heat exchanger partition walls due to its corrosion resistance, and tungsten carbide is used for heat exchanger partition walls. Due to its high hardness, it is used for chip materials, cam contact parts, die materials, and piston heads.

更に、複合材では、炭素の基盤に、電気伝導度の高い金
属を含浸させ、潤滑性と導電性とを活用した電気ブラシ
としたり、炭素と樹脂とを複合化し、シール材或いは放
電加工電極材として使用したりしている。
Furthermore, in the case of composite materials, carbon bases are impregnated with metals with high electrical conductivity to create electric brushes that take advantage of their lubricity and conductivity, and carbon and resin are composited to create sealing materials or electrical discharge machining electrode materials. It is also used as a.

この様に、炭素材料の用途は、広範に、かつ着実に、拡
大しつつ有るが、実際に工業化を進めるには、なお問題
点を残している。
As described above, the uses of carbon materials are widely and steadily expanding, but problems still remain in order to actually advance industrialization.

−Cに、工業装置の大型化、高機能化の要求は、日増し
に高まりつつあり、各部材を、一体物で作り上げるには
、製造設備或いは各素材機能の性質上の制約が有り必ず
しも容易ではない。更に、複雑な形状をした鋳造モール
ドなど、いわゆるニア・シェーブで作り上げるにも、そ
の加工成形には、制約がある。
-C. The demand for larger and more sophisticated industrial equipment is increasing day by day, and it is not always easy to create each component as a single piece due to restrictions due to the nature of the manufacturing equipment or the functions of each material. isn't it. Furthermore, even when creating a casting mold with a complex shape using a so-called near shave, there are restrictions on the processing and shaping.

他に、炭素材料の持つ特性を活かしきっても、なおそれ
以上の特性を要求される場合も多く、例えば核燃料炉構
造材では、構造材としての黒鉛にかかる熱負荷が大きく
、強制的な水冷が必要となる場合があるが、黒鉛材自身
水冷は、その水分浸透性により不可能であり、水冷用の
金属配管との組み合わせが必要である。
In addition, even if the properties of carbon materials are fully utilized, there are many cases where even higher properties are required. For example, in nuclear fuel reactor structural materials, the thermal load placed on graphite as a structural material is large, and forced water cooling is required. However, water cooling of the graphite material itself is impossible due to its moisture permeability, and a combination with metal piping for water cooling is required.

又、使用時に期待される炭素材としての特性が、その表
(裏)面層だけにあれば良い様な場合も多く、その表(
裏)面層の下(上)の基層には、表(裏)面層と異なる
材料を用いる事がある。
In addition, there are many cases in which the expected properties of a carbon material during use are only required in the front (back) layer;
The base layer below (above) the back layer may be made of a different material than the front (back) layer.

このような要求に対する最も普通の手段は炭素材と他の
金属材料、あるいは炭素材同志を接合することであり、
この接合により上記各機能を賦与せしめ、複合機能によ
り対処する手段である。
The most common means to meet these requirements is to bond carbon materials and other metal materials, or to bond carbon materials together.
This connection provides each of the above functions and is a means for dealing with complex functions.

このような要請からこの種上記材料同志の接合について
は従来からも種々提案されている。
In response to such demands, various proposals have been made in the past for joining the above-mentioned materials together.

しかし乍ら従来の各種接合方法はいずれも接合強度が不
充分であったり、或いは接合材により制約があったり、
或いは操作に煩雑な手間や時間を要したりするものが多
く、現在なお満足すべき方法は極めて少ない。
However, all of the various conventional bonding methods have insufficient bonding strength, or have limitations due to the bonding material.
Alternatively, there are many methods that require complicated operations and time, and there are currently very few methods that are satisfactory.

〔発明が解決しようとする課題] 本発明が解決しようとする課題はこの種炭素材同志また
は炭素材と金属材とを出来るだけ簡単な操作でしかも接
合強度大きく接合出来、しかも耐熱性、耐衝撃性及び耐
食性に優れた接合材が収得出来る新しい接合方法を開発
することである。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to bond carbon materials of this kind or carbon materials and metal materials with as simple an operation as possible and with high bonding strength, and which also has heat resistance and impact resistance. The objective is to develop a new joining method that can obtain a joining material with excellent properties and corrosion resistance.

〔課題を解決するための手段] この課題はフリーカーボンを0.2重量%以上含む炭素
材と、該炭素材または金属材とを接合するに際しく但し
炭素鋼同志を接合する場合を除く)、銅を少なくとも2
5重量%以上と他の金属成分とを含有してなる接合材の
介在下に被接合材間に鉄または鉄合金を存在させて、真
空下、不活性ガス下またはフラックス存在下に加熱する
ことによって解決される。
[Means for solving the problem] This problem is solved when joining a carbon material containing 0.2% by weight or more of free carbon and the carbon material or metal material (except when joining carbon steel together), copper at least 2
Heating under vacuum, inert gas, or in the presence of flux with iron or iron alloy present between the materials to be joined with the interposition of a joining material containing 5% by weight or more and other metal components. solved by.

〔発明の作用並びに構成] 本発明に於いては、炭素材同志または炭素材と金属材と
の接合に際し、銅を少なくとも25重量%以上と他の金
属成分とを含有する接合材中に、鉄またはその合金好ま
しくは厚み1 mm以下の薄板状乃至箔状体を介在させ
て真空下または不活性ガス雰囲気下或いはフラックス存
在下に、加熱することにより、炭素材側の被接合体接触
面に鉄系の合金を晶出せしめ、これにより強固な接合を
得るものである。更に図面を用いて本発明の作用を詳し
く説明する。
[Operation and configuration of the invention] In the present invention, when bonding carbon materials together or carbon materials and metal materials, iron is added to the bonding material containing at least 25% by weight of copper and other metal components. Or its alloy, preferably by interposing a thin plate or foil with a thickness of 1 mm or less and heating it under vacuum, an inert gas atmosphere, or in the presence of flux, so that iron is applied to the contact surface of the workpiece on the carbon material side. It crystallizes the alloy of the system, thereby obtaining a strong bond. Furthermore, the operation of the present invention will be explained in detail using the drawings.

第1図は説明の便宜上炭素材同志を接合する際の模擬的
な説明図を示す。第1図に於いて(1)は気密容器、(
2)は炭素材、(3)はヒーター、(4)は接合材、(
5)は鉄または鉄合金を示す。炭素材(2)の間に接合
材(4)を介在させ、この接合材中に鉄または鉄合金を
存在させる。必要に応じ重り又は治具(6)等で加圧し
つつヒーター(3)により加熱すると、炭素材(2)と
鉄または鉄合金(5)との間にある接合材(4)中に鉄
系合金が晶出し、橋かけ接合効果により炭素材(2)と
接合材(4)、並びに鉄または鉄合金(5)と接合材(
4)とは強固に接合され、全体として一体となって接合
される。接合された状態を示したものが第2図であり、
第2図中(7)は晶出した鉄合金層である。
For convenience of explanation, FIG. 1 shows a simulated explanatory diagram when carbon materials are joined together. In Figure 1, (1) is an airtight container, (
2) is carbon material, (3) is heater, (4) is bonding material, (
5) indicates iron or iron alloy. A bonding material (4) is interposed between the carbon materials (2), and iron or an iron alloy is present in this bonding material. When heated with a heater (3) while applying pressure with a weight or jig (6) as necessary, iron-based material is formed in the bonding material (4) between the carbon material (2) and iron or iron alloy (5). The alloy crystallizes, and due to the bridging bonding effect, the carbon material (2) and the bonding material (4), as well as the iron or iron alloy (5) and the bonding material (
4) is firmly joined and joined together as a whole. Figure 2 shows the joined state.
In FIG. 2, (7) is the crystallized iron alloy layer.

この場合気密容器(1)内は真空にしても或いは不活性
ガスを導入しても良い。またフラックスを用いる場合や
抵抗加熱による場合には気密容器(1)は必ずしも使用
する必要はない。
In this case, the inside of the airtight container (1) may be evacuated or an inert gas may be introduced. Further, when using flux or using resistance heating, it is not necessary to use the airtight container (1).

以下に本発明法を更に詳しく説明する。The method of the present invention will be explained in more detail below.

本発明に於いて接合すべき材料は炭素材同志または炭素
材と金属材である。但し炭素材同志の場合として特に炭
素鋼同志を接合する場合は含まない。この際の炭素材と
しては、フリーカーボンを0.2重量%、好ましくは0
.5重量%以上含有する炭素材であり、含水炭素や炭化
水素等は勿論含まない。ここでフリーカーボン0.2重
量%以上含有する炭素材とは加熱中において鉄または鉄
合金と結合拡散を生ずるカーボンを少なくとも0.2重
量%以上含むものをいう。例えば超硬合金の1種である
WCは1200 ’C以上でも安定であるが不安定な(
フリー)カーボンを0.4%位含んでいてこれが結合に
寄与するものであり、その他の炭化物も同様である。こ
の際フリーカーボンが 0.2重量%に達しないもので
は炭素材との間に橋かけ効果を生ぜず望ましくない。こ
の具体的な例としては黒鉛単独から成るもの、炭素単独
から成るもの、各種金属の炭化物、或いはこれ等をその
少なくとも一成分とした他の材料との複合材が例示出来
、その他各種セラミックや金属中にフリーカーボンを所
定量含有せしめたものでも良い。各種金属の炭化物とし
ては、チタンカーバイトやシリコーンカーバイトをはじ
め、その他たとえば炭素鋼、各種合金鋼等が好ましい例
として例示出来、また複合材としては炭素材に金属を含
浸、浸透せしめたもの、例えば炭素に鉄、アンチモン、
鉛合金、アルミニウム等を高温下熔融含浸、又は混合加
圧成形した物等を好ましい具体例として挙げることが出
来る。
In the present invention, the materials to be joined are carbon materials or carbon materials and metal materials. However, this does not include the case where carbon steels are joined together, especially when carbon steels are joined together. The carbon material at this time is 0.2% by weight of free carbon, preferably 0.
.. It is a carbon material containing 5% by weight or more, and of course does not contain hydrated carbon or hydrocarbons. Here, the carbon material containing 0.2% by weight or more of free carbon refers to one containing at least 0.2% by weight or more of carbon that binds and diffuses with iron or iron alloy during heating. For example, WC, a type of cemented carbide, is stable at temperatures above 1200'C, but is unstable (
It contains about 0.4% carbon (free), which contributes to bonding, and the same goes for other carbides. In this case, if the free carbon content is less than 0.2% by weight, no bridging effect will be produced between the carbon material and the carbon material, which is not desirable. Specific examples include graphite alone, carbon alone, carbides of various metals, composites with other materials containing at least one of these as a component, and various other ceramics and metals. It may also contain a predetermined amount of free carbon. Preferred examples of carbides of various metals include titanium carbide and silicone carbide, as well as carbon steel and various alloy steels, and composite materials include carbon materials impregnated with metals, For example, carbon, iron, antimony,
Preferred specific examples include products obtained by melt-impregnating lead alloys, aluminum, etc. at high temperatures, or by mixing and press-molding them.

また被接合材たる金属材としては広く各種の金属が包含
され、金属としては合金も含まれる。好ましい金属とし
てはたとえば銅、タングステン、モリブデン、鉄、珪素
、ステンレス、ハステロイ、炭素鋼等である。
Further, the metal material to be joined includes a wide variety of metals, and metals also include alloys. Preferred metals include, for example, copper, tungsten, molybdenum, iron, silicon, stainless steel, Hastelloy, and carbon steel.

これ等被接合材たる炭素材や金属材は、その材質が上記
で説明したものであるかぎりその形状、大きさ、等は回
答限定されず、適宜な形状、大きさのものが使用される
The shape, size, etc. of the carbon material and metal material to be joined are not limited as long as the material is as described above, and any suitable shape and size may be used.

本発明に於いて使用する接合材は銅を少なくとも25重
量%好ましくは40重量%以上含有し、その他の成分と
して他の金属を含有するものであり、銅100%のもの
でも良い。その代表例としては所謂金ろう、黄銅ろう、
銀ろうを例示出来る。
The bonding material used in the present invention contains at least 25% by weight of copper, preferably 40% by weight or more, and other metals as other components, and may be 100% copper. Typical examples are so-called gold wax, brass wax,
I can give an example of silver solder.

尚この際のその他の金属としては金、亜鉛、銀等を代表
例として例示出来、これ等は1種または2種以上で使用
される。この除銅が25重量%に達しない場合には前記
、各素材間への橋かけ接合効果が弱く、接合強度の低下
となり望ましくない。
In this case, representative examples of other metals include gold, zinc, silver, etc., and these may be used alone or in combination of two or more. If this copper removal does not reach 25% by weight, the above-mentioned bridging bonding effect between the materials will be weak, resulting in a decrease in bonding strength, which is undesirable.

また鉄または鉄合金としては、本接合方法に於ける1種
の芯材的な作用を有し、接合物中に残存するため、その
形状としては薄板乃至板状体、箔状体等が特に好ましく
、この際の厚みとしては1価以下特に好ましくは0.5
mm以下である。この際1胴よりも厚くなりすぎると接
合部の耐衝撃性などが劣下することがありあまり望まし
くない。
In addition, iron or iron alloy acts as a kind of core material in this joining method and remains in the joined product, so its shape is particularly suitable for thin plates, plate-like bodies, foil-like bodies, etc. Preferably, the thickness in this case is less than 1, preferably 0.5
mm or less. In this case, if it becomes too thick than the first cylinder, the impact resistance of the joint may deteriorate, which is not very desirable.

これ等各材料を用いて本発明法を実施するに際しては、
第1図ですでに説明した通り、鉄または鉄合金好ましく
はその薄板状乃至箔状体(5)を芯材としてその上下に
接合材(4)を介して被接合材(2)を配置する。接合
条件としては、真空下または不活性ガス雰囲気下、或い
はフラックス存在下のいずれか、或いはこれ等の2つ以
上の手段を併用する。
When carrying out the method of the present invention using these materials,
As already explained in FIG. 1, a thin plate or foil-like body (5) of iron or iron alloy, preferably, is used as a core material, and the materials to be joined (2) are placed above and below the core material through the joining material (4). . As the bonding conditions, either a vacuum, an inert gas atmosphere, or the presence of flux is used, or two or more of these methods are used in combination.

いずれも接合材の表面が酸化されないようにするためで
ある。この際の真空下とは実質的に酸素の影響が生じな
い程度に酸素量が少ない状態をいい、通常10−3気圧
以下好ましくは10−4気圧程度であり、また不活性雰
囲気としては通常の不活性ガスたとえばアルゴン、窒素
ガス等を使用すれば良い。
This is to prevent the surface of the bonding material from being oxidized. In this case, under vacuum refers to a state in which the amount of oxygen is so small that there is virtually no effect of oxygen, and it is usually 10-3 atmospheres or less, preferably about 10-4 atmospheres, and the inert atmosphere is a normal atmosphere. An inert gas such as argon or nitrogen gas may be used.

またフラックスとしては接合材をうまく被覆して酸素と
の接触を遮断出来るものであれば良く、代表例としてホ
ウ砂、ホウ酸、硼弗化物またはそれ等の混合物等を例示
することができる。このフラックスを使用する場合は空
気中でも良く、また上記の雰囲気下で行っても良い。尚
フラックスは加熱接合条件下では蒸発、分解等により揮
散して接合面には残らない。
Further, any flux may be used as long as it can cover the bonding material well and block contact with oxygen, and representative examples include borax, boric acid, borofluoride, and mixtures thereof. When using this flux, it may be carried out in the air or in the above atmosphere. Note that the flux is volatilized by evaporation, decomposition, etc. under heated bonding conditions and does not remain on the bonding surface.

加熱条件としては使用する被接合材や接合材の種類に合
わせて適宜に決定すれば良く、原則的には接合材中に鉄
合金が晶出しうる温度であり、通常接合材の軟化点より
も高温好ましくは50°C前後高温である。
Heating conditions can be determined appropriately depending on the materials to be joined and the type of material to be joined, and in principle, the temperature is such that the iron alloy can crystallize in the material to be joined, and is usually higher than the softening point of the material to be joined. The temperature is high, preferably around 50°C.

この際本発明に於いては必要に応じ、若干荷重をかける
ことも出来る。これにより接合材が溶融して流れ、接合
面全面を均一に濡らし、また接合面に空洞が発生するの
を防止することが出来る。
At this time, in the present invention, a slight load may be applied as necessary. As a result, the bonding material melts and flows, uniformly wetting the entire surface of the bonding surface, and also prevents the formation of cavities on the bonding surface.

〔実施例] 以下に実施例を示して本発明法を更に詳しく説明する。〔Example] The method of the present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に示した手順により行った。この際使用した炭素
材(2)はフリーカーボン99.9%、嵩比重1.77
、熱膨張率4.OX 10−6/”C(室温〜400°
C)、異方比1.02のブロック体(サイズ0.6cm
’XO,6cm x 2.25cm )である。また接
合材(4)としてはJIS−Z −3266による余ろ
うrAu−IJ(金37.0〜38.0%残り銅)で使
用量は厚みとして0.1 mmとなる量である。芯材と
しては鉄箔(厚み0.1mm)(5)を使用した。条件
としては、容器(1)内にN2ガスを導入し密閉し、1
050°Cで4分間ヒーター(3)により加熱した。
Example 1 The procedure shown in FIG. 1 was followed. The carbon material (2) used at this time was 99.9% free carbon and had a bulk specific gravity of 1.77.
, coefficient of thermal expansion 4. OX 10-6/”C (room temperature ~ 400°
C), block body with anisotropy ratio of 1.02 (size 0.6 cm
'XO, 6cm x 2.25cm). As the bonding material (4), residual wax rAu-IJ (37.0 to 38.0% gold and remaining copper) according to JIS-Z-3266 is used in an amount that gives a thickness of 0.1 mm. Iron foil (thickness: 0.1 mm) (5) was used as the core material. The conditions are to introduce N2 gas into the container (1) and seal it.
The mixture was heated at 050°C for 4 minutes using a heater (3).

この加熱により、炭素材(2)と芯部の鉄箔(5)との
間の接合材(4)に鉄系の合金が晶出し、炭素材(2)
と、接合材(4)とは、強固に接合され、第2図の如く
、合金(7)が晶出し強固な結合が保たれている。
Due to this heating, an iron-based alloy crystallizes in the bonding material (4) between the carbon material (2) and the core iron foil (5), and the carbon material (2)
and the bonding material (4) are firmly bonded, and as shown in FIG. 2, the alloy (7) crystallizes and maintains a strong bond.

この様にして得られた炭素材同志での接合部は、十分な
強度を有している。たとえばこの接合材の熱間四点曲げ
強度を、横軸には接合材の融点を1とする相対温度、継
軸には四点曲げ強度を用いて示すと第4図の通りである
The joint between the carbon materials thus obtained has sufficient strength. For example, the hot four-point bending strength of this bonding material is shown in FIG. 4, using the relative temperature with the melting point of the bonding material as 1 on the horizontal axis and the four-point bending strength on the joint axis.

この結果から、炭素材とほぼ同等の曲げ強度が、接合材
に認められ、接合材の融点を1とする相対温度で0.6
迄は、十分な耐熱強度があることが示されている。
From this result, the bending strength of the bonding material is almost the same as that of the carbon material, and the relative temperature with the melting point of the bonding material being 1 is 0.6.
It has been shown that it has sufficient heat resistance.

実施例2 上記実施例1に於ける炭素材同志の接合に代え、その一
方だけを金属(電気銅、銅100%の電気導体用鋼材)
とし、その他は同様に行った。この結果第3図に示す通
り実施例1と同様に強固に接合が出来ていた。
Example 2 Instead of joining the carbon materials together in Example 1, only one of them is made of metal (electrolytic copper, 100% copper steel material for electrical conductor)
The rest was done in the same way. As a result, as shown in FIG. 3, a strong bond was achieved as in Example 1.

実施例3 上記実施例1に於ける炭素材同志の接合に代え、その一
方だけを金属(炭素を0.8%含有する炭素w4)とし
、その他は同様に行った。この結果実施例1と同様に強
固に接合が出来ていた。
Example 3 Instead of bonding the carbon materials together in Example 1, only one of them was made of metal (carbon w4 containing 0.8% carbon), and the rest was carried out in the same manner. As a result, as in Example 1, strong bonding was achieved.

〔発明の効果〕〔Effect of the invention〕

本発明法によれば被接合材の間に銅を25%以上含む接
合材と鉄または鉄合金を介在させて加熱するという極め
て簡単な操作で、しかも極く短時間で強固な且つ耐熱性
に冨んだ接合体が収得出来、その産業上の利用価値は極
めて高い。
According to the method of the present invention, a bonding material containing 25% or more copper and iron or an iron alloy are interposed between the materials to be joined, which is an extremely simple operation, and it can be made strong and heat resistant in an extremely short time. A rich zygote can be obtained, and its industrial value is extremely high.

またこの接合方法により炭素材同志あるいはこれと金属
材とを強固にしかも充分なる耐熱性をもって接合出来る
結果、広く各種の分野に接合物を利用することが出来る
に至る効果がある。
Furthermore, this bonding method allows carbon materials or carbon materials to be bonded to metal materials firmly and with sufficient heat resistance, resulting in the effect that the bonded product can be used in a wide variety of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図であり、第2及び3図は
いずれも本発明法により得られる接合物の模擬的な構造
図である。第4図は実施例1で得られた接合物の強度を
示すグラフである。 1・・・・・・気密容器 2・・・・・・炭素材 3・・・・・・ヒーター 4・・・・・・接合材 5・・・・・・鉄またはその合金 6・・・・・・重り 7・・・・・・晶出合金 8・・・・・・金属材料 (以上)
FIG. 1 is a detailed explanatory diagram of the present invention, and FIGS. 2 and 3 are both simulated structural diagrams of a bonded product obtained by the method of the present invention. FIG. 4 is a graph showing the strength of the bonded product obtained in Example 1. 1...Airtight container 2...Carbon material 3...Heater 4...Joining material 5...Iron or its alloy 6... ... Weight 7 ... Crystallized alloy 8 ... Metal material (or more)

Claims (2)

【特許請求の範囲】[Claims] (1)フリーカーボンを0.2重量%以上含む炭素材と
、該炭素材または金属材とを接合するに際し(但し炭素
鋼同志を接合する場合を除く)、銅を少なくとも25重
量%以上含有してなる接合材の介在下に被接合材間に鉄
または鉄合金を存在させて、真空下、不活性ガス下また
はフラックス存在下に加熱することを特徴とする炭素材
の接合方法。
(1) When joining a carbon material containing 0.2% by weight or more of free carbon with the carbon material or metal material (excluding the case of joining carbon steel together), the carbon material must contain at least 25% by weight of copper. A method for joining carbon materials, characterized in that iron or iron alloy is present between the materials to be joined in the presence of a joining material consisting of a carbon material, and heating is performed under vacuum, inert gas, or in the presence of flux.
(2)鉄または鉄合金が薄板状乃至箔状である請求項1
に記載の接合方法。
(2) Claim 1 wherein the iron or iron alloy is in the form of a thin plate or foil.
The joining method described in .
JP12010588A 1988-05-16 1988-05-16 Method for bonding carbon materials Granted JPH01290567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010588A JPH01290567A (en) 1988-05-16 1988-05-16 Method for bonding carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010588A JPH01290567A (en) 1988-05-16 1988-05-16 Method for bonding carbon materials

Publications (2)

Publication Number Publication Date
JPH01290567A true JPH01290567A (en) 1989-11-22
JPH0521870B2 JPH0521870B2 (en) 1993-03-25

Family

ID=14778051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010588A Granted JPH01290567A (en) 1988-05-16 1988-05-16 Method for bonding carbon materials

Country Status (1)

Country Link
JP (1) JPH01290567A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096584A (en) * 1983-10-27 1985-05-30 三菱重工業株式会社 Ceramic and matal bonding method
JPS62171970A (en) * 1986-01-27 1987-07-28 株式会社東芝 Member for joining ceramic to metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096584A (en) * 1983-10-27 1985-05-30 三菱重工業株式会社 Ceramic and matal bonding method
JPS62171970A (en) * 1986-01-27 1987-07-28 株式会社東芝 Member for joining ceramic to metal

Also Published As

Publication number Publication date
JPH0521870B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
US3015885A (en) Cladding of steel plates with titanium
US2363337A (en) Mold and process of making it
CA2462491A1 (en) Laminated component for fusion reactors
US5433260A (en) Sealable electronics packages and methods of producing and sealing such packages
US3226822A (en) Art of bonding ceramic to metal
US6702177B2 (en) Manufacturing process for a plated product comprising a support part in steel and an anticorrosion metallic coating
US3091028A (en) Method and alloy for bonding to nonmetallic refractory members
CN105834540B (en) A kind of method of Ti-Ni high-temp solder soldering TZM alloy
JPS60131874A (en) Method of bonding ceramic and metal
EP3968369A1 (en) Heat radiation member and method for producing same
US4500406A (en) Inert electrode connection
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
US6511759B1 (en) Means and method for producing multi-element laminar structures
JPS60174805A (en) Manufacture of metal composite matter
JPH08186204A (en) Heat sink and its manufacture
JPH01290567A (en) Method for bonding carbon materials
JPH0360414A (en) Method for joining carbon material, joined body by this method and material using the same
JPS6033269A (en) Metal ceramic bonding method
JPS5841774A (en) Manufacture of ceramic-metal composite body
US3552955A (en) Method of making tools from metal particles
US3129070A (en) Metallic bond
JPS61223106A (en) Production of high alloy clad product
JPH0147277B2 (en)
JPS60203436A (en) High heat-load-resistant composite structure
JPS6221768A (en) Graphite joining method