JPH0147277B2 - - Google Patents

Info

Publication number
JPH0147277B2
JPH0147277B2 JP56167102A JP16710281A JPH0147277B2 JP H0147277 B2 JPH0147277 B2 JP H0147277B2 JP 56167102 A JP56167102 A JP 56167102A JP 16710281 A JP16710281 A JP 16710281A JP H0147277 B2 JPH0147277 B2 JP H0147277B2
Authority
JP
Japan
Prior art keywords
layer
joining
joined
compound
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56167102A
Other languages
Japanese (ja)
Other versions
JPS5868489A (en
Inventor
Akira Okayama
Mitsuo Chikazaki
Kyoshi Ootaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16710281A priority Critical patent/JPS5868489A/en
Publication of JPS5868489A publication Critical patent/JPS5868489A/en
Publication of JPH0147277B2 publication Critical patent/JPH0147277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/14Preventing or minimising gas access, or using protective gases or vacuum during welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はNi基、Co基またはFe基合金の被接合
体およびその接合法に係り、特に接合部における
接合不良を著しく少なくすることができ、かつ複
雑形状の接合部を接合するのに好適な被接合体お
よびその接合法に関する。 Ni基、Co基及びFe基合金はガスタービン、ジ
エツトエンジン等の高温部分にしばしば使用され
る。 近年これらガスタービン、ジエツトエンジンで
は燃焼ガス温度を上昇させ、燃焼効率を増加させ
ることが行なわれている。しかしながら、材料面
から見ると、かならずしも高温で十分使用に耐え
る材料の開発が先行していない。その為、高温部
分で使用される部材に対しては時により空気導入
による冷却が行なわれている。ブレードの場合の
冷却を例に取ると対流冷却、インピージメント冷
却、膜冷却及び浸出冷却などがあり、これらを単
独又は複数組合せて冷却効果を高めている。その
ため冷却空気の流路である冷却孔は非常に複雑と
なる。故にブレードを複数に分割して精鋳後、分
割された鋳造品を接合して1本のブレードを製造
することが行なわれる。 従来、各種合金の接合法として、被接合面に合
金箔または合金粉末を挾み込み、これら加熱して
接合面に相互に拡散させる方法、被接合面に合金
箔または合金粉末を挾み込み、これらを溶融させ
て接合する方法がある。 しかし、前者の方法は高温、長時間の加熱が必
要であり、また接合強度を高めるためには大きな
荷重を加えなければならない。後者の方法では合
金箔または合金粉末を接合面に密着させることが
必要であり、このために大きな荷重を加えなけれ
ばならない。両者の方法のなかで特に合金粉末を
用いる方法では、被接合面に合金粉末を均一に載
置することが困難なため、予め合金粉末とアクリ
ル接着剤でプレフオームを作り被接合面に載置し
ているが、均一な層を形成するには十分でない。
さらに両者の方法に共通な点は、接合面が複雑な
形状になると、中間層としての合金箔、または合
金粉末とアクリル接着剤とのプレフオームを接合
面に対応して挾み込むことが困難であるという欠
点がある。 本発明の目的は、上記した従来技術の欠点をな
くし、接合面が複雑な形状であつても十分接合す
ることができ、また接合不良が極めて少ない合金
の接合法とこの接合法に用いるのに好適な被接合
材を提供することにある。 本発明者らは接合部における接合不良の極めて
少ない良好な接合面を得るための被接合材とし
て、Ni基合金の場合はNi2B、Co基合金の場合は
Co2B、Fe基合金の場合はFe2Bの金属間化合物を
表面に形成させることが著るしく効果的であるこ
とを見出した。 本発明は、上記知見に基づいてなされたもので
あつて、Ni基、Co基またはFe基の合金表面にそ
れぞれNi、CoまたはFeとBとの化合物層を形成
させた被接合材、およびこのような化合物層を形
成した被接合材同志、または化合物層を形成した
被接合材と金属間化合物層を形成していない被接
合材とを接合する方法である。 本発明において、Ni基、Co基またはFe基合金
にほう素化合物を形成するほう化処理は、上記合
金を溶融塩中に漬ける浸漬法、ガスを用いる気相
法、合金を粉末中に埋めて加熱する固体法、スパ
ツタ法、蒸着法などその手段を問わない。 合金の表面に形成されるほう素化合物層として
Ni2B、Co2B、Fe2Bが好ましくその厚さは4〜
100μm、好ましくは30〜40μmとすることが望ま
しい。M2B層が厚すぎると過乗のBが接合界面
に含有されるので接合部の機械的性質が劣化する
などの悪影響を及ぼし、またM2B層が薄すぎる
と接合強度が不十分となる。 本発明の接合方法は、上記のようなほう素化合
物層が表面に形成された合金を、ほう素化合物層
を挾持する形で接触加熱して接合するものであ
る。すなわち合金の被接合面は少なくとも一方に
ほう素化合物層が形成されていればよい。 接合時の加熱は、Ni基合金の場合、NiとNi3B
の共晶点以上、Ni合金の融点より低い温度範囲
とし、Co基合金の場合、CoとCo3Bの共晶点以
上、Co基合金の融点より低い温度範囲とし、Fe
基合金の場合、FeとFe3Bとの共晶点以上、Fe基
合金の融点より低い温度範囲とすることが望まし
い。 接合時の加熱雰囲気は、被接合材の酸化を防止
するために非酸化性雰囲気で行なうことが必要で
あるが、真空中に限らずArガスでも十分な効果
がある。 上記の加熱条件下では、被接合材表面が溶融
し、溶融後はNi、CoまたはFeに対するBの親和
力が大きく、また相互の濡れ性も良好なため接合
不良の少ない良好な接合部が得られる。また接合
面全域にNi2B、Co2BまたはFe2Bが存在し、加
熱により接合面全域が溶融するため、接合時に荷
重を加えなくとも十分接合する。もつとも荷重を
加えることによつて、より効果的に接合されるこ
とは言うまでもなく、この場合0.3Kg/cm2以下の僅
かの荷重で十分である。 以下本発明の詳細を実施例を示して説明する。 実験に用いた材料はNi基合金のIN−738LCで
第1表に化学組成を示した。
The present invention relates to objects to be joined of Ni-based, Co-based or Fe-based alloys and a method for joining the same, and in particular, to a material that can significantly reduce joint defects at joints and is suitable for joining joints with complex shapes. This article relates to objects to be joined and methods for joining them. Ni-based, Co-based and Fe-based alloys are often used in high temperature parts such as gas turbines and jet engines. In recent years, efforts have been made to increase the combustion efficiency of these gas turbines and jet engines by increasing the combustion gas temperature. However, from the viewpoint of materials, there has not necessarily been any advance in the development of materials that can withstand use at high temperatures. For this reason, parts used in high-temperature parts are sometimes cooled by introducing air. For example, cooling for blades includes convection cooling, impingement cooling, film cooling, and exudation cooling, and these are used alone or in combination to enhance the cooling effect. Therefore, the cooling holes, which are the flow paths for cooling air, become extremely complicated. Therefore, the blade is divided into a plurality of parts and cast, and then the divided cast products are joined to produce a single blade. Conventionally, methods for joining various alloys include inserting alloy foil or alloy powder into the surfaces to be joined, heating them and diffusing them into the joining surfaces; There is a method of joining these by melting them. However, the former method requires heating at high temperatures and for a long time, and also requires applying a large load to increase the bonding strength. In the latter method, it is necessary to bring the alloy foil or powder into close contact with the joint surface, and for this purpose a large load must be applied. Among both methods, especially the method using alloy powder, it is difficult to place the alloy powder uniformly on the surface to be joined, so a preform is made in advance with alloy powder and acrylic adhesive and placed on the surface to be joined. However, it is not sufficient to form a uniform layer.
Furthermore, a common point between both methods is that when the joint surface has a complex shape, it is difficult to sandwich the alloy foil as an intermediate layer or the preform of alloy powder and acrylic adhesive in a manner corresponding to the joint surface. There is a drawback. The purpose of the present invention is to provide a method for joining alloys that eliminates the above-mentioned drawbacks of the prior art, enables sufficient joining even when the joining surfaces have a complicated shape, and has extremely few joining defects, and a method for joining alloys that can be used in this joining method. The object of the present invention is to provide a suitable material to be joined. The present inventors used Ni 2 B in the case of Ni-based alloys and Ni 2 B in the case of Co-based alloys as materials to be joined in order to obtain a good joint surface with extremely few joint defects at the joints.
In the case of Co 2 B and Fe-based alloys, it has been found that forming an intermetallic compound of Fe 2 B on the surface is extremely effective. The present invention has been made based on the above findings, and provides a material to be joined in which a compound layer of Ni, Co, or Fe and B is formed on the surface of a Ni-based, Co-based, or Fe-based alloy, respectively. This is a method of joining materials to be joined together on which a compound layer is formed, or materials to be joined on which a compound layer is formed and materials to be joined on which an intermetallic compound layer is not formed. In the present invention, the boron treatment for forming boron compounds on Ni-based, Co-based, or Fe-based alloys can be carried out by dipping the alloy in molten salt, by using a vapor phase method using gas, or by burying the alloy in powder. Any method may be used, such as a solid heating method, sputtering method, or vapor deposition method. As a boron compound layer formed on the surface of the alloy
Ni 2 B, Co 2 B, and Fe 2 B are preferable, and the thickness is 4~
It is desirable that the thickness be 100 μm, preferably 30 to 40 μm. If the M 2 B layer is too thick, an excessive amount of B will be contained in the joint interface, which will have negative effects such as deteriorating the mechanical properties of the joint, and if the M 2 B layer is too thin, the joint strength will be insufficient. Become. In the joining method of the present invention, alloys having a boron compound layer formed on their surfaces as described above are joined by contact heating while sandwiching the boron compound layer. That is, it is sufficient that the boron compound layer is formed on at least one of the surfaces of the alloy to be joined. In the case of Ni-based alloys, heating during bonding is required for Ni and Ni 3 B.
In the case of Co-based alloys, the temperature range should be above the eutectic point of Co and Co 3 B and below the melting point of Co-based alloys.
In the case of a base alloy, the temperature range is preferably higher than the eutectic point of Fe and Fe 3 B and lower than the melting point of the Fe-based alloy. The heating atmosphere during bonding needs to be a non-oxidizing atmosphere to prevent oxidation of the materials to be bonded, but not only vacuum but also Ar gas has a sufficient effect. Under the above heating conditions, the surface of the materials to be joined melts, and after melting, B has a large affinity for Ni, Co, or Fe, and the mutual wettability is good, resulting in a good joint with few joint defects. . In addition, Ni 2 B, Co 2 B, or Fe 2 B exists over the entire joint surface, and the entire joint surface melts when heated, so that sufficient joining can be achieved without applying any load during joining. Of course, it goes without saying that the bonding can be more effectively achieved by applying a load; in this case, a slight load of 0.3 kg/cm 2 or less is sufficient. The details of the present invention will be explained below by showing examples. The material used in the experiment was IN-738LC, a Ni-based alloy, whose chemical composition is shown in Table 1.

【表】 被接合材には巾9mm、長さ13mm、厚さ5mmの試
験片を用いた。Ni2Bを形成させる方法として、
粉末中に被接合材を埋めて加熱する固体法を利用
した。すなわち、1w/oB−2.5w/oNH4Cl−残
Al2O3の混合粉末中に被接合材を埋め650〜950℃
で3.5時間Ar雰囲気で加熱処理を行なつた。処理
後X線回析で表面の形成物を同定し、また被接合
材断面から表面の形成物の厚さを測定した。その
結果、表面形成物は明らかにNi2Bであり、加熱
処理温度とNi2B層の厚さとの関係は第1図のよ
うであつた。 次にこれらの試料を用いて接合を行なつた。接
合に先立つて試料表面を耐水エメリー紙の1000番
で軽く研摩した。接合における加熱条件は温度
1200℃で1時間保持である。接合雰囲気は真空
(4×10-5Torr)又はArガス中である。接合後試
料を切断して、バフ研摩し、光学顕微鏡にて未接
合部長さを測定し、接合率(%)を算出した。第
2表にそれらの結果をまとめて示した。なお、第
1図に示したNi2B層の厚さと第2表で具体的に
示した接合試料のNi2B層の厚さが異るのは、上
述したように接合に先立つてNi2B層を耐水エメ
リー紙で研摩したためである。なおNiとNi3Bと
の共晶点は1080℃である。
[Table] A test piece with a width of 9 mm, a length of 13 mm, and a thickness of 5 mm was used as the material to be joined. As a method to form Ni 2 B,
A solid-state method was used in which the materials to be joined were buried in powder and heated. That is, 1w/oB−2.5w/oNH 4 Cl−residue
The material to be joined is buried in a mixed powder of Al 2 O 3 at 650 to 950℃.
Heat treatment was performed in an Ar atmosphere for 3.5 hours. After the treatment, the formations on the surface were identified by X-ray diffraction, and the thickness of the formations on the surface was measured from the cross section of the materials to be joined. As a result, the surface formation was clearly Ni 2 B, and the relationship between the heat treatment temperature and the thickness of the Ni 2 B layer was as shown in FIG. Next, bonding was performed using these samples. Prior to bonding, the sample surface was lightly polished with water-resistant emery paper No. 1000. The heating condition for bonding is temperature.
Hold at 1200°C for 1 hour. The bonding atmosphere is vacuum (4×10 -5 Torr) or Ar gas. After bonding, the sample was cut, buffed, and the length of the unbonded portion was measured using an optical microscope to calculate the bonding rate (%). Table 2 summarizes the results. The reason for the difference between the thickness of the Ni 2 B layer shown in Figure 1 and the thickness of the Ni 2 B layer of the bonded samples shown in Table 2 is that the Ni 2 B layer is This is because layer B was polished with water-resistant emery paper. Note that the eutectic point between Ni and Ni 3 B is 1080°C.

【表】 第2表より明らかなように被接合材表面に
Ni2Bを形成させておくと、極めて良好な接合状
態を示した。一方、接合率に及ぼす接合雰囲気の
影響は真空中とArガス中で試番a、bを比較す
ると大差がなかつたが、試番f、g、hのArガ
ス雰囲気で接合したものは98〜99%の接合率を示
している。 また、接合率に及ぼす荷重の影響についてはb
とcあるいはdとeとの比較から知られるように
荷重を加えたb及びdの場合に接合率が向上して
いることが解る。しかし、荷重を0.3Kg/cm2以上加
えても接合率は改善されず、また、被接合材の変
形をまねくので、0.3Kg/cm2以上の荷重を加えるこ
とは好ましくない。 以上のように本発明によれば、被接合材の被接
合面に予めNi2Bなどのほう素化合物M2Bが形成
され、またこれらの被接材を合せて加熱するので
特に複雑な形状の合金の接合に有効であり、しか
も接合不良の少ない接合部を得ることができる。
[Table] As is clear from Table 2, on the surface of the materials to be joined.
When Ni 2 B was formed, an extremely good bonding state was obtained. On the other hand, there was no significant difference in the effect of the bonding atmosphere on the bonding rate when samples a and b were compared in vacuum and in Ar gas, but samples f, g, and h bonded in an Ar gas atmosphere had a It shows a bonding rate of 99%. In addition, regarding the influence of load on the joining rate, b
As is known from the comparison between and c or d and e, it can be seen that the bonding rate is improved in cases b and d where a load is applied. However, applying a load of 0.3 Kg/cm 2 or more does not improve the bonding rate and also causes deformation of the materials to be joined, so it is not preferable to apply a load of 0.3 Kg/cm 2 or more. As described above, according to the present invention, a boron compound M 2 B such as Ni 2 B is formed in advance on the surfaces of the materials to be joined, and since these materials to be joined are heated together, a particularly complex shape can be avoided. This method is effective for joining alloys of 1 to 3, and it is possible to obtain a joint with few joint defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNi2B形成時の加熱処理温度とNi2B層
の厚さとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between the heat treatment temperature during Ni 2 B formation and the thickness of the Ni 2 B layer.

Claims (1)

【特許請求の範囲】 1 Ni基、Co基、又はFe基の合金表面に、それ
ぞれBとの化合物であるNi2B層、Co2B層、
Fe2B層を形成させたことを特徴とする被接合体。 2 前記Bとの化合物はB粉末、塩化アンモニウ
ム粉末及びアルミナ粉末を混合した混合物中に埋
めて、不活性雰囲気中で加熱して得ることを特徴
とする特許請求の範囲第1項記載の被接合体。 3 前記Bとの化合物層の厚さが、4〜100μm
であることを特徴とする特許請求の範囲第1項又
は第2項に記載の被接合体。 4 Ni基、Co基、又はFe基の合金同志を接合す
る方法において、前記合金の少なくとも一方の被
接合表面にNi、Co、又はFとBとの化合物であ
るNi2B層、Co2B層、Fe2B層を形成させた後、
両方の合金の被接合面を接触させて加熱し、接合
することを特徴とする接合法。 5 前記Ni2B層、Co2B層、Fe2B層が4〜100μ
mであることを特徴とする特許請求の範囲第4項
記載の接合法。 6 両方の合金の接合が、非酸化性雰囲気で行わ
れる特許請求の範囲第4項記載の接合法。 7 両方の合金の加熱時に、0.3Kg/cm2以下の圧力
を加える特許請求の範囲第4項記載の接合法。 8 Ni基合金と接合時の加熱温度を、Niと前記
Bとの化合物との共晶点以上、Ni基合金の融点
より低い温度範囲とする特許請求の範囲第4項記
載の接合法。 9 Co基合金と接合時の加熱温度を、Coと前記
Bとの化合物との共晶点以上、Co基合金の融点
より低い温度範囲とする特許請求の範囲第4項記
載の接合法。 10 Fe基合金と接合時の加熱温度を、Feと前
記Bとの化合物との共晶点以上、Fe基合金の融
点より低い温度範囲とする特許請求の範囲第4項
記載の接合法。
[Claims] 1. On the surface of a Ni-based, Co-based, or Fe-based alloy, a Ni 2 B layer, a Co 2 B layer, each of which is a compound with B,
A bonded object characterized by forming an Fe 2 B layer. 2. The bonded material according to claim 1, wherein the compound with B is obtained by burying the compound in a mixture of B powder, ammonium chloride powder, and alumina powder and heating the mixture in an inert atmosphere. body. 3 The thickness of the compound layer with B is 4 to 100 μm
The object to be joined according to claim 1 or 2, characterized in that: 4. In a method of joining Ni-based, Co-based, or Fe-based alloys , a Ni 2 B layer, a Co 2 B layer, which is a compound of Ni, Co, or F and B, is formed on at least one surface of the alloy to be joined. After forming the Fe2B layer,
A joining method characterized by bringing the surfaces of both alloys into contact and heating them to join them. 5 The Ni 2 B layer, Co 2 B layer, and Fe 2 B layer have a thickness of 4 to 100μ
5. The joining method according to claim 4, wherein the bonding method is m. 6. The joining method according to claim 4, wherein both alloys are joined in a non-oxidizing atmosphere. 7. The joining method according to claim 4, in which a pressure of 0.3 Kg/cm 2 or less is applied during heating of both alloys. 8. The joining method according to claim 4, wherein the heating temperature during joining with the Ni-based alloy is within a temperature range that is higher than the eutectic point of the compound of Ni and B and lower than the melting point of the Ni-based alloy. 9. The joining method according to claim 4, wherein the heating temperature during joining with the Co-based alloy is within a temperature range that is higher than the eutectic point of the compound of Co and B and lower than the melting point of the Co-based alloy. 10. The joining method according to claim 4, wherein the heating temperature during joining with the Fe-based alloy is within a temperature range that is higher than the eutectic point of the compound of Fe and the B and lower than the melting point of the Fe-based alloy.
JP16710281A 1981-10-21 1981-10-21 Bodies to be joined and joining method for said bodies Granted JPS5868489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16710281A JPS5868489A (en) 1981-10-21 1981-10-21 Bodies to be joined and joining method for said bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16710281A JPS5868489A (en) 1981-10-21 1981-10-21 Bodies to be joined and joining method for said bodies

Publications (2)

Publication Number Publication Date
JPS5868489A JPS5868489A (en) 1983-04-23
JPH0147277B2 true JPH0147277B2 (en) 1989-10-13

Family

ID=15843460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16710281A Granted JPS5868489A (en) 1981-10-21 1981-10-21 Bodies to be joined and joining method for said bodies

Country Status (1)

Country Link
JP (1) JPS5868489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560332A (en) * 2012-03-14 2012-07-11 陈唯明 Boronizing agent capable of forming boriding and eutecticum layer on surface of low-carbon steel grinding cylpebs, and treatment process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154476A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Production of object to be joined for diffusion joining
US4494287A (en) * 1983-02-14 1985-01-22 Williams International Corporation Method of manufacturing a turbine rotor
JPS60166183A (en) * 1984-02-06 1985-08-29 Taiho Kogyo Co Ltd Sliding material and its production
JPH0777775B2 (en) * 1987-09-04 1995-08-23 大豊工業株式会社 Sliding member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5813487A (en) * 1981-07-13 1983-01-25 Hitachi Ltd Diffusion bonding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5813487A (en) * 1981-07-13 1983-01-25 Hitachi Ltd Diffusion bonding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560332A (en) * 2012-03-14 2012-07-11 陈唯明 Boronizing agent capable of forming boriding and eutecticum layer on surface of low-carbon steel grinding cylpebs, and treatment process thereof

Also Published As

Publication number Publication date
JPS5868489A (en) 1983-04-23

Similar Documents

Publication Publication Date Title
US5156321A (en) Powder metallurgy repair technique
US4004047A (en) Diffusion coating method
US4667871A (en) Tin based ductile brazing alloys
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
EP0070177B1 (en) Diffusion bonding
US4700881A (en) Multiple foil transient liquid phase bonding
JPH0147273B2 (en)
JPS595389B2 (en) Diffusion bonding assembly
JPS59209498A (en) Method of combining metallic part
JPS58179584A (en) Welding by hot hydrostatic pressure press
US7658315B2 (en) Process of brazing superalloy components
US3868750A (en) Method of joining diamond to metal
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
US3188732A (en) Diffusion-bonding of metal members
JPH0147277B2 (en)
US3856480A (en) Diamond joined to metal
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
US6378755B1 (en) Joined structure utilizing a ceramic foam bonding element, and its fabrication
JPS6245020B2 (en)
JPS5891088A (en) Method of bonding ceramic and metal
JPH0147278B2 (en)
CA1051282A (en) Coating tape for aluminide diffusion coating
JPS6148562A (en) Manufacture of body to be joined
JPH029779A (en) Production of ceramic-metal composite body
JPH01154886A (en) Manufacture of al clad steel plate