JPS6033269A - Metal ceramic bonding method - Google Patents

Metal ceramic bonding method

Info

Publication number
JPS6033269A
JPS6033269A JP14132183A JP14132183A JPS6033269A JP S6033269 A JPS6033269 A JP S6033269A JP 14132183 A JP14132183 A JP 14132183A JP 14132183 A JP14132183 A JP 14132183A JP S6033269 A JPS6033269 A JP S6033269A
Authority
JP
Japan
Prior art keywords
metal
base material
alloy
joint
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14132183A
Other languages
Japanese (ja)
Other versions
JPH0520392B2 (en
Inventor
中橋 昌子
霜鳥 一三
博光 竹田
山崎 達雄
白兼 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14132183A priority Critical patent/JPS6033269A/en
Publication of JPS6033269A publication Critical patent/JPS6033269A/en
Publication of JPH0520392B2 publication Critical patent/JPH0520392B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金属とセラミックを接合する方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in methods for joining metals and ceramics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

金属とセラミックは夫々異なった原子結合状態を有し、
このため金属とセラミックを接合する場合、それらの反
応性などの化学的性質、熱膨張率、電気伝導度などの物
理的性質は大きく異なる。したがって、両部材全良好に
濡らし、信頼性の高い冶金的な接合を行なうことは相当
困難である。
Metals and ceramics each have different atomic bonding states,
For this reason, when joining metals and ceramics, their chemical properties such as reactivity, and physical properties such as thermal expansion coefficient and electrical conductivity differ greatly. Therefore, it is quite difficult to fully wet both parts and perform reliable metallurgical joining.

ところで、従来よシ金属とセラミックの冶金的接合方法
としては以下に示す種々の方法が知られている。
By the way, various methods shown below are conventionally known as methods for metallurgically joining metals and ceramics.

■ セラミック母材の接合面にMO−T−Wt主成分と
する粉末と有機バインダの混合物全塗布し、加湿した雰
囲気中で1400〜1700℃に加熱して反応させる。
(2) A mixture of a powder containing MO-T-Wt as a main component and an organic binder is completely applied to the bonding surface of the ceramic base material, and the mixture is heated to 1400 to 1700°C in a humid atmosphere to react.

これは通常、メタライジングと呼ばれる方法である。次
いで、前記メタライジング上にNiメッキ金施した後、
該Niメッキに金属母材(例えばCu母材)tpb−8
n系半田などによシ接合する。
This method is usually called metallizing. Next, after applying Ni plating on the metallizing,
A metal base material (e.g. Cu base material) tpb-8 is applied to the Ni plating.
Join by using n-based solder or the like.

こうした接合方法はエレクトミニりス部品において、絶
縁体としてのセラミック母材と導体としての(’u部材
を接合する場合に多用されている。
Such a joining method is often used in electro-miniature parts when joining a ceramic base material as an insulator and a ('u) member as a conductor.

■ 金属母材とセラミック母材とをAu、ptのような
貴金属、つまシ酸素との親和力の小さい金属を主成分と
する合金を用いて接合する方法。
■ A method of joining a metal base material and a ceramic base material using an alloy whose main component is a noble metal such as Au or PT, or a metal that has a low affinity for oxygen.

■ 金属母材とセラミック母材の接合部にTl。■ Tl at the joint between metal base material and ceramic base material.

Nb、Zrなどの活性金属又は熱処理によって活性金属
に変換される活性金属水素化物全介在させた後、高温、
高圧下で接合する方法。
After the presence of active metals such as Nb and Zr or active metal hydrides that are converted into active metals by heat treatment, high temperature
A method of joining under high pressure.

しかしながら、上記■の方法は工程数が多く煩雑である
という欠点を有する。上記■の方法は簡単な工程で接合
できるものの、高価な貴金属を使用するため経済的では
なく、シかも金属母材とセラミック母材が十分に接触す
るように高い圧力を必要として、変形金嫌う′エレクト
ロ部品などの接合には好ましくない。上記■の方法では
活性金属によシ強固な接合を行なえるものの、高い接合
圧力を必要とするため前記■の方法と同様、変形を嫌う
エレク)o部品などの接合には好ましくない。
However, the above method (1) has the disadvantage that it requires a large number of steps and is complicated. Although the above method (■) can be joined in a simple process, it is not economical because it uses expensive precious metals, and it also requires high pressure to ensure sufficient contact between the metal base material and ceramic base material, making it difficult to deform metal. 'Unfavorable for joining electronic parts, etc. Although the above method (2) allows for strong bonding of active metals, it requires high bonding pressure and, like the above method (2), is not suitable for bonding electronic components that are sensitive to deformation.

このようなことから、’l’i、zrなどの活性金属は
Cu、Ni、Feなどの遷移金属との合金において、そ
の共晶組成領域で活性金属の単体の融点(T i ; 
1720℃A11jZ r;1860℃)及び(:u、
Ni、Fe単体の融点(夫々1083℃。
For this reason, when active metals such as 'l'i and zr are alloyed with transition metals such as Cu, Ni, and Fe, the melting point of the active metal alone (T i ;
1720℃A11jZ r; 1860℃) and (:u,
The melting points of Ni and Fe alone (1083°C, respectively.

1453 c、1534℃)と比較して融点を数100
℃低下させることに着目し、遷移金属母材とセラミック
母材の接合部に活性金属を介在させ、該接合部を遷移金
属と活性金属の合金の融点よシ高く、遷移金属の融点よ
シ低い温度に加熱し、遷移金属と活性金属の原子を相互
に拡散させて合金化し、この合金によって遷移金属母材
とセラミック母材を接合する方法が米国特許第2.85
7,663号明細書に開示されている。かかる方法によ
れば、接合時において接合部に遷移金属と活性金属との
合金の融液によ)満たされ、金属母材とセラミック母材
を濡すので、各母材を十分接触させるための接合時の加
圧をほとんど必要とせず、かつ活性金属の効果によ)そ
れら母材を強固に接合できる。しかしながら、得られた
金属−セラミックの接合部材に熱衝Sを加えると、□セ
ラミック母材にり2ツクが発生する欠点があった。
1453 C, 1534 C), the melting point is several hundred
Focusing on lowering the temperature, an active metal is interposed at the joint between the transition metal base material and the ceramic base material, and the joint is made to have a temperature higher than the melting point of the transition metal and active metal alloy and lower than the melting point of the transition metal. U.S. Patent No. 2.85 discloses a method for bonding a transition metal base material and a ceramic base material by heating to a high temperature to mutually diffuse atoms of a transition metal and an active metal to form an alloy, and using this alloy to bond a transition metal base material and a ceramic base material.
No. 7,663. According to this method, at the time of joining, the joint is filled with a melt of the alloy of transition metal and active metal, and the metal base material and ceramic base material are wetted, so that it is necessary to make sufficient contact between the base materials. Almost no pressure is required during bonding, and these base materials can be firmly bonded due to the effect of the active metal. However, when a thermal shock S is applied to the obtained metal-ceramic bonded member, there is a drawback that □2 cracks occur in the ceramic base material.

〔発明の目的〕[Purpose of the invention]

本発明は金属母材とセラミック母材を簡単な工程で加圧
せずに強固に接合できると共に、それら接合部材に熱衝
撃を加えてもセラミック母材のクラック発生を防止し得
る接合方法を提供しようとするものである。
The present invention provides a joining method that can firmly join a metal base material and a ceramic base material in a simple process without applying pressure, and can also prevent the generation of cracks in the ceramic base material even if a thermal shock is applied to the joining members. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

本発明者らは前述した米国特許の方法によシ作られた接
合部材への熱衝撃によるセラミック母材のり2ツク発生
について種々検討した結果、遷移金属母材とセラミック
母材の接合部における遷移金属と活性金属の合金の生成
量、つまシ合金層の厚みがセラミック母材のクシツクに
密接に相関することを究明した。こうした相関関係紘次
のような機構によるものと考えられる。
The present inventors have conducted various studies on the generation of ceramic base material glue due to thermal shock on bonding members made by the method disclosed in the above-mentioned U.S. patent, and have found that It has been found that the amount of alloy formed between metal and active metal and the thickness of the pickle alloy layer are closely correlated with the stiffness of the ceramic base material. This correlation is thought to be due to a mechanism similar to Koji's.

即ち、遷移金属或いは活性金属などの金属とセラミック
とは熱膨張係数が大きく異なるため、接合部の温度が上
昇したシ、下降したりすると、その接合部に大きな応力
が生じる。この場合、C,u、Ni或いは全律固藩体と
してのCu−Ni合金などの金属はその硬度が低く、柔
らかいため、前記応力によシ容易に変形して応力全緩和
し易い。これに対し、遷移金属(Cu、Ni等)と活性
金属(Ti、Zr等)との合金は硬く、変形し難いため
、接合部にこれら合金層が厚く存在すると、応力の緩和
現象が小さく、セラミック母材に応力が加わってクラッ
クが発生するものと考えられる。
That is, since metals such as transition metals or active metals and ceramics have significantly different coefficients of thermal expansion, when the temperature of the joint increases or decreases, a large stress is generated at the joint. In this case, metals such as C, u, Ni, or a Cu--Ni alloy as a completely solid material have low hardness and are soft, so they are easily deformed by the stress and are easy to completely relax the stress. On the other hand, alloys of transition metals (Cu, Ni, etc.) and active metals (Ti, Zr, etc.) are hard and difficult to deform, so if a thick layer of these alloys exists at the joint, the stress relaxation phenomenon will be small. It is thought that cracks occur due to stress being applied to the ceramic base material.

このようなことから、本発明者らは上記究明結果全路え
て、更に鋭意研究したところ、金属母材とセラミック母
材の接合部に該金属と活性金属の合金全生成した後、更
に熱処理を続行して該合金全金属部材に拡散させて゛、
実質的にそれら母材の接合部に厚い合金層が存在しない
ようにすることによって、既述の如く各母材を加圧圧せ
ずに強固に接合できると共に、接合後、熱衝撃を与えて
もセラミック母材のり2ツク発生を防止し得る接合方法
を見い出し−たものである。
Based on these findings, the inventors of the present invention conducted further intensive research based on all of the above investigation results, and found that after a complete alloy of the metal and the active metal was formed at the joint between the metal base material and the ceramic base material, further heat treatment was performed. Continue to diffuse the alloy into all-metal parts.
By substantially eliminating the presence of a thick alloy layer in the joints of these base materials, it is possible to firmly join each base material without applying pressure as described above, and it is also possible to resist thermal shock after joining. We have discovered a bonding method that can prevent the occurrence of double strands of ceramic base material glue.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

まず、金属母材とセラミック母材の接合部に活性金属層
又は活性金属層と金属層を介在させる。ここに用いる金
属としては、例えばcu。
First, an active metal layer or an active metal layer and a metal layer are interposed at the joint between a metal base material and a ceramic base material. The metal used here is, for example, cu.

Nl又はこれらの合金等を挙げることができる。Examples include Nl and alloys thereof.

また、セラミックとしては窒化物(A7N。In addition, nitride (A7N) is used as a ceramic.

S”8N4r BNなど)、炭化物(SiCなど)、酸
化物(AA203など)全はじめとする各種のセラミッ
クを用いることができる。更に、活性金属としては、例
えばTi或いはzr等を挙げることができる。こうした
活性金属層の厚さは拡散時間を短縮する観点から100
μm以下にすることが望ましい。かかる活性金R層を前
記接合部に介在させる手段としては、例えば活性金属箔
を用いて介在させる方法、或いは金属母材に活性金属層
をスパッタリング法、LPC法(低圧プラズマコーティ
ング法)などによル堆積して介在させる方法等を採用し
得る。
Various ceramics can be used, including ceramics such as S''8N4r BN, etc.), carbides (SiC, etc.), and oxides (AA203, etc.).Furthermore, examples of active metals include Ti and Zr. The thickness of such an active metal layer is 100 mm from the viewpoint of shortening the diffusion time.
It is desirable that the thickness be less than μm. As a means for interposing such an active gold R layer in the joint, for example, an active metal foil may be used, or an active metal layer may be applied to a metal base material by sputtering, LPC (low-pressure plasma coating), or the like. It is possible to adopt a method of interposing the film by depositing it thereon.

次いで、金属母材とセラミック母材の接合部を真空雰囲
気、或いは不活性ガス雰囲気中にて加熱して保持する。
Next, the joint between the metal base material and the ceramic base material is heated and held in a vacuum atmosphere or an inert gas atmosphere.

この工程において、基本的には圧力を加えなくともよい
が、必要に応じて0.01〜19/−の低圧力を加えて
加熱してもよい。加熱温度は金属母材と活性金属の合金
の融点よシ高く、金属母材の融点よシ低いことが必要で
ある。具体的には金属母材kcu、Ni又はその合金で
形成し、Ti又は’lrの活性金属層を用いる場合には
872〜1082℃の範囲で加熱する。保持時間は介在
させる活性金属層の厚さおよび加熱温度との関係で決め
られるが、前記温度範囲で、活性金属層が100μm以
下であれば、数十時間〜数百時間とする。こうした熱処
理によ)各母材にその母性金属と活性金属の合金融液が
生成され、更に加熱を続行することによシ該合金が金属
母材に拡散する。なお、加熱時に加圧した場合、合金融
液が接合部に生成した時に圧力全解除して合金の金属母
材への拡散を行なってもよい。つづいて、合金の拡散が
終了し、接合部に合金属が極めて薄く存在するか、全く
存在しない状態になった時点で酸化全防止しつつ冷却し
て金属−セラミックの接合材を形成する。
In this step, it is basically not necessary to apply pressure, but if necessary, a low pressure of 0.01 to 19/- may be applied for heating. The heating temperature needs to be higher than the melting point of the alloy of the metal base material and the active metal and lower than the melting point of the metal base material. Specifically, it is formed of a metal base material kcu, Ni, or an alloy thereof, and when an active metal layer of Ti or 'lr is used, it is heated in the range of 872 to 1082°C. The holding time is determined in relation to the thickness of the active metal layer to be interposed and the heating temperature, and is set to several tens of hours to several hundred hours if the active metal layer is 100 μm or less in the above temperature range. Through such heat treatment, a liquid alloy of the parent metal and the active metal is formed in each parent metal, and continued heating causes the alloy to diffuse into the metal parent metal. In addition, if pressure is applied during heating, the pressure may be completely released when the alloy liquid is generated at the joint part, and the alloy may be diffused into the metal base material. Subsequently, when the diffusion of the alloy is completed and the alloy metal is present in a very thin layer or completely absent at the bonded portion, it is cooled while completely preventing oxidation to form a metal-ceramic bonding material.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例1 まず、15111A角、厚さ2肋のA!N板状体と10
u角、厚さ600μmの無酸素銅板状体全各々1枚用意
した。つづいて、これら板状体をトリクレン及びアセト
ンで洗浄して脱脂処理した後、それら板状体の接合部に
厚さ20μmのTi箔を介在させ、2 X 10−5T
orrの真空度に保持したホットプレス中にセラ)した
。ひきつづき板状体間に上下方向から0.1 ?/−の
圧力を加え、高周波加熱によシ接合部を930℃に保持
した。加熱後、30分間未満の時間で接合部が溶融した
。次いで、圧力を解除した後、950℃で96時間保持
してCu−Tlの合金層を無酸素銅板状体に拡散せしめ
た。
Example 1 First, A with 15111A square and 2 ribs in thickness! N plate and 10
One U-angle, 600 μm thick oxygen-free copper plate was prepared. Subsequently, after cleaning and degreasing these plate-like bodies with trichlene and acetone, a Ti foil with a thickness of 20 μm was interposed at the joint of these plate-like bodies, and a 2×10-5T
Cera) in a hot press maintained at a vacuum level of 0.1 from above and below between the plate-like bodies? A pressure of /- was applied, and the joint portion was maintained at 930° C. by high-frequency heating. After heating, the joint melted in less than 30 minutes. Next, after releasing the pressure, the temperature was maintained at 950°C for 96 hours to diffuse the Cu-Tl alloy layer into the oxygen-free copper plate.

しかして、接合部t100倍の光学顕微鏡で得ることが
できた。
Thus, the junction could be obtained using an optical microscope with a magnification of 100 times.

実施例2 まず、15朋角、厚さ3sugの5iaN4板状体と1
0w1角、厚さ1鶴のN1板状体を各々1枚用意した。
Example 2 First, a 5iaN4 plate-like body of 15 mm square and 3 sug thick and 1
One N1 plate-shaped body of 0W1 square and 1Tsuru thickness was prepared.

つづいて、これら板状体をトリクレン及びアセトンで洗
浄して脱脂処理を施した後、これら板状体の接合部に厚
さ20μmのzr箔と厚さ50μmのcu箔を介在させ
、2X10−Torrの真空度に保持されたホットプレ
ス中にセットした。−ひきつづき、板状体間に上下方向
から0.1 ?/−の圧力を加え、高周波加熱にょシ接
合部t−980℃にした。加熱後、30分間未満の時間
で接合部が溶融した。次いで、圧力を解除した後、99
0℃で96時間保持して合金層t−Ni板状体に拡散せ
しめた。
Subsequently, these plate-like bodies were cleaned and degreased with trichloride and acetone, and then a ZR foil with a thickness of 20 μm and a Cu foil with a thickness of 50 μm were interposed at the joint part of these plate-like bodies, and a 2×10-Torr It was set in a hot press maintained at a vacuum level of . -Continuing, 0.1 from the top and bottom between the plate-like bodies? A pressure of /- was applied and high frequency heating was carried out to bring the joint to t-980°C. After heating, the joint melted in less than 30 minutes. Then, after releasing the pressure, 99
The mixture was held at 0° C. for 96 hours to diffuse into the alloy layer t-Ni plate.

しかして、接合部を実施例1と同様に観察した結果、合
金層は観察されず、かつSt、N、板状体のクラック発
生もなく、良好なNi−8i s N4接合材を得るこ
とができた。
As a result of observing the joint in the same manner as in Example 1, it was found that no alloy layer was observed, and no cracks occurred in the St, N, or plate-like bodies, and a good Ni-8isN4 joint material could be obtained. did it.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば金属母材とセラミッ
ク母材を簡単な工程で加圧せずに強固に接合できると共
に、形成工程或いは接合後に熱衝撃金堂けてもセラミッ
ク良材のクラック発生を防止し得る接合方法全提供でき
る。
As detailed above, according to the present invention, metal base materials and ceramic base materials can be firmly joined together in a simple process without applying pressure, and even if the ceramic base material undergoes thermal shock during the forming process or after joining, cracks will not occur in the ceramic base material. We can provide all bonding methods that can prevent this.

出願人代理人 弁理士 鈴 江 武 彦ミApplicant's agent: Patent attorney Takehikomi Suzue

Claims (3)

【特許請求の範囲】[Claims] (1)金属母材とセラミック母材の接合部に活性金属層
或いは活性金属層と金属層を介在させた後、この接合部
全前記金属母料と活性金属の合金、或いは前記金属と活
性金属の合金の融点よシ高く、前記金属母材の融点よシ
低い温度に保持して前記合金を接合部に生成し、つづい
て該合金全金属母材へ拡散せしめることを特徴とする金
属とセラミックの接合方法。
(1) After interposing an active metal layer or an active metal layer and a metal layer at the joint between a metal base material and a ceramic base material, the entire joint is made of an alloy of the metal base material and the active metal, or an alloy of the metal base material and the active metal. metal and ceramic, characterized in that the alloy is maintained at a temperature higher than the melting point of the alloy and lower than the melting point of the metal base material to form the alloy at the joint, and then diffused into the entire metal base material. joining method.
(2)金属母材及び金属層がCu1Ni或いはその合金
であることを特徴とする特許請求の範囲第1項記、載の
金属とセラミックの接合方法。
(2) The method for joining metal and ceramic as set forth in claim 1, wherein the metal base material and the metal layer are Cu1Ni or an alloy thereof.
(3)活性金属がTi或いはZrであることを特徴とす
る特許請求の範囲第1項記載の金属とセラミックの接合
方法。
(3) The method for joining metal and ceramic according to claim 1, wherein the active metal is Ti or Zr.
JP14132183A 1983-08-02 1983-08-02 Metal ceramic bonding method Granted JPS6033269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14132183A JPS6033269A (en) 1983-08-02 1983-08-02 Metal ceramic bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14132183A JPS6033269A (en) 1983-08-02 1983-08-02 Metal ceramic bonding method

Publications (2)

Publication Number Publication Date
JPS6033269A true JPS6033269A (en) 1985-02-20
JPH0520392B2 JPH0520392B2 (en) 1993-03-19

Family

ID=15289195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14132183A Granted JPS6033269A (en) 1983-08-02 1983-08-02 Metal ceramic bonding method

Country Status (1)

Country Link
JP (1) JPS6033269A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204678A (en) * 1984-03-28 1985-10-16 日立造船株式会社 Method of bonding ceramic to steel
JPS61178476A (en) * 1985-01-30 1986-08-11 京セラ株式会社 Method of joining ceramic and metal and joint structure
JPS61247413A (en) * 1985-04-24 1986-11-04 松下電工株式会社 Counter structure
JPS6278171A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Method and structure of bonding ceramic body to metal member
US4901904A (en) * 1985-07-22 1990-02-20 Ngk Insulators, Ltd. Method of producing brazing metals
JPH07101784A (en) * 1994-06-06 1995-04-18 Toshiba Corp Aluminum nitride joined body and its production
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
CN109336635A (en) * 2018-12-06 2019-02-15 邢台职业技术学院 A kind of aluminium nitride ceramics material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204678A (en) * 1984-03-28 1985-10-16 日立造船株式会社 Method of bonding ceramic to steel
JPS61178476A (en) * 1985-01-30 1986-08-11 京セラ株式会社 Method of joining ceramic and metal and joint structure
JPS61247413A (en) * 1985-04-24 1986-11-04 松下電工株式会社 Counter structure
US4901904A (en) * 1985-07-22 1990-02-20 Ngk Insulators, Ltd. Method of producing brazing metals
JPS6278171A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Method and structure of bonding ceramic body to metal member
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
JPH07101784A (en) * 1994-06-06 1995-04-18 Toshiba Corp Aluminum nitride joined body and its production
CN109336635A (en) * 2018-12-06 2019-02-15 邢台职业技术学院 A kind of aluminium nitride ceramics material and preparation method thereof

Also Published As

Publication number Publication date
JPH0520392B2 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
US2857663A (en) Metallic bond
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH0249267B2 (en)
JPH0367985B2 (en)
JPS6033269A (en) Metal ceramic bonding method
JPS60166165A (en) Joining method of metal and ceramics
JPS60235773A (en) Ceramic body bonding method
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPS60166275A (en) Bonding of ceramic and metal
JP3302714B2 (en) Ceramic-metal joint
JPS6090879A (en) Ceramic and metal bonding method
JP3629578B2 (en) Ti-based material and Cu-based bonding method
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPH05319946A (en) Ceramic substrate joined to metallic plate
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH0649620B2 (en) Method for joining ceramic member and metal member
JPH0337165A (en) Adhesion between ceramics and metal
JPS60239373A (en) Alumina and metal bonding method
JPS6272472A (en) Joining method for ceramics and metal or the like
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPS6246975A (en) Method of joining ti to ceramic
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPS59164676A (en) Ceramic-metal bonded body and manufacture
JPH0337166A (en) Adhesion between ceramics and metal
JPS59174584A (en) Method of bonding ceramics to metal